Modeling Uncertainty and its Implications to
Sophisticated Control in TEMS Agents

Thomas A. Wagner
Defense Advanced Research Projects Agency
3701 North Fairfax Drive, Arlington, VA 22203
Tom.Wagner@darpa.mil

Anita Raja
University of North Carolina, Charlotte
9201 University City Boulevard, Charlotte, NC 28223
anraja@uncc.edu

Victor R. Lesser
University of Massachusetts at Amherst
140 Governor’s Drive, Amherst, MA 01003
lesser@cs.umass.edu

February 2, 2006

Abstract

Open environments are characterized by their uncertaimtyren-determinism. Agents need to
adapt their task processing to available resources, deeglithe goal criteria specified by the clients
as well their current problem solving context in order tovewg in these environments. If there were
no resource constraints, then an optimal Markov Decisiaté&ss based policy would obviously be the
best way for complex problem solving agents to make scheguéecisions. However in many agent
systems, these scheduling decisions have to be made oarlinesoft real-time, making the off-line
policy computationally infeasible in open environmentfieThybrid planner/scheduler used to control
TAEMS agents is the Design-to-Criteria (DTC) agent schedubesign-to-Criteria scheduling is the
soft real-time process of custom building a plan/scheduleméet an agent’s current objectives which
are expressed as dynamic goal criteria (including read-tii@adlines), using task models that describe
alternate ways to achieve tasks and subtasks. Recent advenBesign-to-Criteria control include
the addition of uncertainty to the T/EMS computational taglideis analyzed by the scheduler and the
incorporation of uncertainty in the scheduling processwa&show, the use of uncertainty in TAEMS and
Design-to-Criteria enables agents to make better con&wiktbns in uncertain environments. Design-
to-Criteria uses a heuristic approach for on-line schaduif medium granularity tasks. It approximates
the analysis used to generate an optimal policy by heualticeasoning about the implications of
uncertainty in task execution.

The addition of uncertainty has also spawned a post-scimgdudntingency analysis step for situa-
tions in which an agent must produce a result by a given deatiieadline critical situations) and where
the added computational cost is worth the expense. We #edbe uncertainty representation in TEMS
and how it improves task models and the scheduling procedgravide empirical examples of reason-

1

ing about uncertainty in action. We also evaluate the peréorce of our heuristic-based approach to
agent control using the performance of the policy generayetth optimal controller as the benchmark.

1 Introduction

It is paramount for agent-based systems to adapt to the dgsawh open environments. Agents need
to adapt their task processing to available resources,lideadthe goal criteria specified by the human
clients or other internal agent control components as vkell tcurrent problem solving context in order
to operate effectively in these environments. They alsa ieetake into consideration the uncertainty
inherent in task processing when deciding which tasks towggeand in what order. An agent in this case
is intelligent or a complex problem solvehat explicitly represents and reasons about its plangresgt
and how its tasks/plans interact with those of other agdntserder to adapt its processing and respond to
change, operating effectively in these environments, andigent needs a complex control problem solving
component, e.g., a planner/scheduler, to decide what tat apould do, and when. The control problem
solving process is exponential for complex agents and doatptl by the existence of task interactions
(primitive actions may not be independent) and by the ex¢gteof global and individual constraints on the
primitive actions (individual deadlines, cost limits, kest start times, and quality requirements).

If there were no resource constraints, then computing amaptontrol policy that takes into account
the end-to-end view and uncertainty in action outcome, daldviously be the best way to make these
control/scheduling decisions for complex agents. We canptte this optimal policy by formalizing the
control problem as a Markov Decision Process (MDP), a fraonkwvidely used for stochastic planning
in artificial intelligence [7, 3, 37, 8]. A stochastic plangi problem includes operators (or actions) that
transform a state into one of several possible succesdesstaith each possible state transition occurring
with some probability. A solution is usually cast in the fooha mapping from states to actions called a
policy. A policy is executed by observing the current state taking the action prescribed for it. Computing
the optimal policy is an exponential problem and would imeobff-line analysis. However in our research
with deployed multi-agent systems, these control/sclieglecisions have to be made with respect to the
current set of goals, some of which may be generated as & oésnleracting with other agents, and their
associated objective functions and resource constrdiatate dynamically constructed based on the current
agent state. This, in combination with a dynamic and opeit@mwnent, where agents may enter or leave the
system, uncertainty is high, information is incomplete mp@ximate, the agent is pursuing multiple goals
concurrently and the achievement of each goal involves atmal multi-step plan, causes the on-line
production of an optimal policy for an MDP to be computatibnhanfeasible.

In this paper, we present extensions to TAEMS [10, 20] agéatsadld uncertainty to both the TAEMS
task modeling framework and the associated Design-t@@i{DTC) [32, 41, 44] technology that handles
control in TAEMS agents. We describe how uncertainty is useddentify how we leverage the represen-
tation of uncertainty in agent control. We then develop asdary contingency analysis step for agents
situated in time and mission critical environments and berark the contingency analysis step against
(optimal) MDPs to assess performance and computatiorde-#s.

This paper is structured as follows. In Section 2 we desdtieeT/AEMS task modeling framework
and Design-to-Criteria scheduling and also discuss treablincertainty in this scheduling paradigm. In
Section 3 we discuss the addition of uncertainty to the T/A84R tnodels. In Section 4 we describe how
the TAEMS task network can be mapped to a finite-horizon Mabesision Process and the optimal policy
is computed. Section 5 discusses how uncertainty is inedjend leveraged in the main Design-to-Criteria
scheduling process. In Section 6 we step outside of the nthiedsling process and discuss secondary

2

contingency analysis methodology that uses Design-ttefaito explore uncertainty and the ramifications
of schedule failure. Experimental results illustrating gtrength of contingency analysis, relative to Design-
to-Criteria’s myopic view, for certain classes of agenktsisuctures are provided in Section 7.

2 Background

2.1 TAEMS Modeling Language

TAMS (Task Analysis, Environment Modeling, and Simulaticna domain independent task modeling
framework used to describe and reason about an agent’s [@ngpoblem solving processes (see Fig-
ure 2). TAEMS models are used in a wide range of agent reseasjgtis and applications, including, the
BIG information gathering agent [28, 29], the intelligemnhe (IHome) [26], dynamic supply chain man-
agement [43], aircraft repair team coordination [42], rilisited sensor management [21, 18], distributed
hospital patient scheduling [9], GPGP coordination [2gem diagnosis [19], the SRTA (soft real-time
agent architecture) [18, 38], and work in multi-level negtidn in software agents [48], among others.

Typically in TAEMS agents (see Figure 1) a problem solvereggnts domain problem solving actions
in TEEMS, possibly at some level of abstraction, and thengsati®e TAEMS models on to agent control
problem solvers like the GPGP multi-agent coordinatiorherDesign-to-Criteria scheduler modules.

TAMS models are hierarchical abstractions of agent probl@wmng processes that describe alternative
ways of accomplishing a desired goal; they represent maghstand major decision points, interactions be-
tween tasks, and resource constraints but they do not dedbti intimate details of each primitive action.
All primitive actions in TAEMS, calleagnethodsare statistically characterized in three dimensionslityua
cost and duration. Quality is a deliberately abstract daAradependent concept that describes the contri-
bution of a particular action to overall problem solving.uBhdifferent applications have different notions
of what corresponds to model quality. Duration describesaimount of time that the action modeled by
the method will take for the agent to execute and cost desgtibe financial or opportunity cost inherent
in performing the action. With the recent addition of unagrty modeling, the statistical characteristics
of the three dimensions are described via discrete pratyaHdiktributions associated with each method.
The uncertainty representation is also applied to taskaot®ns like enablement, facilitation and hindering
effectd. Thus agents may not only reason about the certainty ofrestig., “method A will fail 10% of
the time,” but also with respect to the interactions, e H0% of the time facilitation will increase the quality
by 5% and 90% of the time it will increase the quality by 8%,tdahe joint of these two. (Since interac-
tion effects are dependent on the quality of the originatdhe effect.) The quantification of methods and
interactions in TAEMS is not regarded as a perfect sciencek Jaucture programmers or problem solver
generatorestimatehe performance characteristics of primitive actions. sSEhestimates can be refined over
time through learning [24] and agents typically replan aagthedule when unexpected events occur.

2.2 Design-to-Criteria Scheduling

Design-to-Criteria [32, 41, 44] traces its ancestry to theab of Design-to-Time [15, 16, 13] scheduling and
to research in flexible computation [22] and anytime al¢poni [6, 33, 49, 51]. Design-to-Criteria is related
to Design-to-Time in that both scheduling methodologiesdomain independent, operating on an abstract

!Facilitation and hindering task interactions model sdfitienships in which a result produced by some task may beftugal
or harmful to another task. In the case of facilitation, thistence of the result, and the activation of the non-loffalce generally
increases the quality of the recipient task or reduces gsaoduration.

3

model of a particular problem solving process; more impulyaboth methodologies entail selecting from
alternative ways to perform tasks, where each way has €iffgperformance characteristics, in order to
construct custom schedules for a particular situationigbe®-Time focused on quality and time trade-offs
and building schedules to meet particular deadlines. Trease flexibility, Design-to-Criteria instead builds
schedules that trade-off quality, cost, duration, ancagest in each of these dimensions, to meet a particular
set of design criteria, in addition to meeting deadlines atfer hard resource constraints. In the spirit of
flexible computation, Design-to-Criteria also uses thaglé-off analysis to control the scheduling combina-
torics throughout the scheduling process, rather than astapgpoduction schedule selection mechanism as
in Design-to-Time 2

The control aspects of this work fall into the general areffesdble computation [22], but it differs from
most flexible computation approaches in its use of multipkghmods for task achievement (one exception
is [23]), in its first class treatment of uncertainty, andt® ability to use uncertainty information in the
selection of methods for execution. Much work in flexible goration makes use of anytime algorithms
[6, 33, 49], algorithms that always have an answer at handpasdlice higher quality results as they are
given more time, up to a threshold. The TAEMS multiple methaggfsroach can model any activity, includ-
ing anytime algorithmy that can be characterized statistically and we place nsta@ints on the statistical
behavior of the activities in question. In our work, uncertg is a first class concept that both appears in
the statistical descriptions of the available methods amutopagated and related as schedules and schedule
approximations are generated. Unlike most work in anytilgerdhms that focuses on the propagation of
uncertainty [50], we can also include uncertainty and uaggly reduction in the goal criteria and focus
work on reducing uncertainty when important to the agentis &bility stems from our task model’s rep-
resentation of alternative ways to perform various taskescaBise multiple-methods often exist to perform
tasks, we can reason about the quality, cost, duration, ace@riainty trade-offs of different actions when
determining which actions to perform, achieving the bestjge overall results.

Recent research has advanced Design-to-Criteria and TAgEI® aontrol in three primary areas: re-
fining the goal directed criteria mechanism and trade-offlymis process, improving the quality estimates
associated with final schedules, and the addition and iocatipn of uncertainty in the scheduling pro-
cess. In this paper, we focus on the uncertainty aspect ofememt work, though we point out other
advances along the way. The approximate, trade-off behafitbhe agent scheduling algorithm is presented
in [41, 45], along with identification of sources of comphgxihat pose significant obstacles to generating
real-time agent schedules and doing so on-line or in sofftirea.

The central problem solving artifact of this work is the Rgsto-Criteria scheduler. DTC is a heuristic
approach for on-line planning/scheduling of medium grarityl tasks. The DTC scheduling problem differs
from more traditional scheduling problems in that DTC desmthichtasks to perform as well aghento
perform them where this decision process is based on resaueilability, the agent’s goals and objectives,
and other constraints like interactions between tasks askl deadlines/earliest-start-times. As implied,
DTC'’s function is to handle the control decision making émmplex problem solving agengsmd more
specifically, for complex problem solving agents that reesoout the world using the TAEMS task modeling
framework.

A prototypical TAEMS agent architecture is shown in Figurdrithe prototypical architecture, DTC

2In Design-to-Time, schedule production is designed to peedan assortment of schedules, via a fixed set of heuristics,
gardless of the design criteria. In Design-to-Criteriagvenpossible, all computation is directed at producing deles, partial
schedules, and schedule approximations that meet thendediigria, thus resulting in a larger set of high quality exthles from
which to choose the “best” schedule to execute.

3Though if all actions were anytime algorithms, there arédbatays to frame and perform the scheduling task[2].

4

Produces
Design-to-Criteria Schedule Uses Problem Solver

Scheduler N Exchange
eSChedule g [Execution Subsystem Domain
€quests o2 Information

| 1
~— Execution Monitor <<{ —|- - - - - - =

Task Structure Key:
and Problem Solvgr
% % Client Goal Criteria State Information
]
Task Assessor
Exchange
3 Short-term / Data Flow
Meta-level
Non-Local Undates GPGP Information
Commitment P Coordination |<- - - - - - - - - - - - - -[- = - - — - — - |- - - — - — =

DB Module c
: g \]
@ 2
“1 8
Agents Organizational
Belief DB Knowledge

Figure 1:Prototypical TAMS Agent Architecture

receives domain models (translated into TAEMS) from a domaiblem solving component. These models
typically identify the agent’s candidate tasks and thegrelteristics, as well as resource constraints and
temporal constraints. DTC also receives from either thealomroblem solver or a human providing direc-
tion to the agent a description of the agent’s objective tion¢ e.g., is it in a hurry, is it trying to maximize
quality, is it trying to reduce uncertainty, etc. From the@Pcoordination component, DTC will receive
what-if questions as well as constraints to consider wheida® on control for the agent such as com-
mitments made to other agents to perform some task (podsitdpme time or not before some time) and
commitments received from other agents (deals they have togorovide service to the local agent). The
temporal and resource constraints of these commitmentaeiared into DTC's planning/scheduling pro-
cess along with the value obtained by these commitments nWiganizational level control is introduced,
the organizational module, e.g., théQ) module [39], may interact with the scheduler directly oriiadtly
by modulating the TAEMS task structures. This holds true floelowork as well, e.g., diagnosis. In general,
other sophisticated components affect the agent’s codraetion by modulating or changing the TEMS
task models that describe the agent’'s options (includingptal/resource considerations), changing the
agent’s goal criteria or objective function, and/or by ratgively driving the scheduler to explore a solution
space and then committing to a solution through the goaraibr the task models. Changes such as these
are then recognized by the scheduler and reasoned aboueveanarther control decisions are made or when
the agent’s situation changes, resulting in new domainlenolsolving options. In general, other reasoning
control components typically treat DTC as a decision makiragle. For instance, in GPGP coordination,
DTC's function is to tell the GPGP coordination module theiitations of supporting another agent’s re-
quest by identifying the change in local utility and the iropan local goals and objectives of doing work for
the other agent. In TAEMS agents, DTC is the heart of the stigdttisd control and generally the underlying
TAMS analysis expert.

