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Abstract

We consider multiple agents who’s task is to determine the true
state of a uncertain domain so they can act properly. If each agent
only has partial knowledge about the domain and local observation,
how can agents accomplish the task with the least amount of commu-
nication? Multiply sectioned Bayesian networks (MSBNs) provide an
effective and exact framework for such a task but also impose a set
of constraints. The most notable is the hypertree agent organization
which prevents an agent from communicating with arbitrarily another
agent. Are there simpler frameworks with the same performance but
with less restrictions?

We identify a small set of high level choices which logically imply
the key representational choices made in MSBNs. The result addresses
concerns regarding the necessity of restrictions of the framework. It
facilitates comparison with related frameworks and provides guidance
to extension of the framework as what can or cannot be traded off.

(Keywords: Decentralized interpretation, communication, organization
structure, uncertain reasoning, belief network)



1 Introduction

Consider a large uncertain domain populated by a set of agents. The agents’
task is to determine what is the true state of the domain so they can act
upon it. We can describe the domain with a set of variables. Some variables
are not directly observable hence their values can only be inferred based on
observation of other variables and background knowledge on their depen-
dence. Furthermore, each agent may only have knowledge about a subset
of variables, and can only observe and reason within the subset. How can
agents cooperate to accomplish the task with the least amount of communi-
cation? We shall term this type of agent systems as cooperative multi-agent
distributed interpretation systems (CMADISs).

In the case of a single agent, the problem can be solved by representing
the domain knowledge in a Bayesian network (BN) [13] and by performing
inference in the BN given observations. As the domain becomes larger and
more complex, however, a multiagent solution will be desirable. How should
the domain be partitioned among agents? How should each agent repre-
sent its subdomain? How should the agents be organized in their activity?
What information should they exchange and how, in order to minimize the
amount of communication? Can they achieve the same level of accuracy in
interpreting the state of the domain as a single agent?

Multiply sectioned Bayesian networks (MSBNs) [16] provide one solution
to these issues. A MSBN consists of a set of interrelated Bayesian subnets
each of which encodes an agent’s knowledge on a subdomain. Agents are
organized into a hypertree structure such that inference can be performed
in a distributed fashion while answers to queries are exact with respect to
probability theory. FEach agent only exchanges information with adjacent
agents on the hypertree, and each pair of adjacent agents only exchange
information on a set of shared variables. The complexity of communication
among all agents is linear on the number of agents and the complexity of
local inference is the same as if the subnet is a single agent based BN.

Are there simpler alternatives that can achieve the same performance? In
other words, are the technical restrictions of MSBN necessary? For example,
the hypertree organization of agents prevents an agent from communicating
with arbitrarily another agent. Is this necessary? If the answers to these
questions are negative, then such concerns are counter-productive and hin-
ders the adoption of MSBN to suitable CMADIS applications.

In this work, we try to address these concerns. We show that given some



reasonable fundamental choice/assumptions, the key restrictions of a MSBN,
such as a hypertree structure and a d-sepset (defined below) agent interface,
are unavoidable. In particular, we identify the choice points in the formation
of MSBN. We term fundamental choices as basic commitments (BCs). Given
the BCs, other choices are entailed. Hence a MSBN or some equivalent
follows once we admit the BCs.

The contributions are the following: First, the analysis provides a high-
level (vs. technical level) description about the applicability of MSBN and
addresses concerns regarding necessity of major restrictions. Second, the
results facilitate comparison with alternative frameworks. Third, when needs
for extension of MSBN or relaxation of its restrictions arise, the analysis
provides a guideline as what can or cannot be traded off.

In Section 2, we briefly overview the MSBN framework with representa-
tional choices summarized. Each remaining section identifies some BCs and
derives implied choices.

2 Overview of MSBNs
A BN [13] S is a triplet (N, D, P) where N is a set of domain variables,
D is a DAG whose nodes are labeled by elements of N, and P is a joint
probability distribution (jpd) over N. A MSBN [18, 16] M is a collection
of Bayesian subnets that together defines a BN. These subnets are required
to satisfy certain conditions. One condition requires that nodes shared by
different subnets form a d-sepset, as defined below.

