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ABSTRACT
Control for agents situated in multi-agent systems is a complex
problem. This is particularly true in hard, open, dynamic environ-
ments where resource, privacy, bandwidth, and computational lim-
itations impose restrictions on the type of information that agents
may share and the control problem solving options available to
agents. The MQ or motivational quantities framework addresses
these issues by evaluating candidate tasks based on the agent’s or-
ganizational context and by framing control as a local agent op-
timization problem that approximates the global problem through
the use of state and preference.

1. MQ OVERVIEW
Our objective is to create open, large-scale, information and

computational systems that are flexible, adaptable, robust, persis-
tent, and autonomous. Now, consider the implications of this. Open-
ness means that agents may interact freely, come and go from the
network, and that the entire problem solving environment is dy-
namic. Openness thus often acts to thwart agent technologies that
rely on detailed predictability or static properties of the problem
space. In our work, we take the view that openness leads to a
requirement for real-time agent control problem solving so that
agents can respond to change and unexpected outcomes online.

Moving the scale of multi-agent systems from small groups to
large groups, e.g., tens of thousands, throws two other problems
into the mix: increased interaction overhead and social complexity.
The term interaction overhead denotes the increase in communica-
tion between agents required to detect interactions in their problem
solving and to coordinate their activities, i.e., it denotes the sheer
volume of message traffic and problem solving required to evaluate
the messages. This is being dealt with by imposing organizational
structure on the agents so that they do not all communicate and by
creating coordination and communication technologies that are ad-
justable [1, 4, 15, 5]. The other issue is social complexity and we do
not mean social complexity in the human sense. Or rather, the goal
of this research is not to study social complexity in human organi-
zations [13] per se as our work in agent control has very specific
task-centered properties. When agents are situated in a large open
environment, and organizational structure is imposed upon them,
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they have different organizational objectives and they must reason
about how their problem solving relates to satisfying their multiple,
and possibly conflicting, organizational objectives.

This research focuses on exactly this problem – how agents in
large-scale open environments reason about their organizational con-
text and make appropriate choices about which actions to perform
and how to go about performing them. It is important to empha-
size that this research pertains to complex problem solving agents,
e.g, the BIG Information Gathering Agent [11], where the agents
are situated in an environment, able to sense and effect, and have
explicit representations of candidate tasks and explicit representa-
tions of different ways to go about performing the tasks. Addi-
tionally, tasks are quantified or have different performance charac-
teristics and, following in the thread of complex problem solving
there are relationships between the tasks. The implications are that
tasks cannot be reasoned about independently and that the value
or utility of particular tasks differs depending on the context. We
call the process of reasoning about which tasks to perform, when,
with what resources, how or in what fashion, and with whom to
coordinate, the local agent control problem. The term “local” is
used in this expression because agency, as we use it, denotes an au-
tonomous distributed problem solving entity. In our work, there is
no global picture of all activities being carried out by all agents nor
are the agents situated in specialized, tightly coupled environments
like Tambe’s teams [15] or robotic soccer [17].

We view local agent control in this context as a real-time action-
selection-sequencing problem where an agent has n candidate tasks
and alternative different ways to perform the tasks. Tasks have
deadlines and other constraints as well as different performance
properties, e.g., consuming different resources or producing results
of varying quality. Control in this context is an optimization prob-
lem where different solutions are possible and they have different
degrees of utility.

Historically in our work this class of control problem has been
dealt with using the TÆMS task modeling framework [2, 10], GPGP
coordination [2], and Design-to-Criteria (DTC) real-time agent schedul-
ing [14, 19, 18, 21, 7]. Using these tools, an individual agent for
use in a multi-agent environment is constructed by coupling a do-
main expert or planner with GPGP and DTC. In this model, the do-
main expert’s function is to perform domain problem solving and to
translate its internal representations into TÆMS for control prob-
lem solving by the coordination (GPGP) and trade-off/scheduling
(DTC) experts. GPGP and DTC then work together to guide the
actions of the individual agent and to coordinate the activities of
the agent with the other agents in the network. This is the approach
used in the BIG information gathering agent [12, 11], the Intelli-
gent Home project (IHome) [9], the DARPA ANTS real-time agent
sensor network for vehicle tracking [7], and others [22]. Though
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in some of these applications GPGP is replaced by other commu-
nication machinery that forms commitments between agents about
which tasks will be performed and when. In all of these applica-
tions, DTC or its predecessor, Design-to-Time [8], is the oracle that
guides and constrains the communication and commitment forma-
tion processes.

TÆMS and DTC are mature research artifacts and have been
successfully reused in many applications (DTC since 1995). How-
ever, TÆMS is not suited to addressing the situational complexity
that arises when agents are deployed in larger groups or in open
environments. One of the fundamental limitations of TÆMS is that
it is a static representation of an agent’s problem solving process at
a given instant in time. It is, in essence, a snapshot of the options
available to the agent and a snapshot of their characteristics. In our
applications, generally, when the situation changes and the char-
acteristics of tasks (used to determine utility) change, the problem
solver must adjust the performance profiles and emit a new TÆMS
task structure. Another limitation is that in TÆMS, action per-
formance produces quality which then propagates throughout the
entire graph-like structure in ways that is intended to model dis-
tributed problem solving as in a distributed interpretation problem
[6]. The formal details of TÆMS are in [3]. While this view is ap-
propriate for reasoning about interrelated domain problem solving
activities at a detailed level, it is not readily used to model concepts
like tasks that contribute to one organizational objective while be-
ing detrimental to another. TÆMS also does not adequately sup-
port concepts like the value of forming a commitment with another
agent or the penalty for decommitting from an activity once a com-
mitment is formed.

To address these limitations, we have developed a new frame-
work for representing tasks and actions at a different level of ab-
straction. The framework, called the motivational quantities (MQ)
[16, 20] framework, uses state to achieve “automatic” changes in
task valuation or utility (unlike the static view taken in TÆMS).
TheMQ framework also describes tasks in many different attribute
dimensions so that we can model tasks contributing to, or detract-
ing from, different objectives to different degrees. While control
at the TÆMS level pertains to detailed evaluation of domain prob-
lem solving activities of an agent, control at theMQ level pertains
to high-level valuation of candidate tasks based on an understand-
ing of the relationship between tasks and organizational objectives.
In other words, in the MQ framework, task value is determined
not only by the intrinsic properties of tasks, but by the benefits
and costs of the intrinsic properties as determined by the agent’s
current organizational situation. From another view, there is an
intermediate evaluation step in the control process whereas such
processes typically focus on intrinsic value rather than contextually
interpreted value. While we have ideas about how to combine and
interface [16] the two levels, integration is clearly unnecessary for
many applications.

A preliminary version of the MQ framework was presented in
[20]. A specification of the current model is located at [23].
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