To properly place the discussion, DTC'’s function is to régathe agent’s problem solving options, its
various constraints (commitments or deals made with otfpents, time deadlines, etc.) and to emit a sched-

5

ule for the agent. The schedule defines which tasks are torbmmed, when, in what order, and so forth.
This enables the agent to coordinate its activities witreotgents, to meet real-time deadlines, to meet
its goals and objectives, and to meet resource limitati@ecause TAMS agents typically operate online
in dynamic environments, unpredicted change is a commourgawe. When the situation chandethe
agent responds by rescheduling (recall, DTC also handéésslection so this is rescheduling/replanning)
and asking DTC to evaluate the current situation, the agentrent options, its time/resource constraints,
the deals made with other agents, etc., and to decide on a oansecof action for the agent. DTC is
what optimizes the activities of individual TAEMS agents Isattthey can adapt to change and meet their
objectives.

DTC is heuristic — it approximates the analysis used to gagaem optimal MDP policy by heuristically
reasoning about the implications of uncertainty in taskcatien using a less general but more compact
representation of an MDP for representing possible taskrorgs. This heuristic approach is a domain-
independent soft real-time process of finding an executath phrough a hierarchical task network such
that the resultant schedule meets certain design crigréh as real-time deadlines, cost limits, and quality
preferences. To underscore an important issue — since DT€edonling the scheduling process itself
must be fast enough for online use. Casting the languagemtrction-selecting-sequencing problem, the
process is to select a subset of primitive actions from a fstitebagent’s candidate actions, and sequence
them, so that the end result is an end-to-end schedule ofent’'sigctivities that meets situation specific
design criteria. In this model, when the action performaisaaot as expected, the scheduler is reinvoked
and it reschedules in order to find the most appropriate segu® complete the current goals. This is how
agents respond to both change in the environment and takkmpance uncertainty. The combinatorics of
the scheduling problem are controlled through the use ofcapation, satisficing, goal-directed problem
solving, and heuristics for action ordering, as discusadd1]. We return to the issue of combinatorics in

Section 5.
Build PC Product
Objects
Get Basic Producty _ _ __ _ — — —— - < Gather Reviews
Information enables q_sum()
Search & Process
ZDnet Reviews
q=18
c=$0
Query & Extract Query& Extract ~ 4= 4Imin Query & Process Key
PC Connection PC Mall Consumers Reports () Task
a= go az ;(-)65 q= %%5 [] Method
- - o
d=1.5min d=2.85min d=3.2min \ Subtask Relation
~

~a Task nle

“>~a Resource nle

Figure 2:Simplified Subset of an Information Gathering Task Struefor the BIG Agent

“When unexpected behavior occurs, it is not always necessaggchedule if methods yet to be executed can be moveddiroun
(started earlier or later than indicated on the schedul#jowi violating constraints like deadline, earliest stames, enablement
and external commitments, that are implicit in the sche{iL8§

Consider the TAEMS task structure shown in Figure 2. The tasktare is a conceptual, simplified
sub-graph of a task structure emitted by the BIG [28] infdioragathering agent; it describes a portion of
the information gathering process. The top-level task isoestruct product models of retail PC systems.
It has two subtasksGet-Basicand Gather-Reviewsboth of which are decomposed into primitive actions,
calledmethodsthat are described in terms of their expected quality,, Grsti duration. Thenablesarc
betweenGet-Basicand Gatheris a non-local-effect (nle) or task interaction; it moddig fact that the
review gathering methods need the names of products in twdgather reviews for themGet-Basichas
two methods, joined under tliesum()quality-accumulation-functiong@f), which defines how performing
the subtasks relate to performing the parent task. In trege,ceither method or both may be employed
to achieveGet-Basic The same is true foGather-Reviews The qaf for Build-PC-Product-Objects a
g-seqlast()which indicates that the two subtasks must be performedderpand that the resultant quality
of the last subtask is the quality of the parent task; thusthee nine alternative ways to achieve the top-level
goal for the agent in this particular sub-structure.

Schedule A Schedule B Schedule C
PC-Connection | Consumers-Reports | | PC-Connection | ZDnet | Consumers-Reports | | PC-Connection | ZDnet |
Expected Quality: 22.50 Expected Quality: 40.50 Expected Quality: 18.00

Expected Cost: 2.00 Expected Cost: 2.00 Expected Cost: 0.00
Expected Finish Time: 4.70 Expected Finish Time: 8.80 Expected Finish Time: 5.60

Figure 3:Different Agent Schedules Produced for Different Circuamses (Design Criteria)

Three different optimal schedules for achieving the toglleyoal of the task structure, produced for
three different sets of design criteria, are shown in Figiré&schedule A is constructed for an agent that
needs a high quality solution, requires the solution in sixutes or less, and who has a client that is willing
to pay for it. Schedule B is constructed to suit the needs afg@mt who has plenty of time, is willing to wait
for a high quality solution, and whose client is willing toypir it. Schedule C is constructed for an agent
who has neither time nor financial resources. Even this simphmple illustrates the notion of quantified
choice in TEMS and how the Design-to-Criteria methodolaygtages the quantification to build different
schedules for different contexts. However, this exampde dlustrates a weakness in TAEMS as presented
in Figure 2 — a weakness that is carried forward to the scheglprocess and consequently to the agent’s
schedules. The initial design of TAEMS included only expgetdue modeling of primitive actions and task
interactions. Subsequently, we have come to understarsirrgyth of explicit modeling of uncertainty and
the implications of these new models to the Design-to-@Gaitecheduling process. Note that in this case,
because the performance characteristics of T/ EMS methadigxes are deterministic, the optimal policy
produced by an MDP for the task network is also a simple liseaedule.

Representing and reasoning about uncertainty of task g®gaduehavior is one of the keys to schedul-
ing agent activities, modeled as computational struciundgen quality requirements and time and cost
constraints are present. Additionally, with the inclusaruncertainty modeling and propagation it is clear
that there are many different dimensions and aspects dyutilat can be used to evaluate the appropri-
ateness of agent schedules. Consider the task of gathafargnation via the highly uncertain WWW to
support a decision. Certain agent clients may prefer a rifilymation gathering plan that has a potentially
high pay-off in terms of information gathered, but also hdsgh probability of failure. Other, more risk
averse clients might prefer that the agent take a coursetiohabat results in a lower pay-off in exchange
for more certainty about the pay-off and a lower probabitityailure. Integrating notions of uncertainty in
to the schedule evaluation process is one aspect of this work

2.3 Role of Uncertainty in Design-to-Criteria Scheduling

Build PC Product

Objects Key
) () Task
q_seq_m - 1 Method
Get Basic Produ == Gather ReVieWS) \ Subtask Relation
Information enables q_sum() > Tasknle

-, Resource nle

Search & Process
ZDnet Reviews

q (10% 0)(90% 20)

¢ (100% 0)

d(30%3min) [~ 5 oo e Mone
Query & Extract Query& Extract @ 305 3} Query & Process| consumes $2 7 Resouice
PC Connection PC Mall (40% 5min) Consumers Reports ---- -~ £ ==mes
q (20% 0)(80% 10) 10% 0)(90% 8.5) q (25% 0)(75% 30) q multiplier (100% 0)

qa(
€ (100% 0).) ¢ (100% 0))) ¢ (100% $2) ¢ multiplier (x)
d (50% 1min)(50% 2min) d (10% 2min)(10% 2.5min)(80% 3min) d (90% 3)(10% 5) d multiplier (x)

Figure 4:Simplified Subset of an Information Gathering Task Struefor the BIG Agent with Uncertainty in Action
Outcomes

Figure 2 is augmented to include uncertainty in the charaet®ons of the primitive actions as described
in Figure 4. In the enhanced task structure, primitive astiare characterized statistically via discrete prob-
ability distributions rather than expected quality valu&be quality distributions model the probability of
obtaining different quality results and the possibilityfafure (indicated by a zero quality result). Note that
the expected values of these distributions are the samese ith the previous expected-value model, thus
the structures are directly comparable. The cost and duardistributions represent the different possible
costs and durations of the actions. This level of detail @awdry important when reasoning about the gath-
ering process. For example, in the enhanced model, it is tlahthe method for querying and extracting
text obtained from thé&C-Connectiorsite has a higher probability of failure than the method feerying
and extracting text obtained from theC-Mall site. In the original model, the detall is lacking and it is
impossible to ascertain which method is more likely to fail.

The agent schedules shown in Figure 5 illustrate the valuacértainty in this model from a scheduling
perspective. Schedul€ & identical to Schedule A from the expected value case (Egg2and 3), however,
with the addition of uncertainty to the model, the schedgken propagate uncertainty and create better
estimates for the performance characteristics of the stbgdNote that the quality distribution for Schedule
A’ includes a 20% chance of failure. In fact, with the additidmcertainty to the model, analysis shows
that Schedule A is no longer the optimal schedule for the tafyemose client needs a result in 6 minutes
or less and is willing to pay for it). Instead Schedule O (fF&g6) is the best choice. Even though the
PC-Connectiomethod has a higher expected value, B@Mallmethod has a lower probability of failure.
Since a failure in one of these methods precludes the erecotiQuery-Consumers-Repoifga the task
interaction), the issue of failure is not local to the methddt instead impacts the schedule as a whole.
Thus, when uncertainty is modeled and propagated duringctieduling process, Schedule O is the optimal
schedule as it has the highest net expected quality valué atill meets the agent’s deadline constraint.
In this case, Schedule O is also the optimal sequence of aetmdetermined by an optimal MDP - this

5Note that certain members of ti@nsumers-Reportaethod’s duration distribution exceed the deadline of 6utgis. In these
cases, the method’s results are considered unusable anguagity is produced by the execution. Accordingly, for temsity that
exceeds the deadline the method’s quality distributionadified to reflect the additional probability of failure cadsy exceeding
the deadline. This is discussed in greater detail in Se&idn

is because even PC-Mall fails there is no time to recover and perform an alternatehatebefore the
deadline. In other words, in this particular case, thereciadded value to exploring all possible action
sequences because of the hard deadline (Figure 8). We tettimis discussion in Section 4.

Schedule A’ Schedule O - Optimal Schedule
| PC-Connection | Consumers-Reports | | PC-Mall | Consumers-Reports |
Quality distribution (sum of TGs): (0.43 0.0)(0.57 30.0) Quality distribution (sum of TGs): (0.39 0.0)(0.61 30.0)
Expected value: 17.1 Expected value: 18.23
Probability q or greater: 0.57 Probability q or greater: 0.61
Cost distribution (sum of methods costs): (1.00 2.0) Cost distribution (sum of methods costs): (1.00 2.0)
Expected value: 2.00 Expected value: 2.00
Probability ¢ or lower: 1.00 Probability ¢ or lower: 1.00
Finish time distribution (finish time of last method): (0.45 4.0)(0.45 5.0)(0.05 6.0)(0.05 7.0) ~ Finish time distribution (finish time of last method): (0 09 5.0)(0.09 5.5)(0.72 6.0)
Expected value: 4.70 0.01 7.0)(0.01 7.5)(0.08 8.0)

Probability d or lower: 0.45 Expected value: 6.05
Probability d or lower: 0.90

Figure 5:Uncertainty Representation Changes Optimal Schedulééopgent

This example conceptually illustrates one aspect of theevaf uncertainty in the task models and in
the scheduling process — better models lead to better agjeedisles. Based on the observation that models
containing uncertainty lead to more accurate representtind facilitate deeper analysis, the TAEMS task
modeling framework was enhanced to model uncertainty atveuguality, cost, and duration characteris-
tics of tasks using discrete probability distributions. eTiodeling framework was also extended so that
nles (task interactions) are also quantified and charaetéusing the describe probability distributions. We
have augmented and extended the Design-to-Criteria slihgdiystem to leverage this new explicit rep-
resentation of uncertainty to build better custom schexdtde TAEMS agents. We have also constructed
a secondary contingency-based schedule modification dactise algorithm that may be used in certain
situations to ensure that recovery options exist if the ehaxhedule fails. Both approaches can be thought
of extending the space of options that the scheduler exangind also the analysis associated with deter-
mining the effectiveness of an option. This allows for parfance guarantees on the choice of best agent
schedule since it is more closely aligned to the sequencetioha suggested by the optimal control policy.
Uncertainty plays several roles in the agent schedulinggas

Accuracy Uncertainty modeling enables the scheduler to represehpaypagate uncertainty about tasks
and their outcomes. This results in more accurate modelsdofidual tasks, and more importantly,
more accurate models of task sequences and task intesactionontrast to reasoning from a single
expected value, this enhancement supports notions liké“8Dthe time Task A will fail and 70%
of the time it will generate high-quality results.” Becauke models of tasks, task interactions, and
sequences of tasks are more accurate, the scheduler betldsdchedules for the agent, as illustrated
by Figures 4 and 5.

Focusing Uncertainty’s second role is ifocusing;the scheduler uses the agent’'s design or goal criteria
(aka objective function) throughout the scheduling precesfocus efforts on building schedules
and partial schedules that best satisfice, from a ratiomappetive [34, 35], to meet the criteria. This
focusing behavior is what enables the scheduler to copetigtbxponential combinators and produce
results in soft real-time. When uncertainty reduction ipamant to the agent, the scheduler may
select tasks that have a high degree of certainty about #wfigal dimension(s) and trade-off utility
in other dimensions as specified by the goal criteria. Fomgae, if certainty in the quality dimension
is important to the agent relative to raw quality goodndss stheduler may trade-off high quality for
more certainty about quality when building schedules, Itiegpin schedules with lower overall quality
but higher quality certainty. In situations where a deaslinust be met, the scheduler may elect to

9

trade-off quality or even short duration, possibly in exaia for certainty about duration, producing

schedules whose durations are not as short as possiblehbsewlurations are more certain than the
schedules that have the shortest durations. These simatepbes are members of a large class of
multi-dimensional attribute trade-offs that Design-tat€ria considers when building schedules for
the agent [40, 41].

Construction The third use of uncertainty in the scheduling process mstruction when uncertainty
is important to the agent, the scheduler may take a moreecaagiproach to uncertainty reduction and
elect to use more than one way of achieving various tasksdierdo increase the certainty of results
in desired dimension(s).

Evaluation The fourth role of uncertainty is ievaluation; it enables the scheduler to evaluate quality,
cost, durationand uncertainty trade-offs when building custom schedules ¢éetrthe agent’s needs.
The addition of uncertainty to both the task model and thé/design criteria allows an agent, or its
human client, to specify how important, if at all, uncertgineduction is relative to other schedule
features like raw-goodness and threshold/limit specifiaatin each of the three modeled dimensions:
guality, cost, and duration.