Let G; = (N, E;) (1 = 0,1) be two graphs. The graph G = (NoU Ny, EqU
F1) is referred to as the union of Gy and (1, denoted by G = Gy U Gy.
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Figure 1: (a) DAGs of an MSBN. D-sepnodes are shown with dotted circles.
(b) Hypertree organization of (a).

Definition 1 Let D; = (N, E;) (1 = 0,1) be two DAGs such that D =
Do U Dy is a DAG. The intersection I = No N Ny is a d-sepset between Dy
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and Dy if for every x € [ with its parents m in D, either 1 C Ny or m C Nj.
Fach v € I is called a d-sepnode.

Fig. 1 (a) shows three DAGs D; (i = 0,1,2) of a MSBN with the d-sepset
between each pair being {a, b, ¢}. In general, d-sepsets between different pairs
of DAGs may differ. Just as the structure of a BN is a DAG, the structure of a
MSBN is a multiply sectioned DAG (MSDAG) with a hypertree organization:

Definition 2 A hypertree MSDAG D = | |; D;, where each D; is a DAG, is
a connected DAG constructible by the following procedure:

Start with an empty graph (no node). Recursively add a DAG Dy, called
a hypernode, to the existing MSDAG | |}=) D; subject to the constraints:

[d-sepset] For each D; (j < k), Ly, = N; N Ny, is a d-sepset when the two
DAGSs are isolated.

[Local covering] There exists D; (i < k) such that, for each D; (5 < k;j #
i), we have I;, € N;. For an arbitrarily chosen such D;, I;, is the hyperlink
between D; and Dy which are said to be adjacent.

Note that a hypertree MSDAG is a tree where each node is a hypernode
and each link is a hyperlink. The DAGs in Fig. 1 (a) can be organized into
the trivial hypertree MSDAG in (b), where each hypernode is labeled by
a DAG and each hyperlink is labeled by a d-sepset. Although DAGs are
organized into a hypertree, each DAG may be multiply connected, e.g., Dy.
Moreover, there can be multiple paths between a pair of nodes in different
DAGs. For instance, multiple paths are formed between k and n after D,

and Dy are unioned. A MSBN is then defined as follows:

Definition 3 An MSBN M is a triplet (N, D,P). N =; N; is the total
universe where each N; is a set of variables. D = |; D; (a hypertree MS-
DAG) is the structure where nodes of each DAG D; are labeled by elements
of N;. Let x be a variable and w(x) be all parents of x in D. For each x,
exactly one of its occurrences (in a D; containing {x} U w(x)) is assigned
P(z|n(x)), and each occurrence in other DAGs is assigned a constant table.
P =11, Pp, is the jpd, where each Pp, is the product of the probability tables
associated with nodes in D;. A triplet S; = (N;, D;, Pp,) is called a subnet of
M. Two subnets S; and S; are said to be adjacent if D; and D; are adjacent.

MSBNs provide a framework for uncertain reasoning in CMADISs. Fach
agent holds its partial perspective (a subnet) of a total universe, reasons with
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local evidence and through communication with other agents, and answers
queries or takes actions. Agents may be built by independent vendors with
privacy protected with regard to the internal reasoning of each agent. Agents
can acquire evidence in parallel while answers to queries are consistent with
evidence in the entire system. Applications mostly studied include monitor-
ing and diagnosis of large, complex and multi-component equipment [17] and
object oriented BNs [7].

To aid the analysis, we list representational choices of MSBNs below,
where the most important ones are 3 and 7.

1. Each agent’s belief is represented by probability.

2. The total universe is decomposed into subdomains. For each pair, there
exists a sequence of subdomains such that every pair of subdomains
adjacent in the sequence shares some variables.

3. Subdomains are organized into a (hyper)tree structure where each hy-

pernode is a subdomain, and each hyperlink represents a non-empty

set of shared variables between the two hypernodes.

The hypertree satisfies local covering.

The dependency structure of each subdomain is represented as a DAG.

