
The Struggle for Reuse and Domain Independence:
Research with TÆMS, DTC, and JAF.

Thomas Wagner
Computer Science Department

University of Maine
wagner@umcs.maine.edu

Bryan Horling
Computer Science Department
University of Massachusetts
bhorling@cs.umass.edu

ABSTRACT
TÆMS, Design-to-Criteria agent scheduling, and the Java Agent
Framework are important aspects of our research in generalized
agent components. These technologies have been used in over a
dozen different research efforts, resulting in some insight into the
pros and cons of generalized control and providing some anecdotal
evidence that may be useful to other researchers.

1. INTRODUCTION
One major facet of our work is the attempt to create generalized

domain independent control components for autonomous intelli-
gent agents. We have been pursuing this line of research for nearly
ten years and the components that we have constructed have been
used on approximately a dozen different research projects. The mo-
tivation behind domain independence is that it enables us to reuse
the control components on different applications with few modifi-
cations, though this has been successful to varying degrees. In the
following sections we describe the components and discuss their
strengths and weaknesses, and issues that have arisen during the
course of our research.

It is important to emphasize that this research pertains to com-
plex problem solving agents, e.g, the BIG Information Gathering
Agent [20] and [15, 4, 14], where the agents are situated in an envi-
ronment, able to sense and effect, and have explicit representations
of candidate tasks and explicit representations of different ways to
go about performing the tasks. Additionally, tasks are quantified
or have different performance characteristics and, following in the
thread of complex problem solving [10, 8, 22] there are relation-
ships between the tasks. This means that there is a high degree of
interconnectivity in agent problem solving and that reasoning about
what the agent should be doing, with whom to coordinate, etc., is
always a non-trivial process.

In our work we achieve domain independence by abstracting
away from the details of a particular domain and reasoning about
it via a model of the agent’s problem solving process. The mod-
eling framework we use is called TÆMS [6, 18]. TÆMS task
structures resemble complex and/or graphs or HTNs, i.e., TÆMS
is a hierarchical decomposition framework. Notable features of
TÆMS models include the explicit representation of alternative dif-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

ferent ways to perform tasks, the explicit representation and quan-
tification of task interactions, and the characterization of primi-
tive actions in terms of their quality, cost, duration, and uncer-
tainty. A sample TÆMS task structure is shown in Figure 2 (the
figure is discussed in greater detail later). Once an agent’s op-
tions are modeled in TÆMS, our domain independent control prob-
lem solving components can decide which actions an agent should
take, what resources to use, which tasks to coordinate with other
agents, and how the agent can meet real-time deadlines and re-
source constraints. The core of this ability is the Design-to-Criteria
[29, 27, 26, 23] agent scheduler – it is the TÆMS analysis expert.
When multi-agent systems are constructed, a coordination module
is added to the agent and often the module is GPGP [7, 17] or one
of its descendents [25]. Though we have used proprietary compo-
nents for this as well [16, 11].

A natural question is where do the TÆMS models come from?
In our work TÆMS task structures are often hand crafted though
the general idea is that a domain expert, e.g., a blackboard problem
solver or a planner, should translate its problem solving options into
TÆMS. This model was used successfully in the BIG information
gathering agent [20]. In some recent projects, e.g., the TripBot
[30], the domain expert plans directly in TÆMS. The architecture
of the TripBot is shown in Figure 1. In the TripBot, a query enters
the system, is expanded / enhanced using WordNet [3] and passed
to a TÆMS information gathering planner (called the ”capability
assessor” for a variety of reasons), which is a new TÆMS artifact.
The agent’s options are then passed to the Design-to-Criteria (DTC)
scheduler along with a specification of the agent’s current objective
function, e.g., deadlines, solution characteristics, etc. DTC then
evaluates the agent’s options, in light of its objectives, and deter-
mines a course of action for the agent. The resulting schedule is
then executed and the agent reschedules and replans on failure as
necessary. This is how TÆMS and DTC are generally used in an
agent.

When a coordination or communication module is added DTC
serves as the oracle for the coordination module – enabling the
module to understand the implications of forming commitments
with other agents. For example, if agent should commit to agent

to perform task by time , needs to be able to evaluate the
cost of offering that commitment to in terms of ’s local problem
solving.

This domain-independence coupled with a component (“plug-
and-play”) approach to agent construction has proved its merit by
enabling us to reuse the technology in many different application
domains, e.g., the BIG information gathering agent [21, 20], the
Intelligent Home project (IHome) [16], the DARPA ANTS real-
time agent sensor network for vehicle tracking [11, 14], distributed
hospital patient scheduling [6], distributed collaborative design [9],

GUI

Capability
Assessor

Decision
Maker

DTC
Scheduler

Execution
Control

Subsystem

Query
Processor

Action
Library

Best
Trips

Action/Capability
Dependency Graph

Schedule

Query
Parameters

TAEMS
Structure

Trip
Objectives

Query

Report

Trip
Objects

Internet
Site

Wrapper

Internet
Site

Wrapper

Internet
Site

Wrapper

Internet
Site

Wrapper

Executable Component

Data Structures

Repository, WWW resource,
or library.