Contingency Analysis The fifth use of uncertainty is in the support of secondamgtingency analysisThe
general Design-to-Criteria scheduling process is dedigmeope with exponential combinatorics and
to produce results in soft real-time. However, its somewhwbpic approximation and localization
methodologies do not consider the existence of recovelgrpr their value to the agent. In the
general case, explicit contingency analysis is not requite the event of a failure, the scheduler is
reinvoked and it plans a new course of action based on therdurontext (taking into consideration
the successes as well as the failures, considering the oahesults that been produced to the partic-
ular point). In hard deadline situations, however, the dakex may not be able to recover and employ
an alternative solution path because valuable time hasdgeaTi traversing a solution path that cannot
lead to a final solution. Our uncertainty based contingemalyais tools can help in this situation by
pre-evaluating the likelihood of recovery from a particydath and factoring that into the utility asso-
ciated with a particular agent schedule. The improved esém(based on the possibility of recovery
options) can result in the selection of a different schedpdessibly one that leads to higher quality
results with greater frequency. We return to contingen@jyeis in Section 6. Obviously, in the best
of all possible worlds, instead of generating a scheduleaie have to reschedule at failure points,
we would like to construct an optimal meta-control policyigiprescribes the next best action for
the agent to take based on performance characteristicg afidist recently executed primitive action.
For most reasonable size task structures the computabeagiead of constructing this policy online
is unrealistic. However, we would like to see how well the tompency analysis approach performs
in relation to optimal. In Section 4, we describe an apprdactconstructing such an optimal policy
from our TAEMS task graph representation.

In general, the different implications of uncertainty te gtheduling process manifest themselves in two
primary ways. One is with respect to the general schedulinggss. By integrating and leveraging uncer-
tainty within the framework of coping with combinatoricsdagenerating custom schedules, we can produce
better schedules in situations where certainty is impartsiotions of redundancy, reducing uncertainty at
schedule time, and focusing schedule generation on pnoglggrtain solutions are aspects of this facet.
The other use of uncertainty is a detailed analysis thatiderssschedule recovery options for the agent and

10

revises schedule expectations to reflect this more detaiatysis. On one hand there is the utilization of
uncertainty in the approximate, satisficing, soft realgiocomputational Design-to-Criteria framework, and
on the other hand there is an added expense, but a more thoderigiled analysis that pays real dividends
in hard-deadline situations that are accompanied by up fime for the extra analysis.

3 Extending the TAEMS Modeling Language

<Recommend a High-End PC System)

q_seq_last()
Key
O eT X Outcomes
as

Num Prod 1-4 —_—— . = — — — —p .
[] Method Build Product B jafﬂltgt_cs & hinders ~:: Make Decision
\ Subtask Relation Objects Num Prod 5-8 -
~ - .
. Tasknle Num Prod 9-12 facilitates & hinders
TR 1 q multiplier (100% +20%)
~a Resourcemie Num Prod ... d multiplier (100% +20%)

‘/ﬂe%M

Get Basic Product
Information

Gather Reviews

__ — — =

T cnables q_sum()
q_sum()
Search & Process
Query & Extract uery & Extract Search & Process PC World
Possible Maker n Q \r/z:]nderm ZDnet Reviews .40 (o)r
5% %1 q(..), d(..), c(..
40 <, () (s e().d0) dtoosity 1 "
Query & Extract Query& Extract] 4 (30% 3min) Query & Process | consames$7 % poen Y
1 ECX (30% 4min) | KUCLY & FIOCCSS) consumes 52 Resource
PC Connection N (40% 5min) Consumers Reports |« i T
fca ((%8;/3/0())()80% 8) 2 g % 8(“@/0())()90% 10) q Elzgg/g/o%g)s% 20) q mu]lttjplllier él ?0% 0)
d (50% 1min)(50% 2min) d (10% 2min)(10% 2.5min)(80% 3min) d (90%03)(10% 5) Smﬁlt‘nglllg (;(()

Figure 6:Information Gathering Task Structure Similar to that Foimthe BIG Agent

Consider Figure 6, which is a slightly more complete viewhsf information gathering task structure
introduced in Figure 2. The top-level task in this structis&ecommend-a-High-End-PC-Systend it
has two subtasks: one that pertains to finding informatia@uaproducts and constructing models of them,
Build-Product-Objectsand one for making the decision about which product to masetMake-Decision
The two tasks are governed bygaseqlast() gaf. Qafs specify how the quality of the subtasks is related a
the parent task. With recent extensions to TAEMS, gafs maysalscify orderings among the subtasks. Let
T denote a task; denote one of its children, and tetdenote the number of children @t Let ¢ denote the
quality of the item in question, e.dl} is the quality of the task and, is the quality of theith child of T'.

In TEMS, the quality of any task or method before performgocafter failure) is zero. A sampling of the
gafs defined in TAEMS includes:

e gsum T, = > 7i' ; ¢;, and any of the subtasks may be performed (power-set minutyesap) in any
order.

e gsumall: T, = >~ ¢;, and all subtasks are to be performed in any order.
e g-min: T; = min(cy,, c1,, .-, cn,) and all subtasks are to be performed in any order. Sinceski$ta

11

have zero initial quality, failure to perform a given childder ag_min() results in zero quality for the
parent task.

e g.max T, = max(co,,c1,, .-, Cn,) and any number of subtasks may be performed in any order,
though generally only one task is selected.

e gexactlyone T, = EXOR (co,, c1,, cn,) @and only one of the subtasks may be performed.
e gseq T, = c,, and all subtasks must be performed in order.

e (_seqgsum, gsegmin, gsegmax, gseqlast Theseqprefix in this case denotes sequence preference
and that all subtasks must be performed; the suffix denogefutittion to perform with the resultant
qualities, e.g.g-seqsumindicatesT, = > c;,

Recommend-a-High-End-PiS thus performed by performing each of its subtasks, inmraied its
quality is determined by th&ake-Decisiorsubtask. This models the fact that the agent’s decisionegsoc
takes into consideration the quality, coverage, and cdytaif the information used to make the decision
and reflects these attributes in the quality of its outputdidsussedBuild-Product-Objectss performed by
executing each of its child tasks, in order, and its quadityhe sum of its children’s qualities. In contraGet-
Basicand Gather-Reviewsan be achieved by performing any one or more of their resgechild tasks.
Note theenablesinteraction betweettGet-Basicand Gather-ReviewsThis non-local effect models a hard
precedence relationship between the tasks — the agent mstistiftcessfully learn about products before it
can locate reviews for them. In TAEMS, task interactions aggéred by conditions in the originator and
the effects of the interactions are reflected in the quadibgt, and duration distributions of the recipient.
With the addition of uncertainty to TAEMS, soft interactidifeets like facilitation and hindering, are also
quantified via probability distributions. Task interactsoin TAMS includefacilitates hinders bounded
facilitates enablesanddisables

Resource models are another recent addition to the TAEMS{vark. The information gathering task
structure also shows the use of a monetary resource. Resoare currently either consumable or non-
consumable (replaced after use, e.g., a network), thowghi¢harchical resource models will support further
specialization. Task resource consumption and produtisraviors are modeled in TAEMS wansumes
and producestask/resource non-local effects — these non-local effdetxribe the quantity of resources
consumed or produced by task execution. Inthe event thatiress are insufficient to meet the requirements
of a given task, the negative effects are modeled Jiends resource-to-task non-local effect that is akin
to a hinderstask-to-task non-local effect, i.e., it expresses negatimultiplier effects on the recipient's
quality, cost, and duration distributions. For a non-conahle resource, e.g., network bandwidth, where
the resource is diminished during the usage and then rettiorits initial state, the definitions for consumes
and limits are:

o A resource-centered non local effect is a function of thenfonle(M, R, t, q, ¢, d.Rquantity, P1, p2,...): [
methodx resourcex current timex method quality<x method cosk method duratiorx resource quantity
parameterk other parameter? ..] = [method qualitymethod cosk method duratiorx resource quantity |

consumes(M, R, t, q, ¢, d7 unantitya Qgquantity s A[t_ezec) =

g, ¢, d] and
unantity = unantity — Oguantity t>]V[t_ezec
Ryuantity otherwise

12

limitS(Ma R, t, q, ¢, da unantitya aquantitya Mt_emeCa ¢q7 ¢)Cv (bd) =
[q —qx* (bqa ct+cx* (bca d+dx d’d] t> Mt_emec & unan < Qquan
[q, ¢, d] otherwise

unantity

Another recent addition to TAEMS is thetcomeconstruct. Outcomes model situations in which a given
method has different classes of possible results, each ledagng its own distinct quality, cost, and duration
characteristics and possibly even its own interaction& wiher tasks. Th&uild-Product-Objectsask in
Figure 6 illustrates the outcomes constfuthe outcomes serve to indicate the number of objects geera
during the information gathering phase. Attached to eadh&de outcomes are hindering and facilitation
soft non-local effects that affect the quality, cost, andation of the decision making task. This models the
notion that the time required to make the decision increasasore products are compared, but, that the
decision process benefits in terms of quality by having mooduyrcts.

TAMS also supports modeling of tasks that arrive at pagfcpbints in time, individual deadlines on
tasks, earliest start times for tasks, and non-local tdeksé belonging to other agents). Obviously, schedul-
ing TAMS task structures is a non-trivial process. In theettgment of TAEMS there has been a constant
tension between representational power and the combic&iaoherent in working with the structure [46].
The result is a model that is rich enough to model selectegildeaif many agent domains but one that is
non-trivial to process and schedule in any optimal sense eKstence of alternatives and choices in the
models, while adding to the complexity, also facilitate iftdx and approximate processing strategies.

4 An Optimal Meta-Controller for TAEMS Task Network Scheduli ng

We define the TAEMS task network scheduling problem as a fiitezon Markov Decision Process (MDP)
which tries to maximize its expected accumulated rewardrgihe criteria (quality, cost, duration) spec-
ification. It is a finite-horizon MDP because a primitive actican be executed only once in a particular
execution path and hence there are no loops. The mapping A&MJ task structure to an MDP is fairly
straightforward since TAEMS can be thought of as a compaceseptation of a class of MDP problems.
TAMS differs in that it implicitly describes the enumerassgrch space that is explicitly described by the
MDP. From another perspective, the MDP unwinds TAEMS intatestpace — TAEMS does not represent
the actual effects of the individual alternative paths mmeglit break individual elements from quality, cost,
or duration distributions. TAMS is a specification of tagkgjr relationships, their interactions, and their
statistical characteristics. It does not carry throughinfidications of choices. The MDP framework, on the
other hand, explicitly describes each possible individexacution characteristic of each primitive action.
Additionally, TEMS specifies constraints on an orderinheathan explicitly representing the implications
of the ordering. There is no requirement of immediate prened and no constraint on immediate succes-
sion either. An MDP representation would lay out exact pidecee and succession orderings of methods
within a path in the MDP tree. Additionally, the compact pss-style representation of TAEMS is a more
natural representation of agent activity.

The translation process of a TAEMS task structure to a MDRvagdollowing a procedure which lays
out each possible execution path for achieving the ageigjfslavel goal.

5The actual information gathering task structure does rairjporate outcomes at the task level. This example is a ptuie
abstraction of the class of task structures produced bygbsts planner and is simplified for example purposes. Quésat the
task level have semantics that are difficult to specify.

13

The MDP translation is a procedure which allows for the tfamsation of a TAEMS task structuiieto
the corresponding MDRI. The state in the MDP representation is a vector which reptegshe methods that
have been executed in order to reach that state along withetkecution characteristics. The MDP action
is the execution of a particular method. MDP actions haveaues and each outcome is characterized by
a 3-tuple consisting of discrete quality, cost and duratialues obtained from the expected performance
distribution of the MDP action. At every decision point, tHeEERMINATE" action is always included as
an option in addition to other legal action choices. Thisval for the sequential decision making process
to be terminated as needed, at any point in time. The rewaedsomputed only for the terminal states, i.e.
the intermediate states have null rewards. Terminal staeseached in a particular path when the deadline
is crossed or when there are no remaining valid action chdicethe agerit The reward is computed
by applying a complex criteria evaluation function of thealifly, cost and duration values obtained by the
terminal state which is described in Section 5. Value iterais the dynamic programming algorithm used
to compute the optimal policy. In theory, value iteratioquiges an infinite number of iterations to converge
to the optimal policy. However, in practice, we stop oncevifilee function changes by only a small epsilon
threshold in a sweep. The following is the algorithm for ttenslation process.

10% Crossing Deadline
Consumers-Reports

PC-Connection

PC-Mall 10% __ crossing Deadline

67% [g58 @ Terminate

23%
@ —@ Terminate

Figure 7: Translation process from TAEMS task structure to MarkoviBiea Process for Simplified Subset of an
Information Gathering Task Structure for the BIG Agent

Consumers-Reports

Let TG be the top level goal i and let METHODS be the set of primitive actionsTin
1. Initialize MDP with states;
2. Translate(s)

(a) Identify the set of actions(subset of METHODS) which possible frons.

(b) Iterate over each action
i. If action is not TERMINATE

A. Expand each outcome(characterized by discrete quedist, duration values) and associate the
outcome probabilities to the state transition probabtiti

"To simplify the construction of the MDP space, we only usedtiiria to maximize quality achieved given the deadliriés |
possible to make our approach more general by consideriveg paths that terminate before the deadline but still &ehigiality

for the root task.

14

B. Determine if outcome can lead to a new state while adheare criteria constraints, which
is to maximize the quality given the deadline.

C. if new states,,im. is reachedTranslateé,,im.e)

ii. Else if action is TERMINATE, set reward of terminatingagt to be a function of the quality, cost
and duration values of the state.

3. Valuelteration(StateSet);

4. Return optimal policy.

To make this discussion on the translation process moreretmove will apply a few iterations of
the algorithm on the task structure described in Figure 4s hesume the agent’s design criteria specifies
that the task should achieve the maximum possible qualitiinvia hard deadline of 6 minutes. Upon
translation, the corresponding MDP has 76 states. Figures@rihes the translation process in progress.
The input to the algorithm is the task structure in Figure 4cdbed in textual format. The start state
S0is initialized with no actions taken. The PossibleAction8e stateS0is PC-Connection PC-Mall.
ZDnetand Consumers-Report&re not valid actions since their parent t&#ther Reviewsas an inactive
incoming enables fronGet Basic The outcomes of each action in the PossibleActionSet areepsed
starting withConsumers-Reportshich has 4 outcomes resulting in the sta®dgq =10, c=0, d=1)S14
(9=0,c¢=0,d=1)S21(g=10,c=0,d=2); an&46(q=0,c=0,d=1) respectively. The likelihood 80transitioning
to S1lis computed by taking the likelihood that quality of 0 andation of 1 is achieved. This occurs with
a probability of 0.4. The PossibleActionSet for st&consists oiConsumers-ReportZDnet PC-Mall.
The actionConsumers-Reportsas 4 outcomes. Two of the outcomes result in the total duratiossing
the deadline of 6 minutes and hence result in a null state offfer two outcomes result in stat82andS3
with probabilities 0.67 and 0.23 respectively. The outcoaselting in stat&2has a quality of 30.0, cost of
$2 and duration of 5 minutes. The PossibleActionSet foesSaicontains only th&ferminateaction since
the outcomes of all other possible actions result in the ldeatieing crossed. The current loop is exited
when aTerminateaction is encountered and also if a deadline is crossediresui null states. The rest of
the MDP tree is extended in the same depth-first fashion.duarEi7, the tuplecstate-81 action=PC-Mall,
outcome = 0t results in stat&8and so does state=S57 actionPC-Connectionoutcome = 0t. This is
because the two tuples are just permutations of the saméaelian outcomes.