The union of DAGs for all subdomains is a connected DAG.

Each hyperlink is a d-sepset.

R A

8. The joint probability distribution can be expressed as Def. 3.

Below we identify a set of BCs leading to these choices.

3 On connectivity of communication graph
We use uncertain knowledge, belief and uncertainty interchangeably, and
make the following basic commitment:

BC 1 Fach agent’s belief is represented by probability.

It directly corresponds to the first choice of Section 2. We shall use coherence
to describe any assignment of belief consistent with the probability theory.
We consider a total universe A" of variables over which a CMADIS of n
agents Ag, ..., A,_1 is defined. Each A; has knowledge over a N; C N, called
the subdomain of A;. Tt is assumed whenever N; N N; # {J, the intersection is
small relative to N; and N;. For example, in equipment diagnosis, each N; is
a component including all devices and their input/output. From BC 1, the
knowledge of A; is a probability distribution over N;, denoted by P;(V;).
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To minimize communication, we allow agents to exchange only their belief
on shared variables (BC 2 below). We take it for granted that for agents to
communicate directly, V; N N; must be nonempty. Note that BC 2 does not
restrict the order nor the number of communications.

BC 2 A; and A; can communicate directly only with P(N; N N;).

We refer to P(N; N N;) as a message and to direct communication as
message passing. Paths for message passing can be represented by a commu-
nication graph (CQG): In a graph with n nodes, associate each node with an
agent A; and label it by ;. Connect each pair of nodes N; and N; by a link
labeled by I = N;N\N; (called a separator)if I # (. CG is a junction graph [4]
over N whose links represent all potential paths of message passing. As be-
lief of one agent can influence another through a third, CG also represents
all potential paths of indirect communications. Fach agent’s belief should
potentially be influential in any other, directly or indirectly. Otherwise the
system can be split into two. Hence CG is connected. We summarize this in
Proposition 4,. It is equivalent to the second choice in Section 2.

Proposition 4 Let H be the communication graph of a CMADIS over N
that observes BC 1 and BC 2. FKach agent’s belief can in general influence
that of each other agent through communication. Then H is connected.

4 On hypertree organization

The difficulty of coherent inference in multiply connected (with loops) graph-
ical models of probabilistic knowledge is well known and many inference algo-
rithms have been proposed. Those based on message passing, e.g., [13, 9, 5,
15], all convert a multiply connected network into a tree. However, no formal
arguments can be found, e.g., in [13, 4, 11, 1], which demonstrate convinc-
ingly that message passing cannot be made coherent in multiply connected
networks. This leaves the question whether it is impossible to construct such
a method or the method remains to be discovered.

The answer to this question ties closely to the necessity of hypertree
organization of agents as specified in Def. 2 and restated as the third choice
in Section 2. This tie can be seen by noting that the hypertree in Def. 2
is isomorphic to a subgraph of the communication graph H of the same
CMADIS: An one-to-one mapping exists between hypernodes in Def. 2 and
nodes in H. Each hyperlink in Def. 2 is a link in H but the converse is not
true. In what follows, we show that in general, coherent message passing is



impossible in multiply connected CGs. The result formally establishes not
only the necessity of hypertree structure in CMADIS, but also the necessity
of tree topology for message passing based inference in single agent systems.
Since a CG is a junction graph, we use a junction graph in our analysis. We
first classify loops as follows:

Definition 5 Let G be a junction graph over N'. A loop in (i is degenerate
if all separators on the loop are identical. Otherwise, it is nondegenerate.

In fig. 2, all loops in (a) are degenerate, and those in (b) and (c) are
nondegenerate. In general, a junction graph can have both types of loops.
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Figure 2: (a-c) Junction graphs with nodes shown in ovals and separators in

boxes. (d) A DAG to which (¢) is a junction graph.

