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ABSTRACT

Several multiagent reinforcement learning (MARL) algorith-
ms have been proposed to optimize agents’ decisions. Only
a subset of these MARL algorithms both do not require
agents to know the underlying environment and can learn
a stochastic policy (a policy that chooses actions accord-
ing to a probability distribution). Weighted Policy Learner
(WPL) is a MARL algorithm that belongs to this subset
and was shown, experimentally in previous work, to con-
verge and outperform previous MARL algorithms belonging
to the same subset.

The main contribution of this paper is analyzing the dy-
namics of WPL and showing the effect of its non-linear na-
ture, as opposed to previous MARL algorithms that had
linear dynamics. First, we represent the WPL algorithm as
a set of differential equations. We then solve the equations
and show that it is consistent with experimental results re-
ported in previous work. We finally compare the dynamics
of WPL with earlier MARL algorithms and discuss the in-
teresting differences and similarities we have discovered.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence]: Learning; 1.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence
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1. INTRODUCTION

Our focus in this paper is on a class of MARL algorithms
that use a gradient-ascent approach to guide policy search.
We will refer to that class as GA-MARL throughout the
paper. The general idea of GA-MARL algorithms (more de-
tails later in Section 2) is to approximate the policy-gradient
using a payoff-gradient and follow the gradient until reaching
a local maxima.

A GA-MARL algorithm learns a stochastic policy (a pol-
icy that chooses actions according to a probability distri-
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bution) without knowing the underlying model of the en-
vironment. This ability is particularly important when the
world is not fully observable. Another advantage of GA-
MARL algorithms is their (relative) simplicity, which makes
analyzing their dynamics possible.

The first GA-MARL algorithm whose dynamics were ana-
lyzed is the Infinitesimal Gradient Ascent (IGA) algorithm.
The dynamics of IGA were linear and IGA’s convergence
was fairly limited [1]. The IGA-WoLF algorithm had later
been developed to address IGA’s limitations. The dynamics
of IGA-WoLF were piece-wise-linear' and IGA-WoLF made
strong assumptions in order converge.

We previously developed the Weighted Policy Learner (WPL)
[2], which we showed experimentally to converge without
knowing the equilibrium strategy, a major improvement over
IGA-WoLF. The main contribution of this paper is provid-
ing an analysis of WPL’s dynamics, showing that it is non-
linear, and comparing it to other gradient-based MARL al-
gorithms.

The document is organized as follows. Section 2 intro-
duces previous gradient ascent multiagent learning algorithms.
Section 3 breifly described the WPL algorithm. Section 4
formulates the WPL algorithm as a set of differential equa-
tions. Section 5 discusses the symbolic solution of WPL’s
differential equations and how it differs from previous gra-
dient ascent MARL algorithms. In Section 6 we present the
results of solving WPL’s differential equations numerically,
and compare our results to the experimental results reported
in previous work. Section 7 discusses WPL’s dynamics in
comparison to previous gradient-based MARL algorithms.
Finally in Section 8 we conclude and discuss future work.

2. GRADIENT-BASED MARL ALGORITHMS

The first gradient-based MARL algorithm whose dynam-
ics were analyzed is the Infinitesimal Gradient Ascent (IGA)
[1]. IGA is a simple gradient ascent algorithm where each
agent 7 updates its policy m; to follow the gradient of ex-
pected payoffs (or the value function) V;. The following
equations describe how an agent using IGA updates its pol-

icy.

Am; 1 L‘gﬂ(_ﬂ—)

i limit(m; + Am;)

"We review the analysis of both IGA and IGA-WoLF
dynamics later in the paper.



Variable n is called the learning rate and approaches zero
in the limit (n — 0) (hence the word Infinitesimal in IGA).
Function limit projects the updated policy to the space of
valid policies, i.e. where limit(z) = argming .yaia)|t —
2’|.2 A policy is valid if it sums to 1 and every action is
played with non-negative probability.

