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Abstract— This paper designed and developed negotiation
agents with the distinguishing features of 1) conducting con-
tinuous time negotiation rather than discrete time negotiation,
2) learning the response times of trading parties using Bayesian
learning and, 3) deciding when to make a proposal using
a multi-objective genetic algorithm (MOGA) to evolve their
best-response proposing time strategies for different negotia-
tion environments and constraints. Results from a series of
experiments suggest that 1) learning trading parties’ response
times helps agents achieve more favorable trading results,
and 2) on average, when compared with SSAs (Static Strat-
egy Agents), BRSAs (Best-Response proposing time Strategy
Agents) achieved higher average utilities, higher success rates
in reaching deals, and smaller average negotiation time.

I. INTRODUCTION

Automated negotiation among software agents is becom-
ing increasingly important and research on engineering e-
negotiation agents [7], [12] has received a great deal of atten-
tion in recent years. Even though there are many extant nego-
tiation agents dealing with negotiation with multiple trading
parties (e.g., [9], [20], [15], [3]), negotiation in these systems
is conducted in discrete time. This gives rise to the problem
that during negotiation, no matter how long an agent has to
wait and how many proposals have been received, the agent
cannot propose until having received proposals from all its
trading parties. Therefore, the general negotiation mechanism
is not flexible when agents have different response times.
Thus, it is essential for agents to use a flexible strategy (called
proposing time strategy) to decide when to make a proposal
in response to negotiation dynamics. Furthermore, to operate
successfully in open environments, bargaining agents must be
capable of evolving their proposing time strategies to adapt
to prevailing circumstances and constraints.

To overcome the limitation of the general negotiation
mechanism, [1] have developed a flexible negotiation mech-
anism for software agents and it has been shown that the
flexible strategy achieved better negotiation results as com-
pared with the general discrete time strategy. However, the
flexible strategy in [1] is not designed with capabilities that
can enhance their performance by evolving their proposing
time strategies for negotiation in different environments and
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constraints. Nevertheless, it is assumed in [1] that agents
have complete information about their trading parties’ re-
sponse times. However, in real-world negotiation, an agent’s
response time is often its private information. To this end,
this work will supplement and complement existing literature
by developing bargaining agents that can 1) learn the re-
sponse times of their trading parties using Bayesian learning
(Section III) and 2) evolve their best-response proposing
time strategies in different market situations and constraints
using a multi-objective GA (Section IV) in which negotiation
results are not only evaluated in terms of utility, but also in
terms of negotiation speed and success rate.

Additionally, the negotiation model is presented in Section
II. We conducted a series of experiments (see Section V) to
1) determine the most successful proposing time strategies
for different negotiation environments, and 2) evaluate the
performance of negotiation agents capable of learning trading
parties’ response times and evolving best-response proposing
time strategies. Section VI summarizes related work and
Section VII concludes this paper.

II. NEGOTIATION MODEL

For ease of analysis, this work focuses on single-issue
(e.g., price-only) negotiation. Each agent consists of a man-
ager agent and several sub-agents, and negotiation is com-
posed of multiple interactive sub-negotiation threads. When
negotiation begins, the manager agent creates a number of
sub-agents corresponding to the number of trading parties,
and each sub-agent negotiates with a trading party. All the
sub-negotiation threads mutually influence one another. This
section presents 1) the negotiation protocol, and 2) sub-
agents’ concession strategy.

A. Negotiation Protocol
This work adopts the alternating offers protocol (see [16,

p.100]) so that a pair of buyer and seller agents negotiates
by making proposals in alternate rounds. Many buyer-seller
pairs can negotiate deals simultaneously. At round t = 0,
an agent sends its proposals to its trading parties. During
negotiation, each agent uses its proposing time strategy
discussed in Section IV to decide when to make a proposal.
If no agreement is reached, negotiation proceeds to another
round. Negotiation between two agents terminates 1) when
an agreement is reached or 2) with a conflict when one of
the two agents’ deadlines is reached.

B. Sub-agents’ concession strategy
A sub-agent’s concession rate at each round of negotiation

is determined by four decision functions [1]: time dependent



function T , trading parties’ strategies dependent function
O, other negotiation threads dependent function P , and
competition dependent function C. Let kt

i [T ], kt
i [O], kt

i [P ]
and kt

i [C] be the set of concession rates of agent i in
round t according to the decision functions T , O, P and
C respectively. The agent i’s concession rate kt

i in round t
is given by:

kt
i = f

(
kt

i [T ], kt
i [O], kt

i [P ], kt
i [C]

)
If agent i is a buyer, its proposal bt

i at round t is bt
i =

(1+kt
i)× bt−1

i ; If agent i is a seller, its proposal st
i at round

t is st
i = (1 − kt

i) × st−1
i .

