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Abstract

Open environments are characterized by their uncertainty and non-determinism. Agents need to
adapt their task processing to available resources, deadlines, the goal criteria specified by the clients
as well their current problem solving context in order to survive in these environments. If there were
no resource constraints, then an optimal Markov Decision Process based policy would obviously be the
best way for complex problem solving agents to make scheduling decisions. However in many agent
systems, these scheduling decisions have to be made on-lineor in soft real-time, making the off-line
policy computationally infeasible in open environments. The hybrid planner/scheduler used to control
TÆMS agents is the Design-to-Criteria (DTC) agent scheduler. Design-to-Criteria scheduling is the
soft real-time process of custom building a plan/schedule to meet an agent’s current objectives which
are expressed as dynamic goal criteria (including real-time deadlines), using task models that describe
alternate ways to achieve tasks and subtasks. Recent advances in Design-to-Criteria control include
the addition of uncertainty to the TÆMS computational task models analyzed by the scheduler and the
incorporation of uncertainty in the scheduling process. Aswe show, the use of uncertainty in TÆMS and
Design-to-Criteria enables agents to make better control decisions in uncertain environments. Design-
to-Criteria uses a heuristic approach for on-line scheduling of medium granularity tasks. It approximates
the analysis used to generate an optimal policy by heuristically reasoning about the implications of
uncertainty in task execution.

The addition of uncertainty has also spawned a post-scheduling contingency analysis step for situa-
tions in which an agent must produce a result by a given deadline (deadline critical situations) and where
the added computational cost is worth the expense. We describe the uncertainty representation in TÆMS
and how it improves task models and the scheduling process, and provide empirical examples of reason-
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ing about uncertainty in action. We also evaluate the performance of our heuristic-based approach to
agent control using the performance of the policy generatedby an optimal controller as the benchmark.

1 Introduction

It is paramount for agent-based systems to adapt to the dynamics of open environments. Agents need
to adapt their task processing to available resources, deadlines, the goal criteria specified by the human
clients or other internal agent control components as well their current problem solving context in order
to operate effectively in these environments. They also need to take into consideration the uncertainty
inherent in task processing when deciding which tasks to execute and in what order. An agent in this case
is intelligent or a complex problem solverthat explicitly represents and reasons about its plans, actions,
and how its tasks/plans interact with those of other agents.In order to adapt its processing and respond to
change, operating effectively in these environments, suchan agent needs a complex control problem solving
component, e.g., a planner/scheduler, to decide what the agent should do, and when. The control problem
solving process is exponential for complex agents and complicated by the existence of task interactions
(primitive actions may not be independent) and by the existence of global and individual constraints on the
primitive actions (individual deadlines, cost limits, earliest start times, and quality requirements).

If there were no resource constraints, then computing an optimal control policy that takes into account
the end-to-end view and uncertainty in action outcome, would obviously be the best way to make these
control/scheduling decisions for complex agents. We can compute this optimal policy by formalizing the
control problem as a Markov Decision Process (MDP), a framework widely used for stochastic planning
in artificial intelligence [7, 3, 37, 8]. A stochastic planning problem includes operators (or actions) that
transform a state into one of several possible successor states, with each possible state transition occurring
with some probability. A solution is usually cast in the formof a mapping from states to actions called a
policy. A policy is executed by observing the current state and taking the action prescribed for it. Computing
the optimal policy is an exponential problem and would involve off-line analysis. However in our research
with deployed multi-agent systems, these control/scheduling decisions have to be made with respect to the
current set of goals, some of which may be generated as a result of interacting with other agents, and their
associated objective functions and resource constraints that are dynamically constructed based on the current
agent state. This, in combination with a dynamic and open environment, where agents may enter or leave the
system, uncertainty is high, information is incomplete or approximate, the agent is pursuing multiple goals
concurrently and the achievement of each goal involves a non-trivial multi-step plan, causes the on-line
production of an optimal policy for an MDP to be computationally infeasible.

In this paper, we present extensions to TÆMS [10, 20] agents that add uncertainty to both the TÆMS
task modeling framework and the associated Design-to-Criteria (DTC) [32, 41, 44] technology that handles
control in TÆMS agents. We describe how uncertainty is used and identify how we leverage the represen-
tation of uncertainty in agent control. We then develop a secondary contingency analysis step for agents
situated in time and mission critical environments and benchmark the contingency analysis step against
(optimal) MDPs to assess performance and computational trade-offs.

This paper is structured as follows. In Section 2 we describethe TÆMS task modeling framework
and Design-to-Criteria scheduling and also discuss the role of uncertainty in this scheduling paradigm. In
Section 3 we discuss the addition of uncertainty to the TÆMS task models. In Section 4 we describe how
the TÆMS task network can be mapped to a finite-horizon MarkovDecision Process and the optimal policy
is computed. Section 5 discusses how uncertainty is integrated and leveraged in the main Design-to-Criteria
scheduling process. In Section 6 we step outside of the main scheduling process and discuss secondary
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contingency analysis methodology that uses Design-to-Criteria to explore uncertainty and the ramifications
of schedule failure. Experimental results illustrating the strength of contingency analysis, relative to Design-
to-Criteria’s myopic view, for certain classes of agent task structures are provided in Section 7.

2 Background

2.1 TAEMS Modeling Language

TÆMS (Task Analysis, Environment Modeling, and Simulation) is a domain independent task modeling
framework used to describe and reason about an agent’s (complex) problem solving processes (see Fig-
ure 2). TÆMS models are used in a wide range of agent research projects and applications, including, the
BIG information gathering agent [28, 29], the intelligent home (IHome) [26], dynamic supply chain man-
agement [43], aircraft repair team coordination [42], distributed sensor management [21, 18], distributed
hospital patient scheduling [9], GPGP coordination [27], agent diagnosis [19], the SRTA (soft real-time
agent architecture) [18, 38], and work in multi-level negotiation in software agents [48], among others.

Typically in TÆMS agents (see Figure 1) a problem solver represents domain problem solving actions
in TÆMS, possibly at some level of abstraction, and then passes the TÆMS models on to agent control
problem solvers like the GPGP multi-agent coordination or the Design-to-Criteria scheduler modules.

TÆMS models are hierarchical abstractions of agent problemsolving processes that describe alternative
ways of accomplishing a desired goal; they represent major tasks and major decision points, interactions be-
tween tasks, and resource constraints but they do not describe the intimate details of each primitive action.
All primitive actions in TÆMS, calledmethods, are statistically characterized in three dimensions: quality,
cost and duration. Quality is a deliberately abstract domain-independent concept that describes the contri-
bution of a particular action to overall problem solving. Thus, different applications have different notions
of what corresponds to model quality. Duration describes the amount of time that the action modeled by
the method will take for the agent to execute and cost describes the financial or opportunity cost inherent
in performing the action. With the recent addition of uncertainty modeling, the statistical characteristics
of the three dimensions are described via discrete probability distributions associated with each method.
The uncertainty representation is also applied to task interactions like enablement, facilitation and hindering
effects1. Thus agents may not only reason about the certainty of actions, e.g., “method A will fail 10% of
the time,” but also with respect to the interactions, e.g., “10% of the time facilitation will increase the quality
by 5% and 90% of the time it will increase the quality by 8%,” and the joint of these two. (Since interac-
tion effects are dependent on the quality of the originator of the effect.) The quantification of methods and
interactions in TÆMS is not regarded as a perfect science. Task structure programmers or problem solver
generatorsestimatethe performance characteristics of primitive actions. These estimates can be refined over
time through learning [24] and agents typically replan and reschedule when unexpected events occur.

2.2 Design-to-Criteria Scheduling

Design-to-Criteria [32, 41, 44] traces its ancestry to the ideas of Design-to-Time [15, 16, 13] scheduling and
to research in flexible computation [22] and anytime algorithms [6, 33, 49, 51]. Design-to-Criteria is related
to Design-to-Time in that both scheduling methodologies are domain independent, operating on an abstract

1Facilitation and hindering task interactions model soft relationships in which a result produced by some task may be beneficial
or harmful to another task. In the case of facilitation, the existence of the result, and the activation of the non-local effect generally
increases the quality of the recipient task or reduces its cost or duration.
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model of a particular problem solving process; more importantly both methodologies entail selecting from
alternative ways to perform tasks, where each way has different performance characteristics, in order to
construct custom schedules for a particular situation. Design-to-Time focused on quality and time trade-offs
and building schedules to meet particular deadlines. To increase flexibility, Design-to-Criteria instead builds
schedules that trade-off quality, cost, duration, and certainty in each of these dimensions, to meet a particular
set of design criteria, in addition to meeting deadlines andother hard resource constraints. In the spirit of
flexible computation, Design-to-Criteria also uses this trade-off analysis to control the scheduling combina-
torics throughout the scheduling process, rather than as a post-production schedule selection mechanism as
in Design-to-Time.2

The control aspects of this work fall into the general area offlexible computation [22], but it differs from
most flexible computation approaches in its use of multiple methods for task achievement (one exception
is [23]), in its first class treatment of uncertainty, and in its ability to use uncertainty information in the
selection of methods for execution. Much work in flexible computation makes use of anytime algorithms
[6, 33, 49], algorithms that always have an answer at hand andproduce higher quality results as they are
given more time, up to a threshold. The TÆMS multiple methodsapproach can model any activity, includ-
ing anytime algorithms3 , that can be characterized statistically and we place no constraints on the statistical
behavior of the activities in question. In our work, uncertainty is a first class concept that both appears in
the statistical descriptions of the available methods and is propagated and related as schedules and schedule
approximations are generated. Unlike most work in anytime algorithms that focuses on the propagation of
uncertainty [50], we can also include uncertainty and uncertainty reduction in the goal criteria and focus
work on reducing uncertainty when important to the agent. This ability stems from our task model’s rep-
resentation of alternative ways to perform various tasks. Because multiple-methods often exist to perform
tasks, we can reason about the quality, cost, duration, and uncertainty trade-offs of different actions when
determining which actions to perform, achieving the best possible overall results.

Recent research has advanced Design-to-Criteria and TÆMS agent control in three primary areas: re-
fining the goal directed criteria mechanism and trade-off analysis process, improving the quality estimates
associated with final schedules, and the addition and incorporation of uncertainty in the scheduling pro-
cess. In this paper, we focus on the uncertainty aspect of ourrecent work, though we point out other
advances along the way. The approximate, trade-off behavior of the agent scheduling algorithm is presented
in [41, 45], along with identification of sources of complexity that pose significant obstacles to generating
real-time agent schedules and doing so on-line or in soft real-time.

The central problem solving artifact of this work is the Design-to-Criteria scheduler. DTC is a heuristic
approach for on-line planning/scheduling of medium granularity tasks. The DTC scheduling problem differs
from more traditional scheduling problems in that DTC decideswhich tasks to perform as well aswhento
perform them where this decision process is based on resource availability, the agent’s goals and objectives,
and other constraints like interactions between tasks and task deadlines/earliest-start-times. As implied,
DTC’s function is to handle the control decision making forcomplex problem solving agentsand more
specifically, for complex problem solving agents that reason about the world using the TÆMS task modeling
framework.

A prototypical TÆMS agent architecture is shown in Figure 1.In the prototypical architecture, DTC

2In Design-to-Time, schedule production is designed to produce an assortment of schedules, via a fixed set of heuristics,re-
gardless of the design criteria. In Design-to-Criteria, where possible, all computation is directed at producing schedules, partial
schedules, and schedule approximations that meet the design criteria, thus resulting in a larger set of high quality schedules from
which to choose the “best” schedule to execute.

3Though if all actions were anytime algorithms, there are better ways to frame and perform the scheduling task[2].
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Figure 1:Prototypical TÆMS Agent Architecture

receives domain models (translated into TÆMS) from a domainproblem solving component. These models
typically identify the agent’s candidate tasks and their characteristics, as well as resource constraints and
temporal constraints. DTC also receives from either the domain problem solver or a human providing direc-
tion to the agent a description of the agent’s objective function, e.g., is it in a hurry, is it trying to maximize
quality, is it trying to reduce uncertainty, etc. From the GPGP coordination component, DTC will receive
what-if questions as well as constraints to consider when deciding on control for the agent such as com-
mitments made to other agents to perform some task (possiblyby some time or not before some time) and
commitments received from other agents (deals they have made to provide service to the local agent). The
temporal and resource constraints of these commitments arefactored into DTC’s planning/scheduling pro-
cess along with the value obtained by these commitments. When organizational level control is introduced,
the organizational module, e.g., theMQ module [39], may interact with the scheduler directly or indirectly
by modulating the TÆMS task structures. This holds true for other work as well, e.g., diagnosis. In general,
other sophisticated components affect the agent’s course of action by modulating or changing the TÆMS
task models that describe the agent’s options (including temporal/resource considerations), changing the
agent’s goal criteria or objective function, and/or by interactively driving the scheduler to explore a solution
space and then committing to a solution through the goal criteria or the task models. Changes such as these
are then recognized by the scheduler and reasoned about whenever other control decisions are made or when
the agent’s situation changes, resulting in new domain problem solving options. In general, other reasoning
control components typically treat DTC as a decision makingoracle. For instance, in GPGP coordination,
DTC’s function is to tell the GPGP coordination module the implications of supporting another agent’s re-
quest by identifying the change in local utility and the impact on local goals and objectives of doing work for
the other agent. In TÆMS agents, DTC is the heart of the sophisticated control and generally the underlying
TÆMS analysis expert.

To properly place the discussion, DTC’s function is to read-in the agent’s problem solving options, its
various constraints (commitments or deals made with other agents, time deadlines, etc.) and to emit a sched-
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ule for the agent. The schedule defines which tasks are to be performed, when, in what order, and so forth.
This enables the agent to coordinate its activities with other agents, to meet real-time deadlines, to meet
its goals and objectives, and to meet resource limitations.Because TÆMS agents typically operate online
in dynamic environments, unpredicted change is a common occurrence. When the situation changes4, the
agent responds by rescheduling (recall, DTC also handles task selection so this is rescheduling/replanning)
and asking DTC to evaluate the current situation, the agent’s current options, its time/resource constraints,
the deals made with other agents, etc., and to decide on a new course of action for the agent. DTC is
what optimizes the activities of individual TÆMS agents so that they can adapt to change and meet their
objectives.

DTC is heuristic – it approximates the analysis used to generate an optimal MDP policy by heuristically
reasoning about the implications of uncertainty in task execution using a less general but more compact
representation of an MDP for representing possible task orderings. This heuristic approach is a domain-
independent soft real-time process of finding an execution path through a hierarchical task network such
that the resultant schedule meets certain design criteria,such as real-time deadlines, cost limits, and quality
preferences. To underscore an important issue – since DTC isusedonline, the scheduling process itself
must be fast enough for online use. Casting the language intoan action-selecting-sequencing problem, the
process is to select a subset of primitive actions from a set of the agent’s candidate actions, and sequence
them, so that the end result is an end-to-end schedule of an agent’s activities that meets situation specific
design criteria. In this model, when the action performanceis not as expected, the scheduler is reinvoked
and it reschedules in order to find the most appropriate sequence to complete the current goals. This is how
agents respond to both change in the environment and task performance uncertainty. The combinatorics of
the scheduling problem are controlled through the use of approximation, satisficing, goal-directed problem
solving, and heuristics for action ordering, as discussed in [41]. We return to the issue of combinatorics in
Section 5.
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Figure 2:Simplified Subset of an Information Gathering Task Structure for the BIG Agent

4When unexpected behavior occurs, it is not always necessaryto reschedule if methods yet to be executed can be moved around
(started earlier or later than indicated on the schedule) without violating constraints like deadline, earliest starttimes, enablement
and external commitments, that are implicit in the schedule[18]
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Consider the TÆMS task structure shown in Figure 2. The task structure is a conceptual, simplified
sub-graph of a task structure emitted by the BIG [28] information gathering agent; it describes a portion of
the information gathering process. The top-level task is toconstruct product models of retail PC systems.
It has two subtasks,Get-BasicandGather-Reviews, both of which are decomposed into primitive actions,
calledmethods, that are described in terms of their expected quality, cost, and duration. Theenablesarc
betweenGet-Basicand Gatheris a non-local-effect (nle) or task interaction; it models the fact that the
review gathering methods need the names of products in orderto gather reviews for them.Get-Basichas
two methods, joined under theq sum()quality-accumulation-function (qaf), which defines how performing
the subtasks relate to performing the parent task. In this case, either method or both may be employed
to achieveGet-Basic. The same is true forGather-Reviews. The qaf forBuild-PC-Product-Objectsis a
q seqlast()which indicates that the two subtasks must be performed, in order, and that the resultant quality
of the last subtask is the quality of the parent task; thus there are nine alternative ways to achieve the top-level
goal for the agent in this particular sub-structure.

Schedule C

Expected Quality:  18.00
Expected Cost:  0.00
Expected Finish Time: 5.60

PC-Connection ZDnet

Schedule A

Expected Quality: 22.50
Expected Cost:  2.00
Expected Finish Time: 4.70

PC-Connection Consumers-Reports

Schedule B

Expected Quality: 40.50
Expected Cost:  2.00
Expected Finish Time: 8.80

ZDnet Consumers-ReportsPC-Connection

Figure 3:Different Agent Schedules Produced for Different Circumstances (Design Criteria)

Three different optimal schedules for achieving the top-level goal of the task structure, produced for
three different sets of design criteria, are shown in Figure3. Schedule A is constructed for an agent that
needs a high quality solution, requires the solution in six minutes or less, and who has a client that is willing
to pay for it. Schedule B is constructed to suit the needs of anagent who has plenty of time, is willing to wait
for a high quality solution, and whose client is willing to pay for it. Schedule C is constructed for an agent
who has neither time nor financial resources. Even this simple example illustrates the notion of quantified
choice in TÆMS and how the Design-to-Criteria methodology leverages the quantification to build different
schedules for different contexts. However, this example also illustrates a weakness in TÆMS as presented
in Figure 2 – a weakness that is carried forward to the scheduling process and consequently to the agent’s
schedules. The initial design of TÆMS included only expected value modeling of primitive actions and task
interactions. Subsequently, we have come to understand thestrength of explicit modeling of uncertainty and
the implications of these new models to the Design-to-Criteria scheduling process. Note that in this case,
because the performance characteristics of TÆMS method executions are deterministic, the optimal policy
produced by an MDP for the task network is also a simple linearschedule.