The optimal policy for the above problem is shown in Figure/s we can see the policy suggests
the method sequencgPC-Mall, Consumer-Repor}sas the best agent schedule. There are no possible
recoveries in the event of failure of either method withie dteadline. In this particular case, because
there are no recovery options, the single pass view of DT@ywed the optimal solution, as discussed in
Section 1. This is not always the case and the utility of theRviExpansion approach is made clear by
the secondary contingency analysis research, presentgdciion 6, that more closely approximates the
properties of the MDP.

As mentioned earlier, the MDP state space of task structnoekeling real-world applications undergoes
a combinatorial explosion. For instance, the number oéstadr a task structure with 4 methods with each
method having 2 outcomes is in the 100's. However, a tasktsir@ with 6 methods with each having an
average of 5 outcomes has about 30000 states. Hence, tihimaphas mainly been researched to serve as
an off-line theoretical benchmark to evaluate our reaktimeuristic schedulers.

15

10% Crossing Deadline

Consumers-Repol

Terminate

Consumers-Repol

PC-Mall

Consumers-Repol

Figure 8:0Optimal Policy for Simplified Subset of an Information Gaihg Task Structure

5 Integrating Uncertainty Into Design-to-Criteria Agent Scheduling

Design-to-Criteria is the process of coping with expor@ntbmbinatorics to produce agent schedules in
soft real-time that meet a particular set of design critarid hard constraints like deadlines or cost limita-
tions. This scheduling problem requires a sophisticatedistéc approach because of the problem’s inherent
computational complexity. To understand the complexitgl gat a feel for the agent scheduling process,
consider a task structure only a single level deep, wheraglestask has: children that are methods and
it accumulates quality according to tesum()gaf. This models a situation in which an agent has a single
high-level task and many different subtasks that can beopedd to achieve the top-level task, where the
quality of each of the subtasks is summed to determine hohteetop-level task is performed. For exam-
ple, a simple information retrieval agent might have a el task to collect news articles relating to the
stock market and many different sources from which to coed articles. To achieve its goal and perform
its top-level task, it could go to site X, to site Y, to site 4,ibcould go to any combination of the sites,
e.g., XandY, Xand Z, Y and Z, etc. With a simple task structsuweh as this, having methods, there
are2™ — 1 unordered sets of methods that can be used to achieve thw taslke, and within each set of
methodsyn! possible orderings of methods in the schedule. Conceptilad# number of unordered sets is
due to planning style complexity where the issue is decigihgch methods to use to bring about a desired
state. The number of sequences of each unordered methcglthet ¢lassic scheduling side complexity
where ordering is the focus. In general, the upper-boundhemtimber of possible schedules for a TEMS
task structure containing methods is given in Equation 1.

3 <T,L>i! 1)
i=0 \"

The combinatorics are pronounced(2") ando(n™) by Stirling’s approximation) and in practice the
generation of a provably optimal solution through generatf all possible agent schedules is infeasible.
In our research, we often schedule agent task structuresghbetween 25 and 180 methods, e.g., [28, 45].
A sample task structure with 25 methods produces over 67omitlifferent unordered method sets and
over 1.1 x 10% possible agent schedules. The production of provably @ptsolutions through more
refined techniques, such as dynamic programming or a stadksearch, has been unsuccessful to date

16

due to the number and types of constraints present in TAMS ieteractions between tasks, start times,
deadlines, commitments associated with tasks, unrulyityuabst, and duration characteristics, etc. In
DTC, the scheduler controls the combinatorics and prodsclesdules for the agents through a satisficing
methodology described in detail in [45] and [41, 40, 14, 15].

This practical limitation also applies to the productionaof optimal control policy for the agent using
an MDP - in this case, the combinatorics are even worse be¢hasVIDP “unwinds” the TAEMS repre-
sentation and for each triple ef quality, cost, duration- in a method’s outcome, the MDP contains one
state (Section 4). With respect to optimal policies versptintal schedules, the real question is:what
situations does the sequence of actions in the best schditfelefrom the sequence of actions in the optimal
policy? Another way of understanding the problem is to ask the qomeskiow close can we approximate
the performance of an optimal policy for the agent throughglocess of incremental rescheduling, and how
often does this rescheduling need to occit@te that the scheduling view and the policy view differ. The
policy view explores all possible method sequences, inetucecovery from method failure; the scheduling
process composes an end-to-end view of the agent’s prodelespropagating and reasoning about uncer-
tainty but not exploring recovery options. In other wordschedule is constructed with the assumption that
the agent will reschedule when a failure occurs or when theltedeviate from expectations. In contrast,
a policy defines which method to execute next based on themes of previous method executions. With
scheduling and rescheduling we hope to approximate theypblowever, even if rescheduling occurs after
each method execution the performance of the scheduler oteyeridentical to that of the optimal policy
because with each decision, each choice, the schedulerndbe®nsider all possible method sequences
from the current state. The policy view is stronger, butp @tdeasible in our research due to the size of the
problem space and the dynamics involved. DTC is deployedulti+@gent environments where the models
of the environment and the agents’ processes are impenfiechew tasks or new requests may arrive at
any point in time. The combinatorics combined with the dyisamhave placed hard constraints on the
scheduling problem. In this paper we do not revisit the Baitigy methodology of DTC in detail which is
discussed in [13], but instead discuss the implicationsnokttainty to agent task modeling and the agent
scheduling process, and introduce an extension to DTC tpastipontingency analysis and explicit plan-
ning for recovery that more closely approximates the paréorce and behavior of optimal MDP produced
policies (Section 7).

The main facets of DTC’s methodology include:

Goal Directed Focusing The agent's design criteria is leveraged to focus all preiogsactivities on pro-
ducing solutions and partial solutions that are most litelyneet the trade-offs and limits/thresholds
defined by the criteria. This is achieved by creating andtifiémg partial solutions that seem likely
to meet the criteria and concentrating further developmarthese classes of partial solutions, prun-
ing or ignoring other partial solutions that are deemedtlpeasbable to lead to “good” solutions for
the agent.

Approximation Schedule approximations, calledternatives are used to provide an inexpensive, but
coarse, overview of the agent schedule solution space.rnaliges contain a set of unordered ac-
tions that can be scheduled (ordered) to achieve a partitagl along with estimates for the quality,
cost, and duration distributions that may result from saliag the actions (analogous to expectations
about what will happen when the agent performs the actiohis)alternative represents opessible
way in which the agent may perform a given task. Alternatiaes inexpensive to compute as the
complex task interactions are only partially considered arering, resource, and other constraints
are ignored. The alternative abstraction space is usedinmction with criteria directed focusing to

17

build schedules from alternatives that are most likely &mlleo good schedules.

Heuristic Decision Making The process of turning alternatives into schedules, ieguencing a set of
actions for the agent, is the classic scheduling problenttdaadoo suffers from high order complexity;
O(n!) to schedule a set of unordered actions. We cope with this complexity using a grofi
heuristics for action ordering. The heuristics take intosideration task interactions, attempting
to take advantage of positive interactions while avoidiegative interactions. They also consider
resource limits, individual action deadlines, task dewali commitments made with other problem
solving agents, and other constraints. The heuristic glgorreduces the(n!) action ordering
problem to low-order polynomial levels in the worst case.

Heuristic Error Correction The use of approximation and heuristic decision making hpacag — it is
possible to create schedules for the agent that do not a&cttievhigh-level task, or, achieve the high-
level task but do not live up to quality, cost, duration, ortamty expectations set by the estimates
contained in the alternatives. This can be caused by an omstrained problem, but also by complex
task interactions that are glossed over by the alternafyeoximation and not considered by the
action ordering heuristics. A secondary set of improvenjight 36] heuristics act as a safety net to
catch the errors that are correctable resulting in bettentagchedules.

The addition of uncertainty modeling to TAEMS has severalitafions to the Design-to-Criteria schedul-
ing process and thus to the agent for whom the schedules as&wcted. First, the agent (or human client)
must be provided a mechanism to describe the relative irapoet of certainty or uncertainty reduction to
their application. In some situations, certainty may nothdssue, but in other situations certainty may
be highly important. An example of this in a multi-agent @xttis the certainty of an agent to fulfill its
commitment to provide a result to another agent before afggeetime. Second, given the ability to spec-
ify certainty preferences, how can the information be usetthé scheduling process to produce schedules
that are more or less certain, i.e., how to design schedaleddress the enhanced design criteria. Third,
is the issue of how the new uncertainty representation itsphe computations and analysis performed
by the scheduler — the questions are whether or not existingpatations are affected by the new model
and whether or not the computations can be improved. Retatéus is the issue of building models of
schedules where the schedule characteristics includetamtg and the relationship of a distribution style
representation to a single value representation like adeadline or hard cost constraint.

In the following sections we describe how these issues aheaged in Design-to-Criteria. In Section 5.1
we discuss the integration of uncertainty into the agentientdesign criteria and how this is mapped to
utility that is used during the scheduling process to buildtom schedules for the agent. Section 5.2
discusses how uncertainty, and the design criteria, aré uséhe scheduling process to produce more
certain schedules when uncertainty reduction is impottatite agent. Section 5.3 identifies areas in which
the computations are effected by the addition of uncegtedmd how the representation of uncertainty is
used in the modeling and construction of schedules. A heghllexample of uncertainty reduction in the
scheduling process is then given in Section 5.4. In a cegmse, integration of uncertainty in the main
scheduler is done on a schedule by schedule basis, in Séctvmn step outside of the main scheduling
process and discuss a secondary analysis process thateymesllihe independent view of schedules and
instead considers recovery oontingencyoptions for schedules. This is an important ability for agen
situated in time and mission critical environments.

18

5.1 Uncertainty in Agent Goal Criteria and its Mapping to Uti lity

The agent goal or design criteria is often generated by hamsing a specification metaphor calilers
the GUI shown in Figure 9. This metaphor was first present¢ddhand extended in [41, 45]. Sliders take
on values from 0 to 100% and are arranged in slider banks wdale bank contains a slider for quality,
cost, and duration. The sum of the sliders in each bank ranoge ® to 100%. A 100% weight given to
a particular slider expresses that the slider in questighaonly item of importance relative to the other
sliders in the same bank. Examples follow below.

Intellectually, the research issues being addressed bslitter metaphor are not whether the metaphor
is appropriate for all applications, but, rather the redtigm that agents have different objectives in different
situations and that when problem solving or scheduling #igse pronounced combinatorics, control must
be focused by the current objectives of the agent. The pesiffiekibility in control and the ability to
dynamically focus the entire scheduling process on reagoabout the objectives (via design criteria),
rather than using implicit, hardwired objectives ip@st-hodashion as in the previous Design-to-Time agent
scheduling work [14, 15]. If the agent’s objectives are risidered during generation, in general, a much
larger portion of the solution space must be searched taipmrksults useful to the agent. Casting Design-
to-Criteria as a search process, this is akin to concengratearch on the classes of solutions and patrtial
solutions that best meet the agent’s objectives from sidnhish, rather than as an evaluation specification
applied to final states. In terms of an approximate MDP, theohnceptually analogous to only transitioning
from states that correspond to some estimation of the agebijictives as the other solution states are less
desirable. The slider metaphor or goal specification coatdlebe replaced or extended — once control is
designed to use the specificationetiealuatethe utility of a given solution or partial solution, changithe
specification is straightforward. In this paper we do notammrateper seon the constructionist roles of
the goal specification, but instead describe the spectiicaind how it relates to the evaluation of candidate
options and extend the specification to include balancingedainty reduction with the other trade-offs
evaluated by the scheduler. The use of the specification aluation is the central concern here as it
determines which approaches to achieving a particular taske root level task, are more valuable to the
agent. The constructionist aspects of the scheduling psogeesented in [41, 45], dovetail to resolve task
constraints once the choice of options has been made.

Regardless of the simplicity of changing the metaphor, teéaphor presented here has been proven to
be appropriate for TAEMS and our applications because, iargént is difficult to estimatex priori what
schedules are possible for an agent for a given task steicBaheduler clients (such as other control prob-
lem solvers within the agent or the agent’s humans clientpli do not know whether a given hard deadline
or hard preference may be met or even have an approximatefidea types of solutions that are possible.
Often they must describe relative preferences or relatagetoffs and then evaluate the class of solutions
produced by the scheduler and possibly refine their ovebftiotives or their goal criteria accordingly. This
is why some of the basic principles of the metaphor includsfsang and relative evaluation as well as
client specified limits and thresholds on the differentilaties. Extensions to support multiple criteria sets
and preferences between solution classes are presents].in [

There are five banks in the current specification metaphoh esdating to a different class of concerns:

Raw GoodnessThis bank describes the raw relative importance of each mina. For example, setting
the quality slider to 50% and cost and duration to 25% expetize notion that high quality is twice
as important as low cost and low duration and that agent sté®dhaving these characteristics are
preferred. The label “raw” here denotes that this prefexeiscnot with respect to any particular
deadline or other constraint the agent might have. As meatiearlier, it is often difficult to know

19

a priori what is possible for a given task structure and thus settamg limits and thresholds can be
problematic (leading to poor solutions). This bank enabliests (other control components within
the agent or its human client) to specify simple, relativefgrences about quality, cost, and duration.

Threshold and Limits This bank allows the client to sebftlimits and thresholds for quality, cost, and
duration either using a fixed limit/threshold value or usangtility function that describes gradual
changes in utility as the value increases beyond a certaiih dir as it crosses a certain threshold.
Using sliders in this bank one might define a preference fenagchedules that are below a certain
cost threshold but above a certain quality threshold. Thfepences expressed here are soft in that the
scheduler may elect to cross a particular limit or threslifalde overall utility of the item in question
is higher than the other candidates that stay within thet limthreshold. This concept is made more
clear below when we describe how the design criteria isedléd the utility used by the scheduler
to rank schedules for the agent. It is important to note thad ftonstraints, e.g., hard deadlines, do
exist in the scheduling process, but that the general desiggmnia is about the expression of relaxable
constraints and soft general preferences for the agent.

Certainty Whereas the raw goodness set above expresses the relgtivgdance of quality, cost, and du-
ration, this set expresses the relative importance of taiogy about quality, uncertainty about cost,
and uncertainty about duration. For example, if an agefiéstcdoes not actually care when a result
is produced, but is going to schedule a meeting to discuse#udts as soon as they are produced, the
client would specify a preference for high certainty in theadion dimension, expressed as a signifi-
cant weight given to the duration slider in this bank, e.§%8r 100%. This bank expresses relative
predictability preferences.

Certainty Thresholds Like the thresholds and limits bank, this bank expressesdiative importance of
meeting certainty thresholds in the quality, cost, and titamadimensions. For example, through this
mechanism, agent clients can express a preference foridebetat have a duration certainty of 75%
or higher (meaning that 75% of the time, the schedules whie® their predicted runtime). As
with limits and thresholds on quality, cost, and duratiais typically difficult to knowa priori what
certainty thresholds are possible for a given task stracsar this bank expresses soft or relaxable
preferences.