Time dependent function T : Function T takes the remain-
ing negotiation time’s effect on negotiation strategies into
account. When an agent negotiates with a number of trading
parties, from its perspective, the negotiation process consists
of several rounds, but each round may be of different cycle
time (the time spent in a round of negotiation) and the agent
may only propose to some of its trading parties in each round.
For the sub-negotiation thread i, let Bt

i be the beginning
time at round t and F t

i be the finishing time in round t. The
proposal pt

i[T ] of agent i at round t is modeled as follows:

pt
i[T ] = IPi − φi(Bt

i ) × (IPi − RPi)

where time-dependent function φi(Bt
i ) is determined with

respect to time preference (eagerness) β > 0 and deadline
T i

max and is given as

φi(Bt
i ) = (Bt

i/T i
max)β

With infinitely many values of β, there are infinitely many
possible strategies in making concession with respect to
remaining time. However, they are classified by [18] into:

1) Linear: β = 1 and φi(Bt
i ) = Bt

i/T i
max. bt

i[T ] linearly
increases and the remaining time has a consistent effect on
the concession rate.

2) Conciliatory: φi(Bt
i ) = (Bt

i/T i
max)β , where 0 < β <

1. An agent makes larger concessions in the early trading
rounds and smaller concessions at the later stage.

3) Conservative: φi(Bt
i ) = (Bt

i/T i
max)β , where β > 1. An

agent makes smaller concessions in early rounds and larger
concessions in later rounds.

Let kbt
i[T ] (respectively, kst

i[T ]) be the concession rate of
sub-buyer (respectively, sub-seller) i according to function T
at round t. Let bt

i[T ] (respectively, kst
i[T ]) be sub-buyer i’s

proposal at round t according to function T . Since bt
i[T ] =

(1 + kbt
i[T ])× bt−1

i [T ] and st
i[T ] = (1 − kst

i[T ])× st−1
i [T ],

kbt
i[T ] =

(RPi − IPi) × (Bt
i/T i

max)β + IPi

(RPi − IPi) × (Bt−1
i /T i

max)β + IPi

− 1

kst
i[T ] = 1 − IPi − (IPi − RPi) × (Bt

i/T i
max)β

IPi − (IPi − RPi) × (Bt−1
i /T i

max)β

Trading parties’ strategies dependent function O: It is
reasonable for an agent to make concessions based on the
behaviors of its trading parties as 1) to maximize utility, an

agent may choose to use imitative tactics to protect itself
from being exploited by other agents [5]; 2) making large
concessions to a conservative agent makes no sense; and
3) an agent may have more than one chance to reach an
agreement.

Let kbt
i[O] (respectively, kst

i[O]) be the concession rate of
sub-buyer (respectively, sub-seller) i according to function O
at round t (t > 2).

kbt
i[O] = ηn × (1 − st−1

i /st−2
i )

kst
i[O] = ηn × (bt−1

i /bt−2
i − 1)

where 0 < η ≤ 1 and n is the number of the trading parties.
An agent partly, in percentage of ηn, reproduces the behavior
that its trading party performed. The parameter η reflects
agents’ optimism toward negotiation results when their trad-
ing parties increase. η with a little value (respectively, larger
value) means that an agent is very optimistic (respectively,
pessimistic) about negotiation results with the increase of
trading parties.

Other negotiation threads dependent function P : Function
P models how negotiation situations of multiple threads
influence each other. Let numst−1 be the number of trading
parties to whom the buyer proposes at round t, and st−1

min =
min

numst−1
i=1 st−1

i represents the lowest proposal the buyer
has received in round t−1. Similarly, when a seller negotiates
with n buyers, 0 < numbt−1 ≤ n represents the number
of the proposals the seller has received at round t − 1, and
bt−1
max = max

numbt−1
i=1 bt−1

i represents the highest proposal the
seller has received at round t − 1.

Suppose that a buyer negotiates with a number of sellers.
At round t−1, sub-buyer i receives a proposal st−1

i from its
party – seller i. For sub-buyer i, 1) if st−1

min > bt−1
i , it should

make some concession. In this case, if st−1
min/st−1

i is very
small, i.e., seller i’s offer st−1

i is very high as compared with
the other numst−1 − 1 proposals, sub-buyer i would make
a small concession as their negotiation seems “hopeless”. If
st−1

min/st−1
i is closed to 1, i.e., seller i’s proposal st−1

i is very
“favorable”, sub-buyer i would make a large concession to
seller i according to function O as the sub-negotiation thread
seems “hopeful”. Therefore, the lower seller i’s proposal as
compared with the other numst−1 − 1 proposals, the larger
concession sub-buyer i will make. 2) Otherwise, i.e., st−1

min ≤
bt−1
i . Since at least one of the trading parties’ proposals is

higher than its proposal at round t−1, sub-buyer i will choose
to raise its expectation, i.e., let bt

i < st−1
min ≤ bt−1

i . Since
bt
i = (1 + kbt

i[P ]) × bt−1
i , where kbt

i[P ] is the concession
rate of sub-buyer i according to function P at round t, then
(1 + kbt

i[P ]) × bt−1
i < st−1

min, thus kbt
i[P ] < st−1

min/bt−1
i − 1.