Representing and reasoning about uncertainty of task execution behavior is one of the keys to schedul-
ing agent activities, modeled as computational structures, when quality requirements and time and cost
constraints are present. Additionally, with the inclusionof uncertainty modeling and propagation it is clear
that there are many different dimensions and aspects of utility that can be used to evaluate the appropri-
ateness of agent schedules. Consider the task of gathering information via the highly uncertain WWW to
support a decision. Certain agent clients may prefer a riskyinformation gathering plan that has a potentially
high pay-off in terms of information gathered, but also has ahigh probability of failure. Other, more risk
averse clients might prefer that the agent take a course of action that results in a lower pay-off in exchange
for more certainty about the pay-off and a lower probabilityof failure. Integrating notions of uncertainty in
to the schedule evaluation process is one aspect of this work.
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2.3 Role of Uncertainty in Design-to-Criteria Scheduling
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Figure 4:Simplified Subset of an Information Gathering Task Structure for the BIG Agent with Uncertainty in Action
Outcomes

Figure 2 is augmented to include uncertainty in the characterizations of the primitive actions as described
in Figure 4. In the enhanced task structure, primitive actions are characterized statistically via discrete prob-
ability distributions rather than expected quality values. The quality distributions model the probability of
obtaining different quality results and the possibility offailure (indicated by a zero quality result). Note that
the expected values of these distributions are the same as those in the previous expected-value model, thus
the structures are directly comparable. The cost and duration distributions represent the different possible
costs and durations of the actions. This level of detail can be very important when reasoning about the gath-
ering process. For example, in the enhanced model, it is clear that the method for querying and extracting
text obtained from thePC-Connectionsite has a higher probability of failure than the method for querying
and extracting text obtained from thePC-Mall site. In the original model, the detail is lacking and it is
impossible to ascertain which method is more likely to fail.

The agent schedules shown in Figure 5 illustrate the value ofuncertainty in this model from a scheduling
perspective. Schedule A′ is identical to Schedule A from the expected value case (Figures 2 and 3), however,
with the addition of uncertainty to the model, the schedulercan propagate uncertainty and create better
estimates for the performance characteristics of the schedules. Note that the quality distribution for Schedule
A′ includes a 20% chance of failure. In fact, with the addition of uncertainty to the model, analysis shows
that Schedule A is no longer the optimal schedule for the agent (whose client needs a result in 6 minutes
or less and is willing to pay for it). Instead Schedule O (Figure 5) is the best choice. Even though the
PC-Connectionmethod has a higher expected value, thePC-Mall method has a lower probability of failure.
Since a failure in one of these methods precludes the execution of Query-Consumers-Reports(via the task
interaction), the issue of failure is not local to the methods but instead impacts the schedule as a whole.
Thus, when uncertainty is modeled and propagated during thescheduling process, Schedule O is the optimal
schedule as it has the highest net expected quality value andit still meets the agent’s deadline constraint.5

In this case, Schedule O is also the optimal sequence of methods as determined by an optimal MDP – this

5Note that certain members of theConsumers-Reportsmethod’s duration distribution exceed the deadline of 6 minutes. In these
cases, the method’s results are considered unusable and zero quality is produced by the execution. Accordingly, for thedensity that
exceeds the deadline the method’s quality distribution is modified to reflect the additional probability of failure caused by exceeding
the deadline. This is discussed in greater detail in Section5.2.

8



is because even ifPC-Mall fails there is no time to recover and perform an alternate method before the
deadline. In other words, in this particular case, there is no added value to exploring all possible action
sequences because of the hard deadline (Figure 8). We returnto this discussion in Section 4.

Schedule A¢

PC-Connection Consumers-Reports

Quality distribution (sum of TGs): (0.43 0.0)(0.57 30.0)
    Expected value:  17.1
    Probability q or greater: 0.57
Cost distribution (sum of methods costs): (1.00 2.0)
    Expected value:  2.00
    Probability c or lower:  1.00
Finish time distribution (finish time of last method): (0.45 4.0)(0.45 5.0)(0.05 6.0)(0.05 7.0)
    Expected value:  4.70
    Probability d or lower:  0.45

Schedule O - Optimal Schedule

PC-Mall Consumers-Reports

Quality distribution (sum of TGs): (0.39 0.0)(0.61 30.0)
    Expected value:  18.23
    Probability q or greater:  0.61
Cost distribution (sum of methods costs): (1.00 2.0)
    Expected value:  2.00
    Probability c or lower:  1.00
Finish time distribution (finish time of last method): (0.09 5.0)(0.09 5.5)(0.72 6.0)
                                                                                     (0.01 7.0)(0.01 7.5)(0.08 8.0)
    Expected value:  6.05
    Probability d or lower:  0.90

Figure 5:Uncertainty Representation Changes Optimal Schedule for the Agent

This example conceptually illustrates one aspect of the value of uncertainty in the task models and in
the scheduling process – better models lead to better agent schedules. Based on the observation that models
containing uncertainty lead to more accurate representations and facilitate deeper analysis, the TÆMS task
modeling framework was enhanced to model uncertainty aboutthe quality, cost, and duration characteris-
tics of tasks using discrete probability distributions. The modeling framework was also extended so that
nles (task interactions) are also quantified and characterized using the describe probability distributions. We
have augmented and extended the Design-to-Criteria scheduling system to leverage this new explicit rep-
resentation of uncertainty to build better custom schedules for TÆMS agents. We have also constructed
a secondary contingency-based schedule modification and selection algorithm that may be used in certain
situations to ensure that recovery options exist if the chosen schedule fails. Both approaches can be thought
of extending the space of options that the scheduler examines and also the analysis associated with deter-
mining the effectiveness of an option. This allows for performance guarantees on the choice of best agent
schedule since it is more closely aligned to the sequence of actions suggested by the optimal control policy.
Uncertainty plays several roles in the agent scheduling process:

Accuracy Uncertainty modeling enables the scheduler to represent and propagate uncertainty about tasks
and their outcomes. This results in more accurate models of individual tasks, and more importantly,
more accurate models of task sequences and task interactions. In contrast to reasoning from a single
expected value, this enhancement supports notions like “30% of the time Task A will fail and 70%
of the time it will generate high-quality results.” Becausethe models of tasks, task interactions, and
sequences of tasks are more accurate, the scheduler builds better schedules for the agent, as illustrated
by Figures 4 and 5.

Focusing Uncertainty’s second role is infocusing; the scheduler uses the agent’s design or goal criteria
(aka objective function) throughout the scheduling process to focus efforts on building schedules
and partial schedules that best satisfice, from a rational perspective [34, 35], to meet the criteria. This
focusing behavior is what enables the scheduler to cope withthe exponential combinators and produce
results in soft real-time. When uncertainty reduction is important to the agent, the scheduler may
select tasks that have a high degree of certainty about the specified dimension(s) and trade-off utility
in other dimensions as specified by the goal criteria. For example, if certainty in the quality dimension
is important to the agent relative to raw quality goodness, the scheduler may trade-off high quality for
more certainty about quality when building schedules, resulting in schedules with lower overall quality
but higher quality certainty. In situations where a deadline must be met, the scheduler may elect to
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trade-off quality or even short duration, possibly in exchange for certainty about duration, producing
schedules whose durations are not as short as possible, but whose durations are more certain than the
schedules that have the shortest durations. These simple examples are members of a large class of
multi-dimensional attribute trade-offs that Design-to-Criteria considers when building schedules for
the agent [40, 41].

Construction The third use of uncertainty in the scheduling process is inconstruction; when uncertainty
is important to the agent, the scheduler may take a more active approach to uncertainty reduction and
elect to use more than one way of achieving various tasks in order to increase the certainty of results
in desired dimension(s).

Evaluation The fourth role of uncertainty is inevaluation; it enables the scheduler to evaluate quality,
cost, duration,anduncertainty trade-offs when building custom schedules to meet the agent’s needs.
The addition of uncertainty to both the task model and the goal/design criteria allows an agent, or its
human client, to specify how important, if at all, uncertainty reduction is relative to other schedule
features like raw-goodness and threshold/limit specifications in each of the three modeled dimensions:
quality, cost, and duration.

Contingency Analysis The fifth use of uncertainty is in the support of secondarycontingency analysis. The
general Design-to-Criteria scheduling process is designed to cope with exponential combinatorics and
to produce results in soft real-time. However, its somewhatmyopic approximation and localization
methodologies do not consider the existence of recovery options or their value to the agent. In the
general case, explicit contingency analysis is not required. In the event of a failure, the scheduler is
reinvoked and it plans a new course of action based on the current context (taking into consideration
the successes as well as the failures, considering the valueof results that been produced to the partic-
ular point). In hard deadline situations, however, the scheduler may not be able to recover and employ
an alternative solution path because valuable time has beenspent traversing a solution path that cannot
lead to a final solution. Our uncertainty based contingency analysis tools can help in this situation by
pre-evaluating the likelihood of recovery from a particular path and factoring that into the utility asso-
ciated with a particular agent schedule. The improved estimates (based on the possibility of recovery
options) can result in the selection of a different schedule, possibly one that leads to higher quality
results with greater frequency. We return to contingency analysis in Section 6. Obviously, in the best
of all possible worlds, instead of generating a schedule where we have to reschedule at failure points,
we would like to construct an optimal meta-control policy which prescribes the next best action for
the agent to take based on performance characteristics of the most recently executed primitive action.
For most reasonable size task structures the computationaloverhead of constructing this policy online
is unrealistic. However, we would like to see how well the contingency analysis approach performs
in relation to optimal. In Section 4, we describe an approachfor constructing such an optimal policy
from our TÆMS task graph representation.

In general, the different implications of uncertainty to the scheduling process manifest themselves in two
primary ways. One is with respect to the general scheduling process. By integrating and leveraging uncer-
tainty within the framework of coping with combinatorics and generating custom schedules, we can produce
better schedules in situations where certainty is important. Notions of redundancy, reducing uncertainty at
schedule time, and focusing schedule generation on producing certain solutions are aspects of this facet.
The other use of uncertainty is a detailed analysis that considers schedule recovery options for the agent and
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revises schedule expectations to reflect this more detailedanalysis. On one hand there is the utilization of
uncertainty in the approximate, satisficing, soft real-time computational Design-to-Criteria framework, and
on the other hand there is an added expense, but a more thorough, detailed analysis that pays real dividends
in hard-deadline situations that are accompanied by up front time for the extra analysis.

3 Extending the TÆMS Modeling Language

Recommend a High-End PC System

Make Decision

Money
Resource

Build Product
Objects

Outcomes

Num Prod 1-4

Num Prod 5-8

Num Prod 9-12

Num Prod ...

Get Basic Product
Information

Query & Extract
Vender m

Query & Extract
Possible Maker n

Gather Reviews

Search & Process
ZDnet Reviews

Search & Process
PC World

Query & Process
Consumers Reports

q_sum()

q_sum()

q_seq_last()

q (10% 0)(90% 10)
c (100% 0)
d (10% 2min)(10% 2.5min)(80% 3min)

q (20% 0)(80% 8)
c (100% 0)
d (50% 1min)(50% 2min)

Query & Extract
PC Connection

Query& Extract
NECX

q (25% 0)(75% 20)
c (100% $2)
d (90% 3)(10% 5)

q (15% 0)(75% 10)
c (100% 0)
d (30% 3min)
   (30% 4min)
   (40% 5min)

q(..), c(..), d(..)
q(..), d(..), c(..)

consumes $2

limits
q multiplier (100% 0)
c multiplier (x)
d multiplier (x)

q(..), c(..), d(..)

facilitates & hinders

facilitates & hinders
q multiplier (100% +20%)
d multiplier (100% +20%)

Task

Method

Resource nle

Task nle

Subtask Relation

Key

enables

... ... ...

q_sum()

q_seq_last()

Figure 6:Information Gathering Task Structure Similar to that Foundin the BIG Agent

Consider Figure 6, which is a slightly more complete view of the information gathering task structure
introduced in Figure 2. The top-level task in this structureis Recommend-a-High-End-PC-Systemand it
has two subtasks: one that pertains to finding information about products and constructing models of them,
Build-Product-Objects, and one for making the decision about which product to purchase,Make-Decision.
The two tasks are governed by aq seqlast() qaf. Qafs specify how the quality of the subtasks is related at
the parent task. With recent extensions to TÆMS, qafs may also specify orderings among the subtasks. Let
T denote a task,ci denote one of its children, and letn denote the number of children ofT . Let q denote the
quality of the item in question, e.g.,Tq is the quality of the task andciq is the quality of theith child of T .
In TÆMS, the quality of any task or method before performance(or after failure) is zero. A sampling of the
qafs defined in TÆMS includes:

• q sum: Tq =
∑n

i=1 ciq and any of the subtasks may be performed (power-set minus empty-set) in any
order.

• q sumall: Tq =
∑n

i=1 ciq and all subtasks are to be performed in any order.

• q min: Tq = min(c0q , c1q , .., cnq ) and all subtasks are to be performed in any order. Since all tasks
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have zero initial quality, failure to perform a given child under aq min() results in zero quality for the
parent task.

• q max: Tq = max(c0q , c1q , .., cnq ) and any number of subtasks may be performed in any order,
though generally only one task is selected.

• q exactlyone: Tq = EXOR (c0q , c1q , cnq) and only one of the subtasks may be performed.

• q seq: Tq = cnq and all subtasks must be performed in order.

• q seqsum, qseqmin, q seqmax, qseqlast: Theseqprefix in this case denotes sequence preference
and that all subtasks must be performed; the suffix denotes the function to perform with the resultant
qualities, e.g.,q seqsumindicatesTq =

∑n
i=1 ciq

Recommend-a-High-End-PCis thus performed by performing each of its subtasks, in order, and its
quality is determined by theMake-Decisionsubtask. This models the fact that the agent’s decision process
takes into consideration the quality, coverage, and certainty of the information used to make the decision
and reflects these attributes in the quality of its output. Asdiscussed,Build-Product-Objectsis performed by
executing each of its child tasks, in order, and its quality is the sum of its children’s qualities. In contrast,Get-
BasicandGather-Reviewscan be achieved by performing any one or more of their respective child tasks.
Note theenablesinteraction betweenGet-BasicandGather-Reviews. This non-local effect models a hard
precedence relationship between the tasks – the agent must first successfully learn about products before it
can locate reviews for them. In TÆMS, task interactions are triggered by conditions in the originator and
the effects of the interactions are reflected in the quality,cost, and duration distributions of the recipient.
With the addition of uncertainty to TÆMS, soft interaction effects like facilitation and hindering, are also
quantified via probability distributions. Task interactions in TÆMS include:facilitates, hinders, bounded
facilitates, enables, anddisables.

Resource models are another recent addition to the TÆMS framework. The information gathering task
structure also shows the use of a monetary resource. Resources are currently either consumable or non-
consumable (replaced after use, e.g., a network), though the hierarchical resource models will support further
specialization. Task resource consumption and productionbehaviors are modeled in TÆMS viaconsumes
and producestask/resource non-local effects – these non-local effectsdescribe the quantity of resources
consumed or produced by task execution. In the event that resources are insufficient to meet the requirements
of a given task, the negative effects are modeled via alimits resource-to-task non-local effect that is akin
to a hinders task-to-task non-local effect, i.e., it expresses negative multiplier effects on the recipient’s
quality, cost, and duration distributions. For a non-consumable resource, e.g., network bandwidth, where
the resource is diminished during the usage and then returned to its initial state, the definitions for consumes
and limits are:

• A resource-centered non local effect is a function of the form: nle(M, R, t, q, c, d,Rquantity , p1, p2,...): [
method× resource× current time× method quality× method cost× method duration× resource quantity×
parameter1× other parameter2 ..] = [method quality× method cost× method duration× resource quantity ]

consumes(M, R, t, q, c, d, Rquantity, αquantity , Mt exec) =






[q, c, d] and

Rquantity = Rquantity − αquantity t > Mt exec

Rquantity otherwise
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limits(M, R, t, q, c, d, Rquantity, αquantity , Mt exec, φq, φc, φd) =






[q − q ∗ φq, c + c ∗ φc, d + d ∗ φd] t > Mt exec & Rquan < αquan

[q, c, d] otherwise

Rquantity

Another recent addition to TÆMS is theoutcomeconstruct. Outcomes model situations in which a given
method has different classes of possible results, each class having its own distinct quality, cost, and duration
characteristics and possibly even its own interactions with other tasks. TheBuild-Product-Objectstask in
Figure 6 illustrates the outcomes construct6 ; the outcomes serve to indicate the number of objects generated
during the information gathering phase. Attached to each ofthese outcomes are hindering and facilitation
soft non-local effects that affect the quality, cost, and duration of the decision making task. This models the
notion that the time required to make the decision increasesas more products are compared, but, that the
decision process benefits in terms of quality by having more products.

TÆMS also supports modeling of tasks that arrive at particular points in time, individual deadlines on
tasks, earliest start times for tasks, and non-local tasks (those belonging to other agents). Obviously, schedul-
ing TÆMS task structures is a non-trivial process. In the development of TÆMS there has been a constant
tension between representational power and the combinatorics inherent in working with the structure [46].
The result is a model that is rich enough to model selected details of many agent domains but one that is
non-trivial to process and schedule in any optimal sense. The existence of alternatives and choices in the
models, while adding to the complexity, also facilitate flexible and approximate processing strategies.

4 An Optimal Meta-Controller for TÆMS Task Network Scheduli ng

We define the TÆMS task network scheduling problem as a finite-horizon Markov Decision Process (MDP)
which tries to maximize its expected accumulated reward given the criteria (quality, cost, duration) spec-
ification. It is a finite-horizon MDP because a primitive action can be executed only once in a particular
execution path and hence there are no loops. The mapping of a TÆMS task structure to an MDP is fairly
straightforward since TÆMS can be thought of as a compact representation of a class of MDP problems.
TÆMS differs in that it implicitly describes the enumeratedsearch space that is explicitly described by the
MDP. From another perspective, the MDP unwinds TÆMS into a state space – TÆMS does not represent
the actual effects of the individual alternative paths nor does it break individual elements from quality, cost,
or duration distributions. TÆMS is a specification of tasks,their relationships, their interactions, and their
statistical characteristics. It does not carry through theimplications of choices. The MDP framework, on the
other hand, explicitly describes each possible individualexecution characteristic of each primitive action.
Additionally, TÆMS specifies constraints on an ordering rather than explicitly representing the implications
of the ordering. There is no requirement of immediate precedence and no constraint on immediate succes-
sion either. An MDP representation would lay out exact precedence and succession orderings of methods
within a path in the MDP tree. Additionally, the compact process-style representation of TAEMS is a more
natural representation of agent activity.

The translation process of a TÆMS task structure to a MDP involves following a procedure which lays
out each possible execution path for achieving the agent’s high level goal.

6The actual information gathering task structure does not incorporate outcomes at the task level. This example is a conceptual
abstraction of the class of task structures produced by the agent’s planner and is simplified for example purposes. Outcomes at the
task level have semantics that are difficult to specify.
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The MDP translation is a procedure which allows for the transformation of a TÆMS task structureT to
the corresponding MDPM. The state in the MDP representation is a vector which represents the methods that
have been executed in order to reach that state along with their execution characteristics. The MDP action
is the execution of a particular method. MDP actions have outcomes and each outcome is characterized by
a 3-tuple consisting of discrete quality, cost and durationvalues obtained from the expected performance
distribution of the MDP action. At every decision point, the”TERMINATE” action is always included as
an option in addition to other legal action choices. This allows for the sequential decision making process
to be terminated as needed, at any point in time. The rewards are computed only for the terminal states, i.e.
the intermediate states have null rewards. Terminal statesare reached in a particular path when the deadline
is crossed or when there are no remaining valid action choices for the agent7. The reward is computed
by applying a complex criteria evaluation function of the quality, cost and duration values obtained by the
terminal state which is described in Section 5. Value iteration is the dynamic programming algorithm used
to compute the optimal policy. In theory, value iteration requires an infinite number of iterations to converge
to the optimal policy. However, in practice, we stop once thevalue function changes by only a small epsilon
threshold in a sweep. The following is the algorithm for the translation process.

