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ABSTRACT
In this paper we divide multi-agent policies into two cate-
gories: centralized ones and decentralized ones. They reflect
different views of multi-agent systems and different decision-
theoretic underpinnings. While the centralized policies spec-
ify the decision of the agents according to the global system
state, the decentralized policies, which correspond to the de-
cisions of situated agents, must assume only a partial knowl-
edge of the system in each agent and must deal with commu-
nication explicitly. In this paper we relate these two types
of policies by introducing a formal and systematic method-
ology for transforming centralized policies into a variety of
decentralized policies. We introduce a set of transforma-
tion strategies, and provide a representation for discussing
decentralized communication decisions. Through our exper-
iments, we show that our methodology enables us to derive
a class of interesting policies that have a range of expected
utilities and amount of communication, and allows us to gain
important insights into decentralized coordination strategies
from a decision-theoretic perspective.
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1. INTRODUCTION
The problem of generating plans is a key problem in multi-

agent collaboration. This is a highly active field of research,
and numerous approaches have been proposed in the past.
An important task is to develop decision-theoretic methods
so that we can have frameworks to describe, analyze, and
understand planning strategies [2, 9]. Based on the differ-
ent views of the system used in the planning approaches,
we can categorize them into two classes: one that uses a
centralized view, and one that uses a decentralized view.
Typically, the centralized view is the view taken by the de-
signer of the system. The behavior of the agents are often
considered collectively, in terms of joint intentions [5] and
joint actions. There, a plan, which specifies the problem
solving strategy of the agents, is often described through a
mapping from the global system states to the joint actions
of the agents. We call this a centralized multi-agent policy,
or CP in short. In contrast, the decentralized view is often
the view of a situated agent in the system, which deals with
a partial observation of the global system state and makes
local decisions. There, a plan is often a mapping from local
beliefs to local actions, and we call this a decentralized pol-
icy, or DP for short. Clearly, in this decentralized view each
agent need its own DP, unlike in the centralized view where
one CP specifies the joint actions of the agents.

In decision-theoretic terms, the centralized view of the
system can be described by a multi-agent Markov decision
process model, as proposed in [2]. This is a standard Markov
decision process [7] that consists of a set of global states S,
a set of joint actions A (each joint action specifies one action
for each agent), a transition probability matrix Pr(s′|s, a)
– the probability that the system moves from state s to
state s′ after joint action a, and a reward function r(s) that
specifies the global utility received when the system is state
s. This framework corresponds to a computational model
where at any stage t, the system is described through its
current global state s, which is made up of the current local
states of the agents. The system then takes a joint action,
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Figure 2: Decentralized View and Policy

and evolves into one of the possible next global states based
on the completion of the joint action. In this framework,
a centralized policy (CP), which is a mapping from global
states to joint actions, is precisely a policy for a Markov
decision process. Figure 1 shows how problem solving is
carried out under such a policy (in a two-agent system with
agents X and Y). The expected utility of the CP can be
calculated using a standard policy evaluation algorithms for
Markov decision processes.

In the decentralized view, an agent cannot see other agents’
local states and local actions, and has to decide the next lo-
cal action on its own. Thus, each agent has only a partial
view of the system’s global state, and different agents have
different partial views. Of course, this does not necessarily
mean that the agents are isolated. Rather, an important
ability of decentralized cooperative agents is their ability to
communicate. We view communication as a way of expand-
ing an agent’s partial view by exchanging local information
not observed by other agents. For simplicity, we define com-
munication as the action of agents updating each other with
local state information and thus collectively discovering the
current global state (in other words, the agents synchronize
themselves so that they all observe the current global state).
Clearly, a DP has to deal with communication explicitly, in
particular when communication incurs a cost, or when con-
tinuous communication is not feasible. In [9], we proposed
a decentralized multi-agent decision process framework that
provides a basis for decision-theoretic study of decentralized
policies. The system is modeled by each agent having an
individual state space, its own local action set, and local
state transition probability measure, but uses a global re-
ward function to connect the effects of the actions in the
agents. Thus, it is not a standard Markov decision process.
The DP under this framework now also explicitly includes
communication decisions. Specifically, the DP should define
not only what local action to take based on the current local

knowledge of the agent, but also whether communication is
needed after its local action is completed. Typically, such
decisions are not made solely based on current local state
information but need to include an agent’s history infor-
mation, including past states and past communications. In
general, we are dealing with history-dependent policies when
it comes to DP, whereas typically we need only deal with
history-independent, or Markovian, policies, when studying
CPs.