Hence, we have: kbt
i[P ] = st−1

min/bt−1
i − 1 − σ, σ > 0, and

sub-buyer i can decide the value of σ according to its desire
to maximize utility (greed). σ with a large value means that
the agent will greatly raise its expectation if st−1

min ≤ bt−1
i .

Similarly, let kst
i[P ] be the concession rate of sub-seller i

according to function P at round t. Hence,



kbt
i[P ] =

{
min(kbt

i[O], st−1
min/st−1

i ) if st−1
min > bt−1

i

st−1
min/bt−1

i − 1 − σ otherwise

kst
i[P ] =

{
min(kst

i[O], bt−1
i /bt−1

max) if bt−1
max < st−1

i

1 − bt−1
max/st−1

i − σ otherwise

Competition dependent function C: A negotiator’s bargain-
ing “power” is affected by the number of competitors, and
trading alternatives. The competition situation of an agent
is determined by the probability that it is being (not being)
considered as the most preferred trading party [19], [17].
Suppose agent i has m−1 competitors and n trading parties.
The probability that agent i is not the most preferred trading
party of any trading party is (m− 1)/m. The probability of
agent i not being the most preferred trading party of all the
trading parties is [(m − 1)/m]n. Hence,

kt
i [C] = [(m − 1)/m]n

where kt
i [C] is the concession rate of sub-agent i according

to the decision function C at round t. Since buyers and sellers
can enter and leave the market at any time, the values m and
n may constantly change with ongoing negotiation.

III. DECIDE WHEN TO MAKE A PROPOSAL

A. Learn trading parties’ response times

Rather than assuming agents have complete information
about trading parties’ response times, this work utilizes
Bayesian learning to learn agents’ response times.

In classical statistics, Bayesian theorem of continuous
random variable has the following form:

π(θ|x) =
p(x|θ)π(θ)∫

θ
p(x|θ)π(θ)dθ

where π(θ) is the prior distribution density function. π(x|θ)
is the conditional density of X when the random variable θ is
given. π(θ|x) is the conditional distribution density function
of θ when samples X = (X1, X2, . . . , Xn) are given, i.e.,
posterior distribution of θ.

In a dynamic e-commerce market, there are many reasons
resulting in different trading parties having different response
times. For ease of analysis, this paper assumes that each
agent’s response time follows a normal distribution.1 Assume
a buyer agent is trying to learn the response time of a seller
agent. Assume the real response time of the seller follows a
normal distribution N(θ, σ2), where σ2 is known and θ is
unknown. That is, the buyer intends to learn the value of θ.
Through interaction during negotiation, the buyer receives a
series of response times X1, X2, . . . , Xn (samples of normal
distribution N(θ, σ2)) from the seller agent. Let another
normal distribution N(µ, τ2) be the buyer’s prior belief of the
distribution of θ. Assume that σ0

2 = σ2/n, x =
∑n

i=1 xi/n.
The posterior distribution of θ, i.e., π(θ|x), calculated using
Bayesian theorem is N(µ′, σ′2), where

1Bayesian learning can also be applied to learning parameters of other
distributions [2].

Fig. 1. Learning agents’ response times.

µ′ =
(xσ0

−2 + µτ−2)
(σ0

−2 + τ−2)

σ′2 = (σ0
−2 + τ−2)−1

σ0
2 is the variance of the mean of samples x, and σ0

−2 is
the precision of x. τ2 is the variance of the prior distribution
N(µ, τ2), and τ−2 is the precision of µ. Thus, the posterior
mean µ′ averages the prior mean µ and the mean x of the
samples weighted according to their precision. The smaller
τ2 is, the larger the proportion of the prior mean to the
posterior mean is. On the other hand, the larger the number
n of samples is, the smaller σ0

2/n is, and the larger the
proportion of x to the posterior mean is. During learning,
the impact of samples becomes increasingly important.

Example 1: Assume a buyer b intends to learn the response
time N(θ, σ2) of a seller s. Let s’s response time follow
N(θ, σ2) = N(6, 32) and b’s prior belief of s’s response time
be N(µ, τ2) = N(9, 42). The learned posterior distribution
of seller s’s response time N(µ′, σ′2) is shown in Fig. 1. It
can be observed that 1) with ongoing interaction, buyer b’s
updated belief of s’s response time is becoming closer to the
real value. In Fig. 1, the value of µ is close to 6 after 40
rounds of learning; and 2) with ongoing learning, b becomes
more sure of its learned value. For example, in Fig. 1, the
value of τ2 decreases with ongoing learning.