4.1 Nondegenerate loops

We show that when nondegenerate loops exist, messages are uninformative.
No matter how messages are manipulated or routed, they cannot become
informative and it becomes impossible to make message passing coherent.
Consider a domain with the dependence structure in fig. 2 (d) where
a,b,c,d are binary, over which a CMADIS of three agents A; (: = 0,1,2)
with Uy = {a,b}, Uy = {a,c¢} and Uy = {b,¢,d} is defined. Fig. 2 (d) is
the junction graph. The local knowledge of agents are Py(a,b), Pi(a,c) and
Py(b, ¢, d), respectively. We assume that their belief are initially consistent,
namely, the marginal distributions satisfy Fy(a) = Pi(a), Po(b) = P2(b), and
Pi(c) = Py(c). Hence, message passing cannot change any agent’s belief. We
refer to this CMADIS as Cmas3. Any given Py(a,b), Pi(a,c) and Py(b, ¢, d)
subject to the above consistency is called an initial state of Cmas3.
Suppose that Ay observes d = dy. If the agents can update their belief
coherently, their new belief should be Py(a,bld = dy), Pi(a,cld = dy) and
Py(b,c,d|d = dy). For A, Ps(b, ¢, d|d = dy) can be obtained locally. However,
for Ag and A; to update their belief, they must rely on the message P»(b|d =
do) sent by A, to Ag and the message Py(c|d = dy) sent by A, to A;. In
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the following, we show that Ay and A; cannot update their belief coherently
based on these messages. Before the general result, we illustrate with a

particular initial state. From fig. 2(d), we can independently specify P(a),
P(bla), P(c|a), and P(d|b,c) as follows:

P(ag) = 0.26
P(b0|a0) = 0.98 P(b0|a1) =0.33 P(Co|a0) =0.02 P(Co|a1) = 0.67
]D(do|bo7 Co) =0.03 ]D(do|bo7 Cl) = 0.66 ]D(do|bl7 Co) =0.7 ]D(do|bl7 Cl) =0.25

From these, we define an initial state s which is consistent:
Po(avb) = P(Q)P(Ma)v Pl(avc) = P(Q)P(CM)v PZ(bv ¢, d) = P(bv C)P(d|bv C),

where P(b,¢) = 3, P(a)P(bla)P(cla). After d = dy is observed by As, its
messages are P»(b|dy) = (0.448,0.552) and Ps(c|dy) = (0.477,0.532).

Consider now a different initial state s’ that differs from s by replacing

P’(d|b, ¢) with the following:
le(d()“)o, Co) = 0.5336 le(d()“)o, Cl) =0.1154 le(d()“)l, Co) =0.14 le(d0|b1, Cl) = 0.66

Note that Pj(b,c,d) # Pa(b,c,d), but Fi(a,b) = Py(a,b) and P/(a,c) =
Pi(a,c). After d = dy is observed, if we compute the messages Pj;(b|dy)
and Pj(c|dp), we will find them to be identical to those obtained from state
s. That is, the messages are insensitive to the difference between the two
initial states. As a consequence, the new belief in Ay and A; will be identical
in both cases. Should the new belief in both cases be different? Using
coherent probabilistic inference, we obtain P(ai|dy) = 0.666 from s, and
P'(ay|dy) = 0.878 from s'. The difference is significant.

We now show that the above phenomenon is not accidental. Without los-
ing generality, we assume that all distributions are strictly positive. Lemma 6
says that for infinitely many different initial states of agent A,, its messages
to Ag and A;, however, are identical.

Lemma 6 Let s be a strictly positive initial state of Cmas3. There exists
infinitely many distinet state s', identical to s in P(a), P(bla) and P(c|a) but
is distinct in P(d|b, ¢) such that the message Py(bld = do) produced from s
is identical to that produced from s, and so is the message Py(c|d = dy).