IGA does not converge in all two-player-two-action games.
Algorithm IGA-WoLF (WoLF stands for Win or Learn Fast)
was proposed [4] in order to improve convergence properties
of IGA by using two different learning rates. More formally,

a‘/z (ﬂ') MNiose
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i — limit(m; + Am;)

if Vi(ms,m
otherwise

Ami(a) — i) < Vi(m},m=s)

Notice that if an agent moves away from its equilibrium
policy, this means the value (expected reward) of the cur-
rent policy is higher than the value of the equilibrium policy
and vice versa (which explains the conditions in the above
equation). The dynamics of IGA-WoLF have been analyzed
and proven to converge in all 2-player-2-action games [4],
as we briefly review in the following section. IGA-WoLF
has limited practical use, however, because it requires each
agent to know its equilibrium policy.

3. WEIGHTED POLICY LEARNER (WPL)

The WPL algorithm is shown in Algorithm 1 for agent
1. Variable A is the policy gradient that is used to update
policy m;. The idea of the algorithm is to start learning
fastest when A changes its direction and then to gradually
slow down learning if the policy gradient does not change its
direction.

Algorithm 1: WPL: Weighted Policy Learner
begin

V «— total average reward = W
foreach action a € A; do
A(a) — Vi(a) =V
if A(a) > 0 then A(a) «— A(a)(1 — mi(a))
else A(a) «— A(a)(m;(a))
end
— limit(m; + nA)

end

WPL detects changes in the gradient direction using the
difference between action rewards. If the reward of action
a is decreasing, then the change in m;(a), A(a), is weighted
by mi(a), otherwise it is weighted by (1 — m;(a)). Therefore,
the largest positive change in m;(a), A(a), is when m;(a) is
low and Vj(a) is higher than the average reward V, and the
largest negative change is when 7;(a) is near 1 and V;(a) is
lower than V.

Notice that there are few differences and similarities be-
tween IGA-WoLF and WPL’s update rules. Both algorithms
have two modes of learning rates. IGA-WoLF needs to know
the equilibrium strategy in order to distinguish between the
two modes, unlike WPL. Also while IGA-WoLF has fixed

2This general definition of the limit function was later
developed [3].
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learning rates for the two modes, WPL uses a continuous
spectrum of learning rates, depending on the current policy.
It is this particular feature that causes WPL’s dynamics to
be non-linear, as we discuss in the following section.

4. FORMULATING WPL AS DIFFERENTIAL

EQUATIONS

The policies of two agents, p and ¢, following WPL can
be expressed as follows

q(t) «— limit(q(t — 1) + Aq(t — 1))

p(t) «— limit(p(t — 1) + Ap(t — 1))
where
_f n(1—q(t))(usp(t) + ua) if usp(t) +us >0
A(J(t) = { ( )(ng(t) pU4) if usg(t) +us <0
_ 01 =p)(uig(t) +u2) if uig(t) +u2 >0
Ap(t) = { p(t) (u1g(t) quz) if u1g(t) +uz <0

We continue derviation of ¢(t), and similar analysis holds
for p(t).

o) —alt=1) _
n
{ (1 —q(t))(usp(t) +ua) if p(t) > p* = —ua/u3
q(t)(usp(t) + ua) if p(t) < p™ = —ua/u3

As n < 0, the equations above become differential:

{ (1 —q(t)) (usp(t) + ua)

q(t) (usp(t) + ua)

Since WPL is a gradient ascent approach, WPL will con-
verge to a deterministic NE if one exists, similar to IGA and
IGA-WoLF. This is clear from the gradient definition: a de-
terministic NE means one action is always better than the
other, and therefore the gradient direction always points to
it leading to eventual convergence [1]. The challenging case
is when there is no deterministic NE (the NE is inside the
joint policy space). We will therefore focus on this case.

