
Evolving Real-Time Local Agent Control
for Large-Scale Multi-agent Systems�

Thomas Wagner1 and Victor Lesser2

1 Automated Reasoning Group
Honeywell Laboratories

3660 Technology Drive, MN65-2600
Minneapolis, MN 55418

wagner tom@htc.honeywell.com
http://www.drtomwagner.com

2 Computer Science Department
University of Massachusetts
Amherst, MA 01003
lesser@cs.umass.edu

http://mas.cs.umass.edu

Abstract. Control for agents situated in multi-agent systems is a com-
plex problem. This is particularly true in hard, open, dynamic environ-
ments where resource, privacy, bandwidth, and computational limita-
tions impose restrictions on the type of information that agents may
share and the control problem solving options available to agents. The
MQ or motivational quantities framework addresses these issues by eval-
uating candidate tasks based on the agent’s organizational context and
by framing control as a local agent optimization problem that approxi-
mates the global problem through the use of state and preference.

1 Introduction

Many researchers believe that one of the dominant future models of distributed
computation will involve large networks of interacting heterogenous software
agents. We, as a community, are showing significant progress in making this a
reality but many research questions remain. Consider the requirements and char-
acteristics of the problem space. The overall objective is to create open, large-
� Effort sponsored by the Defense Advanced Research Projects Agency (DARPA) and
Air Force Research Laboratory Air Force Materiel Command, USAF, under agree-
ment number #F30602-99-2-0525; effort also supported by the National Science
Foundation under Grant No. IIS-9812755. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright annotation thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the Defense Advanced Re-
search Projects Agency (DARPA), Air Force Research Laboratory, National Science
Foundation, or the U.S. Government.

J.-J.Ch. Meyer, M. Tambe (Eds.): Intelligent Agents VIII, LNAI 2333, pp. 51–68, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

52 Thomas Wagner and Victor Lesser

scale, information and computational systems that are flexible, adaptable, ro-
bust, persistent, and autonomous. Now, consider the implications of this. Open-
ness means that agents may interact freely, come and go from the network, and
that the entire problem solving environment is dynamic. Openness thus often
acts to thwart agent technologies that rely on detailed predictability or static
properties of the problem space. In our work, we take the view that openness
leads to a requirement for real-time agent control problem solving so that agents
can respond to change and unexpected outcomes online.

Moving the scale of multi-agent systems from small groups to large groups,
e.g., tens of thousands, throws two other problems into the mix: increased in-
teraction overhead and social complexity. The term interaction overhead denotes
the increase in communication between agents required to detect interactions in
their problem solving and to coordinate their activities, i.e., it denotes the sheer
volume of message traffic and problem solving required to evaluate the messages.
This is being dealt with by imposing organizational structure on the agents so
that they do not all communicate and by creating coordination and commu-
nication technologies that are adjustable [6,10,38,11]. The other issue is social
complexity and we do not mean social complexity in the human sense. Or rather,
the goal of this research is not to study social complexity in human organizations
[33] per se as our work in agent control has very specific task-centered proper-
ties. When agents are situated in a large open environment, and organizational
structure is imposed upon them, they have different organizational objectives
and they must reason about how their problem solving relates to satisfying their
multiple, and possibly conflicting, organizational objectives.

This research focuses on exactly this problem – how agents in large-scale
open environments reason about their organizational context and make appro-
priate choices about which actions to perform and how to go about performing
them. It is important to emphasize that this research pertains to complex prob-
lem solving agents, e.g, the BIG Information Gathering Agent [28] and [23,6,19],
where the agents are situated in an environment, able to sense and effect, and
have explicit representations of candidate tasks and explicit representations of
different ways to go about performing the tasks. Additionally, tasks are quanti-
fied or have different performance characteristics and, following in the thread of
complex problem solving [14,9,31] there are relationships between the tasks. The
implications are that tasks cannot be reasoned about independently and that the
value or utility of particular tasks differs depending on the context. We call the
process of reasoning about which tasks to perform, when, with what resources,
how or in what fashion, and with whom to coordinate, the local agent control
problem. The term “local” is used in this expression because agency, as we use
it, denotes an autonomous distributed problem solving entity. In our work, there
is no global picture1 of all activities being carried out by all agents nor are the

1 In multi-agent systems we take the position that it is not generally possible to
compose a global picture of the activities happening at all the agents. This is due to
the combinatorics involved in gathering the information and reasoning about it. It
is also due to privacy, intellectual property, and autonomy issues. For example, an

Evolving Real-Time Local Agent Control 53

agents situated in specialized, tightly coupled environments like Tambe’s teams
[38] or robotic soccer [40].

We view local agent control in this context as a real-time action-selection-
sequencing problem where an agent has n candidate tasks and alternative dif-
ferent ways to perform the tasks. Tasks have deadlines and other constraints as
well as different performance properties, e.g., consuming different resources or
producing results of varying quality. Control in this context is an optimization
problem where different solutions are possible and they have different degrees of
utility.

Historically in our work this class of control problem has been dealt with using
the TÆMS task modeling framework [7,27], GPGP coordination [7], and Design-
to-Criteria (DTC) real-time agent scheduling [34,43,42,46,41]. Using these tools,
an individual agent for use in a multi-agent environment is constructed by cou-
pling a domain expert or planner with GPGP and DTC. In this model, the
domain expert’s function is to perform domain problem solving and to translate
its internal representations into TÆMS for control problem solving by the co-
ordination (GPGP) and trade-off/scheduling (DTC) experts. GPGP and DTC
then work together to guide the actions of the individual agent and to coordi-
nate the activities of the agent with the other agents in the network. This is the
approach used in the BIG information gathering agent [29,28], the Intelligent
Home project (IHome) [26], the DARPA ANTS real-time agent sensor network
for vehicle tracking [41,19], and others [48]. Though in some of these applications
GPGP is replaced by other communication machinery that forms commitments
between agents about which tasks will be performed and when. In all of these ap-
plications, DTC or its predecessor, Design-to-Time [16], is the oracle that guides
and constrains the communication and commitment formation processes.