Proof: We denote the message component P2(b = by|d = dy) from state s by
P2 (bg|dp). We denote the message component from s’ by Py(bo|do). P2(boldo)
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can be expanded as

Pa(boldo) = Py(bo, do)/(Pa(bo, do) + Pa(by,do)) = [1 + Rludol]—1

P> (bo,do)
— [1 + P2(517007d0)+P2(517017d0)]—1 — [1 4 P2(do|bl700)P2(bl700)+P2(d0|bl701)P2(51701)]—1
P> (bo,co,do )+ P2 (bo,c1,do) P> (do|bg,co ) P2 (bo,co)+Pa(dolbo,c1)Pa(bo,e1) :

Similarly, the message component Ps(co|dy) can be expanded as

Py (cq, dop)

Pz(d0|bo7 CI)P2(b07 01) + Pz(d0|b17 CI)P2(b17 01) -1
P (co, do) '

_1 — 1_|_
] [ PQ(d0|b07CO)P2(b07CO)‘|‘P2(d0|b1700)P2(b1700)

Py(coldp) = [1+

By assumption, Py(a,b) = Pj(a,b), Pi(a,¢) = P/(a,c) and Py(b,c) =
Pj(b,c) but Py(d|b,c) # Pi(d|b,c). If agent Ay at s’ can generate the identical
messages Py(bldy) = Py(bldy) and Py(c|ldy) = Pa(c|dy) (conclusion of the
lemma), then P;(d|b, ¢) must be the solutions of the following equations:

le(do bl,Co)Pz(bl,Co)—i—Pz/(do bl,Cl)Pz(bl,Cl) — Pz(bl,do)

P%/Edo bo,Cogngbo,Cog-l-PéEdo 50,613132%50,61; Pngo,dog
Py (dolbo,c1) Py(bo,e1)+Py(do|by,c1) Po(br,er) _ Pafer,do
le(do bo,Co)Pz(bo,Co)—i—Pz/(do bl,Co)Pz(bl,Co) Pz(Co,do)

Since Pj(d|b,c) has four independent parameters but is constrained by only
two equations, it has infinitely many solutions. FEach solution defines an
initial state s’ of Cmas3 that satisfies all conditions in the lemma. O

Lemma 7 says that with the same difference in initial states, a coherent
inference will produce distinct results from Cmas3.

Lemma 7 Let P and P’ be strictly positive probability distributions over the
DAG of fig. 2 (d) such that they are identical in P(a), P(bla) and P(c|a) but
distinct in P(d|b,¢). Then P(ald = dy) is distinet to P'(a|d = dy) in general.

Proof: We have the following from P and P’, respectively:

P(aldy) = ZP(a|b7c)P(b,c|do) (1)
b,c

P'(aldy) = ZP(a|b7c)P’(b,c|d0) (2)
b,c

where we have used P(alb,c) since P’ is identical with P in P(a), P(bla)
and P(c|a). If P(b,c|dy) # P'(b,c|dy) (which we show below), then in general



P(aldy) # P'(a|dy). We also have

Plb,cldy) = LlolblP.0) __ Pldolb, ) P(b,c)

P(do) N Zb,c P(d0|b7C)P(b7C)7
/ Pl(d0|b7C)P(b7C) _ Pl(d0|b7C)P(b7C)
P cldo Pdo) 5 P(dolb. ) PObe)

Since P(d|b,c) # P'(d|b,¢), in general P(b,c|dy) # P'(b, ¢|dy). 0

We conclude with the following theorem:

Theorem 8 Message passing in Cmas3 cannot be coherent in general, no
matter how it is performed.

Proof: By Lemma 6, P2(bld = dy) and P(c|d = dy) are insensitive to the
initial states and hence the posteriors (e.g., Fo(a|d = dy)) computed from the
messages cannot be sensitive either. However, by Lemma 7, the posteriors
should be different in general given different initial states. Hence, correct
belief updating cannot be achieved in Cmas3. O

Note that the non-coherence of Cmas3 is due to its non-degenerate loop.
From Egs.(2) and (2), correct inference requires P (b, c|dy). To pass such a
message, a separator must contain {b,c}, the intersection between U, and
Uy U U;. The nondegenerate loop signifies the splitting of such a separator
(into separators {b} and {c}). The result is the passing of marginals of
P(b,c|dy) (the insensitive messages) and ultimately the incorrect inference.

We can generalize this analysis to an arbitrary nondegenerate loop of
length 3 (the loop length of Cmas3), where each of a, b, ¢, d is a set of
variables. The result in Lemmas 6, 7 and Theorem 8 can be similarly derived.