It should be noted that while IGA and IGA-WoLF needed
to take the limit function into account, we can safely ignore
the limit function while analyzing the dynamics of WPL
for 2-player-2-action games. This is due to the way WPL
scales the learning rate using the current policy. By the
definition of Ap(t), a positive Ap(t) approaches zero as p(t)
approaches one and a negative Ap(t) approaches zero as p(t)
approaches zero. In other words, as p (or ¢) approaches 0 or
1, the learning rate approaches zero, and therefore p (or q)
will never go beyond the valid period [0,1]. The following
section discusses the symbolic solution of these equations.

if p(t) > p* = —ua/us
if p(t) < p* = —ua/us

q(t)

S. SYMBOLIC SOLUTION

Our goal is to prove that p(t) and ¢(t) will eventually
converge (i.e. in the limit, when ¢ — o0) to p* and ¢*
respectively. To do so, it is enough to show that if one
player starts at a policy ¢*, then the next time the player
returns to ¢* the other player will be closer to its NE, and
consequently the joint policy will also be a bit closer.

Figure 1 illustrates this point and depicts p(t) and q(t)
over a period of time 0 — T4, (the figure to the left shows



policies evolution over time, while the figure to the right
shows the joint policy space). If we can prove that over the
period 0 — T4 an agent’s policy p(t) gets closer to the NE
p*, i.e. Pmin2 —Pmin1 > 0 in Figure 1, then by induction the
next time period p will get closer to the equilibrium and so
on. F’j‘icy

Qqmax]

qmin

(pmax,q*) P
pmaxi-

pmin1

Figure 1: An illustration of WPL convergence.

For readability, p and g will be used instead of p(t) and ¢(t)
for the remainder of this section. The overall period 0 — T4
is divided into four intervals defined by times 0,7'1,7T2,T3,
and T'4. Each period corresponds to one combination of p(t)
and ¢(t) as follows. For the period 0 — T'1, where p(t) < p*,
q(t) > ¢*: by dividing p’ and ¢

dp _ (1—p)(uag+us)
dg (1 —q)(usp+ ua)
Then by separation we have

/P* dp _ /Qmam u1q + uo
P q

minl * 1= q

usp + u4
—_ d
1—p B
17pmin1 _
1—p*

* 1-— *
q) + (w1 + uz)ln——

—’l,Lg(p* - pminl) + (’LL3 + U4)ln

—U1 (Qmaz -
— Qmax

Unlike IGA and IGA-WoLF, however, the equations are
non-linear and do not have a closed-form solution (note the
existence of both z and In(z)). This is the case for the
remaining three time periods as well. We solve the equations
numerically as described in the following section.

6. NUMERICAL SOLUTION

We used Mathematica and Matlab to solve the equations
numerically. Figure 2 shows the theoretical behavior pre-
dicted by our model for the matching-pennies game. There
is a clear resemblance to the actual (experimental) behavior
that was reported in the original WPL paper [2] for the same
game (Figure 3). Note that the time-scale on the horizontal
axes of both figures are effectively the same, because what is
displayed on the horizontal axis in Figure 3 is decision steps.
When multiplied by the actual learning rate n used in the
experiments, 0.001, both axes become identical.

Figure 4 plots p(t) versus ¢(t), for a game with NE=
(0.9,0.9) (ul = 0.5,u2 = —0.45,u3 = —0.5,,ud = 0.45)
and starting from 160 initial joint policies. Figure 6 plots
p(t) and ¢(t) against time, verifying convergence from each
of the 160 initial joint policies.

We repeated the above numerical solution for 100 different
NE(s) that make a 10x10 grid in the p-q space (starting
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Figure 2: Convergence of WPL as predicted by the the-
oretical model for the matching pennies game.
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Figure 3: Convergence of WPL through experiments

(2]-

from the 160 boundary joint policies). The WPL algorithm
converges to the NE in a spiral fashion similar to Figure 4
in all the 100 cases. Instead of drawing 100 figures (one for
each NE), Figure 5 plots the merge of the 100 figures in a
compact way: plotting the joint policy from time 700 to 800
(which is enough for convergence as Figure 6 shows). The
two agents converge in all the 100 NE cases, as indicated by
the centric points (a diverging algorithm would not have a
clean grid with concentrated centric plots).