TÆMS and DTC are mature research artifacts and have been successfully
reused in many applications (DTC since 1995). However, TÆMS is not suited
to addressing the situational complexity that arises when agents are deployed
in larger groups or in open environments. One of the fundamental limitations of
TÆMS is that it is a static representation of an agent’s problem solving process
at a given instant in time. It is, in essence, a snapshot of the options available to
the agent and a snapshot of their characteristics. In our applications, generally,
when the situation changes and the characteristics of tasks (used to determine
utility) change, the problem solver must adjust the performance profiles and emit
a new TÆMS task structure. Another limitation is that in TÆMS, action perfor-
mance produces quality which then propagates throughout the entire graph-like
structure in ways that is intended to model distributed problem solving as in a
distributed interpretation problem [13]. The formal details of TÆMS are in [8].
While this view is appropriate for reasoning about interrelated domain problem
solving activities at a detailed level, it is not readily used to model concepts like
tasks that contribute to one organizational objective while being detrimental
to another. TÆMS also does not adequately support concepts like the value of

agent affiliated with Microsoft is unlikely to share its entire knowledge base with a
Department of Justice agent even if it were computationally feasible.

54 Thomas Wagner and Victor Lesser

forming a commitment with another agent or the penalty for decommitting from
an activity once a commitment is formed.

To address these limitations, we have developed a new framework for rep-
resenting tasks and actions at a different level of abstraction. The framework,
called the motivational quantities (MQ) [39,45,44,47] framework, uses state to
achieve “automatic” changes in task valuation or utility (unlike the static view
taken in TÆMS). The MQ framework also describes tasks in many different
attribute dimensions so that we can model tasks contributing to, or detracting
from, different objectives to different degrees. While control at the TÆMS level
pertains to detailed evaluation of domain problem solving activities of an agent,
control at theMQ level pertains to high-level valuation of candidate tasks based
on an understanding of the relationship between tasks and organizational objec-
tives. In other words, in the MQ framework, task value is determined not only
by the intrinsic properties of tasks, but by the benefits and costs of the intrinsic
properties as determined by the agent’s current organizational situation. From
another view, there is an intermediate evaluation step in the control process
whereas such processes typically focus on intrinsic value rather than contextu-
ally interpreted value. While we have ideas about how to combine and interface
[39] the two levels, integration is clearly unnecessary for many applications.

A preliminary version of the MQ framework was presented in [45]. In this
paper we refine the framework based on experiences gained by implementing and
working with the model.

2 Quantifying and Comparing Motivations

In theMQ model we make the control restriction that for an agent to perform a
task, or to consider a task, the task must produce value for the local agent. On the
surface, this implies that the MQ model is only for controlling interacting self-
interested agents. This is not the case. The restriction is to guarantee the ability
to compare tasks from a unified perspective. Consider the issue of task value.
When agents are isolated problem solving entities, task performance produces
value that is entirely of local benefit. In multi-agent systems, value may be of
local benefit and of benefit to other agents. The extremes are also possible; tasks
may be only of local benefit and tasks may be only of benefit to agents other than
the local agent. This latter case appears problematic for the control restriction
above: all tasks produce local value. This case is problematic only on the surface.
For the local agent to consider performing such a task, it must indeed have value,
however, in this case the value is of a different type or class than the value of its
other candidate tasks. The task, for example, may be performed to meet some
organizational directive, e.g., service requests from agent β, or to reduce favors
owed to the agent, to accumulate favors for future use with the agent, or because
a different agent with which the local agent holds common goals requested it.

In the MQ framework, all tasks have value or a motivation for performing
the task where the value is determined both by the value of the task and by
the importance of the organizational objective with which the task is associated

Evolving Real-Time Local Agent Control 55

(and the current state of goal achievement). This enables the agent to compare
and value tasks that are associated with different organizational goals, or tasks
that are detrimental to one organizational goal while having positive benefit to
a different organizational goal, or tasks associated with different organizations
entirely, or tasks motivated by self-interested reasons to cooperative reasons.
The MQ framework quantifies these different underlying motivational factors
and provides the means to compare them via a multi-attributed utility function.
Definitions:

Agents are autonomous, heterogenous, persistent, computing entities that have
the ability to choose which tasks to perform and when to perform them. Agents
are also rationally bounded, resource bounded, and have limited knowledge of
other agents.2 Agents can perform tasks locally if they have sufficient resources
and they may interact with other agents. Additionally:

– Each agent has a set of MQs or motivational quantities that it tracks and
accumulates. MQs represent progress toward organizational goals3. MQs
are produced and consumed by task performance where the consumption
or production properties are dependent on the context. For example, two
agents interacting to achieve a shared organizational goal may both see an
increase in the same local MQ levels as progress is made (this is not a zero
sum game), whereas agents interacting to satisfy different goals may each
obtain different types and quantities of MQs from the same interaction.

– Not all agents have the same MQ set. However, for two agents to form a
commitment to a specific course of action, they must have at least oneMQ in
common (or have the means for forming anMQ dynamically). If they do not
have anMQ in common, they lack any common goals or objectives and lack
any common medium of exchange. (Proxy and reducibility are somewhat
addressed in [45].)

– For each MQi belonging to an agent, it has a preference function or utility
curve, Ufi

, that describes its preference for a particular quantity of theMQ,
i.e., ∀MQi, ∃Ufi() such that Ufi(MQi) �→ Ui where Ui is the utility asso-
ciated with MQi and is not directly interchangeable with Uj unless i = j.
Different agents may have different preferences for the same MQi. Prefer-
ences in the framework are defined by the relation between task performance
and organizational goals or directives.

– An agent’s overall utility at any given moment in time is a function of its
different utilities: Uagent = γ(Ui, Uj , Uk, ..). We make no assumptions about
the properties of γ(), only that it enables agents to determine preference or
dominance between two different agent states with respect to MQs.

– For simplicity of presentation, let us assume that γ() is not a multi-variate
utility function and instead that for each Ui there is an associated function

2 As agents are heterogenous, they may be associated with different corporate entities
(privacy issues), and because the contextual valuation of tasks is generally an expo-
nential problem we do not assume agents know each other’s utility functions, plan
libraries, etc.

3 In certain cases, MQs may also be used as a medium of exchange. Though little
meaningful work has been done to explore this.

56 Thomas Wagner and Victor Lesser

ωi() 4 that translatesMQ specific utility into the agent’s general utility type,
i.e., ∀Ui, ∃ωi() such that ωi(Ui) �→ Uagent. Thus Uagent may take the form
of Uagent =

∑n
i=0 ωi(Ui).