Key

Figure 1: One Instantiation: The TripBot Agent Architecture

process control [31], the TripBot [30], agent diagnosis [1, 13], and
others. However, in many of these projects modifications to the ar-
tifacts were required and we became aware of certain design deci-
sions that affected our ability to move to a new application, change
the control flow within the agent, or to expand the TÆMS task
modeling language.

A component hereto unmentioned is the Java Agent Framework
[12], or JAF, which is a fairly recent comer to the scene but which
has provided the glue by which the components are integrated on
projects like the IHome [16] and the ANTS real-time agent sensor
network for vehicle tracking [11, 14]. Like Decker’s DECAF [5],
the goal of JAF is to provide the framework that integrates the dif-
ferent control components and supports their interaction. Another
related component used in both IHome and ANTS is the multi-
agent system simulator [24] that enables different JAF agents to
“execute” TÆMS primitive actions in a controlled environment.1

In this paper we focus on TÆMS, the Design-to-Criteria sched-
uler, and the Java Agent Framework and the experiences we have
gained from working with these technologies. The rationale for this
emphasis is that TÆMS and DTC are among the components that
have been in service the longest and used in the widest range of ap-
plication settings. By the same token, the lessons learned from the
java agent framework are widely applicable to the agents commu-
nity because at some level, we are all faced with the problem of how
to integrate our components to support flexibility and functionality.

It is also worth noting that these technologies have been available
online for distribution in the past and we are currently planning on
releasing them into the public again in the near term.

2. TÆMS TASK MODELS

2.1 What TÆMS Is
TÆMS (Task Analysis, Environment Modeling, and Simulation)

is a domain independent task modeling framework used to describe
and reason about complex problem solving processes. TÆMS mod-
els are hierarchical abstractions of problem solving processes that

Obviously for projects like the TripBot that operate in a real do-
main the simulation environment is not required, though it could be
used for debugging TÆMS related control activities.

describe alternative ways of accomplishing a desired goal; they rep-
resent major tasks and major decision points, interactions between
tasks, and resource constraints but they do not describe the intimate
details of each primitive action. All primitive actions in TÆMS,
called methods, are statistically characterized via discrete proba-
bility distributions in three dimensions: quality, cost and duration.
Quality is a deliberately abstract domain-independent concept that
describes the contribution of a particular action to overall problem
solving. Duration describes the amount of time that the action mod-
eled by the method will take to execute and cost describes the fi-
nancial or opportunity cost inherent in performing the action. Un-
certainty in each of these dimensions is implicit in the performance
characterization – thus agents can reason about the certainty of par-
ticular actions as well as their quality, cost, and duration trade-offs.
The uncertainty representation is also applied to task interactions
like enablement, facilitation and hindering effects, 2 e.g., “10% of
the time facilitation will increase the quality by 5% and 90% of
the time it will increase the quality by 8%.” The quantification of
methods and interactions in TÆMS is not regarded as a perfect sci-
ence. Task structure programmers or problem solver generators es-
timate the performance characteristics of primitive actions. These
estimates can be refined over time through learning and reasoners
typically replan and reschedule when unexpected events occur.

To illustrate, consider Figure 2, which is a conceptual, simplified
sub-graph of a task structure emitted by the BIG [19] information
gathering agent; it describes a portion of the information gathering
process. The top-level task is to construct product models of retail
PC systems. It has two subtasks, Get-Basic and Gather-Reviews,
both of which are decomposed into methods, that are described in
terms of their expected quality, cost, and duration. The enables arc
between Get-Basic and Gather is a non-local-effect (nle) or task in-
teraction; it models the fact that the review gathering methods need
the names of products in order to gather reviews for them. Other
task interactions modeled in TÆMS include: facilitation, hinder-

Facilitation and hindering task interactions model soft relation-
ships in which a result produced by some task may be beneficial
or harmful to another task. In the case of facilitation, the existence
of the result, and the activation of the nle generally increases the
quality of the recipient task or reduces its cost or duration.