B. Proposing time strategy

This section presents agents’ proposing time strategies
based on synchronization situations of negotiation, which are
determined by trading parties’ response times. A negotia-
tion’s synchronization situation S is given by:

S =

√
D(C)

E(C)

where C is the set of response times of all the trading parties,
C = (C1, C2, . . . , Cn), where Ci is the learned response



time of trading party i (i.e., µ′ in Section 3.1).2 E(C) is the
expectation of C, and D(C) is the variance of C. S increases
with the increase of the variance D(C).

While making the decision of when to make a proposal at
round t + 1, an agent may confront the following dilemma:
1) Not propose until having received most or all counter-
proposals from its trading parties. The agent will get more
information after receiving more counter-proposals, but it
will take more time to complete a round of negotiation.
Consequently, the agent may be not able to complete several
rounds of negotiation before the deadline approaches. 2)
Propose as soon as possible. Although this approach reduces
the time spent in a round of negotiation, the proposal for a
trading party may not be as good as the proposal generated
after receiving more counter-proposals. As the synchroniza-
tion situation of a negotiation shows the difference of the
set of response times of trading parties, it is intuitive to take
the synchronization situations into account while making the
decision of when to make a proposal.

The following strategy is used to decide when to make
a proposal: at each round, after a sub-agent first receives
a proposal from its trading party, it waits until the number
of the sub-agents having received proposals reaches a ratio
Rwait, and then all the sub-agents having received proposals
propose to their trading parties respectively. The waiting ratio
Rwait is given by:

Rwait = min
(
λ

Smax − S

Smax
, 1

)
where λ > 0, Smax = max(C)/E(C) and max(C) is the
maximum response time in C. Since

d Rwait(S)
dS

= −λ
1

Smax

and Smax is nonnegative, the slope dRwait(S)/dS is always
negative. Therefore, an agent will wait for a longer time with
the increase of the synchronization level S.

When λ = 1, the proposing time strategy here is equivalent
to the static proposing time strategy in [1] as Rwait =
min(1(Smax − S)/Smax, 1) = (Smax − S)/Smax. Thus, the
proposing time strategy here can represent more proposing
time strategies than the static strategy. In response to different
negotiation environments, an agent should adopt different
proposing time strategies. By introducing parameter λ, a
negotiation agent can use different proposing time strategies
in different negotiation environments. This work tries to find
an approximate value of λ that can let an agent make a good
agreement in different negotiation environments. Finding a
solution to this optimization problem is difficult as there
exist different criteria for negotiation results and there are
infinitely many proposing time strategies for an agent. A
possible approach for addressing this problem is to use a

2The value of τ is ignored here as 1) µ′ is more important than the
standard variance τ , and 2) with learning’s ongoing, the value of τ is close
to 0 (as in Fig. 1, τ decreases quickly at the beginning of learning and is
close to 0 after 10 rounds of learning).

multi-objective GA to search the population of strategies for
a best-response proposing time strategy.

IV. MULTI-OBJECTIVE GENETIC ALGORITHM

This section introduces a multi-objective genetic algo-
rithm (MOGA) to evolve the best-response proposing time
strategies for different negotiation situations. A sequence of
ever improving populations is generated as the outcome of
a search method modeled using three operations: selection,
crossover and mutation. The individuals of a population
are negotiation agents, and their genetic materials are the
parameters of the proposing time strategies. Both the buyer
and seller populations are simultaneously evolving and the
fitness of an individual in one population is based on direct
competition with individuals from the other population. Each
individual of a population is represented as a fixed-length
string, and more specifically, the bits of a string (a gene) have
the following structure: 1) λ, which determines the agent’s
proposing time strategy, 2) Tmax (deadline), 3) IP (initial
proposal), and 4) RP (reserve proposal).

Similar to basic evolutionary ideas, fitness determines an
agent’s chance of surviving to the next population generation.
The fitness value of a gene (corresponding to a proposing
time strategy) is determined by the negotiation results as
the gene negotiates with other genes. Since the score of a
proposing time strategy is determined by three objectives:
utility (U ), success rate (S), and negotiation speed (T ), for
this multi-objective problem, every negotiation result has
three fitness values. For example, for a negotiation result
X = (XU , XS , XT ) where XU , XS , and XT are the negoti-
ation results of all the three objectives of X respectively, the
function fI(XI) is the performance measure I of the result
XI , in which I ∈ {U, S, T}. A performance measure I of
the result XI , i.e., fI(XI), is defined as:

fU (XI) =
XI − min(XI)

max(XI) − min(XI)

where max(XI) and min(XI) are, respectively, the best and
worst value of the performance measure I .