Figure 2 shows the computation model under this decen-
tralized view: at any stage t, each agent first decides what
local action to take (per the DP). Then, decides whether
there is need for communication when the action finishes.
Next, the agents enter a sub-stage where all communications
occur (if any). When the communication sub-stage finishes,
each agent enters the next stage with an updated set of lo-
cal knowledge (one of several possible local knowledge sets
based on the outcomes of actions in both agents).

The key difference between a CP and a DP is that a CP
assumes the global state as the starting point but in DP the
global state is not automatically observed by the agents. As
a result we need to explicitly incorporate communication de-
cisions, and deal with history information in the DP. This
makes DP much more complex than CP. However, most
multi-agent systems are distributed in nature, and agents
are generally autonomous — meaning that each agent is a
decision maker on its own. Thus, taking a centralized view
in such a system would often oversimplify the problem (e.g.,
assuming the agents see the global view instead of the partial
view), and a centralized policy would not be implementable
by situated agents without imposing some strong assump-
tions or special mechanisms to ensure the observability of
the global system state. Obviously, DPs are the right form
of policies for each agent to carry out the plan. Hence, we
need to develop DPs so that the agents with partial views
can effectively perform actions and implement cooperative
problem-solving strategies.

Of course, this does not mean that centralized policies
are invalid. In fact, CPs and DPs are very much related.
They simply represent solutions rooted from different per-
spectives. Decentralized models have an advantage in their
representational power, but at the same time suffer from
their complexity when obtaining DPs. Typically, solving a
standard Markov decision process is of PSPACE complexity
[6], but solving a decentralized Markov decision process is
of NEXP-time complexity [1], a higher complexity class. As
a result, heuristic approaches and approximation methods
for developing DPs are extremely important. However, due
to the infancy of research into this question, only a num-
ber of simple heuristic approaches have been studied so far
[9]. These approaches are often quite domain-specific and
therefore cannot be easily extended to derive general solu-
tion methodologies. On the other hand, CPs are easier to
solve and there are systematic methods for obtaining them.
Thus, it is quite desirable to find ways to derive DPs directly
from CPs. In this paper, we provide the connection between
them by providing ways of implementing a centralized policy
in a decentralized system. CPs can be transformed to DPs
and adopted by the decentralized agents. Also, we argue
that the decomposition of a CP should also take into ac-
count the cost of communication, since agents may have to
consider whether communication (to obtain more informa-
tion) is worthwhile. Such communication decisions are not
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considered in CPs. In addition, by solving this plan decom-
position problem we may also gain important insights about
the nature of plan interdependency, and provide feedback to
the research on CPs by studying how feasible or effective a
CP is when implemented in decentralized systems.

For a two-agent system containing agents X and Y, this
transformation is illustrated in Figure 3. Note that the de-
centralized policy consists of a separate policy for each agent
(what we call local policies) - in our case, two local policies,
one for agent X (DPX) and one for agent Y (DPY ). To-
gether they form a complete DP derived from the CP.

The rest of the paper is organized as the following: in
the next section we describe our transformation approach,
followed by the choice to communication policies, and how to
evaluate a derived DP, and then move on to the issue of non-
conforming DPs. In section 6 we discuss our experimental
results and section 7 summarizes our work.

2. TRANSFORM CP TO DP
Now we discuss how to transform a given CP to DPs. For

clarity, we assume that the each agent has complete knowl-
edge of the CP and also knows the dynamics of the state
space. A trivial transformation is to let the agents commu-
nicate at all stages, therefore maintaining the observation of
the global state all the time in all agents, i.e., establishing
a centralized view in each agent. However, our interest is
on how to minimize communication. Intuitively, an agent
does not need to communicate if it knows precisely what is
the next local action it needs to perform. If it knows that
the actual global state is one of several possible states and
all the possible states indicate the same local action for this
agent (not necessarily the same joint action), then the agent
may choose not to communicate. In this case, not knowing
the exact global state will not affect its choice of actions.

As such, the agents’ problem solving episode can be char-
acterized as a series of non-communicating intervals. At the
beginning of each interval, agents are synchronized and know
the global state. The agents then remain silent in the next
stages until one of them (or both) has insufficient knowledge
to decide its local decision. At that time, they communicate
(initiated by the agent with insufficient information). After
communication, they are again synchronized with the global
state. We assume that communication is without error or
loss.