Money
Resource

Build PC Product
Objects

Get Basic Product
Information

Query & Extract
Vendor m

Query & Extract
Possible Maker n

Gather Reviews

Search & Process
ZDnet Reviews

Search & Process
PC World

Query & Process
Consumers Reports

q_seq_sum()

q_sum()
q_sum()

q (10% 0)(90% 8.5)
c (100% 0)
d (10% 2min)(10% 2.5min)(80% 3min)

q (20% 0)(80% 10)
c (100% 0)
d (50% 1min)(50% 2min)

Query & Extract
PC Connection

Query& Extract
PC Mall

q (25% 0)(75% 30)
c (100% $2)
d (90% 3)(10% 5)

q (10% 0)(90% 20)
c (100% 0)
d (30% 3min)
 (30% 4min)
 (40% 5min)

q(..), c(..), d(..)
q(..), d(..), c(..)

consumes $2

limits
q multiplier (100% 0)
c multiplier (x)
d multiplier (x)

q(..), c(..), d(..)

Task

Method

Resource nle

Task nle

Subtask Relation

Key

enables

Figure 2: Simplified Subset of an Information Gathering Task Structure

ing, bounded facilitation, sigmoid, and disablement. Task inter-
actions are of particular interest to coordination research because
they identify instances in which tasks assigned to different agents
are interdependent – they model, in effect, implicit joint goals or
joint problem solving activity. Coordination is motivated by the
existence of these interactions.

Returning to the example, Get-Basic has two methods, joined
under the sum() quality-accumulation-function (qaf), which defines
how performing the subtasks relate to performing the parent task.
In this case, either method or both may be employed to achieve Get-
Basic. The same is true for Gather-Reviews. The qaf for Build-PC-
Product-Objects is a seq sum() which indicates that the two sub-
tasks must be performed, in order, and that their resultant qualities
are summed to determine the quality of the parent task; thus there
are nine alternative ways to achieve the top-level goal in this partic-
ular sub-structure. In general, a TÆMS task structure represents a
family of plans, rather than a single plan, where the different paths
through the network exhibit different statistical characteristics or
trade-offs.

2.2 Pros, Cons, and What We Would Do Dif-
ferently

One of the major strengths of TÆMS is that it is generally very
expressive. TÆMS was designed to model the problem solving ac-
tivities of complex cooperative blackboard problem solvers and it
is very good at modeling tasks and interrelationships. However, as
always, there is a trade-off between representational strength and
tractability. Certain features of TÆMS, e.g., soft task interactions
that enable the performance of one task to affect the duration of
another, make reasoning/scheduling TÆMS task structures very
difficult. In our opinion, one question to ask when developing a
modeling or representational structure is how tractable the result-
ing model will be. If a model is expressive but intractable, research
is limited either to toy sized problem spaces or some complex (and
usually approximate) artifact like the Design-to-Criteria scheduler
is required. If the research interest does not pertain to scheduling
or complex analysis, then this should be avoided if possible.

Documentation with TÆMS has proven to be another issue that
should have been addressed sooner. Prior to the TÆMS whitepa-
per [18], graduate students were handed a dissertation or a small
stack of research papers and forced to generate the current intellec-
tual model of TÆMS in a bottom-up fashion. A natural question is
why? The answer is that research is sometimes a rapidly moving
target and that, as all basic researchers know, there are times that re-
sources are scarce. The lack of such documentation did not become

an issue until the number of new researchers working in TÆMS (or
attempting to do so) grew above a certain threshold. There is clearly
a time at which it is important to “sure up” one’s footing and get
everyone on the same page – possibly to the detriment of the pace
at which the basic research progresses. This documentation, and
related tutorial-esque discussions between members of the group,
have clearly paid dividends as the number of researchers now able
to discuss problem solving via TÆMS has grown significantly –
spreading to at least four universities and encompassing at least
five faculty members and twenty graduate students. While this is
attributable to other concurrent happenings, e.g., development and
sharing of infrastructure like DTC and JAF, the existence of tutorial
style documentation helped significantly.

The development a of usable and sharable TÆMS modeling im-
plementation has also paid significant dividends. On or about 1994
there was a lisp version of TÆMS that was integrated with a sim-
ulation environment and only its original creators were able to get
it to turn over. A new implementation in C++ for use with the
DTC scheduler was the first implementation in which TÆMS was
a stand alone artifact. However, by the time the next TÆMS arti-
facts were developed, around 1996, java had become the language
of choice for this class of development and a new implementation
was needed. While the C++ and lisp versions of TÆMS are still
in use (the C++ version is tied to DTC and thus used in nearly all
projects) the bulk of the researchers at UMASS rely on a common
implementation of TÆMS in java. Support tools for TÆMS have
also paid real dividends and these are, in a sense, combined with the
java version of TÆMS. Simple ways to create, manipulate, view,
and store task structures are required for widespread use. Again,
this concept is obvious to anyone making an artifact intended for
general use, but, in basic research there is generally some give and
take between implementation accouterments and progress on the
research front.