Hence, the fitness value f(X) for the multi-objective
optimization problem in this work can be expressed as
follows:

maxX f(X) = f
(
fU (XU ), fS(XS), fT (XT )

)
In defining f(X), two issues were considered: 1) agents’

constraints on multiple objectives. For an objective I ∈
{U, S, T}, each constraint can be described as cI ∈ [0, 1],
which acts as a threshold for calculating the fitness value
of a negotiation result. A larger value of cI indicates that
an agent has rigorous requirements on objective I; and 2)
agents’ preferences for placing the importance of the three
objectives, which is represented as the priorities. The priority
of an objective I ∈ {U, S, T} is represented as wI ∈ [0, 1].
Considering agents’ constraints and preferences for the three
objectives, f(X) is given as follows:



f(X) =

∑
I∈{U,S,T}

(
wI ¦ µI

(
fI(XI)

))
3

where µI

(
fI(XI)

)
, I ∈ {U, S, T}, is defined as:

µI

(
fI(XI)

)
=

{
fI(XI) if fI(XI) > cI

0 otherwise

and operator ¦ : [0, 1] × [0, 1] → [0, 1], called a priority
operator, satisfies [4, p.50]: 1) ∀a1, a2, a

′
2 ∈ [0, 1], a2 ≤

a′
2 =⇒ a1 ¦ a2 ≤ a1 ¦ a′

2, 2) ∀a1, a
′
1, a2 ∈ [0, 1], a1 ≤

a′
1 =⇒ a1 ¦ a2 ≥ a′

1 ¦ a2, 3) ∀a ∈ [0, 1], 1 ¦ a = a, and 4)
∀a ∈ [0, 1], 0 ¦ a = 0.

The operator ¦ : [0, 1] × [0, 1] → [0, 1] is given by:

a1 ¦ a2 = (a2 − 1) × a1 + 1

Example: Let the priority set be wU = 0.9, wS = 0.3 and
wt = 0.3. Assume that µU (fU (XU )) = 0.8, µS(fS(XS)) =
0.4 and µT (fT (XT )) = 0.7. The fitness value f(X) is given
by: f(X) =

(
(0.9¦0.8)+(0.3¦0.4)+(0.3¦0.7)

)
/3 =

(
(0.8−

1)×0.9+1+(0.4−1)×0.3+1+(0.7−1)×0.3+1)
)
/3 = 2.56.

The value of the constraint cI ∈ [0, 1] of objective I acts as
a threshold for calculating the fitness value of a negotiation
outcome. A larger value of cI indicates that an agent has
rigorous requirements on objective I. For example, a combi-
nation C =

〈
cU = 0, cS = 0, cT = 0

〉
models the situation

that an agent has no constraint on the multiple objectives. In
contrast, a combination C =

〈
cU = 0.8, cS = 0.8, cT = 0.8

〉
indicates that an agent has rigorous requirements on the three
objectives.

As agent designers may have different preferences for dif-
ferent objectives, it seems intuitive to place “weights” on the
individual fitness values taking into account the constraints
of the multiple objectives using the priority operator ¦, and
aggregating individual fitness using the weights to produce a
single fitness value for every negotiation result. The priority
operator ¦ is used to express agents’ different preferences on
the three objectives. For instance, if an agent has sufficient
negotiation time and higher chance to reach an agreement,
then it may place more emphasis on optimizing its utility,
and less emphasis on negotiation speed and success rate. In
contrast, when an agent has shorter deadline for negotiation
and lower chance to reach an agreement, it may place more
emphasis on negotiation time and success rate.

The whole flow of the MOGA is explained as follows:
1) [Initialization]: In this step, the initial population P0 is

created by randomly generating n genes representing (both
buyer and seller) agents with different values of λ.

2) [Fitness calculation]: When a new population is gen-
erated, each gene first negotiates with other genes, and the
negotiation result obtained by each gene is used to determine
its fitness using f(X).

3) [Select the gene with the highest fitness]: The gene
with the highest fitness BestPt in the current population Pt

is selected and included as part of the new population Pt+1

in round t+1. Selection, crossover and mutation are applied
to the other n − 1 individuals (let them be P

′

t+1) in Pt.
4) [Tournament selection]: Tournament selection is used

in the MOGA for selecting individuals from Pt for inclusion
in the mating pool MP. Through tournament selection, k
individuals are randomly selected from Pt. The individual
with the highest fitness among the selected k individuals is
placed in the MP, in which k is called the tournament size (in
this work, k is 2). This process is repeated n − 1 times and
generates n−1 new genes (which forms P

′

t+1 ) for applying
the crossover and mutation operations.

5) [Crossover]: Two individuals from P
′

t+1 are randomly
selected. The crossover operation is only performed on the
bits representing the value of λ. Crossover points are ran-
domly selected and sorted in ascending order. The genes be-
tween successive crossover points are alternately exchanged
between the individuals, with a probability Pc. Through
experimental tuning, a value of Pc = 0.6 is adopted.

