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Abstract

We propose an algorithm that given a problem formulated as a
Distributed Bayesian Network, finds a coordination strategy
which minimizes the communication costs while achieving
the desired confidence level of the global solution. We devel-
oped a system based on this algorithm which models the com-
munication decision process for any given problem structure
as a Markov Decision Process and use dynamic programming
to produce the optimal communication strategy. To reduce the
computational cost of the MDP approach, we further propose
an algorithm based on the concept of Mutual Information to
approximate the optimal solution. Experimental results for
both systems are given to illustrate the effectiveness of the
algorithms.

Introduction
In complex distributed applications, such as distributed in-
terpretation, the amount of communication among agents re-
quired to guarantee global optimality or global consistency
may be very significant. Thus, “satisficing” approaches have
been developed that trade off guarantees of optimality for re-
duced communication. One approach is for agents to gener-
ate local solutions based on their own data and then transmit
these high level solutions to other agents. Based on con-
sistency and credibility of these local solutions, new local
solutions may be generated or more detailed data sent un-
til a sufficient level of consistency and credibility has been
achieved among the agents. An important characterization
of such distributed protocols is how much communication is
required and the likelihood that the desired solution will be
the same as what would be generated by an optimal central-
ized algorithm which used all available information.

Most approaches to managing communication trade off
solution quality for reducing communication, but only from
a statistical view. The behavior of the algorithms are often
analyzed over an ensemble of problems to say that � percent
of the time they will get the required solution quality � with
an average amount of communication � (Carver & Lesser
2002).
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We would like to take this satisficing approach to the next
step by exploring whether we can design a parameterized al-
gorithm where we can predict, for a fixed amount of commu-
nication, the maximum level of confidence we expect in the
final solution, or conversely, given a desired confidence level
in the final solution how much communication the agents
need. Finally, the algorithm should produce a communica-
tion strategy that will require only the minimum amount of
communication to still achieve the desired solution quality.

We will study these issues in terms of Distributed
Bayesian Networks (DBNs). Recent work includes algo-
rithms (Xiang 1996) that produce the same final solution as
is generated by a centralized problem solving system. How-
ever, this approach can potentially require significant com-
munication.

In our research, we use a two-layer DBN to represent the
underlying structure of the problem that needs to be solved
as shown in Figure 1. For our problem, we make the follow-
ing assumptions:

(1) There are two agents in the system.

(2) Every agent has access to the complete DBN.

(3) Evidence is distributed among the agents.

(4) Each agent knows what evidence the other agent has ac-
cess to.

Bayesian Networks are a powerful tool to calculate con-
ditional probabilities, and we have developed an algorithm
that can reason about remote data using DBNs. Without ex-
changing any information at all, an agent can use our al-
gorithm to compute the likelihood of a hypothesis � being
the globally optimal solution based on its local data and di-
rect the agent to ask for critical information from the remote
agent in order to reach a higher level of confidence in the
global solution.

We are proposing two approaches to generating commu-
nication strategies for any DBN problem structure based on
this algorithm. With the MDP approach, given a DBN prob-
lem structure an agent will be able to dynamically construct
a Markov Decision Process (MDP) and learn the optimal
policy in terms of what data to ask for from the remote agent
and in what order. On the other hand, the Mutual Informa-
tion approach generates a myopic communication strategy
which is not guaranteed to be optimal but requires less com-
putational power and is more suitable for a larger and more
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Figure 1: An example of a DBN problem structure. There
are two events �� and ��. Data ��, �� and �� are dis-
tributed to two agents. �� has access to �� and ��, while
�� can only see ��. The objective is for�� and�� to figure
out what �� and �� are without too much communication.

complex DBN structure. With the smart conversation thus
carried out by the agents, we expect the communication cost
of the system to be significantly reduced.

Reasoning about Remote Data
In understanding our approach, let us first contrast it with the
“satisficing” approach developed by Carver and Lesser for a
distributed Bayesian Network to decide when and what to
communicate. They call their strategy Consistent Local So-
lutions Strategy (CLSS) (Carver, Lesser, & Whitehair 1996).
According to this strategy, agents first independently solve
their local subproblems and then transmit their local solu-
tions to all other agents. If these agents’ local solutions are
consistent with each other, they are merged without further
verification of what the globally optimal solution is. If the
local solutions are not consistent, lower level results/data are
transferred to ensure that the local solutions chosen are con-
sistent.