Is there anything wrong with TÆMS? Yes. In part because the
way it is being used has evolved and in part because for some re-
search it is necessary to get closer to the details, TÆMS has some
oddities and inconsistencies. One notable example is the differ-
ence between the resource models supported in the java implemen-
tation of TÆMS and those supported by the C++/DTC implemen-
tation. DTC adheres to the basic property of TÆMS that methods
are black boxes and there is no correlation between, for example,
quality and duration or resource consumption and duration. There
are situations, however, where it is more intuitive to correlate time
and resource consumption (though there are cases where it is not,
also). Because of this and the particular applications for which

the java side was being used, we now have multiple different re-
source models that are only loosely compatible. Another example
of inconsistencies can be found in the TÆMS quality accumula-
tion functions – some qafs impose ordering on the subtasks, some
do not, and some specify whether or not particular subtasks must
be performed, and some do not. The original conceptualization of
TÆMS did not specify orderings but for several domains we found
the modeling structure insufficient and it was extended. What is
the moral of the story? There is value in application but even the
best conceived artifact is likely to be pulled and stretched when it
is actually used.

Other problems or reservations with TÆMS exist. For example,
by being abstract, it needs to be coupled with detailed information
to be used in agents operating in real environments, e.g., the de-
pendency specification used in the TripBot [30]. Another issue is
the way quality propagates through the network and the limitation,
some of which is implementational, to reasoning only in terms of
quality, cost, duration, and uncertainty in each of these dimensions
(in contrast to our new framework [28]). However, most of
these issues fall into category of basic research questions.

3. DESIGN-TO-CRITERIA SCHEDULING:
LOCAL AGENT CONTROL

3.1 What DTC Is
The Design-to-Criteria (DTC) scheduler is the agent’s local ex-

pert on making control decisions. The scheduler’s role is to con-
sider the possible domain actions enumerated by the domain prob-
lem solver and choose a course of action that best addresses: 1) the
local agent’s objectives or goal criteria (its preferences for certain
types of solutions), 2) the local agent’s resource constraints and
environmental circumstances, and 3) the non-local considerations
expressed by the agent’s (optional) coordination module. The gen-
eral idea is to evaluate the options in light of constraints and pref-
erences from many different sources and to find a way to achieve
the selected tasks that best addresses all of these.

The scheduler understands the agent’s situation and objectives
via TÆMS task structures and reasons about different possible courses
of actions via TÆMS. Scheduling problem solving activities mod-
eled in the TÆMS language has four major requirements: 1) to
find a set of actions to achieve the high-level task, 2) to sequence
the actions, 3) to find and sequence the actions in soft real-time, 4)
to produce a schedule that meets dynamic objective criteria of the
agent. The reason we require soft real-time is that DTC is designed
for open environments where unpredicted change is commonplace.
When change occurs, the agent reinvokes DTC to decide on an ap-
propriate course of action.

TÆMS models multiple approaches for achieving tasks along
with the quality, cost, and duration characteristics of the primitive
actions, specifically to give agent’s flexibility in problem solving.
This is how TÆMS agents can respond to new situations and how
they can custom tailor their problem solving for different situations.
A classic example being to trade-off solution quality for shorter du-
ration when time is limited. DTC is the agent’s trade-off and con-
trol expert. In contrast to classic scheduling problems, the TÆMS
scheduling objective is not to sequence a set of unordered actions
but to find and sequence a set of actions that best suits a the agent’s
current objectives.

Design-to-Criteria scheduling requires a sophisticated heuristic
approach because of the scheduling task’s inherent computational
complexity (and) it is not possible to use exhaustive
search techniques for finding optimal schedules. Furthermore, the

deadline and resource constraints on tasks, plus the existence of
complex task interrelationships, prevent the use of a single heuris-
tic for producing optimal or even “good” schedules. Design-to-
Criteria copes with these explosive combinatorics through approxi-
mation, criteria-directed focusing (goal-directed problem solving),
heuristic decision making, and heuristic error correction. The al-
gorithm and techniques are documented more fully in [29, 27, 26,
23].

3.2 The Good, the Bad, and the Ugly
DTC is an extremely complex artifact encompassing around 50,000

lines of C++ code. It is fast for what it does – scheduling large task
structures (having fifty primitive actions) in less than 10 seconds
and performing hundreds of thousands of probability distribution
combination operations in that time (on a basic PIII-600 class ma-
chine running linux). However, there are applications for which
DTC running in exhaustive scheduling mode will run in half the
time as DTC running in its normal mode which is designed to cope
with high order combinatorics from many different sources. In
some cases, for some task structures, doing it the brute strength way
is actually faster and more effective. Relatedly, for applications that
have particular regular properties, e.g., using a single TÆMS task
structure with different bindings on the leaves, custom scheduling
solutions can be developed that will outperform DTC both in terms
of time and solution quality. The thought here is that domain in-
dependence in control is a hard problem and there are always per-
formance trade-offs involved. Generality, by definition, means that
artifacts have to address the hardest class of problems possible for
a given problem instance.