The set of possible current global states is what we call
the local belief set, or LB in short. The problem is, each
agent’s local belief may be different. The intersection of the
local beliefs in different agents uniquely defines the global
state, but an agent cannot observe the local belief of other
agents. Therefore, we need to introduce a consensus belief
set for all the agents. This is what we call a common belief
state (or simply belief state), a set that consists of possible
current global states calculated based on common knowledge
only. The details of common belief states follow shortly.
Figure 4 shows a common belief state consists of four states
when agent X finishes action a and agent Y finishes action
b. The current local belief of an agent is then a projection
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of the common belief state by applying the additional local
knowledge of the agent. Figure 4 shows the possible LB sets
LBX

1 and LBX
2 for X (according to the outcome of a, i.e.,

whether a=1 or 2), and similarly LBY
1 , LBY

2 for Y.
The local action for each of the LB set is unique: the

next action is c for agent X regardless of the outcome of a
and b, and action d (if b = 1) or e (if b = 2) for agent Y
regardless of the outcome of action a. Thus, both agents
know which action to perform, no matter which the actual
LB sets are. The agents then perform their local actions.
Now the question is how to update the common belief state
(and the LB set too) when the action finishes. Let B be
the current belief state, and N be the set of possible next
states (when the actions finish) for all states in B. Figure
5 illustrates the N set (9 states) of the B shown in Figure
4, with the arrows showing the next states for each state
in B. Note that the possible outcomes of an action may
change according to the history, for example c may have
outcome 1 or 2 when a=1, but must be 1 when a=2. Now
we introduce another concept, the local history sets, or LH
sets. For each agent, LH sets are projections of N according
to local outcome history. In Figure 5, there are 3 LH sets
for each agent, shown as LHX

i and LHY
j . Each LH set

has a different outcome history (a=? c=? for agent X and
b=? d=? for agent Y). For example, the 3 states in LHX

1 all
have local state sequence a=1 and c=1 for agent X. Each LH
reflects the possible global states when the agent observes
the local action outcome (in our example, after c finishes
in X and d finishes in Y), but before the communication
substage. The states in a LH are locally indistinguishable
by agent X (or Y) before communication.

LH sets are the key for defining the communication deci-
sions of the agents. An LH set summarizes all local knowl-
edge that can be used to decide the possible current global
state. The communication policy of each agent is a map-



ping from its partitioned LH sets to the set {yes,no}. The
mapping is not from individual states because all states in
an LH set correspond to the same local history and as a
result the agent cannot distinguish them when making com-
munication decisions. An agent would communicate if the
decision concerning its current LH set is yes and not com-
municate otherwise. If any agent communicates, all of the
agents will discover the global state after the communica-
tion sub-stage. Thus, if the actual global state is s, which
is the joint of LHX

i and LHY
j , and at least one of LHX

i

and LHY
j maps to yes, s will be discovered via communica-

tion, and therefore the common belief state — the consensus
of all agents regarding the possible current global states —
would be updated to a singleton set just containing s. Let
K be the subset of N that contains all such s that could be
discovered after communication. If the actual global state
s /∈ K (meaning both LHX

i and LHY
j maps to no), then

the common belief state at the next stage, by way of elim-
ination, would be the set N -K. In Figure 5, let us assume
that the communication policy is to map LHX

3 and LHY
3

to yes and all other LH sets to no. Thus, the set K is the
union of LHX

3 and LHY
3 , and the remaining 4 states form

the set N -K. As a result, depending on the actual s, there
are 6 possible common belief states at the next agent: the
set N -K, plus one singleton common belief state for each
state in K.

Now that we know how the agents calculate the common
belief state in the next stage (given the current common
belief state), we have a working definition of the common
belief state. Intuitively, the common belief state is the belief
of an outside observer who has the knowledge of the CP
and the state space, knows the communication policies of
the agents, and observes all communication message among
the agents, but does not observe any local information of
any agent. Such an outside observer will discover the global
state once the agents communicate, but can only rule out
the set K if the agents are all silent.

The computation model for each agent can now be de-
scribed as the following: at any stage t, the agent first cal-
culates its local belief set by projecting its local knowledge
on the current common belief state B. Then, the agent
checks the CP to decide the next local action for its LB set.
Next, when the action finishes, the agent calculates the N
set and also the LH sets, and decides which LH set it is in.
Then, the agent makes the communication decision accord-
ing to the communication policy. If there is communication,
the new B in the next stage would simply be the discovered
global state (a set containing just s). Otherwise, the new B
would be the set N -K, and the agent’s LB set in the next
would be the joint of N -K and its LH set.