6) [Mutation]: Mutation is also only performed on the
bits representing the value of λ. Some of the genes in P

′

t+1

are randomly selected for mutation. For the selected genes, a
random value chosen from the domain of the gene is used to
replace the value of selected bits representing the value of λ.
The remaining genes have a probability Pm(t) of undergoing
mutation where Pm(t) = 0.01 is adopted.

After applying selection, crossover and mutation, the pop-
ulation Pt+1 in round t+1 is composed of BestPt in round
t together with n − 1 newly created individuals P

′

t+1.
7) [Terminating condition]: Steps 2)∼6) are repeated

until the following stopping criterion is met: 95% of the
individuals have the same fitness or the number of iterations
reaches a predetermined maximum (e.g., 100).

The complexity of each round of learning is polynomial
with the number of possible strategies. The termination
condition specifies the maximum number of learning rounds.
Therefore, the complexity of the MOGA is still polynomial
and thus the MOGA is appropriate to be used in real
negotiation support systems.

V. EMPIRICAL RESULTS

A series of experiments was carried out to compare the
performance of SSAs and BRSAs.In the experiments, agents
of both types were subjected to different market densities,
different market types, and other factors (e.g., deadline,
eagerness, optimism, greed) (Table I). All the six input
parameters in Table I are generated randomly following a
uniform distribution. Both market density and market type
depend on the probability of generating an agent in each
round and the probability of the agent being a buyer (or
a seller). From a buyer agent’s perspective, for a favorable
(respectively, an unfavorable) market, an agent enters a
market with lower (respectively, higher) probability of being
a buyer agent and higher (respectively, lower) probability
of being a seller. The lifespan of an agent, i.e., its dead-
line, is randomly selected from [150s, 600s]. The range of
[150s, 600s] for deadline is adopted based on experimental
tuning and agents’ behaviors. In the current experimental



TABLE I
INPUT DATA SOURCES

Input Data Possible Values
Market Type Favorable Balanced unfavorable

Pparty < 0.5 0.5 > 0.5

Pparty : Probability of an agent being a trading party

Competitor/party {1:2, 1:4, 1:10} 1:1 {10:1, 4:1, 2:1}
Market Density Sparse Moderate Dense

Pgen 0.25 0.5 1

Pgen: Probability of generating an agent per round

Deadline Short Moderate Long

Tmax 150 − 250s 250 − 400s 500 − 600s

Eagerness Lower range Mid-range Upper range

β 5 1 0.2

Optimism Lower range Mid-range Upper range

η 0.98 0.93 0.8

Greed Lower range Mid-range Upper range

σ 0.02 0.05 0.1

setting, the response time of every agent is about 5s following
a uniform distribution for convenience and it was found that:
1) for very short deadline (< 150s), very few agents could
complete deals, and 2) for deadlines > 600s, there was little
or no difference in performance among agents. Hence, for the
purpose of experimentation, a deadline between the range of
150 − 250s (respectively, 250 − 400s and 450 − 600s) is
considered as short (respectively, moderate and long). The
value of eagerness is randomly generated from [0.1, 10] and
the range values for eagerness follow the definition in Section
II. It was found that when β > 10 (respectively, β < 0.1),
agents made little (respectively, large) concession at the
beginning of negotiation and there was little or no difference
in performance among agents. Hence, representative values
of eagerness from 1) the lower range (e.g., 5), 2) the
upper range (e.g., 0.2), and 3) mid-range (e.g., 1) were
used. The value of optimism is randomly generated from
[0.7, 1]. Through experimentation, it was found that when
the optimism value η > 0.99 or η < 0.7, there was little
or no difference in performance among negotiation agents.
Thus, an optimism value of 0.8 (respectively, 0.98 and 0.93)
is considered as upper range (respectively, lower range and
mid-range). The value of greed is selected from the range
[0.01, 0.15] based on experimental tuning. It was found that
1) when the greed value σ > 0.15, most agents failed to
reach agreements, and 2)when the greed value σ < 0.01,
there was little or no difference in performance among
agents. Therefore, a greed value of 0.1 (respectively, 0.02
and 0.05) is considered as upper range (respectively, lower
range and mid-range). The search space of λ is [0.001, 10]
because through experimental tuning, it was found that when
λ > 10 (respectively, λ < 0.001), agents wait for most
(respectively, few) counter-proposals during negotiation and
there was almost no difference in performance among agents.