Relatedly, DTC was written to be fast and some of the optimiza-
tions have proven obstacles when TÆMS was modified or changed
in very particular ways. For example, the addition of the sigmoid()
quality accumulation function meant that the scheduler had to track
new and different information. Similarly, the addition of TÆMS
qafs that impose orderings required some implementational acro-
batics. If the scheduler had been designed less for speed from the
beginning it would have been more easily extended. It is unclear if
the scheduler should have been designed differently, as it has thus
far been extendable to meet most of our needs, but, in our opin-
ion, code optimization should only be applied to mature research
technologies unless the artifact poses significant bottlenecks.

One of the major wins in DTC has been its encapsulation. DTC
is stateless and obtains all of its information via input files and pro-
duces everything the client needs via output files. Written in C++,
this stateless approach means that it is literally a stand-alone exe-
cutable that clients invoke when needed. The one caveat with this
model is that it requires the process-starting-overhead of the OS
and cannot be invoked via native function calls from Java or lisp.
Prior to DTC our scheduling technology was tightly coupled with
the execution subsystem and assumed that it would have the abil-
ity to monitor task performance directly. In general, the separation
of DTC and the movement of the agent’s problem solving state to
DTC’s input has paid great dividends. Evidence of this includes
the variety of ways that it has been used in our research, includ-
ing other scheduler enhancements that build on top of DTC as an
external clients, e.g, work in schedule caching and partial-ordering
[11].

Related to DTC’s encapsulation was the construction of a hu-
man readable textual I/O format for DTC. Referred to as t-TÆMS
by project members, the input to DTC is a textual representation of
a TÆMS task structure plus a textual representation of the agent’s
objective function and constraints like deadlines, resource limita-
tions, etc. Given the input, DTC schedules and produces multiple

different output files. One of which is a detailed t-TÆMS schedule
file that contains a ranked set of detailed schedules for the agent that
includes DTC’s expectations about task performance and the state
of problem solving as tasks are executed. This information can then
be used to determine when it is necessary to reinvoke DTC and re-
plan/reschedule. DTC also produces a more human friendly sched-
ule representation and a simple schedule description file for clients
that do not which to implement t-TÆMS scheduler parsers. The
lesson learned here is that, obviously, good interfaces are impor-
tant, but, also that textual representations often provide important
for versatility and for human debugging.

Simplicity to the client has been another real design pay-off in
DTC. While DTC is highly configurable in terms of the types of
pruning and focusing it does, the types of analysis it does, the way
it approaches resources, scheduling, analysis, and the way it eval-
uates probability distributions and uncertainty, most clients never
need to customize these features. Thus, while most of them are
accessible either via command line arguments or via the t-TÆMS
input file, DTC does not require the client to specify anything him
or herself. Instead DTC is configured with a set of default options
that, in general, yield good performance. It is worth noting that it an
ideal world DTC would classify problem instances and set defaults
on a learned basis, but, right now it does not have this function-
ality. The important concept here is that no matter how complex
one’s artifact may be, most users or clients have little or no interest
in having to understand a large set of research questions to use the
artifact. If reuse is a goal, good defaults and a very simple interface
is a clear win.

One of the caveats of reuse has also come to light with DTC.
Reuse requires support. Period. As artifacts are applied to new
projects, they are also used in different ways and in different en-
vironments. This can highlight simple bugs but also lead to larger
support issues like having to modify the technology or to explain in
detail why the artifact performs in certain ways. Quite often with
research technologies these explanations are non-trivial because of
the issues to which they relate. Support outside of a research lab
is an obvious result of distribution, however, the support burden
within a lab of a member whose technology is widely used should
be recognized and explicitly addressed.

4. JAVA AGENT FRAMEWORK
The underlying technology of our Java Agent Framework (JAF)

uses component-based technology designed to promote reuse and
extension. Developers can use its plug and play interface to quickly
build agents using existing generic components, or to develop new
ones. The JAF architecture consists of two parts, a set of design
conventions and a number of generic components. The design con-
ventions provide guidance to the developer, which attempt to fa-
cilitate the creation, integration and reuse of newly written compo-
nents. The generic components form a stable base for the agent,
which the developer can use or extend as needed. For instance,
a developer may require planning, scheduling and communication
services in their agent. In this case, generic scheduling and commu-
nication components exist, but a domain-dependent planning com-
ponent is needed. Additionally, the characteristics of the generic
scheduling component do not satisfy all the developer’s needs. The
JAF design conventions provide the developer with guidance to cre-
ate a new planning component capable of interacting with existing
components without unduly limiting its design. A new schedul-
ing component can be derived from the generic one to implement
the specialized needs of their technology, while the communication
component can be used directly. All three can easily interact with
one another as well as other components in the agent, maximizing