Meta This slider set relates the importance of the four prevididerssets. This separation allows clients,
human or otherwise, to focus on relating quality, cost arrdtilbn with each other in each of the cases
above, then to “step back” and decide how important eacheofiifferent classes are relative to each
other. For example, within the raw goodness bank, cliertis reason about the relative importance
of quality, cost, and duration, then do the same in the gdytdiank, then decide how raw goodness
relates to certainty. If certainty is the primary issuentités given more weight in the meta bank than
raw goodness.

The incorporation of uncertainty into the criteria spedifion provides agent clients (or other agent
control components) with a means to describe how importhiaging uncertainty is for their application
relativeto raw-goodness and limits/thresholds. Given the abilitytecify the importance of these attributes,
the issue then becomes how to relate the attributes toyutil#t can be used in the scheduling process to
evaluate and select from different possible courses obmadtr the agent. The mapping from sliders to
utility is presented in [40], however, we must examine aiparbf the computations in order to discuss
the use of uncertainty in the utility computation as well.general, utility is computed by comparing the

20

Raw Goodness Thresholds/Limits Certainty Certainty Thresholds Meta

Raw Certaint
Quality ~ Cost Duration| Qualty ~ Cost Duration Quality Goodness 1o/ Certainty Thiesholds|

Threshold ~ Limit Limit Threshold Threshold Threshold
$5.75 80%

Figure 9:Agent Schedule Goal Specification Metaphor

statistical characteristics of a member of a set of candidgent schedules to the observed characteristics
for the set as a whole. The utility computations form the ©aéthe goal or design directed problem solving
behaviors of the scheduler and are used both on completedidels and the aforementioned alternatives
(schedule approximations).

The utility computation is based on notions relative goodnessnd normalized comparison The
computation is decomposed into components, with one coemassociated with each slider bank. The
components are further decomposed into subcomponents,oné subcomponent associated with each
slider in a particular bank, i.e., there is one subcompofmngjuality, one for cost, and one for duration,
in each bank. The subcomponents are summed to produce ihg catmponent for a particular bank.
Subcomponents are computed by examining items being natdgk iparticular dimension with which the
subcomponent is associated. For example, to compute thearant for the raw goodness (the first) slider
bank:

1. Find the min and max expected values for quality, cost,damdtion that occur in the set of schedules
or alternatives being rated.

2. Loop over the set of alternatives or schedules to be ratddcalculate the raw goodness rating for
each by calculating the quality, cost, and duration subarapts as follows in Steps 3, 4 and 4.

3. Leteq denote the expected quality value of the alternative ordidleaunder consideratichlts quality
subcomponent is a function of the percentage of qualityeaelai byeq relative to the min and max,
min, andmazx,, quality values of the set of items being rated, scaled byrdlegoodness quality
slider, RG _slidery and the value in the raw goodness bank.

(eq — mlnq) RG_Slide’l"q

- * d,c .
maxg — ming Zi':q RG _slider;

ratingg =

4. Duration is different than quality as greater duratiogeserally less preferable. Whereas with the
quality related equation, achieving the best quality ofitelins in the set should bring the highest
reward, in this case, achieving the least duration of athgén the set should bring the highest reward.
Cost is like duration in that lower cost is better.

8Schedules, schedule approximations, and partial schegpieximations are evaluated using the design criteria.

21

(maxd — ed) RG_sliderd

ratingg = -———————— % d.c)
mazrg — ming Zi:q RG_slider;
‘ (maz. — ec) RG _slider,
rating. =

e T
- . .
MaxTe — Mine Zi'ch RG_slider;

5. The quality, duration, and cost subcomponents are themsal to obtain the aggregate raw goodness
rating component.

The certainty rating subcomponents are computed like taaqus subcomponent in that utility is com-
puted by comparing a given item to the observed minima andmaafor the set of candidate items. How-
ever, the subcomponents differ in that the focus is on thicgy associated with the expected values of
the quality, cost, and duration dimensions rather thanxpeaed values themselves. Consider the quality
case. The general idea is to reward agent schedules oraitebased on how likely it is that a quality
value that meets or exceeds the expected value will actaatiyr? The reason for this is semantic — more
quality is always a good thing. Agents or agent clients will mind if the resulting quality is greater than
predicted. Only if the resulting quality is less than préelicwill there be an issue. Certainty about cost and
duration is computed similarly, albeit that what is “good’reversed — less cost and less duration are good
things, thus, the probability of the agent producing a tasuess time or at a lower cost is combined with
the probability of obtaining the expected (predicted) arsduration.

Thus we compute the probability that the quality, as exgrebdy the discrete probability distribution,
is greater than or equal to the expected value, we then nzenahd scale the probability as with the
previous components, and finally multiply by the proportdpoints allocated to the certainty quality slider.
Consider a partial example, if an agent schedule has a siqualiy distribution that denotes 25% of the
time 0 quality will result and 75% of the time quality 10 wiéisult, its resulting expected quality value is 7.5.
Contrast this with a schedule whose quality distributionales that 50% of the time 0 quality will result and
50% of the time 15 quality will result; its expected qualisyalso 7.5. However, the probability that the first
schedule will generate a quality value greater than or eiguile expected value is .75 whereas the second
schedule’s probability is only .50. This is the gist of thetamty rating subcomponents — the more certain
that the expected value, or a better value, will occur, tleaigr the reward (and the more likely a schedule is
to be selected for performance by the agent). The calcalptiocedure is similar to the raw quality goodness
procedure presented above, though the focus is always balgtties and probabilities of the items being
rated are normalized using the derived min and max proliakifior the set. For example, the computation
to compute the quality certainty rating subcomponent isvshim Equation 2. In the equatior, denotes
the quality distribution of the item being rated (schedul@kernative),eq denotes the expected value of
the quality distribution,Prob(q >= eq) determines the probability that quality exceeds the exgoeetlue,
min_probability, denotes the lowest observed instancé’obb(q >= eq) andmax_probability, denotes
the greatest observed instancefdfob(q >= eq). The other components scale the rating according to the
weight given to the associated slider.

(Prob(q >= eq) — min_probability,) Certainty_slider,
*
max_probability, — min_probability, Z'Z’:Cq Certainty_slider;

q:

9An alternate interpretation is to determine the probapbiliit the actual value will fall near the expected value,f@upside
or the downside.

22

The certainty threshold rating component differs from teeegal certainty component in that the bound-
aries are not determined by examining the candidate setrabibeing considered, but are, instead, specified
by the client or other agent control component. Exceedingrqular certainty threshold results in the same
utility regardless of how far a particular item exceeds treghold. The initial conceptualization of this com-
putation included a relative scaling component, i.e., #réhér the distance above the threshold, the more
utility. However, this resulted in a mismatch between exgians and results as certain schedules would
receive greater utility from both the raw certainty bank #melcertainty thresholds bank. The computation
is again computed by iterating over the set of candidatesitana computing utility subcomponents for each
of the dimensions; the subcomponents are then again sunor@oduce the certainty thresholds rating
component. To illustrate the general certainty thresholehmutation, consider the quality subcomponent
computation:

if (Prob(q >= eq) > client_speci fied_threshold,) then
Certainty_threshold_slider,

Zf"ch Certainty_threshold_slider;

rating, = else

ratingg = 0

5.2 Incorporating Uncertainty in the Design-to-Criteria Process

Uncertainty is integrated into the process of scheduleymtah in two primary ways. First, certainty pref-
erences specified in the goal criteria are mapped intoyutiitues which are used during the scheduling
process to focus production on schedules and schedulexapaitmns that best address the agent’s goals.
If the objective is to produce highly certain results, thbestuler will thus evaluate the different statisti-
cal trade-offs of different possible actions accordinglgrhaps producing highly certain schedules whose
expected quality is somewhat lower than the maximum passjbhlity for the task structure. This prop-
erty is in some sense automatic as integrating certaintiergeces into the criteria changes the choices
made by the scheduler throughout its proé&sdifferent choices of different options based evaluattoet t
includes certainty trade-offs results in a different sefimdl agent scheduléd. The second use of uncer-
tainty in the main scheduling production process is moreatlirThrough the addition of uncertainty to the
TZAMS modeling framework and the agent’'s goal specificatiba,scheduler can do additional analysis
during schedule production to explore a larger, differaggnt schedule space. Namely, when uncertainty
reduction is important to the agent, the scheduler can densedundant activities for task achievement
and consider moving uncertain activities earlier in thesslcie to leave more time for recovery if the agent
should attempt an action and encounter failure.

In order to illustrate the first type of integration, that fiag from the goal and utility specification
pair, it is necessary to describe certain aspects of thalatihg process. Unlike traditional scheduling tasks
where the primary issue is how to order a particular set ohous, Design-to-Criteria must also consider the
many possible combinations of alternative approacheschuieging the agent’s high-level task. Prior to the
process of building schedules, which is the traditionalhodtordering scheduling problem, the scheduler
must enumerate the different ways that the agent’s higkl-kgks can be achieved. Each “way” is a cheap
to compute schedule approximation calledadternative Alternatives contain unordered sets of methods

10For example, choices made at interior nodes, choices mate ot node, choices pertaining to which schedule appraxi
tions or partial approximations to develop, etc.

"This also illustrates the strength of integrating a sepaighamic specification of an agent’s objectives into theérebproblem
solving process. As discussed, other attributes and atige-offs could easily be incorporated into the criteria similar fashion.

23

and estimates for the quality, cost, and duration distioimgt that would result from building a schedule
from the alternative. Alternatives differ from scheduleghiat the ordering for the methods has not yet been
defined and the attribute estimates are computed withoatadgr complex task interactions or individual
task-centric constraints like hard deadlines. This agpration is necessary because in order to evaluate
the individual constraints and interactions, all the othethods in theotentialschedule must be evaluated.
The problem is circular — to evaluate methedn one alternative may require the evaluation of methods
y and z, that are not in said alternative, which may in turn requial@ation ofh andq, also not in the
alternative, and so forth. In essence, full evaluation ofvargmethod drags in the worst-case exponential
combinatorics of the general TAEMS agent scheduling proffemce the reliance on an approximation that
gives a feel for the partial solution space at the local node.

T = task

T
. St =1{St xS} M = method
//q_ min() 1 2 S = alternative set for task

T _
T My M HM | HM Ll,Mlvz}} 2 51'2 = {{M 2,8 5 HM 2,3}}
3

CLW{ My My M My q_exactly_on?/\

Mz M2 Mg Ma1 Mzo My
Figure 10:Complexity of Alternative Set Generation for the Agent'sia

Alternatives are constructed bottom-up from the leaveb@task hierarchy to the agent’s top-level task
node, i.e., the alternatives of a task are combinationsegtternatives for its sub-tasks. Figure 10 shows
the alternative set generation process for a small tasktatelr Alternatives are generated for the interior
tasks7T; andT, and then these alternatives are combined to produce thealte set for the root task,
T. The complexity of the alternative generation process @@uanced. A task structure with methods
leads toO(2") possible alternatives at the root level. We control this boratorial complexity by focusing
alternative generation and propagation on alternativasatre most likely to result in schedules that meet
the spirit of the agent’s goal criteria; alternatives theg less good at satisficing to meet the goal criteria
are pruned from intermediate level alternative sets. Fanmgte, a criteria set denoting that certainty about
quality is an important issue for the agent will result in graning of alternatives that have a relatively low
degree of quality certainty.

After the alternative set for the agent’s high-level taskosistructed, a subset of the alternatives are
selected for scheduling. Again, complexity is the issue.diernatives that have methods, schedule con-
struction via exhaustive searaB(n!), is not feasible and even our low-order polynomial hewriapproach
[41] precludes building schedules for all alternativestisiiaing with respect to the agent’s goal criteria is
used at this stage to select the alternatives that are rkefit tb lead to schedules that fit the criteria, i.e.,
most likely to lead togoodagent schedules. As with alternative generation, if uag#st is important to
the agent, schedules that reduce uncertainty in the dedimeshsions will be produced. Using the heuristic
approach, selected alternatives are scheduled by itgrawier the set of unscheduled and unordered candi-
date methods and passing each method through a set of ratimigtics. The rating heuristics enforce hard
constraints and express preference over the relaxatioofiaf@nstraints, e.g.:

e Enforce hard task interactions like enables and disables.
e Enforce hard resource constraints.
o Enforce earliest start times and deadlines.

24

e Try to take advantage of positive soft non-local effectsemehdoing one activity before another im-
proves overall utility.

e Try to avoid negative soft non-local effects, where doing antivity before another degrades overall
utility.

e Try to satisfy external commitments made with other agérdaad avoid violating them (where com-
mitments have varying degrees of importance).

e Try to coordinaté® over soft-degradation style resource consumption andustih.

Focusing is Design-to-Criteria’s key to coping with the d@natorics and producing good schedules
for the agent. This focusing methodology is analogous tegeimg only portions of the space of possible
schedules — or akin to control using an approximate MDP (dised further in Section 8). Figure 11
illustrates the scheduler’s ability to focus processindh@ngoal criteria at hand. The figure shows the root-
level alternative sets generated for two different crtespecifications; one where raw quality is the only
factor of importance and one where certainty about quaitiié only factor of importance to the agent. The
agent task structure in question is moderately complex asdapproximatelyt x 10° possible alternatives
at the root level if focusing is not used to reduce the numbeilternatives generated. When quality is the
only factor, the alternatives generated have a high exgegiality but also considerable quality uncertainty.
In comparison, the alternatives generated for the quadityamty case have lower expected quality but a
much higher degree of certainty. The distributions aressieally significantly different in both the quality
and quality certainty dimensions; one-tailed t-testsatdjee null hypothesis of equivalence at the .05 level.
If a third case where quality and quality certainty are elguatportant (omitted for clarity), was added to
the figure the alternatives would fall partly in the qualitylyorange and partly in the certainty only range;
the overlap is due to the properties of the task structureevhigh quality methods tend to be uncertain and
high certainty methods tend to have low quality. In thisdlgase, the highest ranked alternative would be
the same as the highest ranked in the certainty only cases®dzhas the highest certainty to quality ratio.

X HBest Alternative for High Quality Case
LA o

1100 1 x Alternative for High Quality Case
@ Best Alternative for High Certainty Case
1000 + Alternative for High Certainty Case
900~
400&
+
%8gﬁ§d 300 1 + ++
+
200 1 ;_
+ o+
100 A H+ +
+4 + * H: + '.

0 —r1 Tt T T 1 Tt 1T T T T T T 1
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Probability the Expected Quality or One Better Will Result

Figure 11:Alternatives Generated for Two Different Agent CriteriaGual Sets

As discussed earlier, in addition to the criteria drivererof uncertainty, the scheduler can also take a
more active role in uncertainty reduction by generatingrakitives that contain more than one way (other

12 ppplicable when Design-to-Criteria is used in a multi-aigemntext. In general, Design-to-Criteria interfaces veithexternal
multi-agent coordination module, e.g., GPGP [9, 11] or thgskmodule [42], that proposes and forms commitments whikrot
agents to handle the temporal sequencing of interdepetaieks.