We can further generalize this analysis to an arbitrary nondegenerate
loop of length K" > 3. By clumping K" — 2 adjacent subdomains into one big
subdomain (), the loop is reduced to length 3. Any message passing among
the k£ — 2 subdomains can be considered as occurring in the same way as
before the clumping but “inside” ¢). Now the above analysis for an arbitrary
nondegenerate loop of length 3 applies. Corollary 9 summarizes the analysis.

Corollary 9 Message passing in a nondegenerate loop cannot be coherent in
general, no matter how it is performed.



4.2 Degenerate loops

In a degenerate loop, all subdomains share the same separator and it is
straightforward to pass the message coherently (we omit details for space
limit). However, in practice a CG made of only degenerate loops are rare, and
such loops can always be cut open with coherent message passing performed
in the resultant tree. Under the assumption that nondegenerate loops are
commonplace, we prefer a uniform organization for agents which support
coherent message passing no matter what types of loops exist in the CG:
BC 3 A uniform agent organization regarding loops is preferred.

By Corollary 9, a tree must be used when non-degenerate loops exist. By
BC 3, a tree will be preferred. We summarize in the following proposition
which implies the third choice in Section 2, with the understanding that a
loopy organization may be used as long as all loops involved are degenerate.

Proposition 10 Let a CMADIS over N be one that observes BC' 1 through
BC 3. Then a tree organization of agents must be used.

Proposition 10 admits many tree organizations. Jensen [4] showed that
coherent message passing may not be achieved with just any tree. In par-
ticular, if two subdomains N; and N; share a subset I of variables but [
is not contained in every subdomain on the path between them in the tree,
then coherent message passing is not achievable. To ensure coherent message
passing, the tree must be a junction tree, where for each pair of NV; and N,
N; N N; is contained in every subdomain on the path between N; and NV;.
Hence we have the following proposition:

Proposition 11 Let a CMADIS over N be one that observes BC' 1 through
BC 3. Then a junction tree organization of agents must be used.

5 On local covering condition

In this section, we show that the local covering condition in Def. 2 is necessary
and sufficient to guarantee that the resultant hypertree is a junction tree. The
proof is in Appendix.

Theorem 12 Let Ny, ..., N,_1 be a set of subdomains. Start with an empty
hypergraph, add each N; recursively as a hypernode and connect it with an
existing hypernode with a hyperlink. The resultant hypergraph is a junction
tree iff each hypernode is added according to the local covering condition.

From Theorem 12, the fourth choice of Section 2 follows.
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6 On subdomain separators

Given our commitment to a (hyper) junction tree organization (Theorem 12),
it follows that each separator must be chosen such that the message over it
is sufficient to convey all the relevant information from one subtree to the
other. Formally, this means that all variables in one subtree are conditionally
independent of all variables in the other subtree given the separator.

It can be shown easily that when the separator renders the two subtrees
conditionally independent, if new observations are obtained in one subtree,
coherent belief update in the other subtree can be achieved by simply pass-
ing the updated distribution on the separator. On the other hand, if the
separator does not render the two subtrees conditionally independent, belief
updating by passing only the separator distribution will not be coherent in
general. Hence we have the following proposition:

Proposition 13 Let a CMADIS over N be one that observes BC' 1 through
BC 3. Then each separator in a tree organization must render the two sub-
trees conditionally independent.

This commitment requires the CMADIS designer to partition the domain
among agents such that intersections of subdomains form conditional inde-
pendent separators in a hypertree organization.

7 Choice on subdomain representation

Given a subdomain N;, the number of parameters to represent the belief of A;
is exponential on |N;|. Graphical models allow more compact representation.
We focus on DAG models as they are the most concise with the understanding
that other models such as decomposable Markov networks or chain graphs

can also be used.
BC 4 A DAG s used to structure individual agent’s knowledge.
A DAG model admits a causal interpretation of dependence. Once we

adopt 1t for each agent, we must adopt it for the joint belief of all agents:

Proposition 14 Let a CMADIS over N be constructed following BC' 1,
through BC' 4. Then each subdomain N; is structured as a DAG over N;
and the union of these DAGSs is a connected DAG over N.