– Change in agent utility, denoted ∆Uagent, is computed through changes to
the individual utilities, Ui, Uj , etc. Let Ui denote the utility associated with
MQi before the quantity of the MQ changes (e.g., as the result of task
performance). Let U ′

i denote the utility associated with the changed MQ
quantity. The change in overall utility to the agent, in this simplified model,
is expressed as ∆Uagent = |∑n

i=0 ωi(U ′
i)− ωi(Ui)|

MQ Tasks are abstractions of the primitive actions that the agent may carry
out. MQ tasks:

– May have deadlines, deadlinei, for task performance beyond which perfor-
mance of said task yields no useful results. (This could also be defined via
a function that describes a gradual decrease in utility as deadlinei passes.)
This temporal constraint, as with the one following, is particularly impor-
tant for multi-agent coordination and temporal sequencing of activities over
interactions.

– May have earliest start times, starti, for task performance before which per-
formance of said task yields no useful results. (This could also be defined via
a function that describes a gradual increase in utility as starti approaches.)

– Each MQ task consists of one or more MQ alternatives, where one alter-
native corresponds to a different performance profile of the task. In many
ways, this extension simplifies reasoning with the preliminary model pre-
sented in [45] while at the same time increasing the representational power
of the framework by coupling different durations with the other performance
characteristics. Each alternative:

• Requires some time or duration to execute, denoted di. The durations
for all the alternatives of the task may be the same as the different
alternatives may differ in other ways (below). Deadlines and start time
constraints remain at the task level – the idea being that tasks have
constraints that apply to all of the alternatives.

• Produces some quantity of one or more MQs, called an MQ production
set (MQPS), which is denoted by: MQPSi,j,k = {qi, qj , qk, ..}, where
∀i, qi ≥ 0. These quantities are positive and reflect the benefit derived
from performing the task, e.g., progress toward a goal or the production
of an artifact that can be exchanged with other agents. In this model,
the two are equivalent.

• Akin to the MQPS, tasks may also consume quantities of MQs. The
specification of the MQs consumed by a task is called an MQ consump-
tion set and denoted MQCSi,j,k = {qi, qj , qk, ..}, where ∀i, qi ≤ 0.
Consumption sets model tasks consuming resources, or being detrimen-
tal to an organizational objective, or agents contracting work out to

4 ωi() could be combined with Ufi(). These are partitioned for mapping different
organizational influences.

Evolving Real-Time Local Agent Control 57

other agents, e.g., paying another agent to produce some desired re-
sult or another agent accumulating favors or good will as the result of
task performance. Consumption sets are the negative side of task perfor-
mance.

• All quantities, e.g., di, MQPS, MQCS, are currently viewed from an
expected value standpoint.

– Note that theMQPSalternative i ∩ MQPSalternative j may
= φ as different
alternatives may have common members. This is also true for the MQCS.
The reason for this is that alternatives may represent producing different de-
grees of benefit (MQ levels) toward an objective as well as simply producing
benefits toward different objectives (different MQs).

– Tasks whose performance at a given point in time, t, will miss their deadlines
should not be performed. Likewise with tasks whose performance violates
their start time constraint. If such tasks are executed: 1) all MQCS will
apply, 2) no MQPS will apply, 3) tasks will take their full duration to
execute. Conceptually, this models performing the task, and consuming the
task’s resources, but having the task fail to produce any benefit.

– In any given alternative, MQPS and MQCS must be disjoint. The reason
for this restriction is that in order to reason about an alternative producing
and consuming the same MQs, we must have a detailed model of the execu-
tion characteristics of the alternative. For example, we must know when it
consumes (at the beginning, at the end, linearly across the execution, etc.)
and when it produces. This is not consistent with the MQ task abstraction
– for situations in which such detailed reasoning is desired, the MQ task
must be broken into multiple different tasks.

– MQCS defines quantities that are required for task performance. If a task
lacks sufficient MQs for execution it is deemed un-executable and will not
be performed in any fashion. This means it will have zero duration, consume
zero MQs, and will produce zero MQs.

– If a task will both violate a deadline/start time constraint and lacks sufficient
resources to execute, theMQCS-lacking semantics will apply. The rationale
is that the task lacks the resources to begin execution and thus does not
actually violate the temporal constraints.

– Tasks may be interrupted, however, when this occurs they consume allMQs
in theMQCS and produce none of theMQs in theMQPS. This restriction
is to simplify the semantics for the reasoning process.

In this section we have presented a model for comparing tasks that are mo-
tivated by different factors. The model can support comparison between tasks
that are performed for different organizational motivations to task that are per-
formed for other agents in return for financial gain to tasks that are performed
for other agents for cooperative reasons. Via the different preferences for the dif-
ferent quantities, agent control can be modulated and agents can reason about
mixtures of different task types and different motivations. The use of state in
the model also facilitates contextually dependent behaviors or adjustments to
behaviors over time. Agent α performing cooperative work with a closely allied
agent, β, for instance, may need to balance this work with cooperative work

58 Thomas Wagner and Victor Lesser

with others over time. As α accumulates progress toward goals held in common
with β (represented as an MQ), its preference may shift to the accumulation of
other MQs. The use of utility for this application is flexible and very general
and there are many different ways to relate organizational goal importance to
the process of task valuation.

The model relates to other recent work in the multi-agent community, such
as agents interacting via obligations [1], or notions of social commitment [4], but
it differs in its quantification of different concerns and its dynamic, contextual,
relative, evaluation of these. The model resembles MarCon [32] as the different
degrees-of-satisfaction afforded by theMQ model is akin to MarCon’s constraint
optimization approach, and MarCon too deals with utilities/motivations that
cannot always be commingled. MarCon, however, views constraints as agents,
assigning particular roles to particular agents, and the issue of which tasks to
perform do not enter into the problem space.

In the sections that follow we discuss scheduling MQ tasks and present ex-
amples of using the framework for agent control.

3 Scheduling and Analysis

If the agent’s objective is to simply select which task to perform next, and tasks
do not have associated deadlines or earliest start times, and the present and
future value of MQs are equivalent, then it can reason using the maximum
expected utility principle and select the task at each point that maximizes im-
mediate utility. However, this simple choose-between-available-tasks model does
not map well to situations in which tasks have individual earliest start times
and/or deadlines. Note that in general, to coordinate the activities of multiple
agents, temporal constraints such as these are needed to sequence activities over
inter-agent interactions. In situations with such temporal interactions, it is dif-
ficult to produce optimal or even “good” results without considering sequences
of activities and thus for most applications, scheduling of MQ tasks is required.