S1

S57

40%

10%

10%
TerminateS8

Terminate

Terminate

Terminate

Terminate

Terminate

Terminate

Terminate

Crossing Deadline10%

67%

23%

Terminate

Terminate

Crossing Deadline10%

67%

40%

23%

S0

PC-Connection

PC-Mall

......S14

......S21

......S46

40%

Consumers-Reports

......
PC-Mall

ZDnet

S2

S3

PC-Connection

S9

S10

S11

S12

S13

Consumers-Reports
S58

S59

Figure 7: Translation process from TAEMS task structure to Markov Decision Process for Simplified Subset of an
Information Gathering Task Structure for the BIG Agent

Let TG be the top level goal inT and let METHODS be the set of primitive actions inT.

1. Initialize MDP with states;

2. Translate(s)

(a) Identify the set of actions(subset of METHODS) which arepossible froms.

(b) Iterate over each action

i. If action is not TERMINATE

A. Expand each outcome(characterized by discrete quality,cost, duration values) and associate the
outcome probabilities to the state transition probabilities.

7To simplify the construction of the MDP space, we only use thecriteria to maximize quality achieved given the deadline. It is
possible to make our approach more general by considering other paths that terminate before the deadline but still achieve quality
for the root task.
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B. Determine if outcome can lead to a new state while adheringto the criteria constraints, which
is to maximize the quality given the deadline.

C. if new statesprime is reached,Translate(sprime)

ii. Else if action is TERMINATE, set reward of terminating state to be a function of the quality, cost
and duration values of the state.

3. ValueIteration(StateSet);

4. Return optimal policy.

To make this discussion on the translation process more concrete, we will apply a few iterations of
the algorithm on the task structure described in Figure 4. Lets assume the agent’s design criteria specifies
that the task should achieve the maximum possible quality within a hard deadline of 6 minutes. Upon
translation, the corresponding MDP has 76 states. Figure 7 describes the translation process in progress.
The input to the algorithm is the task structure in Figure 4 described in textual format. The start state
S0 is initialized with no actions taken. The PossibleActionSet for stateS0 is PC-Connection, PC-Mall.
ZDnetandConsumers-Reportsare not valid actions since their parent taskGather Reviewshas an inactive
incoming enables fromGet Basic. The outcomes of each action in the PossibleActionSet are processed
starting withConsumers-Reportswhich has 4 outcomes resulting in the statesS1(q =10, c=0, d=1 );S14
(q=0,c=0,d=1);S21(q=10,c=0,d=2); andS46(q=0,c=0,d=1) respectively. The likelihood ofS0transitioning
to S1is computed by taking the likelihood that quality of 0 and duration of 1 is achieved. This occurs with
a probability of 0.4. The PossibleActionSet for stateS1consists ofConsumers-Reports,ZDnet, PC-Mall.
The actionConsumers-Reportshas 4 outcomes. Two of the outcomes result in the total duration crossing
the deadline of 6 minutes and hence result in a null state. Theother two outcomes result in statesS2andS3
with probabilities 0.67 and 0.23 respectively. The outcomeresulting in stateS2has a quality of 30.0, cost of
$2 and duration of 5 minutes. The PossibleActionSet for state S2contains only theTerminateaction since
the outcomes of all other possible actions result in the deadline being crossed. The current loop is exited
when aTerminateaction is encountered and also if a deadline is crossed resulting in null states. The rest of
the MDP tree is extended in the same depth-first fashion. In Figure 7, the tuple<state=S1, action=PC-Mall,
outcome = o1> results in stateS8and so does<state=S57, action=PC-Connection, outcome = o1>. This is
because the two tuples are just permutations of the same set of action outcomes.

The optimal policy for the above problem is shown in Figure 8.As we can see the policy suggests
the method sequence{PC-Mall, Consumer-Reports} as the best agent schedule. There are no possible
recoveries in the event of failure of either method within the deadline. In this particular case, because
there are no recovery options, the single pass view of DTC produced the optimal solution, as discussed in
Section 1. This is not always the case and the utility of the MDP expansion approach is made clear by
the secondary contingency analysis research, presented inSection 6, that more closely approximates the
properties of the MDP.

As mentioned earlier, the MDP state space of task structuresmodeling real-world applications undergoes
a combinatorial explosion. For instance, the number of states for a task structure with 4 methods with each
method having 2 outcomes is in the 100’s. However, a task structure with 6 methods with each having an
average of 5 outcomes has about 30000 states. Hence, this approach has mainly been researched to serve as
an off-line theoretical benchmark to evaluate our real-time heuristic schedulers.
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Figure 8:Optimal Policy for Simplified Subset of an Information Gathering Task Structure

5 Integrating Uncertainty Into Design-to-Criteria Agent Scheduling

Design-to-Criteria is the process of coping with exponential combinatorics to produce agent schedules in
soft real-time that meet a particular set of design criteriaand hard constraints like deadlines or cost limita-
tions. This scheduling problem requires a sophisticated heuristic approach because of the problem’s inherent
computational complexity. To understand the complexity and get a feel for the agent scheduling process,
consider a task structure only a single level deep, where a single task hasn children that are methods and
it accumulates quality according to theq sum()qaf. This models a situation in which an agent has a single
high-level task and many different subtasks that can be performed to achieve the top-level task, where the
quality of each of the subtasks is summed to determine how well the top-level task is performed. For exam-
ple, a simple information retrieval agent might have a top-level task to collect news articles relating to the
stock market and many different sources from which to collect said articles. To achieve its goal and perform
its top-level task, it could go to site X, to site Y, to site Z, or it could go to any combination of the sites,
e.g., X and Y, X and Z, Y and Z, etc. With a simple task structuresuch as this, havingn methods, there
are2n − 1 unordered sets of methods that can be used to achieve the parent task, and within each set ofm

methods,m! possible orderings of methods in the schedule. Conceptually, the number of unordered sets is
due to planning style complexity where the issue is decidingwhich methods to use to bring about a desired
state. The number of sequences of each unordered method set is the classic scheduling side complexity
where ordering is the focus. In general, the upper-bound on the number of possible schedules for a TÆMS
task structure containingn methods is given in Equation 1.

n∑

i=0

(

n

i

)

i! (1)

The combinatorics are pronounced (ω(2n) ando(nn) by Stirling’s approximation) and in practice the
generation of a provably optimal solution through generation of all possible agent schedules is infeasible.
In our research, we often schedule agent task structures having between 25 and 180 methods, e.g., [28, 45].
A sample task structure with 25 methods produces over 67 million different unordered method sets and
over 1.1 × 1025 possible agent schedules. The production of provably optimal solutions through more
refined techniques, such as dynamic programming or a state-based-search, has been unsuccessful to date
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due to the number and types of constraints present in TÆMS, e.g., interactions between tasks, start times,
deadlines, commitments associated with tasks, unruly quality, cost, and duration characteristics, etc. In
DTC, the scheduler controls the combinatorics and producesschedules for the agents through a satisficing
methodology described in detail in [45] and [41, 40, 14, 15].

This practical limitation also applies to the production ofan optimal control policy for the agent using
an MDP – in this case, the combinatorics are even worse because the MDP “unwinds” the TÆMS repre-
sentation and for each triple of< quality, cost, duration> in a method’s outcome, the MDP contains one
state (Section 4). With respect to optimal policies versus optimal schedules, the real question is:In what
situations does the sequence of actions in the best schedulediffer from the sequence of actions in the optimal
policy? Another way of understanding the problem is to ask the question: How close can we approximate
the performance of an optimal policy for the agent through the process of incremental rescheduling, and how
often does this rescheduling need to occur?Note that the scheduling view and the policy view differ. The
policy view explores all possible method sequences, including recovery from method failure; the scheduling
process composes an end-to-end view of the agent’s process while propagating and reasoning about uncer-
tainty but not exploring recovery options. In other words, aschedule is constructed with the assumption that
the agent will reschedule when a failure occurs or when the results deviate from expectations. In contrast,
a policy defines which method to execute next based on the outcomes of previous method executions. With
scheduling and rescheduling we hope to approximate the policy, however, even if rescheduling occurs after
each method execution the performance of the scheduler may not be identical to that of the optimal policy
because with each decision, each choice, the scheduler doesnot consider all possible method sequences
from the current state. The policy view is stronger, but, also infeasible in our research due to the size of the
problem space and the dynamics involved. DTC is deployed in multi-agent environments where the models
of the environment and the agents’ processes are imperfect and new tasks or new requests may arrive at
any point in time. The combinatorics combined with the dynamism have placed hard constraints on the
scheduling problem. In this paper we do not revisit the satisficing methodology of DTC in detail which is
discussed in [13], but instead discuss the implications of uncertainty to agent task modeling and the agent
scheduling process, and introduce an extension to DTC to support contingency analysis and explicit plan-
ning for recovery that more closely approximates the performance and behavior of optimal MDP produced
policies (Section 7).

The main facets of DTC’s methodology include:

Goal Directed Focusing The agent’s design criteria is leveraged to focus all processing activities on pro-
ducing solutions and partial solutions that are most likelyto meet the trade-offs and limits/thresholds
defined by the criteria. This is achieved by creating and identifying partial solutions that seem likely
to meet the criteria and concentrating further developmenton these classes of partial solutions, prun-
ing or ignoring other partial solutions that are deemed least probable to lead to “good” solutions for
the agent.

Approximation Schedule approximations, calledalternatives, are used to provide an inexpensive, but
coarse, overview of the agent schedule solution space. Alternatives contain a set of unordered ac-
tions that can be scheduled (ordered) to achieve a particular task along with estimates for the quality,
cost, and duration distributions that may result from scheduling the actions (analogous to expectations
about what will happen when the agent performs the actions).An alternative represents onepossible
way in which the agent may perform a given task. Alternativesare inexpensive to compute as the
complex task interactions are only partially considered and ordering, resource, and other constraints
are ignored. The alternative abstraction space is used in conjunction with criteria directed focusing to
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build schedules from alternatives that are most likely to lead to good schedules.

Heuristic Decision Making The process of turning alternatives into schedules, i.e., sequencing a set of
actions for the agent, is the classic scheduling problem andthis too suffers from high order complexity;
O(n!) to schedule a set ofn unordered actions. We cope with this complexity using a group of
heuristics for action ordering. The heuristics take into consideration task interactions, attempting
to take advantage of positive interactions while avoiding negative interactions. They also consider
resource limits, individual action deadlines, task deadlines, commitments made with other problem
solving agents, and other constraints. The heuristic algorithm reduces theO(n!) action ordering
problem to low-order polynomial levels in the worst case.

Heuristic Error Correction The use of approximation and heuristic decision making has aprice – it is
possible to create schedules for the agent that do not achieve the high-level task, or, achieve the high-
level task but do not live up to quality, cost, duration, or certainty expectations set by the estimates
contained in the alternatives. This can be caused by an over constrained problem, but also by complex
task interactions that are glossed over by the alternative approximation and not considered by the
action ordering heuristics. A secondary set of improvement[52, 36] heuristics act as a safety net to
catch the errors that are correctable resulting in better agent schedules.

The addition of uncertainty modeling to TÆMS has several implications to the Design-to-Criteria schedul-
ing process and thus to the agent for whom the schedules are constructed. First, the agent (or human client)
must be provided a mechanism to describe the relative importance of certainty or uncertainty reduction to
their application. In some situations, certainty may not bean issue, but in other situations certainty may
be highly important. An example of this in a multi-agent context is the certainty of an agent to fulfill its
commitment to provide a result to another agent before a specified time. Second, given the ability to spec-
ify certainty preferences, how can the information be used in the scheduling process to produce schedules
that are more or less certain, i.e., how to design schedules to address the enhanced design criteria. Third,
is the issue of how the new uncertainty representation impacts the computations and analysis performed
by the scheduler – the questions are whether or not existing computations are affected by the new model
and whether or not the computations can be improved. Relatedto this is the issue of building models of
schedules where the schedule characteristics include uncertainty and the relationship of a distribution style
representation to a single value representation like a harddeadline or hard cost constraint.

In the following sections we describe how these issues are addressed in Design-to-Criteria. In Section 5.1
we discuss the integration of uncertainty into the agent or client design criteria and how this is mapped to
utility that is used during the scheduling process to build custom schedules for the agent. Section 5.2
discusses how uncertainty, and the design criteria, are used in the scheduling process to produce more
certain schedules when uncertainty reduction is importantto the agent. Section 5.3 identifies areas in which
the computations are effected by the addition of uncertainty and how the representation of uncertainty is
used in the modeling and construction of schedules. A high-level example of uncertainty reduction in the
scheduling process is then given in Section 5.4. In a certainsense, integration of uncertainty in the main
scheduler is done on a schedule by schedule basis, in Section6 we step outside of the main scheduling
process and discuss a secondary analysis process that goes beyond the independent view of schedules and
instead considers recovery orcontingencyoptions for schedules. This is an important ability for agents
situated in time and mission critical environments.
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5.1 Uncertainty in Agent Goal Criteria and its Mapping to Uti lity

The agent goal or design criteria is often generated by humans using a specification metaphor calledsliders,
the GUI shown in Figure 9. This metaphor was first presented in[40] and extended in [41, 45]. Sliders take
on values from 0 to 100% and are arranged in slider banks whereeach bank contains a slider for quality,
cost, and duration. The sum of the sliders in each bank range from 0 to 100%. A 100% weight given to
a particular slider expresses that the slider in question isthe only item of importance relative to the other
sliders in the same bank. Examples follow below.

Intellectually, the research issues being addressed by theslider metaphor are not whether the metaphor
is appropriate for all applications, but, rather the recognition that agents have different objectives in different
situations and that when problem solving or scheduling withthese pronounced combinatorics, control must
be focused by the current objectives of the agent. The point is flexibility in control and the ability to
dynamically focus the entire scheduling process on reasoning about the objectives (via design criteria),
rather than using implicit, hardwired objectives in apost-hocfashion as in the previous Design-to-Time agent
scheduling work [14, 15]. If the agent’s objectives are not considered during generation, in general, a much
larger portion of the solution space must be searched to produce results useful to the agent. Casting Design-
to-Criteria as a search process, this is akin to concentrating search on the classes of solutions and partial
solutions that best meet the agent’s objectives from start to finish, rather than as an evaluation specification
applied to final states. In terms of an approximate MDP, this is conceptually analogous to only transitioning
from states that correspond to some estimation of the agent’s objectives as the other solution states are less
desirable. The slider metaphor or goal specification could easily be replaced or extended – once control is
designed to use the specification toevaluatethe utility of a given solution or partial solution, changing the
specification is straightforward. In this paper we do not concentrateper seon the constructionist roles of
the goal specification, but instead describe the specification and how it relates to the evaluation of candidate
options and extend the specification to include balancing uncertainty reduction with the other trade-offs
evaluated by the scheduler. The use of the specification in evaluation is the central concern here as it
determines which approaches to achieving a particular task, or the root level task, are more valuable to the
agent. The constructionist aspects of the scheduling process, presented in [41, 45], dovetail to resolve task
constraints once the choice of options has been made.

Regardless of the simplicity of changing the metaphor, the metaphor presented here has been proven to
be appropriate for TÆMS and our applications because, in general, it is difficult to estimatea priori what
schedules are possible for an agent for a given task structure. Scheduler clients (such as other control prob-
lem solvers within the agent or the agent’s humans client) simply do not know whether a given hard deadline
or hard preference may be met or even have an approximate ideaof the types of solutions that are possible.
Often they must describe relative preferences or relative trade-offs and then evaluate the class of solutions
produced by the scheduler and possibly refine their overall objectives or their goal criteria accordingly. This
is why some of the basic principles of the metaphor include satisficing and relative evaluation as well as
client specified limits and thresholds on the different attributes. Extensions to support multiple criteria sets
and preferences between solution classes are presented in [45].

There are five banks in the current specification metaphor, each relating to a different class of concerns:

Raw GoodnessThis bank describes the raw relative importance of each dimension. For example, setting
the quality slider to 50% and cost and duration to 25% expresses the notion that high quality is twice
as important as low cost and low duration and that agent schedules having these characteristics are
preferred. The label “raw” here denotes that this preference is not with respect to any particular
deadline or other constraint the agent might have. As mentioned earlier, it is often difficult to know
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a priori what is possible for a given task structure and thus setting hard limits and thresholds can be
problematic (leading to poor solutions). This bank enablesclients (other control components within
the agent or its human client) to specify simple, relative preferences about quality, cost, and duration.

Threshold and Limits This bank allows the client to setsoft limits and thresholds for quality, cost, and
duration either using a fixed limit/threshold value or usinga utility function that describes gradual
changes in utility as the value increases beyond a certain limit or as it crosses a certain threshold.
Using sliders in this bank one might define a preference for agent schedules that are below a certain
cost threshold but above a certain quality threshold. The preferences expressed here are soft in that the
scheduler may elect to cross a particular limit or thresholdif the overall utility of the item in question
is higher than the other candidates that stay within the limit or threshold. This concept is made more
clear below when we describe how the design criteria is related to the utility used by the scheduler
to rank schedules for the agent. It is important to note that hard constraints, e.g., hard deadlines, do
exist in the scheduling process, but that the general designcriteria is about the expression of relaxable
constraints and soft general preferences for the agent.

Certainty Whereas the raw goodness set above expresses the relative importance of quality, cost, and du-
ration, this set expresses the relative importance of uncertainty about quality, uncertainty about cost,
and uncertainty about duration. For example, if an agent’s client does not actually care when a result
is produced, but is going to schedule a meeting to discuss theresults as soon as they are produced, the
client would specify a preference for high certainty in the duration dimension, expressed as a signifi-
cant weight given to the duration slider in this bank, e.g., 80% or 100%. This bank expresses relative
predictability preferences.

Certainty Thresholds Like the thresholds and limits bank, this bank expresses therelative importance of
meeting certainty thresholds in the quality, cost, and duration dimensions. For example, through this
mechanism, agent clients can express a preference for schedules that have a duration certainty of 75%
or higher (meaning that 75% of the time, the schedules will achieve their predicted runtime). As
with limits and thresholds on quality, cost, and duration, it is typically difficult to knowa priori what
certainty thresholds are possible for a given task structure so this bank expresses soft or relaxable
preferences.

Meta This slider set relates the importance of the four previous slider sets. This separation allows clients,
human or otherwise, to focus on relating quality, cost and duration with each other in each of the cases
above, then to “step back” and decide how important each of the different classes are relative to each
other. For example, within the raw goodness bank, client’s can reason about the relative importance
of quality, cost, and duration, then do the same in the certainty bank, then decide how raw goodness
relates to certainty. If certainty is the primary issue, then it is given more weight in the meta bank than
raw goodness.