code reuse and speeding up the development process.
JAF builds upon Sun’s Java Beans model by supplying a number

of facilities designed to make component development and agent
construction simpler and more consistent. A schematic diagram for
a typical JAF component can be seen in figure 3. As in Java Beans,
events and state data play an important role in some types of inter-
actions among components. Additional mechanisms are provided
in JAF to specify and resolve both data and inter-component depen-
dencies. These methods allow a component, for instance, to specify
that it can make use of a certain kind of data if it is available, or that
it is dependent on the presence of one or more other components
in the agent to work correctly. A communications component, for
example, might specify that it requires a local network port num-
ber to bind to, and that it requires a logging component to function
correctly. These mechanisms were added to organize the assump-
tions made by component developers - without such specifications
it would be difficult for the designer to know which services a given
component needs to be available to function correctly. More struc-
ture has also been added to the execution of components by break-
ing runtime into distinct intervals (e.g. initialization, execution,
etc.), implemented as a common API among components, with as-
sociated behavioral conventions during these intervals. Individual
components will of course have their own, specialized API, and
“class” APIs will exist for families of components. For instance a
family of communication components might exist, each providing
different types of service, while conforming to a single class API
that allows them to easily replace one another.

JAF has been used successfully in several domains. It was origi-
nally conceived and developed to evaluate multi-agent system sur-
vivability within the MASS simulator [24]. Later, additional agents
were developed in JAF within the IHome project [16], which looked
at how multi-agent systems could play a role in an intelligent home
environment. JAF agents were also augmented with a diagnosis
component in IHome [13], and a Producer-Consumer-Transporter
domain [2], to study the role diagnosis can play in dynamically
adapting organizational design in response to environmental change.
Most recently, JAF has deployed in a distributed sensor network
environment [14] where agents must organize to gather the sensor
data required to track moving targets. In this last project, these
same agents were also successfully migrated from a simulated en-
vironment to an actual physical system using Doppler radar sensors
and moving targets. Over the course of these projects, roughly 30
different JAF components have been developed.

We have found the JAF framework relatively easy to use, once
an initial learning curve is passed. In each of the projects men-
tioned above, roughly two-thirds to three-quarters of each agent
were comprised of existing, reused code. In the cases where ex-
isting components could not operate in the given environment, as
when agents are moved to a different simulator or into a physical
system, only relatively minor extensions were required to low-level
components (e.g. communication or execution), while the higher
level components worked unchanged. The event-based interaction
system permits components to be easily added and removed, while
retaining the ability to react to actions performed by other compo-
nents. State-based interaction takes this one step further, as com-
ponents can react to changes in local data, without knowledge of
which other components originally performed the change. For in-
stance, our coordination component may generate a new TÆMS
structure describing a goal it has agreed to perform. This TÆMS
structure is added to the agent’s state repository (provided by yet
another component), which serves as a common data repository for
the components. The scheduling component will react to this ad-
dition by producing a schedule for the task structure, which is also

State Data

Events

Events

Common API

Component/Class API

Dependencies Data

Figure 3: Abstract view of a typical JAF component.

placed in the state repository. This schedule is then used by the
execution component to perform the desired actions. Finally, the
success of a particular action will cause the coordination compo-
nent to send back the appropriate results. In each of these steps,
the actor or originator could be seamlessly replaced, without the
modification of other components in the sequence.

There are several drawbacks to this framework. The most im-
portant is the absence of a well-defined thread of control. The con-
trol architecture does provide for differentiated execution phases
(e.g. construction, initialization, execution), and a periodic exe-
cution pulse for each component at runtime. The event system,
however, clouds this water considerably, since activity in one com-
ponent can directly cause a reaction in another. This can lead to
long and complicated execution stacks, as well as the potential for
cycles or oscillations. Because components are designed by differ-
ent developers, one cannot predict a priori exactly how they may
interact. This process is further complicated by the fact that event
distribution is unordered, so one cannot assume that a particular
component has processed it before another, and it is difficult to in-
sert new activities between event generation and reaction. A related
drawback arises from the inability to preempt a component’s exe-
cution within the single thread of control. Again, because compo-
nents may be developed independently, the activity in one may in-
advertently cause the failure of another in time- or resource-critical
situations. Consider the case above, where coordination generated
a new goal for the agent. If the scheduling process takes too long
to find an appropriate schedule, or if an unrelated process were to
start shortly thereafter, it may become impossible for the deadline
agreed upon to be met.