In summary, the transformed DP consists of two mappings
(for each agent): first, a mapping from the LB set to its local
action, and second, a mapping from the LH set to {yes,no}.
The common belief state, although not directly involved in
the mappings, is the key for the calculation of the LB and
LH sets.

3. COMMUNICATION POLICIES
The mapping from LH sets to {yes,no} cannot be arbi-

trary. The mapping from LB set to the agent’s local action
is decided by the CP, but we need to ensure that such a
mapping is valid: it is trivial to decide the local action if
the common belief state is a singleton set, but if the com-
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Figure 6: Local History Set Matrix

mon belief state is N -K, the mapping is valid only when
local component of the joint action (according to the CP)
is the same for all the states in the LB set. In other words,
each LBX (or LBY ) set in B must have a common local ac-
tion for agent X (or Y), otherwise there is ambiguity toward
the choice of local actions. Since the set N -K is calculated
based on the communication policy (recall that K is simply
the union of all communicated LH sets), and LBX sets are
simply LHX

i ∩ N−K (if LHX
i is not communicated), the

no-ambiguity rule on LB sets translates to a constraint on
the choice of communication policy: if LHX

i is not commu-
nicated, all states in LHX

i ∩ (N−K) must have the same
local action for X. A similar constraint applies to LHY

j .
A matrix representation can be used if the system con-

sists of two agents X and Y: let M be a |LHX | × |LHY |
matrix whose elements are the states si,j = LHX

i ∩ LHY
j ,

illustrated in Figure 6. Then, choosing to communicate on
LHX

i (or LHY
j ) can be symbolized by crossing out all ma-

trix elements on row i (or column j). So, after applying all
communicating LHX

i ’s and LHY
j ’s, the remaining matrix is

the N -K set. Thus, the constraint is to make sure that for
each row (and column) of the remaining matrix, there is no
ambiguity about the next local action for X (or for Y).

Thus, if all LHX
i and LHY

j have unambiguous local ac-
tions, the constraint is automatically satisfied, and no com-
munication is necessary. Otherwise, we should choose to
communicate on some LHX

i and/or LHY
j sets so that the

remaining matrix meet the constraint. Clearly, there are
several strategies for achieving this. In this paper we discuss
only two: the default strategy and the hill-climbing strategy.

The default strategy simply maps all ambiguous LHX
i

and LHY
j sets to yes. Let ComX(LHX

i ) be X’s communica-

tion decision on LHX
i and ComY (LHY

j ) for Y, the default

strategy assigns ComX(LHX
i ) = yes if and only if LHX

i has
ambiguous actions for X, and ComY (LHY

j ) = yes if and

only if LHY
j has ambiguous actions for Y. This is the strat-

egy illustrated in Figure 5, where both LHX
3 and LHY

3 have
ambiguous next local actions and are mapped to yes.

The hill-climbing strategy further reduces communication
by performing a heuristic search process that greedily min-
imizes the total number of yes decisions, so that the N -K
set contains as many states as possible. Due to space limi-
tations we omit the details of our search process (also, the
choice of heuristic search methods is an open one). Using the
same example in Figure 5, although both LHX

3 and LHY
3

have ambiguous next local actions, the hill-climbing strat-
egy may just choose to communicate for LHX

3 (or LHY
3 )

only, since the remaining 6 states would have no ambiguous
actions.

4. EVALUATING A DP
Based on different communication policies, there are dif-

ferent DPs. The key criteria for DPs are the expected utility



(EU) and the expect total amount of communication (AoC).
(If an explicit communication cost is given, we may combine
the two criteria into one overall utility measure.) Evidently,
the EU of a derived DP is the same as the EU of the CP,
which can be evaluated by the policy evaluation algorithm
of Markov decision processes. The only remark we want to
add is that we can define v(B), the value of a common belief
state B (seen by the outside observer), as the weighted value
of all states in B:

v(B) =
	
s∈B

p(s)V (s)/p(B). (1)

where p(s) is the probability of reaching state s during prob-
lem solving, and p(B) =



p(s) for all s ∈ B. p(s) can be

calculated through the transition probability p(s′|s) since

p(s′|s) = p(s′)/p(s). (2)