There are several key problems with CLSS. First, there is
no way to ensure that the solution chosen is the globally op-
timal solution or that it has reached the desired confidence
level. Second, there can be significant delays in problem
solving when agents require substantial amounts of raw data
from other agents. Hence, we propose the idea of transmit-
ting data incrementally until sufficient confidence in the cur-
rent best solution is reached. By “incrementally” we mean
that not all of the local raw data is transferred at once. In-
stead, it is transmitted as needed until global consistency is
achieved. This raises another question: in what order should
the raw data be transmitted when it is necessary?

Instead of giving a one-size-fits-all strategy, we have de-
signed an algorithm that can produce a strategy for any given
DBN that requires as little communication cost as possible
to achieve the desired confidence level of the final global
solution.

We use a two-layer Bayesian Network to represent the
problem structure (Figure 1). The top level nodes are the
events that are the cause of the observed data, while the
leaves are the raw data gathered, which are distributed to
various agents. The objective of the system is to figure out
the likelihood of events �� and �� without significant com-
munication.

Definition 1 Agent ��. In Figure 1, there are two agents

����� � �	 ��.

Definition 2 Event ��. The possible events in the environ-
ment which cause the observed data. For example, in Figure
1 there are two possible events ����� � �	 ��.

Definition 3 Data ��. The data observed by agents. In
Figure 1, we have 3 data ����� � � � ��.

Definition 4 Evidence 
�. The data values possibly ob-
served by one agent or later transferred from some remote
agent. They are possible configurations of the data set. For
example, in Figure 1 agent �� has four possible evidence
configuration �
��� � � � �� when it does not have knowl-
edge of any remote data, as shown in (1).


� 
� 
� 
�
�� � � � �
�� � � � �

(1)

Definition 5 Actual evidence 
��
. Every agent can only

know one data value configuration from the possible evi-
dence set. In Figure 1, �� initially can only observe 
��

�
�
��� � � � ��. As communication goes on, an agent will
gather more evidence from the remote agents, and the set

��

will grow.

Definition 6 Hypothesis ��. The possible hypotheses the
agents might draw from the evidence. Normally they are
possible configurations of the events. For example, in Figure
1 we have four possible hypotheses ����� � � � ��, as
shown in (2).

�� �� �� ��

�� � � � �
�� � � � �

(2)

Definition 7 Likelihood ���
. Based on the evidence ob-

served, an agent can calculate the conditional probabilities
of every hypothesis based on the evidence, i.e., ���

��� �
� �� �
��

�.

Definition 8 MAPI (Maximum A Posteriori Interpreta-
tion). Based on the current evidence set, there is a most
likely interpretation of the events, i.e., a most likely hypoth-
esis. 
����
� � �������� �� �
�.

Let us now assume that �� has not received any informa-
tion from ��. With the knowledge of its own data and the
Bayesian Network structure, �� can still do some reasoning
to decide what information it needs to determine the globally
best hypothesis. We illustrate this with an example.

In our example,�� has access only to�� � � and the BN
structure shown in Figure 1. Does �� need to send all the
data? What information should �� request from ��? Can
�� save communication cost by requesting only the neces-
sary data? Naturally, �� will put itself in the place of �� to
reason about ��’s data. It calculates the probabilities of the
four possible evidence of �� given �� � � as follows:

� �
���� � �� � ���	
�

� �
���� � �� � �����


� �
���� � �� � ���	��

� �
���� � �� � ��	
��� (3)




� 
� 
� 
�
�� 0.872 0.576 0.346 0.061
�� 0.065 0.364 0.625 0.932
�� 0.063 0.059 0.029 0.007
�� 0 0 0 0

Table 1: What to request: � ����
� ��� � ��

�� can also calculate the probabilities of the four hypotheses
assuming the evidence of ��, i.e. � ����
� ��� � ��	 � �
� � �	 � � � � �, as in Table 1.

Definition 9 Compound Probability �� �
��
�� is a pair
�� �
��
��	 ��, where � � 
����
� � 
��. It indi-
cates that given the local evidence 
�, with probability of
� �
��
��, � is the best hypothesis, where 
� are all the pos-
sible evidence of the remote agent.

Definition 10 Confidence ���� �
��. The likelihood of a
hypothesis � being the MAPI of the whole evidence set
given the current known evidence of agent �. ����� ��

������������	��	���
� �
��
��.