5. CONCLUSION
We have described some of our research in generalized agent

technology and pointed out some of the issues we have encoun-
tered. Drawing away from the specifics of each component, we
would like to leave readers with the thought that developing reusable
agent technology is a hard problem. Because understandings evolve,
as with all research, technologies must stretch and evolve too. We,
of the agent’s community, might have a slightly harder problem
than researchers in other areas because both the application do-
mains and the agent construction technologies are evolving concur-
rently. What are the infrastructure requirements of a complex, per-
sistent, autonomous personal assistant that migrates with us from
machine to machine, reads our news, filters our mail, and coordi-
nates our activities with peers, family, and friends? We have an
idea at this time, but, the landscape is far from being well defined.

6. ACKNOWLEDGEMENTS

We would like to thank the researchers who have continued to
help evolve TÆMS and TÆMS based control of software agents,
including Victor Lesser, Keith Decker, Bryan Horling, Regis Vin-
cent, Ping Xuan, Shelley XQ. Zhang, Anita Raja, Roger Mailler.
Alan Garvey also deserves recognition for his work in Design-to-
Time agent scheduling which is the forerunner of DTC. We would
also like to acknowledge the efforts of the TripBot team members
who have helped to add significantly to the number of universi-
ties to which TÆMS control has successfully been ported – they
are: John Phelps, Yuhui Qian, Erik Albert, Glene Beane, and Tom
Wagner. Also of note, Roy and Elise Turner, also of MaineSAIL,
and Tom Wheeler, have made efforts to integrate TÆMS and DTC
with their technologies for a digital libraries project.

7. REFERENCES
[1] Ana L.C. Bazzan, Victor Lesser, and Ping Xuan. Adapting an

Organization Design through Domain-Independent
Diagnosis. Computer Science Technical Report TR-98-014,
University of Massachusetts at Amherst, February 1998.

[2] Brett Benyo and Victor R. Lesser. Evolving Organizational
Designs for Multi-Agent Systems. Department of Computer
Science Technical Report TR-1999-00, University of
Massachusetts, March 1999.

[3] F. Christiana. WORDNET: an electronic lexical database and
some of its applications. 1999.

[4] K. Decker, A. Pannu, K. Sycara, and M. Williamson.
Designing behaviors for information agents. In Proceedings
of the 1st Intl. Conf. on Autonomous Agents, pages 404–413,
Marina del Rey, February 1997.

[5] Keith Decker, John Graham, and et al. The decaf agent
framework. http://www.cis.udel.edu/ decaf.

[6] Keith Decker and Jinjiang Li. Coordinated hospital patient
scheduling. In Proceedings of the Third International
Conference on Multi-Agent Systems (ICMAS98), pages
104–111, 1998.

[7] Keith S. Decker. Environment Centered Analysis and Design
of Coordination Mechanisms. PhD thesis, University of
Massachusetts, 1995.

[8] Keith S. Decker, Edmund H. Durfee, and Victor R. Lesser.
Evaluating research in cooperative distributed problem
solving. In L. Gasser and M. N. Huhns, editors, Distributed
Artificial Intelligence, Vol. II, pages 485–519. Pitman
Publishing Ltd., 1989. Also COINS Technical Report 88-89,
University of Massachusetts, 1988.

[9] Keith S. Decker and Victor R. Lesser. Coordination
assistance for mixed human and computational agent
systems. In Proceedings of Concurrent Engineering 95,

pages 337–348, McLean, VA, 1995. Concurrent
Technologies Corp. Also available as UMASS CS TR-95-31.

[10] Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill.
Coherent cooperation among communicating problem
solvers. IEEE Transactions on Computers,
36(11):1275–1291, November 1987.

[11] Regis Vincent et al. Distributed Sensor Network for Real
Time Tracking. In Proceedings of Autonomous Agents
(Agents-2001), 2001. To appear.

[12] Bryan Horling. A Reusable Component Architecture for
Agent Construction. UMASS Department of Computer
Science Technical Report TR-1998-45, October 1998.

[13] Bryan Horling, Brett Benyo, and Victor Lesser. Using
Self-Diagnosis to Adapt Organizational Structures.
Computer Science Technical Report TR-99-64, University of
Massachusetts at Amherst, November 1999.
[http://mas.cs.umass.edu/ bhorling/papers/99-64/].

[14] Bryan Horling, Regis Vincent, Roger Mailler, Jiaying Shen,
Raphen Becker, Kyle Rawlins, and Victor Lesser. Distributed
sensor network for real-time tracking. In Proceedings of
Autonomous Agent 2001, 2001. To appear.

[15] N.R. Jennings, J.M.Corera, L. Laresgoiti, E.H. Mamdani,
F. Perriollat, P. Skarek, and L.Z. Varga. Using ARCHON to
develop real-world dai applications for electricity
transportation management and particle accelerator control.
IEEE Expert, 1995. Special issue on real world applications
of DAI systems.