The implementedMQ task scheduler employs a generative state space search
process where states record the agent’s currentMQ levels, utility functions, orga-
nizational roles and objectives, completed task set, candidate task set, and some
estimation of the agent’s future candidate task set. Transitions correspond to the
performance of an MQ task. During the duration required for task performance
(a transition), new tasks may arrive or the agent’s organizational situation may
change thus transitions can also be viewed as marking these changes as well. The
MQ model was designed specifically to lend itself to this form of representation
to ease reproducibility and to leverage the large body of research pertaining to
state-based search. For example, the MQ model can be scheduled using stan-
dard real-time search technologies like anytime Astar [17], RTA� [25], and others
[21,35], enabling the model to address the real-time requirement of online con-
trol for agents in open environments. This is particularly important because the
search space is exponential in the number of actions being scheduled. Implemen-
tationally, the scheduler is unable to schedule problem instances of nine or more

Evolving Real-Time Local Agent Control 59

activities using exhaustive search5 and other techniques are required. Depend-
ing on the characteristics of the problem instance, standard A� may produce
results in a reasonable amount of time on a larger problem instance, though,
approximate rather than admissible heuristics are sometimes required to avoid
exhaustive generation by A�. Scheduling issues beyond the scope of this paper
include approaches for constructing good search heuristics in the face of non-
linear utility curves and considering the future value of MQs when estimating
state potentials.

Opportunity cost also factors-into the scheduling process and into the esti-
mation of the potential value of a given state. There are many different uses of
opportunity cost in control and many different ways to compute or predict the
future value of a unit of time. In the examples presented in this paper, the sched-
uler is configured so that opportunity cost is used to determine the value of a
given activity relative to the time it requires to perform and it is computed using
a running average of the amount of utility produced by the agent per time unit.
Opportunity cost is tracked and expressed as a pair < OCM,Window > where:
1) the OCM or opportunity cost metric expresses the current value of a unit of
the agent’s time, i.e., a utility-per-time-unit factor, and 2) the Window denotes
the time over which the OCM was produced. The Window is necessary as time
moves forward so the agent can reweight and adjust the OCM based on recent
changes. As defined, opportunity cost is computed from the agent’s initialization
forward and will gradually be prone to little movement as weight (Window) is
accumulated. There are obviously many different variations for the running av-
erage computation. Once the value of a unit of time is computed, the issue then
becomes how to employ it when considering a given MQ task or estimating the
potential of MQ tasks for use in search heuristics. In this paper the opportunity
cost of anMQ task will have the same weight as the utility produced by the task.
If ti is a task being evaluated: adjusted utilityti = utilityti −opportunity costti .
Note that initially the agent’s OCM is 0 and itsWindow is also 0, thus, in many
cases the pair is “seeded” with initial estimations of appropriate values.

4 Demonstrating Control via MQs

In this section we demonstrate the use of the MQ model and the MQ task
scheduler in an organizational control problem. The agent’s objective in this
example is to maximize its total utility over the set of candidate tasks. The agent
in question is an Information Gathering agent for the Merrill Lynch corporation,
IGML, and is situated in a network of financial information agents. The agent
network is patterned after the the WARREN [6] style and the space is populated
by three types of agents 1) Database Manager agents, 2) Information Gathering
(IG) agents that are experts in particular domains and whose task is to plan,
gather information, assimilate it, and produce a report, possibly accompanied
by a recommendation to the client about a particular action to take based on
5 On Pentium III class machine with 256 megabytes of RAM running Redhat Linux
6.0 and IBM’s 1.1.6 jdk.

60 Thomas Wagner and Victor Lesser

Organizational Membership IGML belongs to a single organization (Merrill
Lynch).

Roles IGML has two different organizational roles and all tasks performed by IGML

pertain to one role or the other:
1. IGML has a service role that requires servicing requests and queries from other
agents seeking information. In this example, IGML will service requests from
PAML1 and PAML2.

2. IGML also has a maintenance role that entails keeping its data repository up
to date so that it may effectively service requests. In this role, IGML performs
update tasks and exploration tasks. Update tasks entail verifying the integrity
of its database by confirming that it has valid and current information on the
known database management agents. Exploration tasks entail seeking out new
database management agents and building profiles of such sources for inclusion
into its database.

Organizational Goals Produce profit by servicing requests. Maintain quality of ex-
isting repository to ensure long-term revenue stability. Grow repository to improve
coverage and to keep pace with the growth of networked information sources.
Repository growth is considered particularly valuable at this time.

Organizational Objectives The organizational goals translate into several organi-
zational objectives for IGML.
1. During any period (we will explore one period), IGML is to give preference to
maintenance tasks until it has performed a specified amount and then it is to
balance request service with maintenance on the basis of returns.

2. Requests from PAML1 are preferred to PAML2 as they have a higher potential
to produce more revenues for the company. IGML is thus advised to regard one
unit of MQ from PAML1 as having approximately twice the value of one unit
of MQPAML2 . (In this scenario there is no strict power relationship between
the agents.)

3. Exploration tasks contribute more to the maintenance requirement than up-
date tasks as it is perceived that growth is currently necessary. However, ex-
ploration tasks require more time to perform.

Fig. 1. IGML’s Organizational Context

the gathered information. 3) Personal Agents (PA) that interface directly with
the human client, perhaps modeling the client’s needs. These agents also decide
with which information specialists to interact to solve a client’s information
need. In this paper, we focus on the interactions between IGML and personal
agents for Merrill Lynch, PAML1 and PAML2, that are associated with different
Merrill Lynch employees. PAML1 represents a mutual fund manager and PAML2
represents an individual broker, thus, their requests must be evaluated differently
by IGML.

In this scenario, IGML has the organizational roles and objectives shown
in Figure 1. To track contributions toward each of its organizational roles,
and thus to monitor the state of its requirement to perform a certain amount
of maintenance prior to servicing data requests, IGML will use two different
MQs: MQservice and MQmaintenance. All tasks will produce some quantity
of each of these MQs in addition to producing an MQ related to the task

Evolving Real-Time Local Agent Control 61

itself. IGML monitors and tracks the following MQs: MQupdate, MQexplore,
MQPAML1, MQPAML2, MQservice, and MQmaintenance. In accordance with
the organizational objectives, the curve used for MQPAML1 is U = 2x + 2 and
for MQPAML2 is U = x+1. MQupdate and MQexplore are both assigned a curve
of U = 2x+ 2, though exploration tasks produce more units of MQmaintenance

per the objectives. We model the maintenance versus service objective by using
a curve with two segments for MQmaintenance: U = 2 ∗ x when x <= 5 and
U = x/2 when x > 5 (the specified quantity of maintenance MQs to produce
before servicing requests is 5 in this example). For MQservice, we use a constant
curve of U = x/2. In all cases, ω(Ui) = 1. In this scenario, tasks do not produce
unit quantities of MQs but instead produce different volumes of MQs.