In our example, from (3) and Table 1, �� has the com-
pound probabilities of the four possible remote evidence as
follows:

�� �
���� � �� � ����	
�	 ���

�� �
���� � �� � ������
	 ���

�� �
���� � �� � ����	��	 ���

�� �
���� � �� � ���	
��	 ���� (4)

It is obvious that based on ��’s data, �� is the most prob-
able hypothesis. However, from (4), we can see that for

� and 
�, �� is the best hypothesis, while for 
� and

�, �� is. The conclusion is thus: with probability of
� �
���� � �� 
 � �
���� � �� � ���			, �� is the glob-
ally optimal hypothesis, and with probability of � �
���� �
�� 
 � �
���� � �� � ������, �� is the globally optimal
hypothesis. So, we are able to collapse (4) into:

�� �
� � 
���� � �� � ����				 ���

�� �
� � 
���� � �� � �������	 ���	 (5)

From the compound probability, we get the confidence of
�� � ���			 and �� � ������.

If we collapse (1) into:


� � 
� 
� � 
�
�� � �

	 (6)

it is easy to see that �� is what makes the difference of
choosing�� or�� as the globally optimal hypothesis. Con-
sequently, �� will be able to determine the globally optimal
hypothesis if �� sends it the observed data ��. Based on
this knowledge, �� only needs to ask �� for �� instead of
both �� and ��. This reduces communication cost.

What is more, from (5) we can see that with probability
of 0.8333, �� is the globally best hypothesis. As a result, if
we only need to reach the confidence level of ���, �� does
not even need to request �� to send it data ��. Only when

the confidence requirement is above ���, is additional data
necessary. The compound probabilities enable the agent to
see what data to request to achieve the desired confidence
level and to communicate as little as needed.

Please note that our definition of confidence is unique in
the sense that it not only takes into consideration the lo-
cal evidence, but also the unknown remote evidence. Other
work generally use MAPI as the measure of the confidence
level. Definition 10 is not measuring the belief in a hypothe-
sis as MAPI is, but how likely a hypothesis would be chosen
as MAPI if all the evidence were available. We use this more
complex form of confidence in order to take advantage of
the fact that we can gain information about the remote data
given our current knowledge, which reduces the uncertainty
of the high level hypothesis.

Now we can summarize the algorithm as follows:

Algorithm 1 1. Calculate the probabilities of the possible ev-
idence of the remote agent �� based on the local data, i.e.
� �������

�.

2. Calculate the probabilities of the hypothesis assuming the re-
mote evidence, � ������ � ���

�.

3. Calculate and collapse the compound probabilities to get confi-
dence of different hypotheses.

4. Group the evidence according to the most probable optimal hy-
pothesis, and collapse the evidence table.

5. Request data according to the collapsed evidence table and the
required confidence level of the final solution.

The advantage of Algorithm 1 is evident. With CLSS, ��

will have to transmit both raw data �� and �� to get a glob-
ally consistent solution, while using Algorithm 1 we need to
transmit only �� to ensure the globally optimal solution or
no communication at all to reach the 80% confidence level.

One thing worth noting is that we assume that only ��

is doing the reasoning in our algorithm. This is reason-
able since there will often be one agent who is responsible
for assembling the global solution. A more interesting case
is when �� is simultaneously reasoning about what data it
should provide to��. We will look into it in our future work.

An easy extension to this algorithm is for the remote agent
to transmit its current MAPI (i.e. local solution) before send-
ing any low level data. This knowledge will help the agent
to get more information of the remote evidence, and thus in-
fluence the communication decision. For example, in Fig 1,
if�� tells �� that its local MAPI is ��, �� can reason about
��’s part ofthe DBN as if it were �� and do the inference of
all the evidence of 
� to 
�. It will thus get the following:


����
�� � ��	 
����
�� � ��


����
�� � ��	 
����
�� � �� (7)

Based on this calculation and the local solution of ��, ��

can easily eliminate the cases of�� observing 
� and 
�, and
make our later calculation much easier. This can be further
extended to any data in the hierarchy.

Deriving Optimal Communication Strategies
Algorithm 1 has answered the question of what to request
(communicate). Now, we have another equally important



question to answer: if there is more than one piece of criti-
cal data, in what order and combination should the data be
transmitted to minimize the communication cost. This is es-
sentially a solution to step 5 of the algorithm.