The calculation of AoC is also straightforward: Assum-
ing that each synchronization counts as 1, then for each
reachable state s, if there is communication, its contribu-
tion toward the expected total amount of communication is
the probability of reaching that state, p(s). Clearly, for the
trivial transformation mentioned at the beginning of section
2, the total AoC is simply



p(s) for all state s reachable via

the CP but excluding the starting state and terminal states
(since they do not need synchronization). We can also de-
fine c(s), the contribution to the total expected AoC at and
after state s:

c(s) = p(s) +
	

s′∈next(s)

c(s′), (3)

where next(s) is the set of possible next states of s.
For a DP, we can define the c(B), the contribution toward

the total expected AoC at and after belief state B. Of all
the possible next common belief states of B, only N -K is
not communicated:

c(B) =

��
��

p(B) +



B′∈next(B)

c(B′), if B is communicated;

B′∈next(B)

c(B′), otherwise.

(4)
Thus, the total expected AoC of a DP is simply c(B0),

where B0 is the starting belief state. and is common knowl-
edge to the agents and hence not communicated. Also, if
every state s ∈ B is a terminal state, c(B) = 0, since the
agents would realize that the global state is a terminal state
without communication. Such a belief state B is called a
terminal belief state.

5. NON-CONFORMING DPS
So far, a DP derived from a given CP would adhere to

the exact CP in the eyes of an outsider observer who sees
the global state and the joint actions of the agents. We call
these DPs conforming DPs. Conforming DPs offer no loss
of EU compared to the CP while decreasing the AoC.

The problem is that it limits the kinds of DPs that might
be derived from a given CP. Later we will show some ways to
create non-conforming DPs from a CP. These non-conforming
DPs may not follow the exact CP as seen by an observer.
As a result, the EU of these DPs may change. In other
words, they may degrades the EU of the CP. However, they
also have the potential of further reducing AoC to the ex-
tent not possible by conforming DPs. This offers a tradeoff
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between EU and AoC when selecting DPs, which the con-
forming DPs lack. This is why it is interesting to study
non-conforming DPs: it offers a wider selection of DPs and
offers tradeoff choices.

In order to derive non-conforming DPs from a given CP,
we first examine how to derive new CPs from a given one.
We are mostly interested in domain-independent techniques,
which modifies the given CP based on its structure, not on
domain knowledge. Specifically, since a policy can be viewed
as a directed tree with each node representing a state, and
the outgoing edges representing possible transitions to the
next states, as shown in the left half of Figure 7. Note that
the label of the outgoing edge represents the action to be
taken at that state, and there are multiple states from a
single action due to non-deterministic action outcomes.

One domain-independent technique for deriving a new CP
from an existing one is terminating: to mark one or more
non-terminal states in the original policy to be terminal
states in the new policy. This technique is illustrated in Fig-
ure 7. The resulting policy would terminate when reaching
the marked states. Clearly, the new policy may not receive
any additional reward beyond the marked states, therefore
the expected utility of the new policy is different from the
original policy’s. This technique is well-suited for typical
planning problems, where the agents make sequential de-
cisions regarding the execution of tasks, and the problem
solving may terminate at any stage and the utility is cal-
culated at that time. Thus, the new terminal states in the
new CP is valid.

Another domain-independent technique is merging. Illus-
trated in Figure 8, this technique marks one state to be
merged: grafting the subtree beyond another state (target
state) onto this state, replacing the original subtree of the
merged state. Such a merging operation requires that the
merged state is compatible to the target states, so that the
subtree grafted correctly reflects the actual structure of the
state space: the actions and states in the grafted subtree
must exist in the state space, and correctly reflects the tran-
sition relationships.



Typically, this requirement means that the part of state
space beyond the merged state should be topologically iden-
tical to the part of state space beyond the target state. Usu-
ally, this is satisfied between sibling states, meaning that
the two states are both possible resulting states from the
same state and action (see Figure 8). This requirement is
met when dealing with sequential task planning problems,
where the resulting sibling states represent the different pos-
sible outcomes of an action (in this case, the same as a task).
There, two outcomes are often identical to each other except
that they correspond to different utility values. The task
interrelationships also remain the same for both outcomes.
This means that, if a problem solving episode contains one
outcome in its outcome sequence, there must also exist a
possible episode that is the same episode except it replaces
this outcome with the other one.

For example, an action produces two possible outcomes o1

and o2 (and ends in state s1 and s2), but the only difference
between them is that o1 produces utility 10 and o2 produces
utility 5, and otherwise they are exactly the same in the
problem solving. In this case, the structures of the state
spaces beyond s1 and s2 are the same.