Task: Update_1
Alternative: Update_1.0

Duration: 3.0
MQPS u MQCS: {(mq_maintenance 2.5), (mq_update 1.5)}
MQPS: {(mq_maintenance 2.5), (mq_update 1.5)}
MQCS: {}

Task: Explore_1
Alternative: Explore_1.0

Duration: 10.0
MQPS u MQCS: {(mq_maintenance 5.0), (mq_explore 2.0)}
MQPS: {(mq_maintenance 5.0), (mq_explore 2.0)}
MQCS: {}

Task: Update_2
Alternative: Update_2.0

Duration: 3.0
MQPS u MQCS: {(mq_maintenance 2.5), (mq_update 1.5)}
MQPS: {(mq_maintenance 2.5), (mq_update 1.5)}
MQCS: {}

Task: Explore_2
Alternative: Explore_2.0

Duration: 10.0
MQPS u MQCS: {(mq_maintenance 5.0), (mq_explore 2.0)}
MQPS: {(mq_maintenance 5.0), (mq_explore 2.0)}
MQCS: {}

Task: Request1_PAML1
Alternative: Request1_PAML1.0

Duration: 4.5
MQPS u MQCS: {(mq_service 1.0), (mq_paml1 4.0)}
MQPS: {(mq_service 1.0), (mq_paml1 4.0)}
MQCS: {}

Task: Request2_PAML1
Alternative: Request2_PAML1.0

Duration: 4.5
MQPS u MQCS: {(mq_service 1.0), (mq_paml1 4.0)}
MQPS: {(mq_service 1.0), (mq_paml1 4.0)}
MQCS: {}

Task: Request1_PAML2
Alternative: Request1_PAML2.0

Duration: 2.0
MQPS u MQCS: {(mq_service 1.0), (mq_paml2 5.0)}
MQPS: {(mq_service 1.0), (mq_paml2 5.0)}
MQCS: {}

Task: Request2_PAML2
Alternative: Request2_PAML2.0

Duration: 2.0
MQPS u MQCS: {(mq_service 1.0), (mq_paml2 5.0)}
MQPS: {(mq_service 1.0), (mq_paml2 5.0)}
MQCS: {}

Fig. 2. Service Requests and Maintenance Tasks

We will explore multiple variations using this model. First, we demonstrate
appropriate agent control behavior given the organizational objectives. Consider
the subset of IGML’s tasks and requests pictured in Figure 2. The tasks in the
figure represent one half of the tasks assigned to the agent; there are actually
two identical tasks of each task instance assigned to IGML, i.e., two requests
from PAML1, two requests from PAML2, two exploration maintenance tasks and
two updating maintenance tasks. Note that each of the tasks produce an MQ
unique to the task type as well as an MQ relating to its broader organizational
categorization (service or maintenance). The optimal schedule for IGML and
the associated changes to the agent’s state after each task is performed is shown
in Figure 3 (the alternative identifier is omitted because each task has a single
alternative).

In accordance with the specified objectives, the agent first elects to per-
form one of the exploration tasks. This produces the required five units of
MQmaintenance as well as two units of MQexplore. Because the utility curve
for MQmaintenance changes after five units are produced, the agent then elects

62 Thomas Wagner and Victor Lesser

Task or Request Scheduled
Attributes & Request2 Request1 Request2 Request1
State Init Explore2 PAML1 PAML1 Explore1 PAML2 PAML2 Update2 Update1

in Sequence n/a 1 2 3 4 5 6 7 8
Start Time n/a 0 10 14.5 19 29 31 33 36
End Time n/a 10 14.5 19 29 31 33 36 39
Utility After 7 21 29.5 38 44.5 50 55.5 59.75 64
Level MQP AML1 0 0 4 8 8 8 8 8 8
Level MQP AML2 0 0 0 0 0 5 10 10 10
Level MQupdate 0 0 0 0 0 0 0 1.5 3
Level MQexplore 0 2 2 2 4 4 4 4 4
Level MQservice 0 0 1 2 2 3 4 4 4
Level MQmaintenance 0 5 5 5 10 10 10 12.5 15

Fig. 3. Optimal Schedule and Control State Changes for IGML That Balances Main-
tenance and Service

to service requests for PAML1 rather than performing the remaining exploration
task. Subsequent effort returns to the remaining exploration maintenance task,
then the service of requests for PAML2, and finally the update tasks are per-
formed. After the initial exploration task, and the change in Umaintenance, the
choice between the exploration task, the two update tasks, and the requests for
PAML1is determined by the quantity ofMQs produced by each as Umaintenance

== Uservice and Uexplore == UPAML1. The requests for PAML2 are competi-
tive with the update tasks for this same reason – though UPAML2 is dominated
by Uupdate the requests for PAML2 produce larger quantities of MQs than the
update tasks.

Consider what happens if the organizational objective is changed and the
maintenance objective is relaxed. In this case, the curve for the maintenance
MQs is the same as that used for the serviceMQs, namely U = x/2 at all times.
The optimal schedule and the state changes for the agent are shown in Figure 4.
In this situation, the utility produced by requests for PAML1 outweighs the
benefits of the exploration tasks and they are performed first, rather than second.
The exploration tasks are performed second, and the requests for PAML2 follow,
and finally the update tasks are performed. When the organizational objective
is removed, the resulting task / utility curve set produces a non-interleaved
ordering for the tasks (as each task of each type has the same MQ levels). This
underscores the role of the two-segment utility curve modeling technique of the
previous example in mapping the organizational objective into utility for the
first 5 units of MQmaintenance.