The incorporation of uncertainty into the criteria specification provides agent clients (or other agent
control components) with a means to describe how important reducing uncertainty is for their application
relativeto raw-goodness and limits/thresholds. Given the ability to specify the importance of these attributes,
the issue then becomes how to relate the attributes to utility that can be used in the scheduling process to
evaluate and select from different possible courses of action for the agent. The mapping from sliders to
utility is presented in [40], however, we must examine a portion of the computations in order to discuss
the use of uncertainty in the utility computation as well. Ingeneral, utility is computed by comparing the
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Figure 9:Agent Schedule Goal Specification Metaphor

statistical characteristics of a member of a set of candidate agent schedules to the observed characteristics
for the set as a whole. The utility computations form the basis of the goal or design directed problem solving
behaviors of the scheduler and are used both on completed schedules and the aforementioned alternatives
(schedule approximations).

The utility computation is based on notions ofrelative goodnessand normalized comparison. The
computation is decomposed into components, with one component associated with each slider bank. The
components are further decomposed into subcomponents, with one subcomponent associated with each
slider in a particular bank, i.e., there is one subcomponentfor quality, one for cost, and one for duration,
in each bank. The subcomponents are summed to produce the rating component for a particular bank.
Subcomponents are computed by examining items being rated in the particular dimension with which the
subcomponent is associated. For example, to compute the component for the raw goodness (the first) slider
bank:

1. Find the min and max expected values for quality, cost, andduration that occur in the set of schedules
or alternatives being rated.

2. Loop over the set of alternatives or schedules to be rated and calculate the raw goodness rating for
each by calculating the quality, cost, and duration subcomponents as follows in Steps 3, 4 and 4.

3. Leteq denote the expected quality value of the alternative or schedule under consideration.8 Its quality
subcomponent is a function of the percentage of quality achieved byeq relative to the min and max,
minq andmaxq, quality values of the set of items being rated, scaled by theraw goodness quality
slider,RG sliderq and the value in the raw goodness bank.

ratingq =
(eq − minq)

maxq − minq

∗
RG sliderq

∑d,c

i=q RG slideri

4. Duration is different than quality as greater duration isgenerally less preferable. Whereas with the
quality related equation, achieving the best quality of allitems in the set should bring the highest
reward, in this case, achieving the least duration of all items in the set should bring the highest reward.
Cost is like duration in that lower cost is better.

8Schedules, schedule approximations, and partial scheduleapproximations are evaluated using the design criteria.
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ratingd =
(maxd − ed)

maxd − mind
∗

RG sliderd
∑d,c

i=q RG slideri

ratingc =
(maxc − ec)

maxc − minc
∗

RG sliderc
∑d,c

i=q RG slideri

5. The quality, duration, and cost subcomponents are then summed to obtain the aggregate raw goodness
rating component.

The certainty rating subcomponents are computed like the previous subcomponent in that utility is com-
puted by comparing a given item to the observed minima and maxima for the set of candidate items. How-
ever, the subcomponents differ in that the focus is on the certainty associated with the expected values of
the quality, cost, and duration dimensions rather than the expected values themselves. Consider the quality
case. The general idea is to reward agent schedules or alternatives based on how likely it is that a quality
value that meets or exceeds the expected value will actuallyoccur.9 The reason for this is semantic – more
quality is always a good thing. Agents or agent clients will not mind if the resulting quality is greater than
predicted. Only if the resulting quality is less than predicted will there be an issue. Certainty about cost and
duration is computed similarly, albeit that what is “good” is reversed – less cost and less duration are good
things, thus, the probability of the agent producing a result in less time or at a lower cost is combined with
the probability of obtaining the expected (predicted) costor duration.

Thus we compute the probability that the quality, as expressed by the discrete probability distribution,
is greater than or equal to the expected value, we then normalize and scale the probability as with the
previous components, and finally multiply by the proportionof points allocated to the certainty quality slider.
Consider a partial example, if an agent schedule has a simplequality distribution that denotes 25% of the
time 0 quality will result and 75% of the time quality 10 will result, its resulting expected quality value is 7.5.
Contrast this with a schedule whose quality distribution denotes that 50% of the time 0 quality will result and
50% of the time 15 quality will result; its expected quality is also 7.5. However, the probability that the first
schedule will generate a quality value greater than or equalto the expected value is .75 whereas the second
schedule’s probability is only .50. This is the gist of the certainty rating subcomponents – the more certain
that the expected value, or a better value, will occur, the greater the reward (and the more likely a schedule is
to be selected for performance by the agent). The calculation procedure is similar to the raw quality goodness
procedure presented above, though the focus is always on probabilities and probabilities of the items being
rated are normalized using the derived min and max probabilities for the set. For example, the computation
to compute the quality certainty rating subcomponent is shown in Equation 2. In the equation,q denotes
the quality distribution of the item being rated (schedule or alternative),eq denotes the expected value of
the quality distribution,Prob(q >= eq) determines the probability that quality exceeds the expected value,
min probabilityq denotes the lowest observed instance ofProb(q >= eq) andmax probabilityq denotes
the greatest observed instance ofProb(q >= eq). The other components scale the rating according to the
weight given to the associated slider.

rq =
(Prob(q >= eq) − min probabilityq)

max probabilityq − min probabilityq

∗
Certainty sliderq

∑d,c

i=q Certainty slideri

9An alternate interpretation is to determine the probability that the actual value will fall near the expected value, on the upside
or the downside.
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The certainty threshold rating component differs from the general certainty component in that the bound-
aries are not determined by examining the candidate set of items being considered, but are, instead, specified
by the client or other agent control component. Exceeding a particular certainty threshold results in the same
utility regardless of how far a particular item exceeds the threshold. The initial conceptualization of this com-
putation included a relative scaling component, i.e., the farther the distance above the threshold, the more
utility. However, this resulted in a mismatch between expectations and results as certain schedules would
receive greater utility from both the raw certainty bank andthe certainty thresholds bank. The computation
is again computed by iterating over the set of candidate items and computing utility subcomponents for each
of the dimensions; the subcomponents are then again summed to produce the certainty thresholds rating
component. To illustrate the general certainty threshold computation, consider the quality subcomponent
computation:

if (Prob(q >= eq) ≥ client specified thresholdq) then

ratingq =
Certainty threshold sliderq

∑d,c

i=q Certainty threshold slideri

else

ratingq = 0

5.2 Incorporating Uncertainty in the Design-to-Criteria Process

Uncertainty is integrated into the process of schedule production in two primary ways. First, certainty pref-
erences specified in the goal criteria are mapped into utility values which are used during the scheduling
process to focus production on schedules and schedule approximations that best address the agent’s goals.
If the objective is to produce highly certain results, the scheduler will thus evaluate the different statisti-
cal trade-offs of different possible actions accordingly,perhaps producing highly certain schedules whose
expected quality is somewhat lower than the maximum possible quality for the task structure. This prop-
erty is in some sense automatic as integrating certainty preferences into the criteria changes the choices
made by the scheduler throughout its process10; different choices of different options based evaluation that
includes certainty trade-offs results in a different set offinal agent schedules.11 The second use of uncer-
tainty in the main scheduling production process is more direct. Through the addition of uncertainty to the
TÆMS modeling framework and the agent’s goal specification,the scheduler can do additional analysis
during schedule production to explore a larger, different,agent schedule space. Namely, when uncertainty
reduction is important to the agent, the scheduler can consider redundant activities for task achievement
and consider moving uncertain activities earlier in the schedule to leave more time for recovery if the agent
should attempt an action and encounter failure.

In order to illustrate the first type of integration, that flowing from the goal and utility specification
pair, it is necessary to describe certain aspects of the scheduling process. Unlike traditional scheduling tasks
where the primary issue is how to order a particular set of methods, Design-to-Criteria must also consider the
many possible combinations of alternative approaches for achieving the agent’s high-level task. Prior to the
process of building schedules, which is the traditional method-ordering scheduling problem, the scheduler
must enumerate the different ways that the agent’s high-level tasks can be achieved. Each “way” is a cheap
to compute schedule approximation called analternative. Alternatives contain unordered sets of methods

10For example, choices made at interior nodes, choices made atthe root node, choices pertaining to which schedule approxima-
tions or partial approximations to develop, etc.

11This also illustrates the strength of integrating a separate dynamic specification of an agent’s objectives into the control problem
solving process. As discussed, other attributes and other trade-offs could easily be incorporated into the criteria ina similar fashion.
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and estimates for the quality, cost, and duration distributions that would result from building a schedule
from the alternative. Alternatives differ from schedules in that the ordering for the methods has not yet been
defined and the attribute estimates are computed without regard for complex task interactions or individual
task-centric constraints like hard deadlines. This approximation is necessary because in order to evaluate
the individual constraints and interactions, all the othermethods in thepotentialschedule must be evaluated.
The problem is circular – to evaluate methodx in one alternative may require the evaluation of methods
y andz, that are not in said alternative, which may in turn require evaluation ofh and i, also not in the
alternative, and so forth. In essence, full evaluation of a given method drags in the worst-case exponential
combinatorics of the general TÆMS agent scheduling problem, hence the reliance on an approximation that
gives a feel for the partial solution space at the local node.
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Figure 10:Complexity of Alternative Set Generation for the Agent’s Tasks

Alternatives are constructed bottom-up from the leaves of the task hierarchy to the agent’s top-level task
node, i.e., the alternatives of a task are combinations of the alternatives for its sub-tasks. Figure 10 shows
the alternative set generation process for a small task structure. Alternatives are generated for the interior
tasksT1 andT2 and then these alternatives are combined to produce the alternative set for the root task,
T . The complexity of the alternative generation process is pronounced. A task structure withn methods
leads toO(2n) possible alternatives at the root level. We control this combinatorial complexity by focusing
alternative generation and propagation on alternatives that are most likely to result in schedules that meet
the spirit of the agent’s goal criteria; alternatives that are less good at satisficing to meet the goal criteria
are pruned from intermediate level alternative sets. For example, a criteria set denoting that certainty about
quality is an important issue for the agent will result in thepruning of alternatives that have a relatively low
degree of quality certainty.

After the alternative set for the agent’s high-level task isconstructed, a subset of the alternatives are
selected for scheduling. Again, complexity is the issue. For alternatives that haven methods, schedule con-
struction via exhaustive search,O(n!), is not feasible and even our low-order polynomial heuristic approach
[41] precludes building schedules for all alternatives. Satisficing with respect to the agent’s goal criteria is
used at this stage to select the alternatives that are most likely to lead to schedules that fit the criteria, i.e.,
most likely to lead togoodagent schedules. As with alternative generation, if uncertainty is important to
the agent, schedules that reduce uncertainty in the desireddimensions will be produced. Using the heuristic
approach, selected alternatives are scheduled by iterating over the set of unscheduled and unordered candi-
date methods and passing each method through a set of rating heuristics. The rating heuristics enforce hard
constraints and express preference over the relaxation of soft constraints, e.g.:

• Enforce hard task interactions like enables and disables.
• Enforce hard resource constraints.
• Enforce earliest start times and deadlines.

24



• Try to take advantage of positive soft non-local effects, where doing one activity before another im-
proves overall utility.

• Try to avoid negative soft non-local effects, where doing one activity before another degrades overall
utility.

• Try to satisfy external commitments made with other agents12 and avoid violating them (where com-
mitments have varying degrees of importance).

• Try to coordinate13 over soft-degradation style resource consumption and production.

Focusing is Design-to-Criteria’s key to coping with the combinatorics and producing good schedules
for the agent. This focusing methodology is analogous to generating only portions of the space of possible
schedules – or akin to control using an approximate MDP (discussed further in Section 8). Figure 11
illustrates the scheduler’s ability to focus processing onthe goal criteria at hand. The figure shows the root-
level alternative sets generated for two different criteria specifications; one where raw quality is the only
factor of importance and one where certainty about quality is the only factor of importance to the agent. The
agent task structure in question is moderately complex and has approximately4 × 109 possible alternatives
at the root level if focusing is not used to reduce the number of alternatives generated. When quality is the
only factor, the alternatives generated have a high expected quality but also considerable quality uncertainty.
In comparison, the alternatives generated for the quality certainty case have lower expected quality but a
much higher degree of certainty. The distributions are statistically significantly different in both the quality
and quality certainty dimensions; one-tailed t-tests reject the null hypothesis of equivalence at the .05 level.
If a third case where quality and quality certainty are equally important (omitted for clarity), was added to
the figure the alternatives would fall partly in the quality only range and partly in the certainty only range;
the overlap is due to the properties of the task structure where high quality methods tend to be uncertain and
high certainty methods tend to have low quality. In this third case, the highest ranked alternative would be
the same as the highest ranked in the certainty only case because it has the highest certainty to quality ratio.
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Figure 11:Alternatives Generated for Two Different Agent Criteria orGoal Sets

As discussed earlier, in addition to the criteria driven role of uncertainty, the scheduler can also take a
more active role in uncertainty reduction by generating alternatives that contain more than one way (other

12Applicable when Design-to-Criteria is used in a multi-agent context. In general, Design-to-Criteria interfaces withan external
multi-agent coordination module, e.g., GPGP [9, 11] or the keys module [42], that proposes and forms commitments with other
agents to handle the temporal sequencing of interdependenttasks.

13Also applicable only in a multi-agent context.
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alternatives) to achieve various tasks. This redundancy flavored agent scheduling may serve to reduce un-
certainty and it provides the scheduler with more options toconsider. This is critical in some situations
involving hard deadlines because in the event of a failure there is not always enough time left to try a dif-
ferent solution approach, i.e., once committed to a course of action, it is sometimes too late to reschedule
and try again if the agent encounters failure. Consider a brief example. Figure 12 shows an agent’s task
structure fragment, the relevant method attributes, and two schedules. The results generated by Task A are
necessary for Task B and there is a hard deadline of 30 minutes. Schedule 1 contains no redundancy, having
one method for achieving Task A and one for achieving Task B. Schedule 2 contains redundant methods
for achieving Task B and uses a lower quality but more certainand faster method for achieving Task A. If
Schedule 1 is executed and method A1 fails, 20 minutes are wasted and there is not time to reschedule and
execute method A2 followed by either B1 or B2 prior to the deadline. Additionally, if method B1 fails there
is also not time for the agent to reschedule and execute B2. However, if Schedule 2 is executed, we are as
certain as possible that the agent will generate some results by the deadline because A2 is very certain and
the less-certain-but-higher-quality B1 is followed by themore-certain-but-lower-quality B2. Considering
uncertainty in conjunction with redundancies is clearly important in some situations. When the redundancy
alternative generation feature is used, the alternatives that contain redundant activities are added to the al-
ternative set and compared to the goal criteria in the same fashion as the non-redundant alternatives. Thus,
the scheduler continues to focus processing on alternatives that best satisfice to meet the agent’s overall goal
criteria – uncertainty does not dominate the evaluation mechanism unless so specified by the agent’s goal
criteria.
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Figure 12:Redundancy in Agent Schedules Can Be Critical

It is important to note that the existence of a redundant method in a schedule does not mean that the
redundant method will be executed every time by the agent. The execution of said method is dependent on
the rescheduling triggers or envelopes associated with theagent’s schedule. The existence of the redundant
method in the schedule does imply that the schedule can be executed from end-to-end without rescheduling
to recover from particular errors. However, one of the main benefits of including redundancy in the agent’s
schedule is analytical – it enables the scheduler to evaluate the performance characteristics of a problem
solving episode that includes method failure and recovery instead of simply assuming no failure. When
viewed in this light, redundancy is a very weak form of contingency planning and is related to the secondary
contingency analysis algorithms presented in Section 6.

Modeling uncertainty improves and empowers other aspects of the agent scheduling process as well. In
environments where rescheduling is undesirable the scheduler can use the probability distributions to design
more fault tolerant schedules. For instance, if fault tolerance with respect to duration is desired, the scheduler
can build schedules by estimating method execution times using the 95th percentile duration value rather
than the expected value. In this situation, uncertainty about finish times still gets propagated throughout the
schedule, but timing assumptions are based on a higher valuethat is by definition very certain.

The uncertainty representation can also improve the probability that little agent work is wasted in the
event of a mid-schedule failure. Because of task interactions it is possible that a method failure anywhere
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in the agent’s schedule can void all the work done up to that point. Modeling uncertainty makes it possible
for the scheduler to move the highly uncertain activities toward the front of the schedule, thus reducing the
likelihood of doing material work that is voided later in theschedule. This can be achieved through a new
method rating heuristic that gives preference to methods that have some probability of failure and interact
with other methods – or methods that have a probability of failure and are particularly important to the
agent’s overall schedule. We will forgo further exploration of this idea in the context of the main scheduling
process as these concepts have contributed to a secondary contingency analysis phase discussed in detail in
Section 6.

5.3 Impact of Uncertainty to the Computations and Schedule Models

The implications of the addition of uncertainty to the TÆMS modeling framework are not all positive – at
least not from a computational expense standpoint. Maintaining and performing calculations with distribu-
tions is inherently more expensive than working with singleexpected values. Additionally, distribution sizes
generally grow as computations progress. For example, combining two discrete probability distributions,
where the distributions haven andm (probability, value) pairs respectively, results in a distribution hav-
ing (n×m) (probability, value) pairs (though like values may be combined). While this does not change
the combinatorics of the scheduling process, it adds significantly to the constant terms involved, even when
the distributions are size-limited and compacted14 periodically.

Another downside to the addition of uncertainty to TÆMS models, and its incorporation into the agent
scheduling process itself, is that it invalidates a particular independence assumption that enables local evalu-
ation of primitive actions. Said independence assumption simplifies calculations and saves considerably on
the computational expense of reasoning about task interactions. The assumption is simply that the effects of
any active nles can be accurately reflected in the distributions of the node that is on the receiving end of the
nles. Implementationally, this means that whenever the context changes, and nles be come active, or switch
to an inactive state, the distributions on the recipient node are updated to reflect this state. With the addition
of uncertainty to the task models, this assumption no longerholds.
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Figure 13:Independence Assumption Valid with Expected Values

Figure 13 illustrates the assumption under the expected value case. Figure 13(a) shows the input TÆMS
task structure; the effects of interactions are not yet propagated to effected nodes. In the structure, method
M1 enablesM2 and the two methods are joined under theq min() qaf; thus the quality ofTask is the
minimum of the qualities ofM1 andM2. Prior to scheduling either method, Figure 13(b), the expected
quality of M1 is zero, the expected quality ofM2 is zero, thusTask also has an expected quality of zero.
OnceM1 is scheduled,M1’s expected quality becomes .5. At this point, the enables nle betweenM1 andM2

becomes active andM2’s potential quality, that which can result if it is scheduled, becomes 1. Since there is

14Compaction can lead to a loss of information and the introduction of estimation error into the computation. However, the
estimation error is generally small and does not adversely affect the decision processes used in the scheduler.