3 Also applicable only in a multi-agent context.

25

alternatives) to achieve various tasks. This redundanggrital agent scheduling may serve to reduce un-
certainty and it provides the scheduler with more optionsdosider. This is critical in some situations
involving hard deadlines because in the event of a failueeetlis not always enough time left to try a dif-
ferent solution approach, i.e., once committed to a coursetion, it is sometimes too late to reschedule
and try again if the agent encounters failure. Consider &f leample. Figure 12 shows an agent's task
structure fragment, the relevant method attributes, amdsttedules. The results generated by Task A are
necessary for Task B and there is a hard deadline of 30 mindtg®edule 1 contains no redundancy, having
one method for achieving Task A and one for achieving Taskdde8ule 2 contains redundant methods
for achieving Task B and uses a lower quality but more cewraith faster method for achieving Task A. If
Schedule 1 is executed and method Al fails, 20 minutes aredvasd there is not time to reschedule and
execute method A2 followed by either B1 or B2 prior to the die&d Additionally, if method B1 fails there

is also not time for the agent to reschedule and execute B®eiAzr, if Schedule 2 is executed, we are as
certain as possible that the agent will generate some sdsyithe deadline because A2 is very certain and
the less-certain-but-higher-quality B1 is followed by there-certain-but-lower-quality B2. Considering
uncertainty in conjunction with redundancies is clearlpartant in some situations. When the redundancy
alternative generation feature is used, the alternathasdontain redundant activities are added to the al-
ternative set and compared to the goal criteria in the sastedia as the non-redundant alternatives. Thus,
the scheduler continues to focus processing on alterisatinat best satisfice to meet the agent’s overall goal
criteria — uncertainty does not dominate the evaluationhaeism unless so specified by the agent’s goal
criteria.

q_min()
Schedule 1
S D, S RE
a_max() Schedule 2
Quality (50% 0)(50% 4) Quality (100% 1) Quality (25% 0)(75% 30) Quality (100% 12) LA2
Duration (100% 20) Duration (100% 10) Duration (100% 10) Duration (100% 10) =20 =30
deadline

Figure 12:Redundancy in Agent Schedules Can Be Ciritical

It is important to note that the existence of a redundant otkth a schedule does not mean that the
redundant method will be executed every time by the agerg.ekiacution of said method is dependent on
the rescheduling triggers or envelopes associated withgbat's schedule. The existence of the redundant
method in the schedule does imply that the schedule can loaitexkfrom end-to-end without rescheduling
to recover from particular errors. However, one of the mandiits of including redundancy in the agent’s
schedule is analytical — it enables the scheduler to ewalilngt performance characteristics of a problem
solving episode that includes method failure and recovesyead of simply assuming no failure. When
viewed in this light, redundancy is a very weak form of cogéncy planning and is related to the secondary
contingency analysis algorithms presented in Section 6.

Modeling uncertainty improves and empowers other aspddte@mgent scheduling process as well. In
environments where rescheduling is undesirable the stdrecan use the probability distributions to design
more fault tolerant schedules. For instance, if fault tohee with respect to duration is desired, the scheduler
can build schedules by estimating method execution timeg uke 95th percentile duration value rather
than the expected value. In this situation, uncertaintyuafinish times still gets propagated throughout the
schedule, but timing assumptions are based on a higher thadues by definition very certain.

The uncertainty representation can also improve the pitityatinat little agent work is wasted in the
event of a mid-schedule failure. Because of task interastibis possible that a method failure anywhere

26

in the agent’s schedule can void all the work done up to thaitpModeling uncertainty makes it possible
for the scheduler to move the highly uncertain activitiesaml the front of the schedule, thus reducing the
likelihood of doing material work that is voided later in teehedule. This can be achieved through a new
method rating heuristic that gives preference to methoashhve some probability of failure and interact
with other methods — or methods that have a probability doifaiand are particularly important to the
agent’s overall schedule. We will forgo further exploratiaf this idea in the context of the main scheduling
process as these concepts have contributed to a secondéingency analysis phase discussed in detail in
Section 6.

5.3 Impact of Uncertainty to the Computations and Schedule Mdels

The implications of the addition of uncertainty to the TAEMS8daling framework are not all positive — at
least not from a computational expense standpoint. Maiimigiand performing calculations with distribu-
tions is inherently more expensive than working with sireppected values. Additionally, distribution sizes
generally grow as computations progress. For example, icomgobtwo discrete probability distributions,
where the distributions haweandm (probability, value) pairs respectively, results in a distribution hav-
ing (n x m) (probability, value) pairs (though like values may be combined). While this dagshange
the combinatorics of the scheduling process, it adds sigmifly to the constant terms involved, even when
the distributions are size-limited and compactégeriodically.

Another downside to the addition of uncertainty to TAEMS nmisdand its incorporation into the agent
scheduling process itself, is that it invalidates a paldicutndependence assumption that enables local evalu-
ation of primitive actions. Said independence assumpiimplfies calculations and saves considerably on
the computational expense of reasoning about task intenactThe assumption is simply that the effects of
any active nles can be accurately reflected in the distdbatdf the node that is on the receiving end of the
nles. Implementationally, this means that whenever théexbghanges, and nles be come active, or switch
to an inactive state, the distributions on the recipientenaet updated to reflect this state. With the addition
of uncertainty to the task models, this assumption no lohgéts.

q_min() q_min() q_min()
[e[] [T e[My] [T~ i~ My |
Quality .5 Quality 1.0 Quality 0 Quality 0 Quality .5 Quality 1.0
() Input Task Structure - Effects Not (b) Neither Method Scheduled - Effects () Both Methods Scheduled - Effects

Yet Propagated Propagated Propagated

Figure 13:Independence Assumption Valid with Expected Values

Figure 13 illustrates the assumption under the expectegt\ase. Figure 13(a) shows the input TAEMS
task structure; the effects of interactions are not yet agaged to effected nodes. In the structure, method
M, enablesM, and the two methods are joined under thenin() gaf; thus the quality offask is the
minimum of the qualities of\/; and M. Prior to scheduling either method, Figure 13(b), the etqubc
quality of M, is zero, the expected quality @ff, is zero, thusl'ask also has an expected quality of zero.
OnceM is scheduled);’s expected quality becomes .5. At this point, the enable®atween\/; and M,
becomes active antl/s’s potential quality, that which can result if it is schedililbecomes 1. Since there is

1 Compaction can lead to a loss of information and the intrtidncof estimation error into the computation. However, the
estimation error is generally small and does not adverdtdgtahe decision processes used in the scheduler.

27

no probability thath/; may fail, M- is either enabled or it is not. WheWs is scheduled, Figure 13(c), its
quality reflects the assumption that the required inputlglavailable and thdt/s will produce the expected
result. In this casel’ask’s quality ismin(.5,1) = .5 and is correct. This is the independence assumption at
work; the same property holds for soft interactions likelfetion or hindering. Additionally, the property
holds for chains of such relationships — something thatoftecurs in agent supply chain management
problems [43]. Implementationally, this means that eanteta method is scheduled, the effects of the

outgoing nles can be reflected and propagated throughotagketructure and then the nle may be ignored.
15

q_min() q_min() q_min()
e My | e[My | b My |
Quality (50% 0)(50% 1) Quality (100% 1) Quality (100% 0) Quality (100% 0) Quality (50% 0)(50% 1) Quality (50% 0)(50% 1)
(a) Input Task Structure - Effects Not (b) Neither Method Scheduled - Effects (c) Both Methods Scheduled - Effects
Yet Propagated Propagated Propagated

Figure 14:Independence Assumption Invalid with Uncertain Models

However, with the addition of uncertainty to the model nlesrzo longer binary, i.e., they are not simply
active or not. Instead, there is some probability that thdiybe active and some probability that they will
be inactive. Figure 14(a) shows the same task structureneatlavith the discrete probability distribution
representation. Prior td/; being scheduled, there is no probability thiét is enabled and thus boftf; and
M> have zero expected quality as ddéssk, Figure 14(b). However, onckl; is scheduled it may produce
quality 50% of the time and fail 50% of the time. We reflect {hissibility in the potential quality distribu-
tion of methodMs, i.e., if M5 is scheduled, Figure 14(c), 50% of the time it will not have taquired input
and 50% of the timél/; will succeed and produce the required input. The propagatfdhe probability
of not having the required input is valid, but, the indeper#eassumption no longer holds. Consider the
quality of T'ask if both methods are scheduled/; and M, each fail 50% of the time, thuSask’s qual-
ity distribution is: T'askqyaiity = ((-25,min(0,0)), (.25, min(0,1)), (.25, min(1,0)), (.25, min(1,1))).
After combining like values (zeros), the distribution bews: T'askqyqiyy, = ((.75,0), (.25,1)) and its
expected value is .25. This is inaccurate becausdails iff M fails to produce the required result amf}
fails to produce said result 50% of the time. Thills,sk should only fail to obtain quality 50% of the time
and the remainder of the time it should obtairin(1,1) = 1, resulting in an expected value of .5. With the
addition of uncertainty, and the representation of sombéairiity of failure, the independence assumption
no longer holds but instead leads to over-emphasis on éadfiects throughout the task structund(and
M> may be widely distributed in the structure).

The nle-effect-reflection type of calculation is performadenormous number of times during schedul-
ing. For a moderately sized task structure, it is not uncommooperform hundreds of thousands of dis-
tribution combination operations in a single schedulingg@ge. To maintain efficiency, the independence
assumption is left in place during estimation, approxiorgtiand method sequencing. However, once the
set of candidate schedules is produced, each schedulevslgated using a tree-based in-context analysis
approach that corrects the estimation errors in the cortipatdrigure 15. The complexity of the tree-based
analysis is driven by the frequency of method failure withigiven schedule and thus is occasionally too

5This is not quite accurate. During scheduling, many difier@ntexts are explored and the computations are repeaiayg m
times. However, when constructing a given schedule, oncethad is scheduled, the computations do not need to be espeat
under the independence assumption.

28

expensive even when used in this limited context.

M quality =0
Tas‘i]uality: MIN(0,0) =0

\

failure branch

probability = .5 \\ weight and merge
M quality =0 "a
1 _ Task, 4fiy = (50% 0)(50% 1)
quality =0 quality ~
success branch R
probability = .5 I weight and merge

uality =1 .
M quality

.

Taskylity= MIN(L,1) = 1

Figure 15:Accurate, Contextual, Execution Tree Computation is Esjpen

The addition of uncertainty also affects agent schedulestcoction and reasoning about start times,
finish times, cost limits, and deadlines. Since methods nasg h range of possible durations, as schedules
are constructed, the uncertainty associated with the idnsatnust be propagated — methods no longer
have single finish times but instead have distributions akjiie finish times. Additionally, since methods
are serialized when scheduled, the uncertainty of the rdstsoheduled before a given method affect its
start time (a distribution) and consequently also its finiste distribution. This complicates matters when
determining whether or not a particular method will compleéfore a deadline, or whether or not a result
will be available to satisfy a commitment made to anothemadpy the desired time. We leverage the
improved models in these situations to reason about theapilitly of violating or satisfying a particular
constraint.

Consider the deadline case; if a method produces a reseittaaftard deadline, the result is considered
valueless and thus the method’s quality result is zero. Whasoning about deadlines from an uncertain
perspective, we reflect the possibility that a given methdbexceed its deadline by modeling the effects
of this violation in its quality distribution. For examplEigure 16, ifM, has a 10% chance of exceeding its
deadline, the densities of all the members of its qualitrithistion are multiplied by 90% (thus re-weighting
the entire distribution) and a new density / value pair iseabl the distribution to reflect the 10% chance of
returning a result after the deadline. The leftmost histogdescribed/,’s expected finish time, the middle
histogram described/,’s unmodified quality distribution, and the rightmost figusleows the modified
quality distribution after re-weighting and merging witfetnew(10%, 0 quality) pair. This quality-based
reflection is important because it improves the scheduddnikty to reason about hard deadlines.

Exceeds

] Deadline
i 10% of the Time

1

1J10% Density

5

100 ° o Quality 10

10 " o
FINISH_TI ME QUALITY Hi stogram OF Mbdified Quality
Met hod Mk

Hi st ogram OF Finish_Tinme - Method M Histogram OF Quality - Method M

Figure 16:Reflecting Probability of Missing Deadline in Method Quglit

29

5.4 Scheduling to Reduce Uncertainty for the Agent within Dsign-to-Criteria

To illustrate the benefit of modeling and using uncertaimtythie main Design-to-Criteria process, let us
consider the problem of custom building schedules for tvil@idint agent goal criterion from a moderately
complex task structure. The task structure has methodgathatto three general categories. 1) Methods
that have high expected quality values also tend to takeeloagd are highly uncertain in both the quality
and duration dimensions. 2) Methods that have low expedatetitg also tend to take less time to execute
and are more certain in both the quality and duration dino#ssi 3) Methods that have medium expected
quality also take a moderate time to execute and are motecateain.

The high-quality-but-uncertain methods model informati@mthering tasks that are risky but also have
a probability of a large information pay-off. For examplgeat methods of this type may find information
about a software product by submitting multiple queriesrfodeek and Altavista, going to the URLSs,
retrieving multiple documents from each site, and proogstiem. As the information located can range
from useful new information with wide-scale ramificationaitterly useless information that is not relevant,
there is the probability of big pay-offs and also the prolighof zero or poor results. Since methods of
this type use a large amount of active web search on sitesatbainknowna priori, predicted duration
is also long and uncertain. The low-quality-but-more-@i@artmethods model information gathering tasks
where information is retrieved by the agent from individsaés that are known and modeled. Since the
information is predicted to be fairly narrow in scope, thesethods lack the potential for big pay-offs,
however, since the methods search only one site and the gjteestion is modeled, durations are short and
fairly certain. The middle-quality-middle-certainty rhetls employ combinations of these behaviors.

soo - [+ Alternative for Client A **
x Alternative for Client B| 14 -
i ¥k KK | o+ N
):(0.9
400 —| e n
3 .
. ¥x 0.8 +4
i + +
300 — . + .
Expected N T +
Quality 7 Probability of
£ Expected , 4 |
200 — Quality or +
Greater i * * M
- + 0.5 — *
+ 4
100 —f
+ 0.4 —
. * 7 % + Alternative for Client A|
0.3 * Alternative for Client B
T T T T T T T T T T T T T T T “r T T T T T T T T T T T T T T 1
100 200 300 400 500 600 700 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Expected Duration Probability of Expected Duration or Lower
a. Alternatives for A and B b. Probability of Expected Valuwég\lternatives

Figure 17: Alternatives and Probabilities of Possible Gearof Action for the Agent

Since the first agent client (a human who is determining tlemeggoal criteria), Client A, is planning
other activities based on the predicted outcome of schaetkaleution, this client is interested in both sched-
ule raw-goodness and schedule certainty. In the raw-g@sdsieler bank the quality slider is set to 75%
and the duration slider set to 25%, i.e., overall quality t&"8s more important than overall duration. In
the uncertainty bank the quality and duration sliders aoh e&t to 50%, meaning that certainty about the
estimated quality and certainty about the estimated duratie equally important. The meta slider for raw-
goodness is set to 40% and the meta slider for uncertaingt i® $0%, denoting that uncertainty reduction
is 1.5 times more important than raw schedule goodnessk&J@lient A, the agent’s other client, Client B,
has much simpler needs and is only interested in raw-gosdieswith Client A's goals for the agent, the

30

raw-goodness quality slider for this client is set to 75% tredraw goodness duration slider is set to 25%.
The meta-slider for raw goodness is set to 100% denotingdaagoodness is the only issue of importance
to this client.