Consider a different scenario. Figure 5 shows the optimal schedule produced
if we reinstate the organizational objective to produce 5 units ofMQmaintenance

before servicing requests, and, if we instruct the agent to factor-in the opportu-
nity cost of the associated tasks. The agent is given an initial opportunity cost
pair of < OCM = 1.0,Window = 100.0 > In this case, the agent elects to sat-
isfy the maintenance requirement by performing both of the update tasks, each
of which produces 2.5 units of MQmaintenance, rather than performing a single
exploration task (5 units ofMQmaintenance are produced by a single exploration
task). This is because the exploration tasks require ten time units to execute
and the update tasks require only three time units to execute. The utility state
after each task without considering the opportunity cost of the task is given by

Evolving Real-Time Local Agent Control 63

Task or Request Scheduled
Attributes & Request2 Request1 Request2 Request 1
State Init PAML1 PAML1 Explore2 Explore1 PAML2 PAML2 Update2 Update1

in Sequence n/a 1 2 3 4 5 6 7 8
Start Time n/a 0 4.5 9 19 29 31 33 36
End Time n/a 4.5 9 19 29 31 33 36 39
Utility After 7 15.5 24 30.5 37 42 48 52.25 56.5
Level MQP AML1 0 4 8 8 8 8 8 8 8
Level MQP AML2 0 0 0 0 0 5 10 10 10
Level MQupdate 0 0 0 0 0 0 0 1.5 3
Level MQexplore 0 0 0 2 4 4 4 4 4
Level MQservice 0 1 2 2 2 3 4 4 4
Level MQmaintenance 0 0 0 5 10 10 10 12.5 15

Fig. 4. Optimal Schedule and Control State Changes for IGML When Maintenance
Objective is Relaxed

Task or Request Scheduled
Attributes & Request2 Request1 Request2 Request1
State Init Update2 Update1 PAML1 PAML1 PAML2 PAML2 Explore2 Explore 1

in Sequence n/a 1 2 3 4 5 6 7 8
Start Time n/a 0 3 6 10.5 15 17 19 29
End Time n/a 3 6 10.5 15 17 19 29 39
Utility After 7 15 23 31.5 40 45.5 51 57.5 64
Utilityoc After 7 12 ˜ 16.8 ˜ 20.4 ˜ 23.8 ˜ 27 ˜ 31.2 ˜ 24.6 ˜ 19.4
Level MQP AML1 0 0 0 4 8 8 8 8 8
Level MQP AML2 0 0 0 0 0 5 10 10 10
Level MQupdate 0 1.5 3 3 3 3 3 3 3
Level MQexplore 0 0 0 0 0 0 0 2 4
Level MQservice 0 0 0 1 2 3 4 4 4
Level MQmaintenance 0 2.5 5 5 5 5 5 10 15

Fig. 5. Optimal Schedule and Control State Changes for IGML When Opportunity
Cost is Considered

Utility After whereas the utility adjusted to reflect opportunity cost is indicated
by Utilityoc After. Note that the exploration tasks are the least appealing op-
tions to the agent and are scheduled last in this scenario. Note also that the
agent’s Utilityoc actually decreases when the exploration tasks are performed.
This is because the tasks’ opportunity costs are greater than the utility they
produce. Depending on how the agent is configured, it may elect to wait-and-see
while adjusting its opportunity cost OCM andWindow (as time moves forward)
rather than performing the exploration tasks. In this case, the agent is config-
ured to keep performing requests regardless. The first exploration task causes a
net change in utility of −6.6 while the second exploration task incurs a lesser
change of −5.2. This is because after performing the first exploration action, the
agent’s OCM is lowered by the negative utility produced by the task so that the
opportunity cost of the second exploration task is less.

5 Conclusion, Limitations and Future Work

We have presented and extended the MQ model for local agent control of or-
ganized agents and shown its use in different applications. The strength of the
model is its use of state to obtain appropriate local control – the model does
not require common social-level control assumptions like shared or visible utility
functions, which are useful in applications where shared and static knowledge
are possible or as a theoretical foundation, e.g., [18].

64 Thomas Wagner and Victor Lesser

Inherent in the model’s state-based design are the assumptions that: 1) agents
have imperfect knowledge of the problem solving taking place at other agents;
2) the utility function of a given agent cannot generally be shared and computed
by other agents because it is dependent on the agent’s problem solving state;
3) globally optimal behavior can be approximated through local reasoning. In
this latter case, the precision of the approximation is dependent on the degree to
which agents can communicate or observe progress toward organizational objec-
tives. Consider IGML’s maintenance requirement from the previous section. If
the maintenance requirement could be met by another IG agent of Merrill Lynch,
e.g., IGML B , and IGML B decided to perform the required maintenance opera-
tions, theMQmaintenance requirement of both IGML and IGML B would be met
by IGML B ’s operation. However, IGML’s recognition of this depends on com-
munication between the agents, observation, default reasoning, plan inference,
or a similar mechanism. The communications required are beyond the scope of
the MQ framework though the framework is designed explicitly to support such
activities. Using theMQ model, notions of social utility are decomposed and dis-
tiled into the control regime of local agents – a feature we believe is important
for application in large-scale MAS.

Intellectually, one of the contributions of the model is the attempt to address
complexity in MAS – complexity that is even more important as we move to
large-scale MAS and persistent agents. Agents in complex environments, having
multiple organizational objectives and different relationships with other agents,
require a certain level of complexity in their objective functions and in their
action and situation models.

Another important characteristic of the framework is its support of local
approximation of the global optimization problem of a large group of interacting
agents. Aspects of this include the idea that different activities contribute to
different aspects of the global objectives, the need to consider of history or state
in decision making, and that in certain situations there are interactions between
the local utility computations of different agents.

To summarize the model’s positive attributes: 1) it enables organizationally
appropriate behavior through local agent reasoning, 2) it is amenable to real-
time control problem solving and this problem solving is fairly straightforward
to reproduce as a state-based search, 3) the model is well suited to adjustable
degrees of approximation – it can be optimal in a non-local sense when com-
plete information is available and it can be very coarse when agent’s have little
information about the activities of other agents, 4) the model provides a uni-
fied evaluation framework for agent activities, 5) it represents aspects of the
complexity inherent in large MAS.

In terms of problems and limitations, one attribute of the model that has not
been explored fully is use of MQs as a medium of exchange. Initial explorations
are in [51]. The most significant criticism of the model is that the translation
of organizational structure into MQs, utility curves, initial MQ assignments,
etc., as presented in this paper is ad-hoc. Though it required little knowledge
engineering to produce the desired control behavior, experiments with a ran-

Evolving Real-Time Local Agent Control 65

domized assignment of MQ quantities to tasks illustrate a potential problem.
Without design principles to guide the mapping, or appropriate corresponding
verification techniques, it is difficult to be confident that a given mapping will
result in the desired control behavior in the local agents. Ideally, the mapping
of organizational objectives to organizational roles, the assignment of roles to
agents, and the decomposition into MQs should be automated or performed
by an organizational design component. Given the complexity of the problem,
design principles and an approach for verification are the natural next step.