27



no probability thatM1 may fail,M2 is either enabled or it is not. WhenM2 is scheduled, Figure 13(c), its
quality reflects the assumption that the required input willbe available and thatM2 will produce the expected
result. In this case,Task’s quality ismin(.5, 1) = .5 and is correct. This is the independence assumption at
work; the same property holds for soft interactions like facilitation or hindering. Additionally, the property
holds for chains of such relationships – something that often occurs in agent supply chain management
problems [43]. Implementationally, this means that each time a method is scheduled, the effects of the
outgoing nles can be reflected and propagated throughout thetask structure and then the nle may be ignored.
15
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Figure 14:Independence Assumption Invalid with Uncertain Models

However, with the addition of uncertainty to the model nles are no longer binary, i.e., they are not simply
active or not. Instead, there is some probability that they will be active and some probability that they will
be inactive. Figure 14(a) shows the same task structure enhanced with the discrete probability distribution
representation. Prior toM1 being scheduled, there is no probability thatM2 is enabled and thus bothM1 and
M2 have zero expected quality as doesTask, Figure 14(b). However, onceM1 is scheduled it may produce
quality 50% of the time and fail 50% of the time. We reflect thispossibility in the potential quality distribu-
tion of methodM2, i.e., if M2 is scheduled, Figure 14(c), 50% of the time it will not have the required input
and 50% of the timeM1 will succeed and produce the required input. The propagation of the probability
of not having the required input is valid, but, the independence assumption no longer holds. Consider the
quality of Task if both methods are scheduled.M1 andM2 each fail 50% of the time, thusTask’s qual-
ity distribution is:Taskquality = ((.25,min(0, 0)), (.25,min(0, 1)), (.25,min(1, 0)), (.25,min(1, 1))).
After combining like values (zeros), the distribution becomes: Taskquality = ((.75, 0), (.25, 1)) and its
expected value is .25. This is inaccurate becauseM2 fails iff M1 fails to produce the required result andM1

fails to produce said result 50% of the time. Thus,Task should only fail to obtain quality 50% of the time
and the remainder of the time it should obtainmin(1, 1) = 1, resulting in an expected value of .5. With the
addition of uncertainty, and the representation of some probability of failure, the independence assumption
no longer holds but instead leads to over-emphasis on failure effects throughout the task structure (M1 and
M2 may be widely distributed in the structure).

The nle-effect-reflection type of calculation is performedan enormous number of times during schedul-
ing. For a moderately sized task structure, it is not uncommon to perform hundreds of thousands of dis-
tribution combination operations in a single scheduling episode. To maintain efficiency, the independence
assumption is left in place during estimation, approximation, and method sequencing. However, once the
set of candidate schedules is produced, each schedule is re-evaluated using a tree-based in-context analysis
approach that corrects the estimation errors in the computation, Figure 15. The complexity of the tree-based
analysis is driven by the frequency of method failure withina given schedule and thus is occasionally too

15This is not quite accurate. During scheduling, many different contexts are explored and the computations are repeated many
times. However, when constructing a given schedule, once a method is scheduled, the computations do not need to be repeated
under the independence assumption.
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expensive even when used in this limited context.
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Figure 15:Accurate, Contextual, Execution Tree Computation is Expensive

The addition of uncertainty also affects agent schedule construction and reasoning about start times,
finish times, cost limits, and deadlines. Since methods may have a range of possible durations, as schedules
are constructed, the uncertainty associated with the durations must be propagated – methods no longer
have single finish times but instead have distributions of possible finish times. Additionally, since methods
are serialized when scheduled, the uncertainty of the methods scheduled before a given method affect its
start time (a distribution) and consequently also its finishtime distribution. This complicates matters when
determining whether or not a particular method will complete before a deadline, or whether or not a result
will be available to satisfy a commitment made to another agent by the desired time. We leverage the
improved models in these situations to reason about the probability of violating or satisfying a particular
constraint.

Consider the deadline case; if a method produces a result after a hard deadline, the result is considered
valueless and thus the method’s quality result is zero. Whenreasoning about deadlines from an uncertain
perspective, we reflect the possibility that a given method will exceed its deadline by modeling the effects
of this violation in its quality distribution. For example,Figure 16, ifMx has a 10% chance of exceeding its
deadline, the densities of all the members of its quality distribution are multiplied by 90% (thus re-weighting
the entire distribution) and a new density / value pair is added to the distribution to reflect the 10% chance of
returning a result after the deadline. The leftmost histogram describesMx’s expected finish time, the middle
histogram describesMx’s unmodified quality distribution, and the rightmost figureshows the modified
quality distribution after re-weighting and merging with the new(10%, 0 quality) pair. This quality-based
reflection is important because it improves the scheduler’sability to reason about hard deadlines.

QUALITY

10

20

30

50 100

Histogram OF Quality - Method Mx

100% Density

FINISH_TIME

10

20

30

40

5 10 2015

Histogram OF Finish_Time - Method Mx

Exceeds
Deadline
10% of the Time

Quality

10

20

30

50 100

Histogram OF Modified Quality
Method Mx

90% Density10% Density

0

Figure 16:Reflecting Probability of Missing Deadline in Method Quality

29



5.4 Scheduling to Reduce Uncertainty for the Agent within Design-to-Criteria

To illustrate the benefit of modeling and using uncertainty in the main Design-to-Criteria process, let us
consider the problem of custom building schedules for two different agent goal criterion from a moderately
complex task structure. The task structure has methods thatfall into three general categories. 1) Methods
that have high expected quality values also tend to take longer and are highly uncertain in both the quality
and duration dimensions. 2) Methods that have low expected quality also tend to take less time to execute
and are more certain in both the quality and duration dimensions. 3) Methods that have medium expected
quality also take a moderate time to execute and are moderately certain.

The high-quality-but-uncertain methods model information gathering tasks that are risky but also have
a probability of a large information pay-off. For example, agent methods of this type may find information
about a software product by submitting multiple queries to Infoseek and Altavista, going to the URLs,
retrieving multiple documents from each site, and processing them. As the information located can range
from useful new information with wide-scale ramifications to utterly useless information that is not relevant,
there is the probability of big pay-offs and also the probability of zero or poor results. Since methods of
this type use a large amount of active web search on sites thatare unknowna priori, predicted duration
is also long and uncertain. The low-quality-but-more-certain methods model information gathering tasks
where information is retrieved by the agent from individualsites that are known and modeled. Since the
information is predicted to be fairly narrow in scope, thesemethods lack the potential for big pay-offs,
however, since the methods search only one site and the site in question is modeled, durations are short and
fairly certain. The middle-quality-middle-certainty methods employ combinations of these behaviors.

100

200

300

400

500

100 200 300 400 500 600 700

Expected
Quality

Expected Duration

Alternative for Client A
Alternative for Client B

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability of
Expected
Quality or
Greater

Probability of Expected Duration or Lower

Alternative for Client A
Alternative for Client B

a. Alternatives for A and B b. Probability of Expected Valuesof Alternatives

Figure 17: Alternatives and Probabilities of Possible Courses of Action for the Agent

Since the first agent client (a human who is determining the agent’s goal criteria), Client A, is planning
other activities based on the predicted outcome of scheduleexecution, this client is interested in both sched-
ule raw-goodness and schedule certainty. In the raw-goodness slider bank the quality slider is set to 75%
and the duration slider set to 25%, i.e., overall quality is 3times more important than overall duration. In
the uncertainty bank the quality and duration sliders are each set to 50%, meaning that certainty about the
estimated quality and certainty about the estimated duration are equally important. The meta slider for raw-
goodness is set to 40% and the meta slider for uncertainty is set to 60%, denoting that uncertainty reduction
is 1.5 times more important than raw schedule goodness. Unlike Client A, the agent’s other client, Client B,
has much simpler needs and is only interested in raw-goodness. As with Client A’s goals for the agent, the
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raw-goodness quality slider for this client is set to 75% andthe raw goodness duration slider is set to 25%.
The meta-slider for raw goodness is set to 100% denoting thatraw goodness is the only issue of importance
to this client.

Figure 17.a shows the expected quality and expected duration of the top-level alternatives for the agent
generated for Clients A and B; intermediate alternative sets were pruned according to the goal criteria as
discussed previously. Despite both clients setting the rawquality and duration sliders to the same values,
Client B’s alternatives always have higher expected quality and higher expected duration than Client A’s.
Since neither client is using hard deadlines, this is attributable to Client A’s emphasis on certainty about
quality and certainty about duration. Figure 17.b tells therest of the story. As Client A put 60% of the
overall weight on certainty in the quality and duration dimensions, the alternatives generated for the agent
when working for Client A trade-off between raw quality, rawduration, quality certainty, and duration
certainty, rather than just trading-off quality and duration. Figure 17.b also shows the price of B’s high
expected quality – the expected values are also predicted tobe much more uncertain than those of Client A.

The quality and duration attributes of the agent schedules produced from a subset of these alternatives are
similar to the attributes of the alternatives. In this case,the estimates contained in the alternatives are fairly
good indicators of the schedules produced from the alternatives. This indicates that subtask interactions
in the alternatives generated and targeted for scheduling were fairly simple and generally involved hard-
precedence constraints. In keeping with intuitions, the highest rated schedule for Client B is that which has
the highest expected quality with respect to duration. However, Client A’s “best schedule” has a reasonably
good quality for its expected duration and a high degree of certainty about its expected quality and duration
values.
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Figure 18:Results of the Agent Executing the Different Schedules for Aand B

The quality and duration results of the agent executing the best schedules for each client thirty times are
shown in Figure 18. Whereas agent executions for Client A produced a tightly spaced set of quality and
duration values, executions of Client B’s highly uncertainschedule produced a wide range of results. Of
the thirty runs, Client A’s results meet or beat expectations in the quality dimension 90% of the time, in the
duration dimension 50% of the time, and in both the quality and duration dimensions 50% of the time. In
contrast, Client B’s results only meet or beat quality expectations 63% of the time, duration expectations
16% of the time, and both dimensions combined 13% of the time.Additionally, the uncertainty in B’s quality
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dimension incurred more rescheduling because of methods failing to return any results (problematic because
of task interactions). On average, B’s schedule required agent rescheduling 2.1 times per each execution,
with a variance of .71, whereas A’s only required 1.2 agent reschedulings on average with a variance of .21.
The 25% trimmed mean brings out the contrast even more – B’s rescheduling average remains 2.1 but A’s
25% trimmed mean drops to 1.0, denoting no rescheduling during execution.

6 Uncertainty-based Contingency Analysis:
Better Schedules for Agents in Time / Mission Critical Situations

In the previous sections we explored uncertainty as it is integrated into the standard Design-to-Criteria agent
scheduling methodology. However, in situations where harddeadlines exist, a mid-schedule failure may
preclude recovery via rescheduling because sufficient timedoes not remain for the agent to explore a differ-
ent solution path. In these situations, a stronger analysisthat considers the existence of possible recovery
options may lead to a better choice of agent schedules. To address such situations, we have developed a
contingency analysis methodology that functions as an optional back-end on the Design-to-Criteria agent
scheduler.

The contingency analysis algorithms operate by examining the highly-rated candidate agent schedules
produced by the scheduler and exploring failure / recovery scenarios for each schedule in the set. These
secondary analysis tools also perform more detailed reasoning about the placement of methods within a
schedule in light of the existence of recovery options. For example, recovery for a given schedule may be
possibleiff some critical methodmcritical is performed first rather than second. The standard scheduler is
weakly biased toward moving uncertain methods earlier in the schedule, but the determination islocal, based
only on the attributes of the method in question, whereas themethod movement explored in the contingency
analysis also takes into account the benefits of method movement from a recovery perspective.

This underscores the primary difference between the use of uncertainty in the main Design-to-Criteria
agent scheduling process and its use in the secondary contingency analysis algorithms. To address resource
limitations and to produce schedules in interactive time, Design-to-Criteria builds and evaluates schedules
in an independent fashion – the possibility of recovery froma particular failure is not considered by the
main scheduling process. This is because determining the existence of a recovery option requires more than
simply finding an action to replace the failure; indeed because of task interactions and the combinatorics
of TÆMS models, the process of evaluating recovery options fully may require significant computational
expense, e.g., trying all possiblealternativeways in which a task might be achieved (O(2n)).

This is true in generalcontingency planningas well [5]. In contrast, in the secondary analysis algorithms,
we perform more detailed, contextual, schedule analysis based on the availability of recovery options for the
agent and the possibility of failure at key points. This analysis is more expensive, but, in some situations,
the added expense is warranted. For example, the process of determining a schedule for an agent controlling
a world-class telescope does not have to be particularly timely, as the instrument is unused during daylight
hours, but evening observation time is too valuable to waste. In this situation, a detailed analysis that
considers recovery options is worthwhile.

The MDP-based optimal meta-controller considers every possible outcome of the executable action
and the implications on achieving the high level goal withinthe given criteria. Hence, while constructing
a policy, the optimal controller evaluates every potentialcritical (failure-prone) region and prescribes the
appropriate (contingent) action when necessary. It does a thorough analysis of all possible critical situations
and hence carries the overhead that goes with such an analysis. Our heuristic-based contingency analysis is
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an approximation of the optimal controller since it takes into account onlyhigh impactfailure regions and
has a relatively local view of implications of method outcomes compared to that of the optimal controller. In
Section 7, we compare the performance of the contingency enhanced DTC scheduler to that of the optimal
policy.

In this section we discuss contingency scheduling issues and formalize five different measures of sched-
ule robustness, where robustness describes the quantity of recovery options available for a given agent
schedule. In Section 7 we then present experiments comparing the use of the contingency algorithms to the
standard Design-to-Criteria agent scheduling approach.

This work in contingency analysis of schedules is closely related to recent work in conditional plan-
ning. However, the planning-centric research focuses on solving problems which involve uncertainty by
probabilistic reasoning about actions and information on the value of planning for alternative contingen-
cies [12, 25] and using utility models [17]. Other approaches use partial Markov decision processes and
decision theoretic planning approaches [4, 7] which prune the search space using domain-specific heuristic
knowledge. [31] describes a partial-order planner calledMahinur that supports conditional planning with
contingency selection. The authors concentrate on two aspects of the problem, namely, planning methods
for an iterative conditional planner and a method for computing the negative impact of possible sources
of failure. Our work addresses similar questions within theDesign-to-Criteria agent scheduling domain,
namely:

1. How can we effectively predict the performance of an agent’sschedule when there is uncertainty in
the performance of methods in the schedule?

2. What are the different approximations to the execution-time performance measure and when is a
specific approximation appropriate?

[5] discusses an algorithm for a specific domain namely a realtelescope scheduling problem where
the stochastic actions are managed by a splitting technique. Here the Just-In-Case scheduler pro-actively
manages duration uncertainty by using the contingent schedules constructed by analyzing the problem us-
ing off-line computations. Our contingency agent scheduling research differs from previous work in the
following ways:

1. The contingency analysis algorithms use the Design-to-Criteria agent scheduler to explore mainly the
“good” portions of the schedule solution space – that is those schedules that best address the agent’s
design criteria. This serves to constrain the computation and reduces the combinatorics from their
general upper bounds. More importantly, the algorithm presented here is amenable to future research
in bounding the algorithm directly, which would enable the contingency analysis approach to operate
online, as does the underlying Design-to-Criteria scheduler, making it useful for a wider range of
agent applications.

2. Contingency analysis takes place in the context of the multi-dimensional goal criteria mechanism used
in Design-to-Criteria. Thus the analysis approach is fullytargetable to different agent situations, e.g.,
situations where quality should be traded-off to obtain lower cost accompanied by a hard deadline, or
situations in which quality should be maximized within a hard deadline.

3. Our algorithm takes advantage of the structural properties of the input problem. Namely the TÆMS
task structure representation is used to constrain the analysis process and to help limit the exploration
of the search used to locate recovery options. This is in contrast to a simple exploration of all primitive
agent actions without regards for interactions or for how the actions relate to achieving the agent’s
overall goal.
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Figure 19:Gather Review Information On Adobe Photoshop – A Simplified BIG Agent Task Structure.

In Section 2, we used a simple example described in Figure 4 tomotivate the importance of uncertainty
analysis. However, the characteristics of the example and its criteria were such that there were no recovery
options possible in the event of failure of a method. We now consider another example described in Fig-
ure 19 which has the characteristics required to clearly illustrate the power of contingency analysis. In the
discussion that follows, we use the latter example to exhibit the power of our heuristic-based contingency
analysis. We show that the best agent schedule selected by the DTC scheduler has no recovery options
in the event of failure while the MDP-based optimal policy aswell as the best schedule selected by the
contingency-enhanced DTC scheduler has built-in contingencies for recovery from failure – enabling the
agent to meet its objectives even if a failure occurs.

Each task and method in Figure 19 has a concise, single alphabet name associated with it as shown.
The top-level task in Figure 19 can be achieved by either completing taskQuery-Benchin-Site, also called
task A for conciseness, successfully or executing the method Search-Adobe-URL, also called task B, or
both. If both tasks A and B are executed the maximum quality ofthese two is the quality propagated
to the parent node (per theq max() qaf). The quality, cost and duration distributions for the executable
methods denote expectations about method performance. Forinstance, the quality distribution of method
End-User-Benchmarks, also called method A1, indicates that it achieves quality value of 2 with probability
0.5, quality of 1 with probability 0.25 and 0.5 with probability of 0.25. Let’s assume the agent’s design
criteria is to maximize quality within a hard deadline of 18 minutes.

The MDP-based optimal policy for the above problem is shown in Figure 20. The policy suggests
the method sequence{FindUserReviews, UserBenchMarks, ApplyNLP}, also called A2,A1,A3, as the best
schedule when methodFindUserReviewsachieves non-zero quality and{FindUserReviews, SearchAdobeURL}
(A2,B) would be an alternate schedule in the event ofFindUserReviews’s failure to achieve quality.

The Design-to-Criteria scheduler first enumerates a subsetof the alternatives that could achieve the
agent’s high level task. A subset of these alternatives are selected and schedules are created using the one-
pass method-ordering techniques identified in Section 5. The set of candidate schedules are then ranked
using the multi-dimensional evaluation mechanism [40] which compares the schedules’ statistical attributes
to the agent’s design criteria.

We will use the termexpected lower bound(ELB) to denote a slightly modified schedule utility rating
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Figure 20:Optimal Policy for BIG’s Gather-Review-Information-on-AdobePhotoshop Task Structure

returned by the standard Design-to-Criteria scheduler. Inthe ELB computation, the standard utility value
associated with the schedule is computed without the relative scaling components discussed in Section 5.1;
this enables comparison between the ELB for a schedule belonging to one set, e.g.,S1, and a schedule
belonging to a different set,S2. For the purposes of illustration simplicity, we will discuss the ELB in this
document as being directly related to the expected quality of a given schedule, i.e., in this document, the
ELB is the expected quality of a given schedule assuming no rescheduling. In terms of the design criteria
described in Section 5.1, this is equivalent to a preferencefor maximizing quality within a given deadline
– no weight or value are given to any of the other criteria dimensions. The algorithms presented in the
following sections operate on more interesting criteria settings, but, the analysis is more easily understood if
the metrics are cast in terms of expected qualities rather than a multi-dimensional objective / utility function.