To answer this question we frame the problem as an MDP
and use dynamic programming to find an optimal commu-
nication strategy. Each state of the MDP includes the cur-
rent known remote evidence, the current best solution and
its compound probability, i.e.,

� � 
��
	 ���� �
� � 
��
�	 �� (8)

where 
��
 is the known remote evidence, 
� is the local
evidence, and � is the current best solution, i.e. � �
��������� �
� � 
��
�. For example, in Fig 2, we have
the state �� � ��� � ��	 ��	 ���. In this state, agent ��

knows that the actual value of the remote data�� is 1. Based
on this information and its local evidence, the current best
solution is �� with confidence of 1. The action set of the
MDP is all the possible combinations of the critical data.
The cost of each state-action pair is the amount of commu-
nication needed to take this action in this state. We assume
that the cost of a request message is 1 no matter how many
data are requested, and each data transmitted costs 1. The
MDP starts at the state where no remote data is known and
the best global solution is based on its own local informa-
tion. It stops when the desired confidence level is reached.

As an example, we will construct an MDP (Fig 2) for the
problem illustrated in Fig 1, which we have studied so far.
Without knowing any remote data, �� may determine that
the best global solution is �� with the confidence of 0.83.
Going through Algorithm 1, it decides that the critical re-
mote data set is ����. As a result, the action set for �� is
������. If it takes the action ����, it will get the globally
optimal solution no matter what the reply is. Hence, it is a
very simple MDP that we constructed, with only one start
state and two final states. To obtain the confidence of 1,
agent �� only needs to request data ��.

This is a fairly simple example. To further illustrate more
complex cases of our algorithm, let us now consider the
problem illustrated below in (9) and the corresponding MDP
shown in Fig 3. Please note that (9) is different from (4).
In (9) the best hypothesis for 
� is �� instead of ��. All
the other assumptions are essentially the same as the pre-
vious example. The existence of �� makes our example
sufficiently complex to better illustrate the algorithm.

�� �
���� � �� � ����	
�	 ���

�� �
���� � �� � ������
	 ���

�� �
���� � �� � ����	��	 ���

�� �
���� � �� � ���	
��	 ���� (9)

Without knowing any remote data, �� may determine
that the best global solution is �� with the confidence of
0.67. Going through Algorithm 1, it decides that the crit-
ical remote data set is ���	 ���. As a result, the action
set for �� is �����	 ����	 ���	 ����. If it takes the ac-
tion ���	 ���, it will get the globally optimal solution no
matter what the reply is. If it asks for ��, with a probabil-
ity of ���	
� 
 �����
 � ���			, �� � � and �� is the

*S1: {D1=1},(1,H1)

S0: 0,(0.8333,H3)

*S2: {D1=0},(1,H2)

(D1),0.1666
c=2

(D1),0.8333
c=2

Figure 2: The MDP generated for the problem in Fig 1. Ev-
ery state includes the information of the known evidence,
and the CP value. Every transformation arrow denotes the
action taken, the probability of getting to the next state and
the cost of the action. S0 is the start state and the starred
states are terminal states.

S4: {D2=1},
(0.7061,H2)

*S1: {D1=1},
(1,H1)

S0: 0,
(0.6701,H3)

S2: {D1=0},
(0.8042,H3)

S5: (D2=0),
(0.8715,H3)

*S3: {D1,D2},
(1,Hi)

(D1),0.1666
c=2

(D1),0.8333
c=2

(D2),‘
c=2

(D1,D2),1
c=3

(d2),0.2311
c=2

(D2),0.7689
c=2

(D1),1
c=2

(D1),1
c=2

Figure 3: The MDP generated for the problem in (9). The
final state S3 has been abbreviated to save space.

globally optimal solution with confidence of 1. If �� � �,
the remote data can be either 
� or 
�. As a result, �� can
decide only that �� is the best solution with confidence of
��	
�������	�� 
 ��	
��� � ������. If it still wants to
improve its confidence level, it will need to take further ac-
tion, asking for ��, after which it can draw the best con-
clusion with full confidence. The cost for path �� 	 ��
is 3 and for path �� 	 �� is 2, while the cost for path
�� 	 �� 	 �� is 4. Applying Dynamic Programming to
this MDP, to achieve confidence level of 80%, the best strat-
egy is for�� to ask for only��, while to achieve confidence
level of 100%, �� should ask for both �� and �� at once.