Figure 4: An illustration of WPL convergence to the
(0.9,0.9) NE in the p-q space: p on the horizontal axis
and q on the vertical axis.
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Figure 5: An illustration of WPL convergence for 10x10
NE(s).
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Figure 6: An illustration of WPL convergence to the

(0.9,0.9) NE: p(t) (gray) and q(t) (black) are plotted on
the vertical axis against time (horizontal axis).

7. COMPARING DYNAMICS OF IGA, IGA-
WOLF, AND WPL

With differential equations modeling each of the three al-
gorithms, we now compare their dynamics and point out
the main distinguishing characteristics of WPL. Matlab was
again used to solve the differential equations (of the three
algorithms) numerically. Figure 7 shows the dynamics of
the three algorithms in a game with ulu3 < 0 and the
NE=(0.5,0.5). The joint strategy moves in clockwise direc-
tion. The dynamics of WPL are very close to IGA-WoLF,
with slight advantage in favor of IGA-WoLF (after one com-
plete round around the NE, IGA-WoLF is closer to the NE
than WPL). It is still impressive that WPL has compara-
ble performance to IGA-WoLF, while WPL does not require
agents to know their NE strategy a priori.

IGA
—6— IGA-WoLF|
—A— WPL

player 2

0 02 0.4 06

player 1

08 1

Figure 7: Dynamics of IGA, IGA-WoLF, and WPL in a
game with NE=(0.5,0.5).

Figure 8 shows the dynamics in a game with again ulu3 <
0 but the NE=(0.5,0.1). Three interesting regions in the fig-
ure are designated with A B, and C. Region A shows that
both IGA and IGA-WoLF dynamics are discontinuous due
to the hard constraints on the policy. Because WPL uses a
smooth policy weighting scheme, the dynamics remain con-
tinuous. This is also true in region B. In region C, WPL
initially deviates from the NE more than IGA, but eventu-
ally converges as well. The reason is that because the NE, in
this case, is closer to the boundary, policy weighting makes
the vertical player move at a much slower pace when moving
downward (the right half) than the horizontal player.

Figure 9 shows the dynamics for the coordination game,
starting from initial joint policy (0.1,0.6). The coordination
game has two NEs: (0,0) and (1,1). All algorithms converge
to the closer NE, (0,0), but again we see that both IGA
and IGA-WoLF have discontinuity in their dynamics, unlike
WPL which smoothly converge to the NE.
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Figure 8: Dynamics of IGA, IGA-WoLF, and WPL in a
game with NE=(0.5,0.1).
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Figure 9: Dynamics of IGA, IGA-WoLF, and WPL in
the coordination game with two NEs=(0,0) and (1,1).

8. CONCLUSION AND FUTURE WORK

The main contribution of this paper is formally analyzing
the Weighted Policy Learner algorithm and showing that it
is the first gradient-ascent (GA) MARL algorithm with non-
linear dynamics. The paper models the WPL algorithm for
two-player-two-action games as a set of differential equa-
tions and then discusses both symbolic and numerical solu-
tions to the equations. The predicted theoretical behavior
closely resembles and confirms previously obtained experi-
mental results. Furthermore, the paper solves the equations
for 100 games, each starting from 160 initial joint policies
and verified WPL’s convergence in all of them. Finally, a
comparison of WPL’s dynamics with previous GA-MARL
algorithms’ dynamics is given, along with a discussion of
similarities and differences.

9. REFERENCES

[1] Singh, S., Kearns, M., Mansour, Y.: Nash convergence
of gradient dynamics in general-sum games. In: the
16th Conference on Uncertainty in Artificial
Intelligence. (2000) 541-548

Abdallah, S., Lesser, V.: Learning the task allocation
game. In: Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent
Systems (AAMAS). (2006)

Zinkevich, M.: Online convex programming and
generalized infinitesimal gradient ascent. In:
Proceedings of the International Conference on
Machine Learning. (2003) 928-936

Bowling, M., Veloso, M.: Multiagent learning using a
variable learning rate. Artificial Intelligence 136(2)
(2002) 215-250

2]

(4]