A1 (UserBenchMarks) A2 (FindUserReviews) A3 (ApplyNLP) Frequency Quality
50% 2 25% 0 nil 5%*25%=12.5% 0.0
50% 2 75% 3 90% 4 33.75% 2.0
50% 2 75% 3 10% 0.5 3.75% 0.5
25% 1 25% 0 nil 6.25% 0.0
25% 1 75% 3 90% 4 16.875% 1.0
25% 1 75% 3 10% 0.5 1.875% 0.5

25% 0.5 25% 0 nil 6.25% 0.0
25% 0.5 75% 3 90% 4 16.875% 0.5
25% 0.5 75% 3 10% 0.5 1.875% 0.5

Figure 21: Expected Lower Bound (ELB) Computation of Schedule {A1,A2,A3}. Each row represents a
possible permutation of the quality distributions of methods A1, A2, A3 in schedule{A1,A2,A3}. The first
three columns represent the possible expected quality values achieved by each of the methods A1, A2, A3.
The fourth column shows the probability of the particular quality distribution combination occurring and the
last column shows the final expected quality of the schedule.

For the example in Figure 19, the two possible agent schedules are{A1,A2,A3} (UserBenchMarks,
FindUserReviews,ApplyNLP) and{B} (SearchAdobeURL). Figure 21 describes the computation of the ELB
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for the schedule{A1,A2,A3}. Consider the first entry in the table. It describes the case when method A1
achieves a quality of 2, which occurs with a probability of 0.5 as described in the TÆMS task structure.
Method A2 achieves a quality of 0 with probability 0.25.16 The probability of the methods achieving these
qualities in a single execution is 0.125, given in column 4. The expected quality of the schedule{A1,A2,A3}
is 0 in this case, described in column 5. The duration and costdistributions and their expected values are
computed in a similar fashion. The ELBs for schedules{A1,A2,A3} and{B} are as follows:

1. {A1,A2,A3}: ELB: 0.97 (Expected Quality)
Quality : (25% 0.0) (24% 0.5) (17% 1.0) (34% 2.0)
Duration : (100% 18)

2. {B}: ELB: 0.6
Quality : (20% 1) (80% 0.5)
Duration: (80% 6) (20% 8)

Since{A1,A2,A3} has the highest ELB (indeed, the highest rating using the standard normalized utility
functions), it is chosen for execution by the agent. SupposeA1 executes successfully, but A2 fails (i.e. it
results in 0 quality), which it does 25% of the time. Then the agent cannot execute A3 because it is not
enabled (A2 failed) but there is also not sufficient time leftfor the agent to reschedule and attempt method
{B} (method B cannot be executed before the deadline).

Because of the one-pass low-order polynomial method sequencing approach used by the scheduler to
control scheduling combinatorics, the standard Design-to-Criteria agent scheduler will only produce one
permutation of the methods A1, A2, and A3. However, if the scheduler did produce multiple permutations,
the schedules{A1,A2,A3} and{A2,A1,A3} would receive the same expected lower bound value. Hence
the contention is that there is no difference in performancebetween the two. However with more detailed
evaluation of the schedules, it is clear that{A2,A1,A3} allows for recovery and contingency scheduling
which schedule{A1,A2,A3} does not permit for the given deadline. If{A2,A1,A3} is the schedule being
executed and A2 fails, there is time to schedule method{B} and complete task TG1. This clearly implies that
schedule{A2,A1,A3} should have a better expected performance rating than{A1,A2,A3} as the schedule
{A2,A1,A3} includes the recovery option from failure in its structure.

6.1 Critical Task Execution Regions and the Approximate Expected Upper Bound

In our example, task A2 has an enables non-local effect as well as a 25% chance of failure within its
distribution. We hence predict that task A2 could potentially be acritical task execution region(CTER).
A CTERis a method that has the potential to seriously degrade the performance characteristics17 of the
overall schedule if it should fail. We will use the termapproximate expected upper bound(AEUB) to denote
the expected quality of schedules that are computed with theCTER’s criticality removed. The AEUB is
defined formally in the next section – the discussion here is intuitive. Removing the possibility of failure in
the AEUB enables us to better understand the implications ofthe potentialCTERon the rest of the agent
schedule. For this example, let us remove the failure possibility from the performance characterization of
A2 and replace method A2’s 25% chance of quality 0 with the expected value of the distribution. Method
A2 hence is assigned a quality of 3, with a probability of 1, i.e. for method A2, Q (100% 3). The Design-

16Failure of A2 (where quality= 0) results in zero quality for the schedule due to the way in which the task structure is defined,
i.e., underqmin() qafs, failure results in zero quality for the parent task as well. Hence the quality of A3 is a not a determining
factor and is represented by nil.

17A method could have uncertainty in its performance characteristics but this uncertainty might not affect the method’s outcome
significantly. We restrict our classification of methods as CTER’s to those which have the most impact to the schedule performance
under limited duration constraints.
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Figure 22:Schedule Options for IG Task (Figure 19) where Ratings are Expected Qualities

to-Criteria scheduler is reinvoked with the modified agent task structure and rescheduled. The following are
the AEUBs (expected qualities that result with the possibility of failure removed) returned by the scheduler.

1. {A1, A2success, A3}: AEUB 1.29
Quality : (32% 0.5)(23% 1.0)(45% 2.0)
Duration: (100% 18)

2. {B} : AEUB 0.6
Quality: (20% 1) (80% 0.5)
Duration: (80% 6) (20% 8)

The new AEUB statistic describes performance expectationsif failure is not possible. The relationship
between the AEUB and the ELB is a clue to the importance of the potentialCTERto the overall schedule.
In this case, the schedule{A1,A2,A3} now has an expected quality value of 1.29. The1.29−0.97

0.97 ∗ 100 = 33
% improvement in quality with respect to the ELB is significant. This 33% improvement in quality confirms
that the possibility of failure in method A2 significantly decreases the rating of schedule{A1,A2,A3}. The
next step is to consider the optional schedules for the original task structure to neutralize the effect of this
CTER.

The tree structure in Figure 22 presents all possible scheduling options, including recovery scenarios,
that meet the agent’s hard deadline of 18 minutes. From this diagram, we see that schedule{A1, A2, A3}
does not have an option to reschedule and still meet the deadline if method A2 fails. Thus we con-
sider a simple reordering of schedule{A1, A2, A3} which is {A2, A1, A3}. To assess the effects of the
agent rescheduling when A2 fails on this schedule{A2,A1,A3}, we combine the ratings for schedules
{A2success, A1, A3} and{A2failure, B} based on their likelihoods of occurrence. So a schedule starting
with A2 gets a rating of75100 ∗ 1.29 + 25

100 ∗ 0.60 = 1.1175. We use a similar analysis to get the values of
schedules starting with A1= 75

100 ∗ 1.29 + 25
100 ∗ 0 = 0.9675 and B= 1 ∗ 0.60 = 0.60 This type of schedule

evaluation is what we call theapproximate expected bound(AEB), which is formally defined in the next
section. Note that with this detailed analysis it is clear that schedule{A2, A1, A3} has better expected per-
formance than{A1, A2, A3}. However, the ELB computation of the Design-to-Criteria scheduler returns
an identical ELB for both{A1, A2, A3} and{A2, A1, A3} as it does not take into account the recovery op-
tions present within{A2, A1, A3}. This leads us to believe that the ELB perhaps is not the most appropriate
performance measure for all task structures, particularlywhere hard deadlines or cost limits (in contrast to
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soft preferences) are important to the agent and failure is possible.
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Figure 23: Performance of Expected Lower Bound and Approximate Expected Bound Selected Schedules

Figure 23 illustrates this concept. The figure contains two histograms, one displaying the quality that
results from the agent executing the highest rated scheduleproduced by the standard DTC agent scheduler,
namely{A1, A2, A3}, and one displaying the quality that results from executingthe modified schedule
{A2, A1, A3}. The results are presented in a left to right fashion. In eachcase the chosen schedule was
executed 100 times in an unbiased simulation environment inwhich the execution results are determined by
sampling from the distributions associated with the given methods.18 Recall that the standard DTC agent
scheduler will give these schedules identical ratings as itdoes not consider recovery options. The execution
results are consistent with the claim that the schedules arenot actually equivalent. The schedule produced
by the standard scheduler fails to generate quality about 20% of the time and the mean resultant quality
is 0.98. In comparison, the reordered schedule never produces a zero quality result, as it leaves time for
recovery, and its mean resultant quality is thus significantly higher, namely 1.96. In broad terms, this means
the schedule selected for the agent by DTC will leave the agent without a result (without achieving its goal)
20% of the time because DTC does not consider contingencies in its analysis.

6.2 Performance Measures

In this section we formalize a general theory relating to theagent contingency planning concepts discussed
in the previous section. The question we strive to answer formally here is the following:What performance
measure is the most appropriate estimator of the actual execution behavior of an agent schedule given the
possibility of failure?Our basic approach is to analyze the uncertainty in the set ofcandidate schedules to
understand whether a better schedule can be selected or an existing schedule can be slightly modified such
that its statistical performance profile would be better than that normally chosen by the Design-to-Criteria

18This is in contrast to other experiments done with the scheduler, not included in this work, in which the environment is biased
in some way or in which the agent sees an imperfect orsubjectiveview of someobjectivetask structure.
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scheduler. We accomplish this analysis through the use of several performance measures. As mentioned
earlier, contingency planning is a heuristic approach. Thus these performance measures are approximations
of an optimal policy computation. Prior to presenting the measures, a few basic definitions are needed:

1. An agent schedule s is defined as a sequence of methods(m1, m2,..mn−1, mn).

2. Each method has multiple possible outcomes, denotedmij , wherej denotes thej’th outcome of methodmi.
This is part of the TÆMS definition of methods or primitive actions. Though the examples generally present
methods as having quality, cost, and duration distributions, methods actually may have sets of these distributions
where each set is one possible outcome. For example, if method m may produce two classes of results, one
class that is useful by methodm1, and one class that is useful by methodm2, methodm will have two different
possible outcomes, each of which is modeled via its own quality, cost, and duration distributions. Additionally,
these different outcomes will have different non-local effects leading from them to the client methods,m1 and
m2 respectively.

3. Each outcome is characterized in terms of quality, cost, and duration, via a discrete probability distribution for
each of these dimensions and each outcome has some probability of occurrence.

4. mcr
ij is aCTERwhen the execution ofmi results in outcomej which has a value or set of values characterized

by a high likelihood that the schedule as a whole will not meetits performance objectives. For instance,mij is
a CTER if the probability of the quality ofmij being zero is non-zero.

5. A schedules could have zero, one or more CTER’s in it. A general representation of such schedule with at least
one CTER would bescr = (m1, m2,..m

cr
ij ..mcr

kl ...m
cr
no..mn−1, mn).

6. f cr
ij

19 is the frequency of occurrence ofmi’s , j’th outcome wheremij is a CTER.

7. mcr
i is mcr

ij with its current distribution being redistributed and normalized after the removal of its critical
outcome. In other words, the criticality ofmcr

ij is removed and the new distribution is calledmcr
i .

8. If scr = (m1.., mi−1, m
cr
ij , mi+1, .m

cr
kl ..m

cr
no..mn−1, mn.), then

scr
i = (m1.., mi−1, m

cr
i , mi+1, ..m

cr
kl ..m

cr
no..mn−1, mn.)

scr
k = (m1.., mi−1, m

cr
i , mi+1, .m

cr
k ..mcr

no..mn−1, mn.) and

scr = (m1.., mi−1, m
cr
i , mi+1, .m

cr
k ..mcr

n ..mn−1, mn.)

The five statistical measures that aide in detailed scheduleevaluation are:

Expected Lower Bound (ELB) The expected lower bound rating, of a schedules, is the performance mea-
sure of a schedule execution without taking rescheduling into consideration [41]. It is a expected rating
because it is computed on a statistical basis taking quality, cost and duration distributions into account,
but ignoring the possibility of the agent having to reschedule. As mentioned previously, in this paper,
to simplify presentation of the algorithms we will concentrate on the case in which the ELB is only the
expected quality of a given schedule. In the general case, the ELB is the utility value generated by the
computations presented in Section 5.1 with the relative scaling aspect of the computation removed.

Approximate Expected Upper Bound (AEUB) The AEUB is the statistical schedule rating after elimi-
nating all regions where agent rescheduling could occur. The assumption is that there are no failure
regions and hence the schedule will proceed without any failures and hence no rescheduling will be
necessary. The following is a formal definition of AEUB:

19fij is the statistical expectation that a methodmis jth outcome would occur. This can be a local or non-local method owned by
another agent. In a cooperative setup, it can be expected that it is the responsibility of the agent owning the method to provide the
correct estimates offij for all its mij ’s. This will involve inter-agent communication and sometimes thefij estimates by non-local
agents could be in error due to rescheduling. However, it should be noted that the contingency analysis is done offline andthus
provides only an expected estimate of the performance.
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Supposemcr
ij is a CTER in the agent schedules = (m1..mn) and it occurs with frequencyf cr

ij . Let
scr
i = (m1,m2..m

cr
i ..mn).

If
ELB(scr

i
)−ELB(s)

ELB(s) ≥ α, thenmij is a CTER, whereα is a percentage value that determines when
a region should be classified aCTERand thus a candidate for more detailed analysis. The value
of α is contextually dependent and should be specified by a scheduler client (another agent control
component or a human). For instance, if saving on computational expense is more important to the
client than high certainty,α should be high, and thus the threshold forCTERclassification is also
high. However, if certainty is paramount, thenα should be low, indicating that any significant change
in the ELB should be explored.

For our information gathering example, we see thatELB({A2,A1,A3})−ELB({A2,A1,A3})
ELB({A2,A1,A3}) ≥ 0.3. Hence

there is at least an 30% increase in the schedule rating if thelikelihood of failure of A2 is removed.

When this computation is done on an entire schedule for all ofits CTER’s, we call it the Approximate
Expected Upper Bound. Generalizing this formula for kCTER’smi1j1...mikjk

,

AEUB(s) = ELB(m1...mi1−1,m
cr
i1

..mcr
i2

.......mcr
ik

...mn).

The AEUB is thus the best rating of a schedule on an expected value basis without any rescheduling
by the agent.

In contrast, the optimal policy describes the next best action based on the execution characteristics
of the last action taken. Hence rescheduling is built withinthe policy and failure regions are are not
ignored in the state expansion. Hence the performance characteristics of the optimal policy is more
exact than the ELB and AEUB.

Optimal Expected Bound (OEB) The OEB is the schedule rating if rescheduling were to take place after
the agent performs each method. So the first method is executed by the agent, a new scheduling
subproblem which includes the effects of the method completion is constructed and the scheduler is
re-invoked. The first method in this new schedule is then executed by the agent and the steps described
above are repeated. Hence the optimal20 schedule is chosen at each rescheduling point. For complex
task structures, the calculation would require a tremendous amount of computational power and it is
unrealistic to use it for measuring schedule performance ina real or deployed agent system.

ELB(s) ≤ OEB(s) ≤ AEUB(s), since theOEB(s) is based on recovery from a failure while
AEUB(s) assumes no failure.

Since our MDP based optimal policy does not suffer from instantiation effect(possible negative influ-
ence by the choice of the initial method for execution), the performance characteristics of the optimal
policy should be the same as that of the OEB.

Expected Bound (EB) Let me
ij be the set of actual quality, cost, duration values when method mij is ex-

ecuted by the agent. After each method execution the schedule is re-rated. If for some schedules
= (m1,m2..mi..mn) ,andELB((m1...mn)) ≫ ELB((me

1j ,m
e
2k...m

e
il,mi+1..mn)), i.e. the actual

execution performance of a schedule is below expectation, then a new schedule is constructed based
on the partially complete schedule{me

1j ,m
e
2k, ...me

il}.

20“Optimal” in this case is meant in a satisficing fashion. In the context of Design-to-Criteria, the “best” agent schedulefor a
given task structure is not guaranteed to be optimal as the combinatorics prevent an exhaustive search. As it is used here, optimal
means the best possible agent schedule within the space searched by Design-to-Criteria.
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So the EB is the schedule rating when rescheduling occurs only when there is a possibility for the
partial execution of the current schedule will fail to meet expected criteria as a result of the outcomes
of methods already executed. This computation, like the OEB, will require extensive computational
power. So,ELB(s) ≤ EB(s) ≤ OEB(s) ≤ AEUB(s).

The optimal policy generated by the MDP based method inherently handles small effects(accumulation
of below expectation performance) and instantiation effects. Hence the policy’s performance measure
will be as good as if not better than that of the EB.

Approximate Expected Bound (AEB) It is the schedule rating with rescheduling only atCTER’sand
using expected lower bound of the new stable schedule for methods following theCTER. This is
limited contingency analysis atCTER’s.

Consider a schedules of n methodss= (m1,m2..mi..mn). Now supposemij is a CTERwith a
frequency of occurrence offij . In order to compute the AEB of the schedule, we replace the por-
tion of the schedule succeedingmcr

ij , which ismi+1,mi+2, ....mn by li+1, li+2......lk if there exists a
li+1, li+2......lk such that

ELB(m1...m
cr
ij , li+1...lk) ≥ ELB(m1...m

cr
i ,mi+1...mn).

The Approximate Expected Bound for this instance is computed as follows:
AEBij(m1, ....mn)=ELB(m1...m

cr
i ,mi+1..mn)∗(1−fij)+ ELB(m1..m

cr
ij , li+1..lk)∗fij . The new

schedule rating thus includes the rating from the original part of the schedule as well the ELB of the
new portion of the schedule. This is basically the calculation described when the AEB was introduced
in a previous section.

Now we describe the general case scenario. Letm1,m2,m3, ...mi...mn be a schedules of n methods
with k CTER’snamedmcr

i1j1
,mcr

i2j2
...mcr

ikjk
. Let the recovery path available at eachCTERmcr

ij besr
ij

and eachmcr
ij occurs with frequencyf cr

ij . The AEB of the entire schedule is described recursively as
AEB = ELB(m1...m

cr
ij , l1, ...lk) ∗ f cr

ij + AEB(m1...m
cr
i ,mi+1, ...mn) ∗ (1 − f cr

ij ) which can be
expanded out as follows:

AEB = f cr
i1j1

∗ ELB(m1...mi1−1,m
cr
i1j1

, la1...lb1)

+(1 − f cr
i1j1

) ∗ f cr
i2j2

∗ ELB(m1...m
cr
i1

...mcr
i2j2

, la2...lb2)

+ ...(1 − f cr
i1j1

) ∗ ... ∗ (1 − f cr
ik−1jk−1

) ∗ f cr
ikjk

∗ ELB(m1...m
cr
i1j1

...mcr
i2

...mcr
i3

...mcr
ikjk

, lak...lbk)+

(1 − f cri1j1) ∗ (1 − f cr
i2j2

) ∗ ... ∗ (1 − f cr
ikjk

) ∗ ELB(m1...m
cr
i1

...mcr
i2

...mcr
ik

...mn)
︸ ︷︷ ︸

AEUB

The above computation produces an approximate measure since we use the
ELB(m1..mij, li+1..lk). A better and more exact computation would be to use the
AEB(m1..mij , li+1..lk). So if we recursively refine theELB(m1..mij , li+1, ..lk), the schedule rat-
ing approaches the expected bound(EB). Thus, the deeper the recursion in the analysis ofCTER’s,
the better the schedule performance measure and the closer it is to the actual performance measure
when rescheduling occurs. This describes the potential anytime nature of the AEB computation. Thus,
EB(s) ≥ AEB(s) andAEB(s) ≥ ELB(s).