We have implemented a system to dynamically construct
an MDP for any given problem structure based on this al-
gorithm. The input of the system is the problem structure
represented in the form of a DBN, and the output is the opti-
mal communication strategy the agent should deploy. A BN
toolkit is used to calculate all of the necessary conditional
probabilities (steps 1–3 in Algorithm 1) and a decision tree
is employed to collapse the truth table and find the data criti-
cal to the globally optimal solution according to Algorithm 1
(steps 3 and 4). The system then uses dynamic programming
to produce the optimal communication action sequence for
the MDP constructed for step 5.

A Myopic Approach
The obvious shortcoming of our MDP framework is its com-
putational complexity. It does not scale well as the number
of agents increases or as the complexity of the DBN struc-



ture grows. To solve this problem, a common method is to
approximate the optimal solution.

We have noticed from the last two sections that different
data are of different importance to reduce our uncertainty of
the most likely hypothesis. In Fig 1, data pieces like �� are
the most valuable as their values can reduce the hypothesis
candidates. Though knowing the actual value of � � does
not help to identify which hypothesis is the most likely one,
it does help to raise the confidence level of the most likely
hypothesis if it is identified. There might also be completely
irrelevant data that can be ignored. Hence, it is important to
find a suitable measure to identify the importance level of
data.

Sensitivity matrices (Pearl 1988) are often used to mea-
sure the influence of a variable on a target variable. What
we mean by “em influence” is how knowing the value of a
variable can reduce the uncertainty of the target variable.

Definition 11 Let 
 be the current available evidence, � be
the variable representing the target hypothesis, and let � be
the test variable, i.e., an observable node whose impact on
� is to be assessed. The sensitivity of � � � to � � � is
often defined as

���	 �� �
��������

������
�

� ���� � 
�

� ���
�
� (10)

The sensitivity matrix ���	 �� itself contains only the in-
fluence of every value of � � � on every value of � � �
but does not provide a concise summary of the overall con-
tribution of � to reducing the uncertainty in � . Mutual in-
formation (Pearl 1988) is one of the most commonly used
measures for solving this problem and ranking information
sources.

Definition 12 Mutual Information ���	�� is used to
measure the total uncertainty-reducing potential of� on the
target variable � . It is defined as:

���	�� � 

�

�

�




�����	 �� ���
�����	 ��

������������
�

(11)

���	�� is a nonnegative quantity and is equal to 0 if and
only if � and � are mutually independent (Gallager 1968).
The larger ���	�� is, the more important � is in reducing
the uncertainty in � .

In our research, the main task is to find a communication
strategy that will direct the low level data transfer between
the agents in order to decide which high level hypothesis is
the most likely one. The natural heuristic is to transfer the
data with greater influence on reducing the uncertainty when
deciding the best hypothesis. Mutual Information seems to
be a good measure to complete this task.

The first thing we need to do is to define a suitable tar-
get variable for our measurement. We only care about the
hypothesis�� where � � �����������
�, and 
 is the cur-
rently available evidence. The importance of an unknown
piece of data depends on how effective it will be in reducing
the uncertainty of choosing ��. As a result, we define the
target variable in our system as follows:

Definition 13 Target Variable T is the variable whose un-
certainty the agents are trying to reduce.

� � ������������
� (12)

As we see that the value of � depends on the information

 available to the agent, it will change when the agent gains
more information. As an example, let us again have a look
at the problem illustrated in Fig 1. In this example, there
are four mutually exclusive hypotheses �� ��� � � � �� as
listed in (2). The target variable � for agent �� should be:
� � �, if �� is the most likely hypothesis given the current
information known to ��.

If �� has access to �� � � only, and is trying to decide
what data to request from ��, let us first see what � should
be before and after we assume the value of ��. Let us write
the � value before assuming the value of �� as �� and that
after as ��. Before assuming anything about ��, the only
evidence �� has is �� � �, hence 
 � ��� � ��, and we
have

�� � �������������� � ��	 (13)

On the other hand, if�� assumes that�� � ��, the evidence
will become 
 � ��� � �� ��� � ��. As a result, it will
recalculate the value of � as

�� � �������������� � �� ��� � ��� (14)

Now we can calculate the mutual information values for
�� and �� in regard to � as in (15), where � � �	 �:

���	��� � 

�

��

�




� ��� � �	�� � ����� � ���

���
� ��� � �	�� � ����� � ��

� ��� � ���� � ��� ��� � ����� � ��
(15)

We have previously calculated Compound Probabilities
�� ���	 ����� � �� as in (4), from which we can get mu-
tual information for �� and �� as follows:

���	��� � ����	 ���	��� � ����	 (16)

Clearly, ���	��� � ���	���, which coincides with the
conclusion in the last section well that �� is more important
than ��. Hence, agent �� will request data �� from ��.
After receiving �� � �, �� can again calculate ���	���
with the new �� � �������� ������ � � � �� � ��
and �� � �������� ������ � � � �� � �� � �� � ��.
Not surprisingly, ���	��� � �, which means that � and��

are independent of each other and thus �� will not help in
reducing the uncertainty of the global solution.