Figure 17.a shows the expected quality and expected daoratithe top-level alternatives for the agent
generated for Clients A and B; intermediate alternative geire pruned according to the goal criteria as
discussed previously. Despite both clients setting theqaality and duration sliders to the same values,
Client B’s alternatives always have higher expected qualitd higher expected duration than Client A’s.
Since neither client is using hard deadlines, this is aftaible to Client A's emphasis on certainty about
quality and certainty about duration. Figure 17.b tells ribst of the story. As Client A put 60% of the
overall weight on certainty in the quality and duration diteiens, the alternatives generated for the agent
when working for Client A trade-off between raw quality, raluration, quality certainty, and duration
certainty, rather than just trading-off quality and duwati Figure 17.b also shows the price of B’s high
expected quality — the expected values are also predictee mouch more uncertain than those of Client A.

The quality and duration attributes of the agent scheduledyzed from a subset of these alternatives are
similar to the attributes of the alternatives. In this cdlse,estimates contained in the alternatives are fairly
good indicators of the schedules produced from the altegsat This indicates that subtask interactions
in the alternatives generated and targeted for schedulerg fairly simple and generally involved hard-
precedence constraints. In keeping with intuitions, tighést rated schedule for Client B is that which has
the highest expected quality with respect to duration. HaneClient A's “best schedule” has a reasonably
good quality for its expected duration and a high degree éirgy about its expected quality and duration

values.
1 [+Runfor Client A x %
800 — untor Clien
*Run for Client B
700 — Quality and Duration Meet *
or Exceed Expectations
B for Client B X X
600 — * * X *
w¥o x *
- *
500 —
Actual |
uali Quality and
Q ty4oo —{ Duration * *
Meet or %
-1 Exceed ¥
Expectations k3 *
300 —{for Client A %
- *
200 —
- et
100 —
i +

T T
500 1000
Actual Duration

Figure 18:Results of the Agent Executing the Different Schedules fand B

The quality and duration results of the agent executing #s¢ ¥chedules for each client thirty times are
shown in Figure 18. Whereas agent executions for Client Alyred a tightly spaced set of quality and
duration values, executions of Client B’s highly uncertagihedule produced a wide range of results. Of
the thirty runs, Client A's results meet or beat expectatiimnthe quality dimension 90% of the time, in the
duration dimension 50% of the time, and in both the qualitgt daration dimensions 50% of the time. In
contrast, Client B’s results only meet or beat quality expians 63% of the time, duration expectations
16% of the time, and both dimensions combined 13% of the thwiditionally, the uncertainty in B’s quality

31

dimension incurred more rescheduling because of methduhgfeo return any results (problematic because
of task interactions). On average, B’s schedule requirexhtagescheduling 2.1 times per each execution,
with a variance of .71, whereas A's only required 1.2 agesthiedulings on average with a variance of .21.
The 25% trimmed mean brings out the contrast even more — B&hegluling average remains 2.1 but A's

25% trimmed mean drops to 1.0, denoting no reschedulinghg@xecution.

6 Uncertainty-based Contingency Analysis:
Better Schedules for Agents in Time / Mission Critical Situdions

In the previous sections we explored uncertainty as it egiratted into the standard Design-to-Criteria agent
scheduling methodology. However, in situations where fgradlines exist, a mid-schedule failure may
preclude recovery via rescheduling because sufficientdio@s not remain for the agent to explore a differ-
ent solution path. In these situations, a stronger anathisisconsiders the existence of possible recovery
options may lead to a better choice of agent schedules. Tesslduch situations, we have developed a
contingency analysis methodology that functions as aropatiback-end on the Design-to-Criteria agent
scheduler.

The contingency analysis algorithms operate by examiriieghighly-rated candidate agent schedules
produced by the scheduler and exploring failure / recovegnarios for each schedule in the set. These
secondary analysis tools also perform more detailed réag@bout the placement of methods within a
schedule in light of the existence of recovery options. B@meple, recovery for a given schedule may be
possibleiff some critical methodn..,.;1;.q; 1S performed first rather than second. The standard schreidule
weakly biased toward moving uncertain methods earlierarstthedule, but the determinationasal, based
only on the attributes of the method in question, whereasidthod movement explored in the contingency
analysis also takes into account the benefits of method menefrom a recovery perspective.

This underscores the primary difference between the useadrtainty in the main Design-to-Criteria
agent scheduling process and its use in the secondary gentip analysis algorithms. To address resource
limitations and to produce schedules in interactive timesiBn-to-Criteria builds and evaluates schedules
in an independent fashion — the possibility of recovery framarticular failure is not considered by the
main scheduling process. This is because determining tkeeege of a recovery option requires more than
simply finding an action to replace the failure; indeed beeanf task interactions and the combinatorics
of TAEMS models, the process of evaluating recovery optiaitg may require significant computational
expense, e.g., trying all possita¢ternativeways in which a task might be achieved(@™)).

This is true in generatontingency plannings well [5]. In contrast, in the secondary analysis algorgh
we perform more detailed, contextual, schedule analysisdan the availability of recovery options for the
agent and the possibility of failure at key points. This gg&l is more expensive, but, in some situations,
the added expense is warranted. For example, the procesgeofining a schedule for an agent controlling
a world-class telescope does not have to be particularlglyiras the instrument is unused during daylight
hours, but evening observation time is too valuable to wastethis situation, a detailed analysis that
considers recovery options is worthwhile.

The MDP-based optimal meta-controller considers evengiptes outcome of the executable action
and the implications on achieving the high level goal witthie given criteria. Hence, while constructing
a policy, the optimal controller evaluates every potentidical (failure-prone) region and prescribes the
appropriate (contingent) action when necessary. It doegratigh analysis of all possible critical situations
and hence carries the overhead that goes with such an analysi heuristic-based contingency analysis is

32

an approximation of the optimal controller since it take® iaccount onlyhigh impactfailure regions and
has a relatively local view of implications of method out@swompared to that of the optimal controller. In
Section 7, we compare the performance of the contingencgresid DTC scheduler to that of the optimal
policy.

In this section we discuss contingency scheduling issug$amalize five different measures of sched-
ule robustnesswhere robustness describes the quantity of recovery rptiwvailable for a given agent
schedule. In Section 7 we then present experiments congpiménuse of the contingency algorithms to the
standard Design-to-Criteria agent scheduling approach.

This work in contingency analysis of schedules is closelsteel to recent work in conditional plan-
ning. However, the planning-centric research focuses tnngpproblems which involve uncertainty by
probabilistic reasoning about actions and information lmn alue of planning for alternative contingen-
cies [12, 25] and using utility models [17]. Other approachise partial Markov decision processes and
decision theoretic planning approaches [4, 7] which prineestarch space using domain-specific heuristic
knowledge. [31] describes a partial-order planner caldhinur that supports conditional planning with
contingency selection. The authors concentrate on twocespéthe problem, namely, planning methods
for an iterative conditional planner and a method for conmguthe negative impact of possible sources
of failure. Our work addresses similar questions within Bresign-to-Criteria agent scheduling domain,
namely:

1. How can we effectively predict the performance of an agesufseedule when there is uncertainty in
the performance of methods in the schedule?

2. What are the different approximations to the executioretiperformance measure and when is a
specific approximation appropriate?

[5] discusses an algorithm for a specific domain namely atedascope scheduling problem where
the stochastic actions are managed by a splitting technibigeee the Just-In-Case scheduler pro-actively
manages duration uncertainty by using the contingent stéedonstructed by analyzing the problem us-
ing off-line computations. Our contingency agent scheduliesearch differs from previous work in the
following ways:

1. The contingency analysis algorithms use the Designritet@ agent scheduler to explore mainly the
“good” portions of the schedule solution space — that isdtsxhedules that best address the agent’s
design criteria. This serves to constrain the computatimh raduces the combinatorics from their
general upper bounds. More importantly, the algorithmemesd here is amenable to future research
in bounding the algorithm directly, which would enable tlo@tngency analysis approach to operate
online, as does the underlying Design-to-Criteria scterduwhaking it useful for a wider range of
agent applications.

2. Contingency analysis takes place in the context of théi+duhensional goal criteria mechanism used
in Design-to-Criteria. Thus the analysis approach is ftdlgetable to different agent situations, e.g.,
situations where quality should be traded-off to obtaindowost accompanied by a hard deadline, or
situations in which quality should be maximized within achdeadline.

3. Our algorithm takes advantage of the structural progeuf the input problem. Namely the TEMS
task structure representation is used to constrain thgsiagrocess and to help limit the exploration
of the search used to locate recovery options. This is irrastito a simple exploration of all primitive
agent actions without regards for interactions or for how dlstions relate to achieving the agent’s
overall goal.

33

Legend

O Task
C] MethOd

Q (20% 1)(80% 0.5) ' Sub-task

C (15% 5)(85% 3) relationship
D (80% 6min)(20% 8min)

Find Reviews on
Adobe Photoshop
q_max()
Query Benchin
Site (A)

Query End-User
Benchmarks (A1)

Search and Process
Adobe URL (B)

-=----pp TaskNLE

Process User
Reviews (P)

Q (50% 2)(25% 1)(25% 0.5)

C (25% 6)(75% 3)
Find User Apply NLP
Reviews (A2) (A3)

D (100% 6min)
Q (25% 0)(75% 3) Q (90% 4)(10% 0.5)
C (30% 5)(70% 3) C (100% 3)
D (100% 9min) D (100% 3min)

Figure 19:Gather Review Information On Adobe Photoshop — A Simplifié@ Bgent Task Structure.

In Section 2, we used a simple example described in Figurenbtivate the importance of uncertainty
analysis. However, the characteristics of the example tanctiteria were such that there were no recovery
options possible in the event of failure of a method. We nows@ter another example described in Fig-
ure 19 which has the characteristics required to cleatlgtilate the power of contingency analysis. In the
discussion that follows, we use the latter example to ekltig power of our heuristic-based contingency
analysis. We show that the best agent schedule selectecedy Tl scheduler has no recovery options
in the event of failure while the MDP-based optimal policyvesll as the best schedule selected by the
contingency-enhanced DTC scheduler has built-in contioigs for recovery from failure — enabling the
agent to meet its objectives even if a failure occurs.

Each task and method in Figure 19 has a concise, single a@phame associated with it as shown.
The top-level task in Figure 19 can be achieved by either ¢eting taskQuery-Benchin-Sitealso called
task A for conciseness, successfully or executing the ndeBenrch-Adobe-UR/Lalso called task B, or
both. If both tasks A and B are executed the maximum qualitthebe two is the quality propagated
to the parent node (per themaxz() gaf). The quality, cost and duration distributions for theutable
methods denote expectations about method performancengtance, the quality distribution of method
End-User-Benchmarkslso called method A1, indicates that it achieves quabiye of 2 with probability
0.5, quality of 1 with probability 0.25 and 0.5 with probatyilof 0.25. Let's assume the agent’s design
criteria is to maximize quality within a hard deadline of 1éotes.

The MDP-based optimal policy for the above problem is showifrigure 20. The policy suggests
the method sequendéindUserReviewdJserBenchMarksApplyNLP}, also called A2,A1,A3, as the best
schedule when methddndUserReviewachieves non-zero quality ag&iindUserReviewsSearchAdobeURL
(A2,B) would be an alternate schedule in the everfintlUserReviews failure to achieve quality.

The Design-to-Criteria scheduler first enumerates a sulfstite alternatives that could achieve the
agent’s high level task. A subset of these alternativeseleeted and schedules are created using the one-
pass method-ordering techniques identified in Section % Sdt of candidate schedules are then ranked
using the multi-dimensional evaluation mechanism [40JcRltompares the schedules’ statistical attributes
to the agent’s design criteria.

We will use the termexpected lower boun(ELB) to denote a slightly modified schedule utility rating

34

90%

ApplyNLP

ApplyNLP 10%

lyNLP 0%

Terminate

Terminate

FindUserReviews

Terminate

Figure 20:Optimal Policy for BIG's Gather-Review-Information-onddbePhotoshop Task Structure

returned by the standard Design-to-Criteria schedulethénELB computation, the standard utility value
associated with the schedule is computed without the velataling components discussed in Section 5.1;
this enables comparison between the ELB for a schedule ¢ielprio one set, e.g$;, and a schedule
belonging to a different sef,. For the purposes of illustration simplicity, we will disssithe ELB in this
document as being directly related to the expected qudlity given schedule, i.e., in this document, the
ELB is the expected quality of a given schedule assuming no restthgd In terms of the design criteria
described in Section 5.1, this is equivalent to a preferdocenaximizing quality within a given deadline

— no weight or value are given to any of the other criteria digiens. The algorithms presented in the
following sections operate on more interesting criterifirsgs, but, the analysis is more easily understood if
the metrics are cast in terms of expected qualities rattaeramulti-dimensional objective / utility function.

Al (UserBenchMarks) A2 (FindUserReviews) A3 (ApplyNLP) Frequency Quality
50% 2 25% 0 nil 5%*25%=12.5%| 0.0
50% 2 75% 3 90% 4 33.75% 2.0
50% 2 75% 3 10% 0.5 3.75% 0.5
25% 1 25% 0 nil 6.25% 0.0
25% 1 75% 3 90% 4 16.875% 1.0
25% 1 75% 3 10% 0.5 1.875% 0.5
25% 0.5 25% 0 nil 6.25% 0.0
25% 0.5 75% 3 90% 4 16.875% 0.5
25% 0.5 75% 3 10% 0.5 1.875% 0.5

Figure 21: Expected Lower Bound (ELB) Computation of SchedAl,A2,A3}. Each row represents a
possible permutation of the quality distributions of meth@\1, A2, A3 in schedul¢ A1,A2,A3}. The first
three columns represent the possible expected qualitgsadhieved by each of the methods Al, A2, A3.
The fourth column shows the probability of the particulaalify distribution combination occurring and the
last column shows the final expected quality of the schedule.