Proof: If the union of subdomain DAGs is not a DAG, then it has a directed
cycle. This contradicts the causal interpretation of individual DAG models.
The connectedness is implied by Proposition 4. a

The fifth and sixth choices of Section 2 now follows.
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8 On interface between subdomains

We show that the interface between subdomains must be structured as a
d-sepset. This is established below through the concept of d-separation [13].

Proposition 15 Let D; = (N;, E;) (i = 0,1) be two DAGs such that D =
DolU Dy is a DAG. No \ Ny and Ny \ Ny are d-separated by [ = No N Ny iff

I is a d-sepset.
Proof: Sufficiency has been shown in [18].

[Necessity] Suppose there exists @ € [ with distinct parents y and z in
D such that y € Ny but y € Ny, and z € Ny but z ¢ Ny. Note that the
condition disqualifies I from being a d-sepset, and this is the only way that
I may become disqualified. Now y and z are not d-separated given = and
hence No \ Ny and N; \ Ny are not d-separated by . O

Since d-separation captures all graphically identifiable conditional inde-
pendencies [13], Proposition 15 implies that d-sepset is the necessary and suf-
ficient syntactic condition for conditionally independent separators (Propo-
sition 13) under all possible subdomain structures and observation patterns.
We emphasize that d-sepset is necessary for the most general case, since
by restricting subdomain structure (e.g., some agent contains only “cause”
relative to other agents but no “effect”) or observation pattern (e.g., some
agent has no local observation and only relies on others’ observation), the
d-sepset requirement may be relaxed. The seventh choice of Section 2 now
follows. From Propositions 14, 15 and Theorem 12, the following proposition
is implied. The proof is in Appendix.

Proposition 16 Let a CMADIS over N be constructed following BC 1 through
BC 4. Then it must be structured as a hypertree MSDAG.

9 On belief assignment

By Propositions 14, the structure of a CMADIS is a DAG (we emphasize
that it is a consequence of BC 1 through BC 4, not an assumption). Hence a
joint probability distribution (jpd) over A can be defined by specifying local
distribution for each node and applying chain rule. In a CMADIS, a node
can be internal to an agent or shared. Distribution for an internal node can
be specified by the corresponding agent vender.

When a node is shared, it may have different parents in different agents
(e.g., b in Fig. 1). Since each shared node is a d-sepnode, Def. 1 implies
that for each shared variable x, there exists a subdomain containing all the
parents of x in the universe as stated in the following lemma:
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Lemma 17 Let « be a d-sepnode in a hypertree MSDAG. Let the parents of
x in D; be mi(x). Then there exists Dy such that mp(x) = U; mi(x).

If agents are built by the same vendor, then once P(x|mi(x)) is specified
for x, P(x|m;(x)) for each ¢ is implied. If agents are built by different vendors,
then it is possible that distributions on a d-sepnode may be incompatible with
each other. For instance, in fig. 1, Ag and A; may differ on P(a). We make
the following basic commitment for integrating independently built agents
into a CMADIS:

BC 5 Within each agent’s subdomain, jpd is consistent with the agent’s be-
lief. For shared nodes, jpd supplements each agent’s knowledge with others’.

The key issue is to combine agents’ belief on a shared variable to arrive
at a common belief. One idea [14] is to interpret the distribution from each
agent as obtained from a sample data. The combined P(x|m(x)) can then be
obtained from the combined data sample. In summary, let agents combine
their belief for each shared x. Then, for each shared z, let jpd be consistent
with P(x|m(2)), and for each internal x, let jpd be consistent with P(x|r(x))
held by the corresponding agent. It’s easy to see that the resultant jpd is
precisely the one defined in Def. 3, stated in the following proposition:

Proposition 18 Let a CMADIS over N be constructed following BC 1 through
BC 5. Then the jpd over N is identical to that of Def. 3.