[16] Victor Lesser, Michael Atighetchi, Bryan Horling, Brett
Benyo, Anita Raja, Regis Vincent, Thomas Wagner, Ping
Xuan, and Shelley XQ. Zhang. A Multi-Agent System for
Intelligent Environment Control. In Proceedings of the Third
International Conference on Autonomous Agents (Agents99),
1999.

[17] Victor Lesser, Keith Decker, Norman Carver, Alan Garvey,
Daniel Neiman, Nagendra Prasad, and Thomas Wagner.
Evolution of the GPGP Domain-Independent Coordination
Framework. Computer Science Technical Report TR-98-05,
University of Massachusetts at Amherst, January 1998.

[18] Victor Lesser, Bryan Horling, and et al. The TÆMS
whitepaper / evolving specification.
http://mas.cs.umass.edu/research/taems/white.

[19] Victor Lesser, Bryan Horling, Frank Klassner, Anita Raja,
Thomas Wagner, and Shelley XQ. Zhang. BIG: A
resource-bounded information gathering agent. In
Proceedings of the Fifteenth National Conference on
Artificial Intelligence (AAAI-98), July 1998. See also UMass
CS Technical Reports 98-03 and 97-34.

[20] Victor Lesser, Bryan Horling, Frank Klassner, Anita Raja,
Thomas Wagner, and Shelley XQ. Zhang. BIG: An agent for
resource-bounded information gathering and decision
making. Artificial Intelligence, 118(1-2):197–244, May
2000. Elsevier Science Publishing.

[21] Victor Lesser, Bryan Horling, Anita Raja, Thomas Wagner,
and Shelley XQ. Zhang. Sophisticated Information
Gathering in a Marketplace of Information Providers. IEEE
Internet Computing, 4(2):49–58, Mar/Apr 2000.

[22] Victor R. Lesser and Daniel D. Corkill. Functionally
accurate, cooperative distributed systems. IEEE Transactions
on Systems, Man, and Cybernetics, 11(1):81–96, January
1981.

[23] Anita Raja, Victor Lesser, and Thomas Wagner. Toward
Robust Agent Control in Open Environments. In

Proceedings of the Fourth International Conference on
Autonomous Agents (Agents2000), 2000.

[24] Regis Vincent, Bryan Horling, Tom Wagner, and Victor
Lesser. Survivability simulator for multi-agent adaptive
coordination. In International Conference on Web-Based
Modeling and Simulation, San Diego, CA, 1998. SCS (eds).

[25] Thomas Wagner, Brett Benyo, Victor Lesser, and Ping Xuan.
Investigating Interactions Between Agent Conversations and
Agent Control Components. In Frank Dignum and Mark
Greaves, editors, Issues in Agent Communication, Lecture
Notes in Artificial Intelligence, pages 314–331.
Springer-Verlag, Berlin, 2000.

[26] Thomas Wagner, Alan Garvey, and Victor Lesser. Complex
Goal Criteria and Its Application in Design-to-Criteria
Scheduling. In Proceedings of the Fourteenth National
Conference on Artificial Intelligence, pages 294–301, July
1997. Also available as UMASS CS TR-1997-10.

[27] Thomas Wagner, Alan Garvey, and Victor Lesser.
Criteria-Directed Heuristic Task Scheduling. International
Journal of Approximate Reasoning, Special Issue on
Scheduling, 19(1-2):91–118, 1998. A version also available
as UMASS CS TR-97-59.

[28] Thomas Wagner and Victor Lesser. Relating quantified
motivations for organizationally situated agents. In N.R.
Jennings and Y. Lespérance, editors, Intelligent Agents VI
(Proceedings of ATAL-99), Lecture Notes in Artificial
Intelligence. Springer-Verlag, Berlin, 2000.

[29] Thomas Wagner and Victor Lesser. Design-to-Criteria
Scheduling: Real-Time Agent Control. In Thomas Wagner
and Omer Rana, editors, To appear in Infrastructure for
Agents, Multi-Agent Systems, and Scalable Multi-Agent
Systems, LNCS. Springer-Verlag, 2001. Also appears in the
2000 AAAI Spring Symposium on Real-Time Systems and a
version is available as University of Massachusetts Computer
Science Technical Report TR-99-58.

[30] Thomas Wagner, John Phelps, Yuhui Qian, Erik Albert, and
Glen Beane. A modified architecture for constructing
real-time information gathering agents. In Proceedings of
Agent Oriented Information Systems, 2001. To appear.

[31] Shelley Zhang, Anita Raja, Barbara Lerner, Victor Lesser,
Leon Osterwiel, and Thomas Wagner. Integrating high-level
and detailed agent coordination into a layered architecture. In
Thomas Wagner and Omer Rana, editors, To appear in
Infrastructure for Agents, Multi-Agent Systems, and Scalable
Multi-Agent Systems, LNCS. Springer-Verlag, 2001.
Abstract also appears in ICMAS-2000.