The optimal policy takes into account not only the robustness of the schedule being executed but also
that of the contingent schedules. The AEB if modified to reschedule at critical regions and uses the
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AEB of the new stable schedule instead of the ELB would have a performance measure equivalent to
that of the optimal policy.

Here we would like to add that all computations above are based on heuristics and hence are approxima-
tions including the OEB and EB. We could define AEUB’,OEB’,EB’, AEB’ and ELB’ which would involve
complete analysis of all paths by the scheduler. The resulting agent schedules would display higher perfor-
mance characteristics and meet goal criteria better but will also be computationally infeasible to generate
[41].

6.3 Rescheduling and Recovery Algorithms

In this section, we describe a generic algorithm, based on the above analysis, that produces a more precise
performance evaluation of schedules when uncertainty is present in the schedule, using the theory described
above.

6.3.1 Algorithm for building stable schedules

The following is a formal description of the algorithm whichchooses the agent schedule that provides the
best performance guarantee statistically:

1. Letsb = (m1,m2,m3, ...mi, .mn) be the best schedule returned by the Design-to-Criteria scheduler
for a given task structure, i.e., the schedule selected for execution by the agent.

2. Suppose the scheduler evaluatesk schedules to decide which is the best schedule, wheresk =
(mk

1 ...m
k
n) and let S be the set of allk schedules.

3. sb has the highest ELB inS.

4. LetSrem = S − sb. ThenELB(sb) ≥ ELB(s) for all s ∈ Srem .

5. LetSb
rem be the set ofs ∈ Srem such thatAEUB(s) ≫ ELB(sb). If Sb

rem 6= φ, then we compute
theAEB(s) for eachs ∈ Sb

rem

⋃
sb.

6. The new best agent schedulesb
aeb is the one with with the highest AEB.sb

aeb is more robust where
schedule robustness as defined earlier, is a characteristicof a schedule in which the schedule allows
for the agent to recover from execution failure of one of the scheduled actions.

6.3.2 Identifying CTER’S

The AEB is a better estimate than the ELB when there is uncertainty in the agent’s schedule, i.e., there
areCTERs in the schedule and there is a possibility for contingency plans. Earlier we definedCTERs as
those regions in the schedule which could potentially lead to degradation in the expected performance and
examinedCTERs in the context of method failure. For example, method A2 hasa quality distribution of
(25% 0)(75% 3) – the 25% chance of failure makes it a candidateCTER. Other factors that may be used to
determine whether or not a method is aCTERinclude:

1. Significant variance in the quality distribution: For methods with a single outcome, we look for vari-
ance in the quality distribution of the method with respect to the expected values and evaluate if this
variance may critically affect the performance of the schedule.
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2. Importance of Non-Local Effects: Certain methods may affect overall schedule performance indi-
rectly via interactions with other tasks. For example, a given method might produce a result that has
very little quality, but, a result that is needed by otherconsumermethods in the task structure. The
failure of such a method may not impact overall quality directly, but, indirectly by preventing the
performance of the consumer methods. Methods from which interactions originate, or from which
importantinteractions originate, may also beCTERs.

3. Relationship between Non-Local Effects and outcomes: For methods with multiple outcomes, the
variance in the quality distribution is evaluated for each outcome, as above. Additionally, any non-
local-effects that are tied to particular outcomes must be examined for their importance to the over-
all task structure. When scheduling, each outcome has some probability of occurrence. Thus the
scheduler reasons from the perspective ofall outcomes occurringwhere thelikelihood of occurrence
determines the probabilities associated with non-local effects originating from particular outcomes;
the uncertainty associated with the non-local effects is then propagated to the rest of the structure. To
evaluate whether or not a particular method may be aCTERin this context requires the evaluation of
each outcome and then some measurement of the probability ofthe outcome versus the implications
of the outcome. The thresholds involved are an area of current work.

4. Small effects: HeretoCTERdetection has focused on the criticality of individual methods. However,
it is possible for a series of low frequency failures to be spread across several methods in such a
way that no single method is aCTERbut that the cumulative effects of the failures are equivalent
to a standard, localized,CTER. This cumulative aggregation ofsmall effectsis potentially equally
important as method-specific failure points because the contributing methods may be supported by
recovery options as well. The OEB and EB computations in factconsider cumulative small effects of
method performance because they entail rescheduling afterevery method execution, in the case of the
OEB, and in the case of an envelope being violated in the case of the EB. The issue of what constitutes
aCTERof this class and how to detect suchCTERs is an area of future research.

6.3.3 Method reordering

Earlier, we noted that the AEB evaluation, unlike the ELB evaluation, views permutations of the same set
of methods as different schedules. We saw that while one permutation{A2,A1,A3} permitted a contingent
schedule, the other{A1,A2,A3} did not. We describe below two types of method reordering within an agent
schedule:

Simple reordering: Consider a schedules = {m1,m2,m3, ..mi, ...mn} . Supposemi is a CTER.
Then if the AEB computation is unable to find a contingent schedule for the agent in case of failure of
mi, we will automatically try to movemi ahead in the schedule without affecting any of the non-local
effects such as enables or facilitates. So ifmi can be moved ahead ofm3 without affecting any non-local
effects (enables or facilitates), we get a new schedules′ = {m1,m2,mi,m3, .....} and we reevaluate the
AEB rating. Our example uses simple reordering i.e. A2 can bemoved ahead of A1 and a contingent
schedule can be obtained. However A3 cannot be moved ahead ofA2 since the enabling relationship has
to be preserved. This type of reordering is always advantageous since no task interactions are lost by the
reordering. The contingency analysis algorithm in this paper considers the impact of moving only one CTER
ahead at a time.

Complex reordering:Consider the schedules again but supposemi−1 facilitatesmi, which is aCTER.
Also suppose we are unable to find a contingent schedule in case mi fails. Here, we would try to move
methodmi forward in the schedule, by ignoring the facilitates and evaluate if the AEB rating of the new
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schedule justifies the loss of the facilitates. This type of reordering is not always advantageous since the
performance gain achieved by it may or may not make up for the cost involved in the detailed analysis.

6.3.4 Better redundancy estimation

The relationship between the redundancy techniques employed in the main scheduler process and the recov-
ery options explored in this secondary contingency analysis is not obvious. With respect to the redundancy
techniques, contingency analysis yields better estimators of agent schedule performance because it factors
in the probability that recovery options will be needed, andthe probability that they will not be needed. In
contrast, the redundancy techniques employed by the main scheduler conceptually assume either failure or
success from a duration perspective, not the probability ofeither. Consider Figure 12 from Section 5. The
standard scheduler may produce the schedule (A2, B1, B2) that contains embedded redundancy, as well as
schedule (A2, B1). The schedules represent two extreme endsof the performance spectrum, one in which
B1 is assumed to succeed and one in which B1 is assumed to fail.In the first case, the probability that B1
may fail is reflected in B1’s expected quality and thus in the quality distribution of the schedule. However,
the fact that if B1 fails, B2 must be employed, is not reflectedin the quality or duration distributions of
the schedule. In contrast, in the latter case, the assumption is that both B1 and B2 will be executed and
the quality and duration distributions of the schedule reflect this. The extra time required to execute B2 is
actually built-in to the schedule.

Regardless of whether or not B2 is actually executed, the schedule (A2, B1, B2) is evaluated on the
assumption that B1 fails and B2 is required. This results in an over estimation of the time (and/or cost) that
is generally required to obtain a result. In actuality, (A2,B1) will suffice 75% of the time and B2 will be
required as a recovery option only 25% of the time. The exploration of this scenario via the AEUB and AEB
computations correctly view these different possibilities from a probabilistic perspective and does not suffer
from the over-statement problem of the main scheduler. The over estimation problem of the (A2, B1, B2)
schedule is important because it may cause the main scheduler to select a different schedule for the agent to
perform, i.e., it is more than a poor estimate, it may send thescheduler (and thus the agent) down the wrong
path entirely. The stronger contingency analysis approachyields much better estimates and consequently
leads to better decisions about which schedule(s) for the agent to execute in these cases.

An interesting extension of the evaluation in our example isto look at schedules that are produced
to resolve uncertainty which in some cases instead of assuming success, assumes failure. Suppose in the
Information Gathering example the results of task B is a subset of the results of task A, if task A is executed
successfully. In other words the search at the Adobe site will provide only redundant information, if the
Benchin site has been successfully queried by the agent. Letus assume that the agent’s new criteria is to
maximize quality, a soft duration deadline of 18 minutes anda hard duration deadline of 25 minutes.

The Design-to-Criteria scheduler would then present the agent schedule{A2,A1,A3,B} as it would have
the highest ELB. So if A2 fails, execution of B would ensure that the high level goal is achieved. But the
ELB computation doesn’t assume rescheduling if A2 succeedswhich eliminates the need to execute method
B. We knowELB({A2, A1, A3, B}) would never be better thanELB({A2, A1, A3}) if A2 succeeded
because method B is redundant and its only effect is to increase the duration of the schedule which decreases
the ELB rating. In general, if the ELB criteria attaches any significance to the duration of the schedule, then
the removal of actions from the schedule due to the results ofprior actions making this action redundant will
always increase the ELB rating.

The AEB calculation for agent schedules that have built-in contingencies, both successful and failure
action evaluation has to be modified. Normally, contingencyanalysis is done for the failure region. In
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this case where the contingency schedule for failure is a subset of the existing schedule, one needs to do
contingency analysis for both success and failure possibilities. We extend the formula described in the
definition of AEB. Lets = m1,m2...m

cr
ij , k1, ..kp, l1, ..lq,mi+1..mn be a schedule s of n methods with a

critical regionmcr
ij which occurs with frequency of failuref cr

i . Let the recovery path available at critical
regionmcr

ij be l1, l2...lq and suppose its a subset ofk1, k2..kp wherek1, k2..kp produces quality only ifmcr
ij

succeeds and the quality produced byl1, l2...lq is independent of the success ofmcr
ij . The AEB of the entire

schedule is described recursively asAEB(s) = (1 − f cr
1 ) ∗ AEB(m1,m2...m

cr
i , k1, ..kp,mi+1, ..mn) +

(f cr
1 ) ∗ ELB(m1,m2..m

cr
ij , l1..lq,mi+1...mn)

So in scheduleA2, A1, A3, B, the exact evaluation of the schedule would be one which takes both
A2success and A2failure into consideration. If A2 is successful, then the methods related to failure of
A2 should be eliminated (method B in this case) while ratingA2success. Likewise, if A2 fails, meth-
ods associated with the success of A2 namely A1,A3 should be eliminated while ratingA2failure. So
AEB(A2, A1, A3, B) = ELB(A2successA1, A3) + ELB(A2failureB).

7 Experimental Results
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Figure 24: Sample Task Structures A and B

Using the measures described above, effective contingencyplanning is a complex process. It involves
taking into account a number of factors, including task relationships, deadlines, the availability of alterna-
tives, and agent design criteria (i.e., quality, cost, duration, and certainty trade-offs). In this section, we
evaluate the performance of the contingency analysis toolsby comparing them to the standard Design-to-
Criteria agent scheduler. Comparison is done by examining the Expected Lower Bound (standard scheduler
metric) and the Approximate Expected Bound (contingency analysis metric) and comparing schedules se-
lected on the basis of these metrics to the actual results obtained by executing the schedules in a TÆMS agent
simulation environment. As part of the evaluation process,we have partially determined the characteristics
of task structures and design criteria that indicate a problem instance for which contingency planning is
advantageous. In this section, we define the characteristics and explain why they affect performance.
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Fail N.H valid T.S. Contingency Normal Perf. OEB
Lo In count count A.Q. F.R. R.C. A.Q. F.R. R.C Impr.
E M 8 2 0.73512 0/200 72 0.63041 0/200 0 14.24% 0.75227
M M 8 2 0.70125 2/200 64 0.63883 0/200 0 8.89% 0.71222
La M 8 2 0.79936 21/200 100 0.66246 38/200 48 17.12% 0.84531
M L 10 0 0 0 0 0 0 0 0% 0
M M 8 2 0.70125 3/200 64 0.63883 0/200 0 8.89% 0.71222
M H 10 0 0 0 0 0 0 0 0% 0

Col. # 1 2 3 4 5 6 7 8 9 10 11 12

Figure 25: Fail Lo is the failure location;Fail In is failure intensity;N.H. valid countis number of task
structures that fail to produce results for the contingencyand standard agent scheduler cases that are statis-
tically significantly different;T.S. countis number of task structures whose performance qualities will be
compared;Contingency A.Q.is average, normalized quality of AEB selected schedule;Contingency F.R.is
the failure rate is number of times AEB selected schedule fails to achieve any quality;Contingency R.C.is
the reschedule count which is the number of times the AEB selected schedule reschedules due to failure of
a method to achieve quality.Normal A.Q. is average, normalized quality of ELB selected schedule;Normal
F.R. is the number of times ELB selected schedule fails to achieveany quality;Normal R.C.is the number
of times the ELB selected schedule reschedules due to failure of a method to achieve quality.Perf. Impr
is the average improvement in performance of contingency analysis over normal scheduling.OEB is the
average, normalized quality of AEB selected schedule.

The experiments in this section were conducted by randomly generating task structures while varying
certain characteristics. Intuitions of which characteristics would lead to structures that are amenable to
contingency analysis were used to seed the search for interesting test cases. Since method failure is a crucial
factor for the contingency analysis argument, the generation of task structures was designed to concentrate
on the variance of two factors, namely, the effects of failure location and failure intensity (probability of
failure) within a task structure. Figure 24 shows two such randomly generated structures. In other words,
ten task structure classes or prototypes were produced randomly and then these structures were modified to
vary the probability of method failure and to vary the location of the method failure within all possible agent
schedules. The latter is accomplished via non-local effects and sequencing-related quality accumulation
functions that force particular actions to be carried out atparticular points in any schedule including the
actions.

The design criteria in these experiments is to maximize quality given a hard deadline on the overall
schedule. This simple design criteria setting is one that lends itself to contingency analysis as the existence
of a hard deadline (in contrast to a soft preference, e.g., soft deadline) may preclude agent recovery via
rescheduling in certain circumstances. Because of the harddeadline, a poorly chosen initial schedule may
not leave time for the agent to deploy recovery options and thus the normal Design-to-Criteria scheduler
may fail to produce results in situations where contingencyanalysis has planned for the recovery scenario
and chosen an initial schedule accordingly.

The results for the experiments are shown in Figure 25. For each task structure instance, 100 simulated
executions were performed using the agent schedule with thehighest Expected Lower Bound(ELB) and with
the schedule having the highest Approximate Expected Bound(AEB), i.e., the best agent schedule selected
by the Design-to-Criteria scheduler was executed a 100 times and the best schedule selected by (or generated
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by, in the case of method movement) contingency analysis wasexecuted 100 times. Each row in the table
indicates a different(failure location, failure probability)parameter setting for the ten task structures; each
row is also an aggregation of results for the ten task structure instances. In other words, each row represents
data from an aggregate view where the ten task structure classes have been modified in a certain way to
produce ten task structure instances. Of the two factors used to differentiate the task structures in each row,
failure location (Lo) (found in the first column of the table)refers to the position of critical method(s) in a
task structure and hence in the schedule. Failure intensity(In) (second column) refers to the probability of
a method failing. Three different classifications of failure location are used in the experiments: early(E),
medium(M), and late(La). Similarly, three different settings for failure intensity are used in the experiments,
namely, low(L), medium(M) and high(H) where low is 1%-10% probability of failure, medium is 11%-40%,
and high is 41%-90%.

For each problem instance, the execution results produced by the AEB selected schedule were compared
to the results for the ELB selected schedule via statisticalsignificance testing. The third column,N.H. valid
count, identifies the number of problem instances for which the null hypothesis of equivalence could not
be rejected at the .05 level via a one-tailed t-test. In otherwords,N.H. valid countidentifies the number
of experiments for which the results produced via AEB are notstatistically significantly different from
the results produced by the ELB. These experiments are omitted from subsequent performance measures.
Generally these are instances where the schedule selected by both methodologies are the same, indicating a
lack of many appealing options that may serve to lure the standard Design-to-Criteria scheduler away from
the schedule that also happens to have recovery options associated with it. The elimination of many of the
task structures is evidence that it is difficult to pre-determine whether contingency planning is expedient for
a certain task structure.

The fourth column indicates the number of task structures ofthe ten possible whose data is compared.
These are task structures that led to schedules for the ELB case and the AEB case that produced execution
results that are statistically significantly different, i.e., the null hypothesis of equivalence was rejected at the
.05 level. The remaining columns compare the AEB and ELB selected schedules’ execution results for the
these task structures from an aggregate perspective.

Columns five and eight, titledContingency A.QandNormal A.Q.respectively, show the mean, normal-
ized quality that was produced by the AEB and ELB selected schedules respectively. In other words, the
best schedule per the AEB metric was selected and executed inan unbiased simulation environment, when
failure occurred the scheduler and contingency-analysis tools were reinvoked and a new schedule generated
that attempted to complete the task. The resultant quality was measured and recorded and the experiment
repeated 100 times. The same procedure was done for the ELB selected schedule, though when reschedul-
ing occurred, the contingency analysis tools were not invoked (nor were they invoked in the production
of the initial schedule). The overall maximum quality produced by either the AEB or the ELB simulation
runs was recorded and all resultant quality then normalizedover the maximum, resulting a quality value
that expresses the percentage of the maximum observed quality that a given trial produced. This procedure
was then repeated for the other task structure that producedstatistically significantly different results, and
the normalized quality values averaged. Thus, the 0.73512 A.Q. from the first row of Table 25, column
four, indicates that contingency analysis yielded schedules that produced approximately 74% of the maxi-
mum observed quality on average. Column seven indicates that the standard Design-to-Criteria scheduler
produced approximately 63% of the maximum observed quality, on average, for the same set of task struc-
tures. Thus, contingency analysis yielded a 14.24% percentage increase in resultant quality over the standard
Design-to-Criteria scheduler, as shown in column 11.

Columns six and nine show the number of times a given selectedschedule failed to produce any result
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for the agent within the given deadline for the AEB and ELB cases respectively. It is interesting to note
that the contingency selected schedule failed to produce a result with somewhat greater frequency for rows
one and five. This is because both the contingency selected schedule and its recovery option had some
probability of failure, though, we do not actually considerthe failure rate in these cases to be statistically
significant. The failure rate in row three illustrates the classic case in which recovery before the deadline is
often not possible for the schedules chosen by the standard Design-to-Criteria scheduler, whereas it is more
often possible for the schedules selected by contingency analysis.