Since utility value is typically a function of the outcomes,
the calculation of the value of the merged state is straight-
forward: simply use the same process of calculating the util-
ity value of the targeted state, but replace any occurrence of
outcome o2 with o1 (assuming s1 is merged to s2). This tech-
nique is used in our calculation when dealing with merged
states. The calculation of AoC is even simpler: it is simply
the AoC of s2 multiplied by the factor p(s1)/p(s2) — to ac-
count for the fact that the probabilities of getting o1 and o2

are different.

5.1 Generating Non-Conforming DPs
Given the above discussion, one method of generating

non-conforming DPs would be to generate new CPs by ap-
plying various combinations of the aforementioned techniques,
and then to create conforming DPs for the new CPs. How-
ever, this method of generating non-conforming DPs is not
tied to the communication issue, and therefore may not be
efficient in our search for DPs that reduce communication.
Therefore, we introduce a method that performs the tech-
niques on common belief states rather than global states in
the CP, therefore ties the choice of techniques with com-
munication by putting the selection of the non-conforming
technique into the process of generating alternative next be-
lief states.

Specifically, during the process of deciding the mapping of
ComX and ComY according to the local history matrix M ,
we can create alternative strategies of generating next belief
states. Previously we have defined the default communica-
tion strategy, and an alternative, the hill-climbing strategy,
which produces a different set of possible next common belief
states. Now we would like to perform the terminating and
merging operations on these alternatives and thus produce
new alternatives, i.e., new sets of possible next common be-
lief states. Similarly, we will use the matrix representation
to help the understanding of these operations.

First we discuss the terminating operations. We identify
two strategies for applying this operations:

Terminating 1 (T1): For a given belief state B, one strat-
egy is to mark all of its next states (i.e. any state in N) ter-
minal. In this case all next belief states are terminal, and as

a result no more communication is needed. This corresponds
to marking all states in local history matrix M terminal and
therefore the next joint action (in the form of (aX |aY )) for
each state in M is (λ|λ), where λ means no action. In this
case M automatically satisfies the no-ambiguity condition,
thus K is empty (by default).

Terminating 2 (T2): We notice that the above method
may result in drastic changes — it eliminates all further
communications, but also eliminates all further activities.
As a result, the expected utility may suffer. So an alterna-
tive method is to keep the N − K belief state intact (based
on the conforming alternatives) and mark only a subset of
the rest of the next states. Thus, the communication deci-
sion remains the same as the conforming alternatives, but
some of the synchronized next belief states would be termi-
nal. This may reduces communication if communication is
needed in the further stages for those belief states accord-
ing to the conforming strategies. And since it only marks a
subset of the next states, the degradation of utility is more
limited compared to T1.

Now we study the merging operations. Since communi-
cation decisions are based on local history sets (LHX and
LH Y ) rather than individual states, we focus on merging
between LH sets. The goal is to merge communicating LH
sets to non-communicating LH sets, so that the communi-
cation on the merged sets can be saved. Thus, the merging
happens in the local history level rather than the state level:
it replaces one local history with another one.

Merging: for a given belief state B, examine the LH sets
(the rows and columns of M). For example, if a row is am-
biguous (not counting elements already marked or merged),
we try to find another row which is compatible to it but is
unambiguous. If such a row exists, we can then merge each
element in the original row to the same column element in
the target row. The same can be applied to columns as well.

Note that there might be many other non-conforming
techniques that could be used to explore new CPs, and also
other strategies for applying the terminating and merging
techniques discussed here. These are excellent areas for fu-
ture developments, but not the focus of this paper. Next
we shall see how our approach actually works in our exper-
iments.

6. EXPERIMENTAL RESULTS
To evaluate our approach, we implemented our CP to DP

method and performed some experiments using an example
problem. Figure 9 shows a multi-agent task for agents A
and B, with both local task interrelationships (such as A1
enables A2), and nonlocal interrelationships (such as A2 en-
ables B2) between the tasks in different agents. The task
has a deadline of 160. Here we are using TAEMS [3, 4, 8],
a well-known hierarchical task modeling framework, as our
task specification.

First, we mapped the TAEMS task structure into a multi-
agent Markov decision process, and then used a standard
dynamic programming algorithm to obtain the optimal cen-
tralized policy (CP).