Performance measure: 1) average utility: Uaverage is the
average utility of agents that reached consensus, 2) success

TABLE II
LEARNED BEST-RESPONSE STRATEGIES (λ)

Market Density Market Type Deadline
Long Moderate Short

Sparse
Favorable 1.41 0.83 0.31
Balanced 3.12 0.97 0.46

Unfavorable 6.18 1.73 0.55

Moderate
Favorable 1.11 0.71 0.23
Balanced 2.16 0.79 0.31

Unfavorable 4.38 1.34 0.46

Dense
Favorable 0.64 0.43 0.08
Balanced 1.41 0.67 0.19

Unfavorable 2.54 0.81 0.34

rate:Rsuccess=Nsuccess/Ntotal, where Nsuccess is the num-
ber of agents that reached consensus and Ntotal is the total
number of agents, and 3) average negotiation time: Rtime=
(
∑Ntotal

i=1 T i
end/T i

max)/Ntotal, where T i
end is the time spent

in negotiation by agent i and T i
max is its deadline.

Due to space limitation, only some empirical results are
presented in this section. For the empirical results here, the
market is of moderate density, the eagerness value is 0.8, the
optimism value is 0.8, the greed value is 0.1, the combination
of constraints is C=

〈
cU = 0, cS = 0, cT = 0

〉
, and the

priority combination is W =
〈
wU = 0.9, wS = 0.3, wT =

0.3
〉

(i.e., an agent places very high emphasis on optimizing
its utility, but hopes to complete negotiation in a reasonably
short time and maintains a certain level of success rate).

Evolving best-response strategies: Table II shows the best-
response values of λ and it can be observed that:

1) Given the same market density and market type, but
with shorter deadlines, agents wait for less counter-proposals
by adopting a smaller value of λ. With shorter deadlines, an
agent faces higher risk of not reaching an agreement if it
spends too much time in waiting for proposals. Failing to
reach an agreement will also lower the agent’s success rate.
Consequently, agents react to more stringent time constraints
by spending less time in waiting.

2) Given the same market density and deadline, but in a
favorable market, an agent is inclined to wait for less counter-
proposals by adopting a smaller value of λ. In a favorable
market, an agent has possibly higher chance of reaching an
agreement. Thus, agents speed up negotiation and seek for
the best proposal from its trading parties.

3) Given the same market type and deadline, but with
higher market density, an agent is inclined to wait for less
counter-proposals. With higher market densities, agents have
higher chance of reaching an agreement. An agent may speed
up negotiation by adopting a smaller value of λ.

It is noted that each value of λ in Table II has two decimal
places, and hence, the maximum error of representing the
values of λ is lower than 0.01. Similarly, other values of λ
can also be obtained for other different negotiation situations
and fitness functions using the proposed MOGA. In the series
of experiments, BRSAs were programmed to adopt the values
of λ in Table II, and SSAs adopt the value of λ = 1 as
it is shown in Section III-B that when λ = 1, BRSAs are
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Fig. 2. Average utility and deadline.

Balanced Market


0


0.1


0.2


0.3


0.4


0.5


0.6


0.7


0.8


0.9


1


150:250s
 250:350s
 350:450s
 450:550s

Deadline


S
uc

ce
ss

 R
at

e


Learning agents' response

times

No learning capability


Fig. 3. Success rate and deadline.

Balanced Market


0.3


0.4


0.5


0.6


0.7


0.8


0.9


1


150:250s
 250:350s
 350:450s
 450:550s

Deadline


A
ve

ra
ge

 N
eg

ot
ia

tio
n 

T
im

e


Learning agents' response times


No learning capability


Fig. 4. Negotiation time and deadline.
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Fig. 7. Negotiation time and deadline.

equivalent to SSAs.
Observation 1: When subjected to different deadlines, BR-

SAs equipped with the capability of learning trading parties’
response times achieved higher Uaverage, higher Rsuccess

and lower Rtime than BRSAs without the learning capability.
For example, in Fig. 2, when the deadline is between 250s
and 350s, the average utilities are 0.26 for BRSAs with
learning mechanism, and 0.16 for agents without learning
capability, respectively.

Additionally, it can also be observed from Figs. 2, 3, and
4 that, when BRSAs have shorter deadlines, the difference
between utilities of BRSAs with learning capability and those
without learning capability tapers. It corresponds to the in-
tuition that when negotiation becomes tougher, the potential
of improving agents’ negotiation performance decreases.

Observation 2: When subjected to different deadlines,
BRSAs achieved higher Uaverage, higher Rsuccess and lower
Rtime than SSAs. For example, in Fig. 5, when the deadline
is between 250s and 350s, the average utilities are 0.41 for
BRSAs, and 0.34 for SSAs, respectively.