Columns seven and ten show the number of times rescheduling was necessary during execution. These
results are somewhat counter intuitive as the contingency analysis selected schedules generally resulted in
more agent rescheduling during execution due to failure. This is because the contingency analysis tools
explore the possibility of recovery and do not seek to avoid the failure in the first place. Relatedly, because
the contingency analysis considers the existence of recovery options, it may actually select a schedule more
prone to initial failure than the standard Design-to-Criteria scheduler because the schedule has a higher po-
tential quality. For example, say two scheduless1 ands2 have the following respective quality distributions:
q1 = (25% 0)(75% 10) andq2 = (50% 0)(50% 14). The expected value ofs1 is 7.5 whereas the expected
value ofs2 is 7. The standard scheduler will prefers1 over s2 because it has a higher expected quality
value (assuming that the goal is to maximize quality within agiven deadline). However, the contingency
analysis tools might actually prefers2 overs1 if there are recovery options, e.g.,s3 for s2, becauses2 has
the potential for a higher quality result thans1. If s3 has a quality distribution likeq3 = (100% 7), then
thes2 / s3 recovery scenario has a higher joint expected quality than doess1 alone. Associating a cost with
rescheduling in the contingency algorithms could modulatethis opportunistic risk-taking type of behavior.
If a cost were associated with rescheduling, the utility of arecovery option could be weighted to reflect such
a cost.

The last column shows the mean normalized Optimal Expected Bound(OEB) of the AEB selected sched-
ule. This is the measure where rescheduling is invoked afterevery method execution irrespective of the
execution outcome. It describes the optimal performance ofa schedule since the best possible path is se-
lected every step of the way. The quality value shown is the average of 100 executions of the OEB schedule,
normalized by the maximum observed quality over all the AEB selected and ELB selected schedules’ ex-
ecutions. The OEB is higher than bothContingency A.Q.as well asNormal A.Q.for each class of task
structures. This is as it should be, as the OEB is a computationally intensive performance measure which
strives to obtain the optimal schedule at every point of the plan.

Irrespective of rescheduling, in general, for the task structures that lead to statistically significantly
different results, contingency analysis produced agent schedules that yielded higher average quality than
did the standard Design-to-Criteria agent scheduler. However, as illustrated by the large number of task
structures that lead to results that were not statisticallysignificantly different, very few of the candidate task
structures were suitable for contingency analysis (about 20%).

Let us now step back from the aggregate view and compare contingency analysis to the standard Design-
to-Criteria scheduler from a detailed perspective. Figure26 shows a TÆMS task model on which both the
standard scheduler and the contingency analysis tools wereused. The expected and actual performance of
the schedules produced by contingency analysis and normal scheduling techniques are described in Table
27. The design criteria is again to maximize quality within ahard deadline of 18 minutes.

The agent schedule selected by the contingency tools, basedon the AEB, is{M9,M2,M4} which has
an ELB of 472.94, an Approximate Expected Upper Bound(AEUB)of 506.9, and an AEB of 494.21. The
CTERin this schedule isM9 becauseM9 has a 20% probability of failure. Because the top-level quality
accumulation function is asum(), and because there are no task interactions, the failure ofM9 is localized

48



S

q_sum()

q_max() q_max()

T1 T3

q_max()

M3

T2

M4

Q ((70% 230)

D (100% 5.0)

Q ((90% 190)Q ((80% 210)

C (100% 4.0)
D (100% 5.0)

(20% 180))

C (100% 4.0)

  (30% 190))   (10% 175))
D (100% 2.0)
C (100% 4.0)

Q ((70% 150)
  (30% 163))

D (100% 7.0)

Q ((95% 135)
  (5% 130))

D (100% 3.0) D (100% 2.0)

M6 M8 M9

C (100% 4.0) C (100% 4.0) C (100% 4.0)

Q ((50% 129)
  (40% 118) (10% 0))

D (100% 4.0)

Q ((80% 135)(20% 0)) 

C (100% 4.0)

M2M1

Sample Task Structure-3.

Figure 26: Task Structure C

entirely atM9. This also means that a failure ofM9, or for that matter the failure of any individual method
within a schedule, will not preclude achieving some qualityat the top-level taskS. The contingent schedule
is {M8,M2,M4}, whereM8 is the recovery option for methodM9. The two schedules considered by the
contingency tools are hence{M9success,M2,M4} and{M9failure,M8,M2,M4}.

The agent schedule selected by the standard scheduler, based on the ELB, is{M2,M4,M8} which
has an ELB of 484.2. The schedule is processed by the contingency analysis tools only to compute the
contingency related metrics so that the schedules may be compared. The AEUB of the schedule is 494.72
and its AEB is 474.89. During the contingency analysis of this schedule, the“move CTER forward”heuristic
movedM8 forward to pull the critical region closer to the front of theschedule to leave more time for
recovery. Thus, the scenarios considered when computing the metrics are:{M8success,M2,M4} and
{M8failure,M2,M4,M9}. Regardless of the results of this analysis, the original schedule produced by
the scheduler, and selected on the basis of the ELB, namely{M2,M4,M8}, is the schedule subsequently
executed by the agent.

The quality achieved by the contingency selected schedule,that having the highest AEB{M9,M2,M4},
after 100 simulation runs is 502.5 which is higher than the 494.7 achieved by the best ELB schedule
{M2,M4,M8}. Because{M9,M2,M4} has a higher probability of failure, the schedule failed over twice
as often as did the schedule selected on the basis of its ELB. This risk-taking behavior is again because con-
tingency analysis revealed the existence of a good quality recovery option forM9, namelyM8, and that
sufficient time existed to recover from a failure ofM9. Thus, the best schedule from a quality perspective
is one that includes the riskierM9 but also considersM8 in the failure case as a backup. In comparison,
the standard DTC agent scheduler does not consider the existence of recovery options and thus it made its
choice based on expected quality alone. It is interesting tonote that the ELB performance estimate for both
schedules is below that which actually resulted from execution and recovery. This is related to the risk-
taking behavior of the contingency analysis tools – the standard scheduler does not consider the existence of
recovery options nor their value to the selected schedule. Thus the fact that whenM8 fails, there is actually
a probability of obtaining even a higher quality result by recovering and employingM9 is completely lost
on the scheduler and not reflected in the ELB computation. This example illustrates the difference between
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the statistical, but local or single-schedule view employed by the Design-to-Criteria scheduler and the more
accurate, contextual view, generated by performing contingency analysis on the schedules produced by the
scheduler.

Schedule Analysis Schedule Produced ELB AEUB AEB Resched count Actual Quality
Contingency {M9, M2, M4} 472.94 506.9 494.21 23 502.35

Normal {M2, M4, M8} 484.2 494.72 474.89 12 495.13

Figure 27: Performance Information For Task Structure C

We now evaluate the performance of the contingency analysisalgorithm by comparing it to the perfor-
mance of the optimal agent control policy produced by the MDP-based meta-control system. The experi-
ments in this section were performed on the same 8 task structures whose rating of schedule with highest
Approximate Expected Bound(AEB) were found to be statistically significantly higher than the schedule
with the highest Expected Lower Bound(ELB). The design criteria is to maximize quality within a given
deadline.

The results of our experiments are shown in Figure 28. For each of the task structures, we computed
the average quality achieved by the schedule with highest ELB, schedule with highest AEB and the optimal
policy over 100 simulations. Rescheduling in the event of failure within the deadline is permitted. For each
task structure, the qualities achieved in all three cases were normalized by the actual ELB estimate21 of the
highest rated ELB schedule for that task structure.

The row namedDTC shows the normalized average quality of the schedules with the highest ELB for
each task structure. In six of the eight cases, the estimatedELB (with no rescheduling) is equivalent to the
actual ELB, since there were no reschedulings in those six cases. There is a slight improvement in perfor-
mance in the 2 cases when there is rescheduling. However, this observation cannot lead to the generalization
that rescheduling leads to improved performance. The performance of the schedule with recovery from fail-
ure does not necessarily have to be better than that of the original schedule with no failure. Also if there is a
cost associated with rescheduling, the option with failurerecovery and higher quality becomes less desirable
than the option with no failure and lower accrued quality. The row namedContingencyin the middle shows
the normalized average quality of the schedules with highest AEB for each task structure, with rescheduling
in the event of failure. In all eight cases, the quality is higher than the estimated ELB as well as the actual
average ELB value. The row namedOptimal shows the normalized average quality of the optimal policy
and in all eight cases it is better than the DTC scheduler (with and without rescheduling).

For each task structure, it can be observed the Performance(optimal controller)≥Performance(contingency
enhanced scheduler)≫ Performance(normal scheduler with rescheduling on failure)≥ Performance(normal
scheduler with no rescheduling on failure).

The above experimental results leads to the following performance characterization of the various sched-
ulers for a certain class of task structures/problems when the agent is situated in mission-critical environ-
ments or application areas [30], i.e., they have critical task execution regions and are constrained by hard
deadlines and mid-stream schedule failure could lead to catastrophic system-wide failure.

1. The performance of the contingency-enhanced DTC agent scheduler is significantly greater than the
standard DTC scheduler.

21This is the statistical measure computed by DTC’s rating mechanism and it assumes no rescheduling. This is in contrast the
actual qualities achieved by the schedule with highest ELB during simulations, which allow for rescheduling in the event of failure.
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TaskStructure # 1 2 3 4 5 6 7 8
DTC 0 0 0 0 1.28 1.28 0 0

Contingency 1.06 1.25 1.07 1.02 1.38 1.3 1.08 1.2
Optimal 1.13 1.36 1.4 1.07 1.38 1.46 1.16 1.36

Figure 28: Normalized Average Quality (NVA) of DTC, contingency enhanced DTC and Optimal Selected
Schedules relative to estimated highest ELB for the task structure

2. The performance of the contingency-enhanced DTC agent scheduler is in some cases (e.g., task struc-
ture 5) equivalent to the performance of the optimal policy.

3. It is advantageous to reschedule in the event of failure aslong as the overhead associated to reschedul-
ing is minimal.

Based on the results presented here, it is possible to characterize the types of task structures that are
amenable to contingency analysis, i.e., those for which analysis of recovery options is beneficial from a
cost/benefit perspective. The general characteristics include:

1. Methods in agent task structures should have a possibility of failure in their distribution. Contingency
analysis is worth the associated computational overhead only if there is a possibility of failure of the
current schedule to meet the high-level goal due to individual method failure. If the performance of
the best schedule is deterministic, contingency analysis is dispensable.

2. Task structures should contain alternate paths. The absence of of possible recovery paths in the face
of failure also makes contingency analysis dispensable.

3. Task structures should contain alternate paths with someoverlapping structure (preferably in the initial
stage) and with significant performance differences. For instance, suppose a task structure has a path
{A,B,C,D} with high potential quality but also a high risk of failure due to either C or D, and another
path to reach the same high-level goal, namely{A,B,E,F,G}, has low quality, low duration but has
no possibility of failure. The presence of an alternate path{E,F,G} that achieves some quality and
takes advantage of the successful work already done is akin to the conceptual notion of a “quick and
dirty” approach to problem solving. The existence of these types of methods provide the contingency
planning approach with a recovery option that is usable evenin tight resource situations.

4. A possibility of moving failure methods forward (absenceof associated hard non-local effects) would
further the potential of contingency analysis, i.e., structures in which there is some flexibility in terms
of method placement within a schedule. If methods have strong precedence and succession constraints
by way of enables non-local effects, and the failure points are in the latter portion of the schedule, then
there is little possibility of finding good recovery optionsfor failure within the resource constraints.

5. Dependence of methods with good average performance on critical methods (enables non-local effect
from a critical method to a non-critical method). Extensivecontingency analysis is required only if the
critical regions affect the rest of the schedule significantly. Otherwise, a cheap local fix by replacing
the critical method by a more stable method or just adding a redundant (contingent) method within
the criteria requirements is a better choice than contingency analysis.

The following are the characteristics of the design criteria which augments contingency planning.
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1. The agent goal criteria could specify a hard deadline, andemphasis should be given to either the qual-
ity or duration slider. The hard deadline and other such hardresource constraints voids the possibility
of simply rescheduling at failure points and instead requires off-line contingency analysis.

2. The deadline should also provide enough time for contingency analysis, if the scheduling cost is
factored into the equation. Regardless, the deadline must provide sufficient time for recovery options
to be deployed otherwise the existence of such options is meaningless. In these cases, the contingency
analysis tools must resort to the same single-pass execution view that is used in the main Design-to-
Criteria scheduler.

8 Conclusions and The Future Role of Uncertainty

We have shown that dealing with uncertainty as a first class object both within the agent scheduling process
and via the secondary contingency analysis is beneficial. The addition of uncertainty to the TÆMS mod-
eling framework enables them to more accurately model a wider range of agent problem solving process.
The uncertainty enhancement is leveraged ubiquitously by Design-to-Criteria agent scheduling to reason,
from a probabilistic perspective, about the performance characteristics of the agent’s primitive actions and
task interactions. Including explicit models of uncertainty improves the scheduling process not simply by
increasing modeling power, but also by increasing the representational power of all the computations in the
scheduling process. As discussed in Section 5.3, the probabilistic models occasionally lead to significant
increase in scheduling time, but, even with the loss of the independence assumption, improvement of com-
putation accuracy outweighs the associated computation costs. Better models and a richer computation that
leverages the models leads to better agent control in general.

As discussed in Sections 5.1 and 5.2, integration of uncertainty in the agent goal or design criteria
specification enables agents or agent clients to describe the relative importance of certainty, and uncertainty
reduction, to a particular application. Integration of this metric into the utility calculations that govern
scheduler problem solving enables the scheduler to evaluate quality, cost, duration and quality-certainty,
cost-certainty, and duration- certainty trade-offs of particular courses of action for the agent. This integra-
tive approach enables agents to specify a the balance between uncertainty reduction and the other utility
metrics, i.e., uncertainty reduction does not dominate theproblem solving processunlessso specified. The
integration and use of uncertainty in the main Design-to-Criteria scheduling process provides a means for
reasoning about, and working to reduce, uncertainty withinthe confines of addressing soft real-time schedul-
ing deadlines and other real performance constraints present in deployed agent systems (i.e., online agent
control for dynamic environments).

The secondary contingency analysis procedures presented in Section 6 step outside of this context to
perform a more detailed analysis of schedule performance based on the existence of recovery options. Since
the algorithms explore the agent’s schedule recovery spaceusing the Design-to-Criteria scheduler, they still
exhibit a satisficing, approximate, resource conservativenature. It is interesting to note that even the coarse
analysis performed in the Approximate Expected Bound (AEB)and Approximate Expected Upper Bound
(AEUB) computations is beneficial to the agent in certain circumstances. Future efforts in contingency
analysis will involve explicitly bounding and controllingthe complexity of the contingency analysis process
to make it more suitable for online agent control.

Intertwined with this research objective is the ability to classify particular problem solving instances.
From the experiments performed in Section 7, it is clear thatcertain classes of task structures are more
amenable to contingency analysis than others. Contributing factors include the location of the failure point

52



and the number and quality of recovery options available. These task structures exhibit mission-critical
properties i.e. they have critical task execution regions and are constrained by hard deadlines and mid-
stream schedule failure could lead to catastrophic system-wide failure. Given the ability to classify task
structures, an input task structure could be examined to determine 1) whether or not contingency analysis
should be performed and 2) if the analysis should be performed, how deep the algorithms should search
when exploring recovery options. In some cases, deep exploration may not be fruitful and in others, it may
be critical to the agent.

Another area of future exploration in contingency analysislies in the determination of critical regions,
critical task execution regions (CTERs), within agent schedules. One aspect of this is determining CTER
status based on the existence and types of task interactions. Another aspect is in the determination ofCTER
status by examining the cumulative or aggregation of low frequency failures in methods. The algorithms
discussed earlier focus on alocal determination of criticality, that is, as being localized in a given method.
However, it is possible that low frequency failures spread across multiple methods may also result in a critical
region within a given agent schedule. Thissmall effectscondition may also benefit from the existence
of recovery analysis and contingency planning. Another related area is that of dynamically re-evaluating
the CTERstatus of methods. In this work, we considered only static critical task execution regions i.e.
the identification of critical task execution regions is independent of the progressive results of schedule
execution. However, as execution unfolds, methods that arenot critical to begin with may become more
important. In general, changing context is handled by the agent rescheduling, however, envelopes or triggers
could be specified and examined incrementally during execution, akin to [1]. Understanding the relationship
between more interesting or diverse criteria settings and the contingency analysis is also an area of future
work; though results suggest that contingency analysis hasbenefits beyond the hard deadline (or hard cost)
scenarios. For example, in some instances, contingency analysis leads to results in less time as the failure
points appear earlier in the schedule.

Related to the issue of envelopes is caching the recovery options explored and identified during contin-
gency analysis. As the recovery options are explored from a statistical perspective, where primitive actions
have ranges of characteristics, it is not immediately clearthat storing the recovery options and deploying
them automatically in the case of failure is a good solution.This is somewhat related to the issue ofsmall
effectsdiscussed earlier in that during actual agent execution, values are produced and while a single value
may not fall outside of a conventionally generated rescheduling envelope (e.g., reschedule if results are not
within 25% of the trimmed mean), the cumulate effects of the results may lead to different recovery options
being more desirable in the event of a failure. Because the DTC agent scheduler and contingency analysis
tools reason about non-local effects from a probabilistic perspective, these aggregation effects may be even
more pronounced than thesmall effectsdealt with inCTERdetermination (as theCTERcomputation uses
the same probabilistic view used in the rest of the schedulercomputations).

In the current implementation, the cost of an agent rescheduling is considered to be a small overhead
and the costs associated with rescheduling are effectuallyignored. This has proven effective in practice and
schedule times tend to be less than one percent of total system execution time. However, we are currently
exploring the implications of scheduling in environments where the rescheduling cost is non-trivial. In such
situations, interesting techniques like including slack time in schedules or viewing a schedule as partially-
ordered set of methods (rather than a linearly ordered set ofmethods) may be appropriate.

Another area of future uncertainty-related work in Design-to-Criteria scheduling involves leveraging the
uncertainty-enhanced TÆMS models in multi-agent scheduling and coordination. In multi-agent systems
the scheduler is typically coupled with a multi-agent coordination module that forms commitments to per-
form work with other agents; local concerns are thus modulated by non-local problem solving. Uncertainty
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in this context could be used to reason about the utility of the commitments made with other agents and
to understand how the uncertainty about commitments made byother agents affects local problem solving
[47].

We also plan to look into more efficient methods for determining the optimal policy in the MDP frame-
work. Previous research in the area has shown that the stochastic nature of some MDPs has important
consequences for complexity and not all MDPs are equally difficult to solve. Classification of task struc-
tures to help pre-determine the complexity of the MDP would be useful in deciding whether to use the
heuristic scheduler or MDP-based optimal controller for specific problems. We also plan to evaluate policy
performance by applying existing approximation techniques (fastǫ-approximation algorithms and Marko-
vian chains) which trade-off solution accuracy for time.
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