In Figure 10 we sketch the sequences of joint actions that
might occur in an episode when this policy is used, by an-
alyzing the policy graph. As listed, there are five possible
sequences. Sequences 2-4 differ from sequence 1 after the
end of the fourth stage (the first 4 stages of sequences 2-4
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are the same as those of sequence 1, therefore are omitted
in the figure). Similarly, sequence 5 differs from sequence
1 after the end of the second stage. Note that sequence
3 is identical to sequence 2 except the last stage. Based
on the specifications given in Figure 10, this CP has a EU
of 7.27425 and an AoC of 5.5425 (according to the trivial
transformation).

Next, to generate the DPs, we start from the initial com-
mon belief state, and calculate the local history matrix M .
If all LH sets (rows and columns of H) have unambiguous lo-
cal actions, there is no communication needed and the next
common belief state is simply N , and we move to the next
stage. Otherwise, we first apply the default communication
strategy, then the hill-climbing strategy (if it produces dif-
ferent communication decisions). Also, the T1 operation is
applied to the common belief state if the difference between
the current (terminating) reward and the default value is
small then the default AoC times a constant (the cost of
communication). Intuitively, this criteria means that it is
not worthwhile to continue the problem solving when the
cost of communication outweighs the potential utility gain
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Figure 11: EU/AoC of Generated DPs

by further actions. Then we apply T2 operations on the
next common belief states produced by the default strat-
egy and the hill-climbing strategy: marking a communicat-
ing next belief state terminal if its default AoC is greater
than the probability of reaching it, and its default value
is below the default value of the current belief state. And
finally we try the merging operations on the sets of next
belief states generated by the default strategy and the hill-
climbing strategy. In our case, for each communicating LH
row (or column), merge the row (column) to the compatible
row (column) with the best default value, if such a compat-
ible row (column) exists. Thus, we have several alternative
sets of possible next common belief states in the next stage.
This process continues and therefore the combinations of
alternatives produce different DPs.

As a result, we obtained 160 different DPs for the optimal
CP mentioned before, with 12 DPs containing only combi-
nations of default strategy and hill-climbing strategy - these
are the conforming DPs. We evaluated the EU and AoC of
each DP, and 11 shows how their EU and AoC values are
scattered.

To give a comparison and also some details about the
results, the following table lists the EU and AoC of various
policies:

EU AoC
Optimal CP 7.27425 5.5425
Default DP 7.27425 1.07

Conforming (12 DPs) 7.27425 0.996 – 1.07
All (160 DPs) 2.7 – 7.27425 0 – 1.07

Immediately, we notice that even the default DP (i.e.,
the DP uses the default strategy only) reduces communica-
tion greatly compared to the AoC of the centralized policy
(5.5425). This is done without any loss to EU. But the AoC
can be further reduced, even to 0, while still having good
EU (the rightmost data point on the EU axis has a EU of
6.228). However, the conforming DPs offer only a very lim-
ited range of AoC compared to nonconforming DPs, which
reduce AoC but degrade the EU.



An interesting pattern shown in Figure 11 is that the data
points are somewhat “clustered”. The points can be roughly
divided into 3 clusters: top-right, lower-right, and lower-left.
Note the AoC gap from 0.4 to 0.9, and the EU gap from 4.5
to 5.5. By looking at the details of the DPs we notice that
gaps are largely due to the effect of some non-conforming op-
erations, such as marking some belief states terminal, i.e.,
to stop the problem solving at an earlier stage and there-
fore abandon all further communications, or the merging of
one local outcome to another, therefore causes a significant
change of AoC and EU. In other words, some operations are
the deciding factors of EU and AoC changes. Thus, by look-
ing at these operations we can detect the “critical points” in
DP, and therefore help us in designing coordination strate-
gies for the agents.

As an example, let us examine the DP corresponding to
the data point (EU=6.228, AoC=0):

1. At time 0, A starts task A3 and B starts task B1. The
next stage begins at time 40 when A3 finishes, and has 3
possible states. Both agents do not have ambiguity toward
the next local action, so the next belief state contains these
3 states.

2. At time 40, A starts task A1 and B continues B1. The
next stage is when B1 finishes, with 9 possible next states,
and merging is applied to B1’s q=0 outcome (which contains
3 states). The remaining 6 states form the next common be-
lief state, and no communication is needed.

3. B1 finishes (at time 60), A continues A1 and B starts
B3. In the next stage (when B3 finishes), A continues A1
and B waits, so the 12 next states become the next belief
state.