References

1. Mihai Barbuceanu. Agents that work in harmony by knowing and fulfiling their
obligations. In Proceedings of the Fifteenth National Conference on Artificial In-
telligence, pages 89–96, 1998.

2. Sviatoslav Brainov. The role and the impact of preferences on multiagent interac-
tion. In N.R. Jennings and Y. Lespérance, editors, Intelligent Agents VI, Lecture
Notes in AI. Springer-Verlag, Berlin, 2000.

3. K.M. Carley and M.J. Prietula, editors. Computational Organization Theory.
Lawrence Erlbaum Associates, Hillsdale, NJ, 1994.

4. Cristiano Castelfranchi. Commitments: From individual intentions to groups and
organizations. In Proceedings of the First International Conference on Multi-Agent
Systems (ICMAS95), pages 41–48, 1995.

5. Phillip R. Cohen, Adam Cheyer, Michelle Wang, and Soon Cheol Baeg. An open
agent architecture. In Michael N. Huhns and Munindar P. Singh, editors, Readings
in Agents, pages 197–204. Morgan Kaufmann, 1998.

6. K. Decker, A. Pannu, K. Sycara, and M. Williamson. Designing behaviors for
information agents. In Proceedings of the 1st Intl. Conf. on Autonomous Agents,
pages 404–413, Marina del Rey, February 1997.

7. Keith Decker and Jinjiang Li. Coordinated hospital patient scheduling. In Proceed-
ings of the Third International Conference on Multi-Agent Systems (ICMAS98),
pages 104–111, 1998.

8. Keith S. Decker. Environment Centered Analysis and Design of Coordination
Mechanisms. PhD thesis, University of Massachusetts, 1995.

9. Keith S. Decker, Edmund H. Durfee, and Victor R. Lesser. Evaluating research in
cooperative distributed problem solving. In L. Gasser and M. N. Huhns, editors,
Distributed Artificial Intelligence, Vol. II, pages 485–519. Pitman Publishing Ltd.,
1989. Also COINS Technical Report 88-89, University of Massachusetts, 1988.

10. Keith S. Decker and Victor R. Lesser. Designing a family of coordination algo-
rithms. In Proceedings of the Thirteenth International Workshop on Distributed
AI, pages 65–84, Seattle, WA, July 1994. AAAI Press Technical Report WS-94-
02. Also UMass CS-TR-94-14. To appear, Proceedings of the First International
Conference on Multi-Agent Systems, San Francisco, AAAI Press, 1995.

11. C. Dellarocas and M. Klein. An experimental evaluation of domain-independent
fault handling services in open multi-agent systems. In Proceedings of the Fifth
International Conference on Multi-Agent Systems (ICMAS2000), 2000.

12. Robert Doorenbos, Oren Etzioni, and Daniel Weld. A scalable comparision-
shopping agent for the world-wide-web. In Proceedings of the First Interna-
tional Conference on Autonomous Agents, pages 39–48, Marina del Rey, California,
February 1997.

66 Thomas Wagner and Victor Lesser

13. Edmund H. Durfee and Victor R. Lesser. Using partial global plans to coordi-
nate distributed problem solvers. In Proceedings of the Tenth International Joint
Conference on Artificial Intelligence, August 1987.

14. Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill. Coherent coopera-
tion among communicating problem solvers. IEEE Transactions on Computers,
36(11):1275–1291, November 1987.

15. P. Faratin, C. Sierra, and N. Jennings. Negotiation Decision Functions for Au-
tonomous Agents. International Journal of Robotics and Autonomous Systems,
24(3-4):159–182, 1997.

16. Alan J. Garvey. Design-to-Time Real-Time Scheduling. PhD thesis, University of
Massachusetts at Amherst, Amherst, Massachusetts, February 1996.

17. E.A. Hansen, S. Zilberstein, and V.A. Danilchenko. Anytime Heuristic Search:
First Results. Department of Computer Science Technical Report TR-1997-50,
University of Massachusetts, 1997.

18. Lisa Hogg and Nick Jennings. Variable sociability in agent-based decision making.
In N.R. Jennings and Y. Lespérance, editors, Intelligent Agents VI, Lecture Notes
in AI. Springer-Verlag, Berlin, 2000.

19. Bryan Horling, Regis Vincent, Roger Mailler, Jiaying Shen, Raphen Becker, Kyle
Rawlins, and Victor Lesser. Distributed sensor network for real-time tracking. In
Proceedings of Autonomous Agent 2001, 2001.

20. Michael N. Huhns and Munindar P. Singh. Agents and multiagent systems:
Themes, approaches, and challenges. In Michael N. Huhns and Munindar P. Singh,
editors, Readings in Agents, pages 1–23. Morgan Kaufmann, 1998.

21. Toru Ishida. Real-time search for autonomous agents and multi-agent systems.
Autonomous Agents and Multi-Agent Systems, 1(2):139–167, October 1998.

22. Nicholas R. Jennings, Katia Sycara, and Michael Wooldridge. A roadmap of agent
research and development. Autonomous Agents and Multi-Agent Systems, 1(1):8–
38, 1998.

23. N.R. Jennings, J.M.Corera, L. Laresgoiti, E.H. Mamdani, F. Perriollat, P. Skarek,
and L.Z. Varga. Using ARCHON to develop real-world dai applications for elec-
tricity transportation management and particle accelerator control. IEEE Expert,
1995. Special issue on real world applications of DAI systems.

24. Henry Kautz, Bart Selman, Michael Coeh, Steven Ketchpel, and Chris Ramming.
An experiment in the design of software agents. In Michael N. Huhns and Munin-
dar P. Singh, editors, Readings in Agents, pages 125–130. Morgan Kaufmann, 1998.

25. Richard E. Korf. Depth-limited search for real-time problem solving. The Journal
of Real-Time Systems, 2(1/2):7–24, 1990.

26. Victor Lesser, Michael Atighetchi, Bryan Horling, Brett Benyo, Anita Raja, Regis
Vincent, Thomas Wagner, Ping Xuan, and Shelley XQ. Zhang. A Multi-Agent Sys-
tem for Intelligent Environment Control. In Proceedings of the Third International
Conference on Autonomous Agents (Agents99), 1999.