The last choice of Section 2 now follows. Pooling Propositions 16 and 18
together, the MSBN representation is entailed by the BCs:

Theorem 19 Let a CMADIS over N be constructed following BC' 1 through
BC 5. Then it must be represented as a MSBN or some equivalent.

10 Conclusion

From the following basic commitments: [BC 1] exact probabilistic measure
of belief, [BC 2] communication by belief over small sets of shared variables,
[BC 3] uniform organization of agents regarding loops, [BC 4] DAG for do-
main structuring, [BC 5] joint belief admitting agents’ belief on internal
variables and combining their belief on shared ones, we have shown that the
resultant representation of a CMADIS is a MSBN or some equivalent.
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This result aids comparison with related frameworks. Multiagent infer-
ence frameworks based on default reasoning (e.g., DATMS [10] and DTMS
[3]) do not admit BC 1, nor does the blackboard [12]. Several frameworks for
decomposition of probabilistic knowledge has been proposed. Abstract net-
work [8] replaces fragments of a centralized BN by abstract arcs to improve
inference efficiency. Similarity network and Bayesian multinet [2] represent
asymmetric independence where each subnet shares almost all variables with
each other subnet. A nested junction trees [6] can exploit independence in-
duced by incoming messages to a cluster and it shares all its variables with
the nesting cluster. They were not intended for multiagent systems and do
not admit BC 2. MSBNs are unique in satisfying both BC 1 and BC 2 in
one.

This analysis addresses concerns on restrictions imposed by MSBN. In
particular, the two key technical restrictions, hypertree and d-sepset inter-
face, are the consequence of BC 1 and BC 2.

One useful consequence of BC 2 and MSBN is that the internal knowl-
edge of each agent is never transmitted and can remain private. This aids
construction of CMADISs by agents from independent vendors. Multiagent
systems commonly stand in two extreme: self-interested versus cooperative.
MSBN stands in the middle: agents are cooperative and truthful to each
other while the internal know-how is protected.

Our analysis provides guidance to extension/relaxations of MSBNs. Less
fundamental restrictions can be relaxed, e.g., BC 4 such that other graphical
models can be used. BC 3 requires degenerate loops be handled in the
same way as nondegenerate loops. If loopy organization of agents are indeed
needed, the analysis shows that it is okay as long as loops are degenerate.
If subdomain structures and observation patterns are less than general, then
the d-sepset restriction can be relaxed.
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Appendix: Proofs

Proof for Theorem 12

[Sufficiency] Clearly, the resultant hypergraph is a tree since each new
node is connected to the existing graph by a single link. We show that the
tree is also a junction tree.

Suppose the tree resultant from following the local covering condition is
not a junction tree. Then there exist a pair of subdomains N; and Ng, and
a third subdomain N; on the path between them such that N; N N, & N;.
Suppose N; is added before Nj. From the procedure for adding nodes, V;
must be added after N; but before Nj.

Suppose m > 0 subdomains are on the path between N; and N, with the
order Nj, Ny, Nyyy ooy Ny . Nio IE Ny O N ¢ N, o, then Nj was not added
according to the local covering condition: a contradiction. If N;AN, C N, ,
we consider the addition of N, . If ;N N, ¢ N, __,, then N, was not
added according to the local covering condition: a contradiction. Otherwise,
we consider the addition of N, ..

Repeating this process for at most m times, we either find a contradiction,
or finally end up considering the addition of N, which satisfies N;AN, C N,,.
Since N; N N, ¢ N;, N, was not added according to the local covering
condition: a contradiction.

[Necessity] Using the above notation, if we do not following the local
covering condition in adding nodes, we could add N; first, followed by N;
connected to NV;, followed by Nj connected to N;. The resultant tree will not
be a junction tree. a

Proof of Proposition 16

From BC 1 through BC 4, it follows that the universe should be structured
as a connected DAG (Proposition 14) such that each subdomain is structured
as a subDAG. The DAGs should be organized into a hypertree according to
the local covering condition (Theorem 12). The interface between individual

DAGs should be a d-sepset (Proposition 15). Hence the CMADIS should be
structured as a hypertree MSDAG (Def. 2). O
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