4. B3 finishes now (time 90). Next stage, when A1 fin-
ishes, there are 36 possible next states based on the 12-state
current common belief state. The merging operation is ap-
plied to 8 of the next states, and the rest of 28 states become
the next belief state.

5. A1 finishes now, and agent A chooses either A2 or
A4, depending on the previous outcome of A3 and A1: if
the q(A1) = 6 or if q(A1) = 2 and q(A3) = 0, choose A2,
otherwise A4. Clearly this is a local decision, so there is no
ambiguity. B simply waits (idle). The next stage has 56
states, and 50 of them are merged, so the next belief state
contains only 6 states, all of them terminal states. So the
problem solving finishes at the end of the stage.

Essentially, this DP contains 3 merging operations, and as
a result the agents have unambiguous local action through-
out the problem solving. In typical planning language, it
means that the agents simply ignore unexpected local out-
comes (such as errors) and stick to a local plan, thus save
communication. This divides the cooperation into two seem-
ingly independent local processes, but in fact it is an indica-
tion of possible constraint relaxations in the plan: the non-
local interrelationships are silently established and therefore
can be relaxed in each agent’s planning.

7. SUMMARY
In this paper we propose a method for deriving decen-

tralized multi-agent policies from centralized ones. In the
past, the design of decentralized policies has been limited to
the use of ad hoc heuristic methods, and the results are of-
ten domain-specific. By using this method, we now have
a domain-independent, systematic way of developing de-
centralized policies. Furthermore, this method provides a

bridge between centralized policies and decentralized poli-
cies, thus allows us to connect the research in these areas
and find more insights. The use of nonconforming opera-
tions in generating new CPs is particularly interesting. We
are developing new and more complex operations [8] and are
trying to generalize them in terms of searching in the policy
space.

Also, this method explores the possibility of making trade-
offs between the expected total utility and the amount of
communication to be used in multi-agent cooperation. Com-
munication in multi-agent systems can be viewed as the dy-
namic process of obtaining (exchanging) information, which
reduces uncertainty in the system but may incur a cost.
Thus, it belongs to one of the fundamental domain in artifi-
cial intelligence — the question of the value of information.
Since communication is often associated with the dynamics
of agent commitments, communication policies gives impor-
tant hints on how to deal with commitments in multi-agent
planning.

Designing good decentralized policies is a very challenging
task. Yet, it is very important to understand the reasoning,
planning, and decision-making in a decentralized, situated
agent. One important direction of our future work is to fur-
ther enforce the assumption of decentralization. Specifically,
in this paper we assume that the knowledge of the global
state space is available to every agent in the system. In the
future, we plan to relax this assumption and examine how
to generate decentralized policies when each agent only has
its own, partial view of the global state space – apparently
a much more realistic reflection of actual systems.

8. REFERENCES
[1] D. S. Bernstein, S. Zilberstein, and N. Immerman. The

complexity of decentralized control of markov decision
processes. In Proceedings of the Sixteenth Conference on
Uncertainty in Artificial Intelligence (UAI-2000), 2000.

[2] C. Boutilier. Sequential optimality and coordination in
multiagent systems. In Proceedings of the Sixteenth
International Joint Conferences on Artificial
Intelligence (IJCAI-99), July 1999.

[3] K. S. Decker and V. R. Lesser. Quantitative modeling
of complex computational task environments. In
Proceedings of the Eleventh National Conference on
Artificial Intelligence, pages 214–217, 1993.

[4] V. Lesser, B. Horling, R. Vincent, A. Raja, and
S. Zhang. The TAEMS White Paper.
http://mas.cs.umass.edu/research/taems/white/.

[5] H. J. Levesque, P. R. Cohen, and J. H. T. Nunes. On
acting together. In Proceedings of the Eighth National
Conference on Artificial Intelligence, 1990.

[6] C. H. Papadimitriou and J. N. Tsitsiklis. The
complexity of markov decision processes. Mathematics
of Operations Research, 12(3):441–450, 1987.

[7] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley, 1994.

[8] P. Xuan. Uncertainty Handling and Decision Making in
Multi-Agent Cooperation. PhD thesis, University of
Massachusetts at Amherst, 2002.

[9] P. Xuan, V. Lesser, and S. Zilberstein. Communication
decisions in multi-agent cooperation: Model and
experiments. In Proceedings of the Fifth International
Conference on Autonomous Agent (AGENTS 01), 2001.