27. Victor Lesser, Bryan Horling, and et al. The TÆMS whitepaper / evolving speci-
fication. http://mas.cs.umass.edu/research/taems/white.

28. Victor Lesser, Bryan Horling, Frank Klassner, Anita Raja, Thomas Wagner, and
Shelley XQ. Zhang. BIG: An agent for resource-bounded information gathering
and decision making. Artificial Intelligence, 118(1-2):197–244, May 2000. Elsevier
Science Publishing.

29. Victor Lesser, Bryan Horling, Anita Raja, Thomas Wagner, and Shelley XQ.
Zhang. Sophisticated Information Gathering in a Marketplace of Information
Providers. IEEE Internet Computing, 4(2):49–58, Mar/Apr 2000.

Evolving Real-Time Local Agent Control 67

30. Victor R. Lesser. Reflections on the nature of multi-agent coordination and its im-
plications for an agent architecture. Autonomous Agents and Multi-Agent Systems,
1(1):89–111, 1998.

31. Victor R. Lesser and Daniel D. Corkill. Functionally accurate, cooperative dis-
tributed systems. IEEE Transactions on Systems, Man, and Cybernetics, 11(1):81–
96, January 1981.

32. H. Van Dyke Parunak, Allen Ward, and John Sauter. A Systematic Market Ap-
proach to Distributed Constraint Problems. In Proceedings of the Third Interna-
tional Conference on Multi-Agent Systems (ICMAS98), 1998.

33. Michael J. Prietula, Kathleen M. Carley, and Les Gasser. A Computational Ap-
proach to Oganizations and Organizing. In Michael J. Prietula, Kathleen M. Car-
ley, and Les Gasser, editors, Simulating Organizations: Computational Models of
Institutions and Groups, pages xiv–xix. AAAI Press / MIT Press, 1998.

34. Anita Raja, Victor Lesser, and Thomas Wagner. Toward Robust Agent Control
in Open Environments. In Proceedings of the Fourth International Conference on
Autonomous Agents (Agents2000), 2000.

35. S.J. Russell. Efficient memory-bounded search methods. In ECAI 92: 10th Euro-
pean Conference on Artifical Intelligence, pages 1–5, 1992.

36. Paul A. Samuelson and William D. Nordhaus. Economics. McGraw-Hill Book
Company, 1989. 13th Edition.

37. Sandip Sen and Anish Biswas. Effects of misconception on reciprocative agents.
In Proceedings of the Second International Conference on Autonomous Agents
(Agents98), pages 430–435, 1998.

38. Milind Tambe. Agent Architectures for Flexible, Practical Teamwork. In Proceed-
ings of the Fourteenth National Conference on Artificial Intelligence, pages 22–28,
July 1997.

39. Thomas A. Wagner. Toward Quantified Control for Organizationally Situated
Agents. PhD thesis, University of Massachusetts at Amherst, Amherst, Mas-
sachusetts, February 2000.

40. Manuela Veloso, Peter Stone, and Kwun Han. The CMUnited-97 robotic soccer
team: Perception and multiagent control. In Proceedings of the Second Interna-
tional Conference on Autonomous Agents (Agents98), pages 78–85, 1998.

41. R. Vincent, B. Horling, V. Lesser, and T. Wagner. Implementing Soft Real-Time
Agent Control. In Proceedings of Autonomous Agents (Agents-2001), 2001.

42. Thomas Wagner, Brett Benyo, Victor Lesser, and Ping Xuan. Investigating Inter-
actions Between Agent Conversations and Agent Control Components. In Frank
Dignum and Mark Greaves, editors, Issues in Agent Communication, Lecture Notes
in Artificial Intelligence, pages 314–331. Springer-Verlag, Berlin, 2000.

43. Thomas Wagner, Alan Garvey, and Victor Lesser. Criteria-Directed Heuristic Task
Scheduling. International Journal of Approximate Reasoning, Special Issue on
Scheduling, 19(1-2):91–118, 1998. A version also available as UMASS CS TR-97-
59.

44. Thomas Wagner and Victor Lesser. Motivational Quantities: State-based Control
for Organizationally Situated Agents. Computer Science Technical Report TR-99-
68, University of Massachusetts at Amherst, November 1999. Research abstract
appears in the proceedings of the International Conference on Multi-Agent Systems
(ICMAS) 2000.

45. Thomas Wagner and Victor Lesser. Relating quantified motivations for organi-
zationally situated agents. In N.R. Jennings and Y. Lespérance, editors, Intelli-
gent Agents VI (Proceedings of ATAL-99), Lecture Notes in Artificial Intelligence.
Springer-Verlag, Berlin, 2000.

68 Thomas Wagner and Victor Lesser

46. Thomas Wagner and Victor Lesser. Design-to-Criteria Scheduling: Real-Time
Agent Control. In Wagner/Rana, editor, Infrastructure for Agents, Multi-Agent
Systems, and Scalable Multi-Agent Systems, LNCS. Springer-Verlag, 2001. Also
appears in the 2000 AAAI Spring Symposium on Real-Time Systems and a ver-
sion is available as University of Massachusetts Computer Science Technical Report
TR-99-58.

47. Thomas Wagner and Victor Lesser. Organizational level control for real-time
agents. In Proceedings of Autonomous Agents (Agents-2001), 2001.

48. Thomas Wagner, John Phelps, Yuhui Qian, Erik Albert, and Glen Beane. A mod-
ified architecture for constructing real-time information gathering agents. In Pro-
ceedings of Agent Oriented Information Systems, 2001.

49. M.P. Wellmen, E.H. Durfee, and W.P. Birmingham. The digital library as com-
munity of information agents. IEEE Expert, June 1996.

50. Mary Zey. Rational Choice Theory and Organizational Theory: A Critique. Sage
Publications, Thousand Oaks, CA 91320, 1998.

51. Shelley XQ Zhang, Victor Lesser, and Thomas Wagner. A proposed approach to
sophisticated negotiation. In Proceedings of AAAI Fall Symposium on Negotiation
Methods for Autonomous Cooperative Systems, 2001.

	1 Introduction
	2 Quantifying and Comparing Motivations
	3 Scheduling and Analysis
	4 Demonstrating Control via MQs
	5 Conclusion, Limitations and Future Work
	References