Additionally, let λ∗ be the value of λ adopted by BRSAs
and ϕ = |λ∗ − 1| be the distance from 1 (the value of λ
adopted by SSAs ) to λ∗. It can be observed from Figs. 5-
7 that the difference of utility, success rate, and negotiation
time between BRSAs and SSAs is mainly determined by the
distance ϕ from 1 to λ∗: the larger the value of ϕ, BRSAs
outperform SSAs more. For example, in Fig. 5, with the short
deadline 150s-250s, ϕ = |0.31−1| = 0.69, and the difference
in the average utility between BRSAs and SSAs is 0.25 −
0.14 = 0.11; with long deadline 350s-450s, ϕ = |0.79−1| =
0.21, and the difference in the average utility between BRSAs
and SSAs is 0.50 − 0.48 = 0.02.

VI. RELATED WORK

The literature of automated negotiation and negotiation
agents (e.g., [5], [10]) forms a very large collection and
space limitations preclude introducing all of them here. For
a survey on negotiation agents for e-commerce, see [7], and
[12], respectively.

In terms of the number of agents participating in nego-
tiation, agent based automated negotiation can be divided
into three cases [8]: one-to-one negotiation (bilateral ne-
gotiation), many-to-many negotiation and one-to-many ne-
gotiation. Compared with auction mechanisms [14], one-
to-many interactive negotiation is more flexible. For exam-
ple, agents can adopt different negotiation strategies with
different trading parties (alternatives), negotiation can be
taken under different negotiation environments and protocols
[15]. There are some negotiation systems and negotiation
strategies supporting one-to-many negotiation (see [1] for a
more detailed review). ITA (Intelligent Trading Agency)[15],
[9] is a framework for one-to-many negotiation by means
of conducting a number of concurrent coordinated one-to-
one negotiation. In the framework, a number of agents, all
working on behalf of one party, negotiate individually with
other parties. After each negotiation cycle, these agents report
back to a coordinating agent that evaluates how well each
agent has done, and issues new instructions accordingly.
Each individual agent conducts reasoning by using constraint
based techniques. Nguyen and Jennings [13] have developed
and evaluated a heuristic model that enables an agent to
participate in multiple, concurrent bilateral encounters in
competitive situations in which there is information uncer-
tainty and deadlines. Li et al. [11] present a model for
bilateral contract negotiation that considers the uncertain



and dynamic outside options. Outside options affect the
negotiation strategies via their impact on the reserve price.
The model is composed of three modules: single-threaded
negotiation, synchronized multi-threaded negotiation, and
dynamic multi-threaded negotiation.

To overcome the limitations of the discrete time negotia-
tion, a continuous time one-to-many negotiation mechanism
was proposed in [1] in which an agent can decide when to
propose according to synchronization situations of negotia-
tion. Two strategies (fixed waiting time based strategy and
fixed waiting ratio based strategy) for the decision making
of when to make a proposal were proposed. The simulation
results show that the waiting time (or waiting ratio) given by
the two strategies leads to the most favorable outcomes. Fur-
thermore, the flexible mechanism can be easily transformed
to the discrete time negotiation mechanism. Although the
continuous time negotiation mechanism brings much flexility
to negotiation agents which concurrently negotiate with a set
of trading parties, negotiation agents have no ability to adap-
tive to different negotiation environments and constraints. To
meet this end, this paper proposes a multi-objective genetic
algorithm to evolve the best-response proposing time strategy
for different negotiation situations as it was noted in [6] that
GA is an alternative to the standard game-theoretic models
for generating optimal solutions in a bargaining problem,
particularly in practical situations involving a large agent
populations. In addition, Bayesian learning mechanism is
used to learn trading parties’ response times.

VII. CONCLUSION

The main contributions of this research are twofold:
Firstly, a multi-objective GA for evolving the best-response
proposing time strategies for different market situations
was designed and implemented. Agents are designed with
the flexibility of take different proposing time strategies
for different environments. Experimental results show that
BRSAs generally achieved higher Uaverage, higher Rsuccess

and lower Rtime than SSAs in many situations. Furthermore,
in the fitness function of the MOGA in this work, both
the constraints and preferences of negotiation agents on
the three objectives to be optimized are modeled using a
priority operation, and by placing weights on the constraints.
Secondly, by adopting Bayesian learning, negotiation agents
are enhanced to be capable of learning the response times
of trading parties. Experimental results show that negotia-
tion agents with learning ability outperform agents without
learning capability.

This work provides a more plausible representation of
negotiators in real-life and are designed with more flexibility
in negotiation. Whereas the MOGA in its present form is only
used to evolve the best-response proposing time strategies,
perhaps, it may also be used to evolve sub-negotiators’
concession strategies represented by eagerness (β), optimism
(η), and greed (σ). Another possible future direction for this
work is designing multi-objective GAs that can converge
faster by pruning the initial search space in some situations.
In addition, in its present form, this work assumes that

both SSAs and BRSAs can randomly enter or leave an e-
market, the strategies learned may not necessarily converge
and negotiation agents may be trapped in a local minimum.
Analyzing the convergence of learning algorithms in dynamic
environments is a complex problem, and it is among the list
of agendas for future enhancements of this work.
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