Now that we have shown how Mutual Information can
help us decide which remote data to request, we propose the
following algorithm to calculate a Myopic Communication
Strategy for any given problem structure:

Algorithm 2 1. For every unknown remote data � �, com-
pute ���	 ���.

2. Choose �� with the largest ���	 ���, and ask the remote
agent to transmit it.

3. Propagate the newly arrived evidence ��. If the likelihood
requirement is met, stop. If not, go to step 1.



We call this algorithm myopic because it only looks one
step ahead when the agent is deciding which data to request
in contrast with the MDP approach. It is not considering
whether it is the optimal decision in the long run.

It may also be noticed that in the algorithm we formulated
above, the possible actions are only requesting single pieces
of data. It can be easily extended to multi-data request if
we define the test data as any combination of the unknown
remote data.

The uniqueness of our algorithm lies in the definition of
the target variable. As we have discussed before, the utiliza-
tion of our new definition of “confidence” enables us to in-
ference about the high level hypothesis not only based on the
known evidence but also on the unknown remote evidence.

Experimental Results
We have implemented a communication strategy system that
generates both the optimal policy with an MDP and the my-
opic policy with Mutual Information. We have done experi-
ments on 50 different DBN structures. Every DBN structure
includes 5 top level events and 10 lower level data pieces.
The data pieces are evenly distributed to 2 different agents
with no overlapping. For each structure, the system has the
input of a required confidence level of the final solution. Af-
ter calculation it will output both strategies and the minimum
percentage of the remote data that has to be transferred in or-
der to obtain the required confidence level. We average the
amount of data communicated over the 50 structures and get
the graph as shown in Fig 4. The graph shows that when
the required confidence is as low as 60%, only about 10%
of the data need to be transferred, while as the confidence
requirement increases to 1, the communication cost jumps
up to over 70%. Nevertheless, both strategies only need a
little over 70% of the data to be communicated to be able to
achieve the confidence level of 1, which is very encourag-
ing. Furthermore, unsurprisingly the policy generated with
MDP uniformly performs better than that with Mutual In-
formation, but not by a substantial amount. The size of the
MDPs generated for the DBN structures is on the order of
300. We have also done experiments on DBN of different
sizes. The size of the MDPs grows exponentially with the
number of data pieces in the DBN while the number of steps
required by the Mutual Information approach grows linearly.
This demonstrates that the Mutual Information approach is
a good approximation of the optimal approach while it has a
much better scalability.

Future Work
We plan to collect more experimental results and compare
the results with the data collected from (Carver & Lesser
2002) without communication planning. Some formaliza-
tion based on the statistics result will also be done to pre-
dict the amount of information that needs to be exchanged
to reach a certain level of confidence. Furthermore, we will
try to apply some approximation techniques to reduce the
computational complexity inherent to Bayesian Networks.
Dynamic programming will guarantee the optimality of the
solution, but it is also time consuming and computationally
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Figure 4: Experimental Results of the Communication Strat-
egy System

expensive. We are considering applying some reinforcement
learning techniques such as Q-learning to approximate the
optimal policy. It would also be interesting to experiment on
two-way communication strategies, and to investigate how
the agents will interact with each other if both of them are
active.

Scaling up the current algorithms is another area we are
planning to work on. One of the directions is to extend our
algorithms to more than two agents. One of the easiest way
is to view all the other agents as the remote agent in the
current algorithms. However there may be more efficient
and interesting solution.

The reasoning about what data to request gives us some
insight into the relationship between the confidence level in
the hypothesis and the communication needed. In Carver
(Carver & Lesser 2002), they presented some experimen-
tal results on this relation in the context of different near-
monotonicity levels. This work may help us explain those
results. We are currently looking into the relation be-
tween the near monotonicity measures used by them and the
method used here, in hopes of finding such explanations.
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