For the example in Figure 19, the two possible agent schedirie{A1,A2,A3} (UserBenchMarks
FindUserReviews\pplyNLP and{B} (SearchAdobeURLFigure 21 describes the computation of the ELB

35

for the scheduld A1,A2,A3}. Consider the first entry in the table. It describes the casenwnethod Al
achieves a quality of 2, which occurs with a probability dd @s described in the TAEMS task structure.
Method A2 achieves a quality of 0 with probability 0.28. The probability of the methods achieving these
qualities in a single execution is 0.125, given in column Be €xpected quality of the schedyiel,A2,A3}

is 0 in this case, described in column 5. The duration and disstibutions and their expected values are
computed in a similar fashion. The ELBs for schedyla4,A2,A3} and{B} are as follows:

1. {A1,A2,A3}: ELB: 0.97 (Expected Quality)
Quiality : (25% 0.0) (24% 0.5) (17% 1.0) (34% 2.0)
Duration : (100% 18)

2. {B}: ELB: 0.6
Quality : (20% 1) (80% 0.5)

Duration: (80% 6) (20% 8)

Since{A1,A2,A3} has the highest ELB (indeed, the highest rating using threlata normalized utility
functions), it is chosen for execution by the agent. Suppgdsexecutes successfully, but A2 fails (i.e. it
results in O quality), which it does 25% of the time. Then tigers cannot execute A3 because it is not
enabled (A2 failed) but there is also not sufficient time feftthe agent to reschedule and attempt method
{B} (method B cannot be executed before the deadline).

Because of the one-pass low-order polynomial method semg@approach used by the scheduler to
control scheduling combinatorics, the standard DesigB+iteria agent scheduler will only produce one
permutation of the methods Al, A2, and A3. However, if theeslther did produce multiple permutations,
the schedulegA1,A2,A3} and{A2,A1,A3} would receive the same expected lower bound value. Hence
the contention is that there is no difference in performdmeveen the two. However with more detailed
evaluation of the schedules, it is clear tH&2,A1,A3} allows for recovery and contingency scheduling
which schedulg A1,A2,A3} does not permit for the given deadline.{iA2,A1,A3} is the schedule being
executed and A2 fails, there is time to schedule metl®dand complete task TG1. This clearly implies that
schedule{A2,A1,A3} should have a better expected performance rating {#dnA2,A3} as the schedule
{A2,A1,A3} includes the recovery option from failure in its structure.

6.1 Critical Task Execution Regions and the Approximate Exgcted Upper Bound

In our example, task A2 has an enables non-local effect asaseh 25% chance of failure within its
distribution. We hence predict that task A2 could potelytibke acritical task execution regioCTER).

A CTERIs a method that has the potential to seriously degrade tHierpmnce characteristicS of the
overall schedule if it should fail. We will use the teapproximate expected upper bouAEUB) to denote
the expected quality of schedules that are computed witfCIRERS criticality removed. The AEUB is
defined formally in the next section — the discussion heretistive. Removing the possibility of failure in
the AEUB enables us to better understand the implicatiorthepotentialCTERoN the rest of the agent
schedule. For this example, let us remove the failure piiggitstom the performance characterization of
A2 and replace method A2’s 25% chance of quality O with theeetgd value of the distribution. Method
A2 hence is assigned a quality of 3, with a probability of &, for method A2, Q (100% 3). The Design-

S Failure of A2 (where quality= 0) results in zero quality foetschedule due to the way in which the task structure is dkfine
i.e., undergnin() gafs, failure results in zero quality for the parent task af.nHence the quality of A3 is a not a determining
factor and is represented by nil.

17 A method could have uncertainty in its performance charisties but this uncertainty might not affect the methodsoome
significantly. We restrict our classification of methods 8ER'’s to those which have the most impact to the schedulepeence
under limited duration constraints.

36

(ELB = 0.60; AEUB = 0.60)

FAIL
(treq. 25%) | (ELB = 0.00; AEUB = 0.00)

Figure 22:Schedule Options for IG Task (Figure 19) where Ratings apeEted Qualities

to-Criteria scheduler is reinvoked with the modified agasktstructure and rescheduled. The following are
the AEUBSs (expected qualities that result with the posgyhilf failure removed) returned by the scheduler.

1. {A1, A2suecess A3} AEUB 1.29
Quiality : (32% 0.5)(23% 1.0)(45% 2.0)
Duration: (100% 18)

2. {B} : AEUB 0.6
Quality: (20% 1) (80% 0.5)
Duration: (80% 6) (20% 8)

The new AEUB statistic describes performance expectatfdagure is not possible. The relationship
between the AEUB and the ELB is a clue to the importance of tiengial CTERto the overall schedule.
In this case, the schedu{é&1,A2,A3} now has an expected quality value of 1.29. 59'97 % 100 = 33
% improvement in quality with respect to the ELB is signifitahhis 33% improvement in quality confirms
that the possibility of failure in method A2 significantlyaeases the rating of schedyld1,A2,A3}. The
next step is to consider the optional schedules for theraigask structure to neutralize the effect of this
CTER

The tree structure in Figure 22 presents all possible sdingdaptions, including recovery scenarios,
that meet the agent’s hard deadline of 18 minutes. From thgraim, we see that sched{ld1, A2, A3}
does not have an option to reschedule and still meet the ideadllmethod A2 fails. Thus we con-
sider a simple reordering of schedyld1, A2, A3} which is {A2, A1, A3}. To assess the effects of the
agent rescheduling when A2 fails on this sched{#®,A1,A3}, we combine the ratings for schedules
{A2success A1 A3} and {A2/%iure B based on their likelihoods of occurrence. So a schedulérsar
with A2 gets a rating of% * 1.29 + % x 0.60 = 1.1175. We use a similar analysis to get the values of
schedules starting with Ax % x1.29 + % x0 =0.9675 and B= 1 % 0.60 = 0.60 This type of schedule
evaluation is what we call thapproximate expected boufdEB), which is formally defined in the next
section. Note that with this detailed analysis it is cleat $theduld A2, A1, A3} has better expected per-
formance tha{ A1, A2, A3}. However, the ELB computation of the Design-to-Criterihesduler returns
an identical ELB for botq{ A1, A2, A3} and{A2, A1, A3} as it does not take into account the recovery op-
tions present withif A2, A1, A3}. This leads us to believe that the ELB perhaps is not the nppsbariate
performance measure for all task structures, particulaHgre hard deadlines or cost limits (in contrast to

37

soft preferences) are important to the agent and failuressiple.

30

20 7
20

10

10 i
o -

0 - -10
i 20

- T T T T T T T T T T T T T T
0.5 1 1.5 2

0 0.5 1 1.5 2
QUALITY QUALITY

Hi stogram OF Quality[Simul ation-Using- El b- Measur e] Hi stogram OF Quality[Simul ation-Usi ng- Aeb- Measur e]

Figure 23: Performance of Expected Lower Bound and Appreatentxpected Bound Selected Schedules

Figure 23 illustrates this concept. The figure contains titolgrams, one displaying the quality that
results from the agent executing the highest rated schedatkiced by the standard DTC agent scheduler,
namely { A1, A2, A3}, and one displaying the quality that results from executtmg modified schedule
{A2, A1, A3}. The results are presented in a left to right fashion. In eade the chosen schedule was
executed 100 times in an unbiased simulation environmenhioh the execution results are determined by
sampling from the distributions associated with the givesthnds!® Recall that the standard DTC agent
scheduler will give these schedules identical ratings dsas not consider recovery options. The execution
results are consistent with the claim that the schedulea@ractually equivalent. The schedule produced
by the standard scheduler fails to generate quality about @Dthe time and the mean resultant quality
is 0.98. In comparison, the reordered schedule never pesdazero quality result, as it leaves time for
recovery, and its mean resultant quality is thus signifigarigher, namely 1.96. In broad terms, this means
the schedule selected for the agent by DTC will leave thetagighout a result (without achieving its goal)
20% of the time because DTC does not consider contingentiesanalysis.

6.2 Performance Measures

In this section we formalize a general theory relating toabent contingency planning concepts discussed
in the previous section. The question we strive to answanddly here is the followingWhat performance
measure is the most appropriate estimator of the actualigi@t behavior of an agent schedule given the
possibility of failure?Our basic approach is to analyze the uncertainty in the seamdidate schedules to
understand whether a better schedule can be selected oistingegchedule can be slightly modified such
that its statistical performance profile would be bettentttat normally chosen by the Design-to-Criteria

8This is in contrast to other experiments done with the scleeduot included in this work, in which the environment isgéd
in some way or in which the agent sees an imperfesubjectiveview of someobjectivetask structure.

38

scheduler. We accomplish this analysis through the usevefraleperformance measures. As mentioned
earlier, contingency planning is a heuristic approach.stthese performance measures are approximations
of an optimal policy computation. Prior to presenting theaswees, a few basic definitions are needed:

1.
2.

An agent schedule s is defined as a sequence of methadsiy ..m,—1, my,).

Each method has multiple possible outcomes, denatedwhere; denotes thg'th outcome of methodn;.

This is part of the TZAEMS definition of methods or primitiveians. Though the examples generally present
methods as having quality, cost, and duration distribgtiomethods actually may have sets of these distributions
where each set is one possible outcome. For example, if miethmay produce two classes of results, one
class that is useful by methed, , and one class that is useful by method, methodm will have two different
possible outcomes, each of which is modeled via its own tyyabst, and duration distributions. Additionally,
these different outcomes will have different non-locaketf leading from them to the client methods, and

mso respectively.

. Each outcome is characterized in terms of quality, cost,dration, via a discrete probability distribution for

each of these dimensions and each outcome has some priybafmiccurrence.

mg; is aCTERwhen the execution aof; results in outcomg which has a value or set of values characterized
by a high likelihood that the schedule as a whole will not nitsgberformance objectives. For instangs, is

a CTER if the probability of the quality of:;; being zero is non-zero.

. A schedule could have zero, one or more CTER’s init. A general repredim of such schedule with at least

one CTER would be®" = (my, ma,. M7 Mgy MEE M1, My,).

. f??“lg is the frequency of occurrencemc s , j'th outcome wheren;; is a CTER.

" is mg; with its current distribution being redistributed and naiized after the removal of its critical
outcome In other words, the criticality of¢} is removed and the new distribution is calleq".

s = (ma., m— 1,m§;,mi+1,.mﬂ..mffo..mn_l,mn.),then

CT —_— cr cr
(m1 M1, mé ,mHl,.mkl..mno..mn,l,mn.)

cr

ST = (ma.,mi—1, mg", migq, .M .mS My 1, my.) and

(ml M1, M§T M1, M MG M1, M)

The five statistical measures that aide in detailed schenhaation are:

Expected Lower Bound (ELB) The expected lower bound rating, of a schedylis the performance mea-

sure of a schedule execution without taking reschedulitigdansideration [41]. Itis a expected rating
because itis computed on a statistical basis taking quetist and duration distributions into account,
but ignoring the possibility of the agent having to reschedAs mentioned previously, in this paper,
to simplify presentation of the algorithms we will concextér on the case in which the ELB is only the
expected quality of a given schedule. In the general cas&; B is the utility value generated by the
computations presented in Section 5.1 with the relativiirggaspect of the computation removed.

Approximate Expected Upper Bound (AEUB) The AEUB is the statistical schedule rating after elimi-

nating all regions where agent rescheduling could occue &3sumption is that there are no failure
regions and hence the schedule will proceed without anyrésland hence no rescheduling will be
necessary. The following is a formal definition of AEUB:

19 f,5 is the statistical expectation that a methags jth outcome would occur. This can be a local or non-locahegbwned by
another agent. In a cooperative setup, it can be expectei th#he responsibility of the agent owning the method tovie the
correct estimates of;; for all its m;;'s. This will involve inter-agent communication and somegis thef;; estimates by non-local
agents could be in error due to rescheduling. However, itilshibe noted that the contingency analysis is done offlinethud
provides only an expected estimate of the performance.

39

Supposen;; is a CTER in the agent schedule= (mq..m,) and it occurs with frequenc . Let

s = (m1, ma..m..my,).

If ELB(?;QgLB(S) > «, thenm,; is a CTER wherea is a percentage value that determines when

a region should be classified@IrERand thus a candidate for more detailed analysis. The value
of « is contextually dependent and should be specified by a stdredient (another agent control
component or a human). For instance, if saving on compuigtiexpense is more important to the
client than high certaintyy should be high, and thus the threshold @FERclassification is also
high. However, if certainty is paramount, thershould be low, indicating that any significant change
in the ELB should be explored.

For our information gathering example, we see th&€ ({E’giﬁf{}igﬁfﬁg}?zAl’A?’}) > 0.3. Hence

there is at least an 30% increase in the schedule rating likiflénood of failure of A2 is removed.

When this computation is done on an entire schedule for g @ TER’s we call it the Approximate
Expected Upper Bound. Generalizing this formula f&@KER’sm;, j, .7, j, »

AEUB(s) = ELB(my...mg; 1, mf] .m§mfT ...my).
The AEUB is thus the best rating of a schedule on an expeciee w@sis without any rescheduling
by the agent.

In contrast, the optimal policy describes the next besbadbiased on the execution characteristics
of the last action taken. Hence rescheduling is built withie policy and failure regions are are not
ignored in the state expansion. Hence the performance athastics of the optimal policy is more
exact than the ELB and AEUB.

Optimal Expected Bound (OEB) The OEB is the schedule rating if rescheduling were to takeeghfter
the agent performs each method. So the first method is exkbytéhe agent, a new scheduling
subproblem which includes the effects of the method corigolés constructed and the scheduler is
re-invoked. The first method in this new schedule is theneechy the agent and the steps described
above are repeated. Hence the optithathedule is chosen at each rescheduling point. For complex
task structures, the calculation would require a tremesd@ooount of computational power and it is
unrealistic to use it for measuring schedule performanceraal or deployed agent system.

ELB(s) < OEB(s) < AEUB(s), since theOEB(s) is based on recovery from a failure while
AEU B(s) assumes no failure.

Since our MDP based optimal policy does not suffer from im&sion effect(possible negative influ-
ence by the choice of the initial method for execution), tagfgrmance characteristics of the optimal
policy should be the same as that of the OEB.

Expected Bound (EB) Let m{; be the set of actual quality, cost, duration values when atkih;; is ex-
ecuted by the agent. After each method execution the saheéslué-rated. If for some schedule
= (m1, ma..m;.my) @nd ELB((my...my,)) > ELB((m§;, ms,...m§, mi1..my)), i.e. the actual
execution performance of a schedule is below expectatiam & new schedule is constructed based
on the partially complete scheduleuf;, ms;, ...m5 }.

20«Optimal” in this case is meant in a satisficing fashion. Ie ttontext of Design-to-Criteria, the “best” agent schedatea
given task structure is not guaranteed to be optimal as thwbic@torics prevent an exhaustive search. As it is used bptienal
means the best possible agent schedule within the spaciheddry Design-to-Criteria.

40

So the EB is the schedule rating when rescheduling occussvainén there is a possibility for the
partial execution of the current schedule will fail to megbected criteria as a result of the outcomes
of methods already executed. This computation, like the GEBrequire extensive computational
power. SOELB(s) < EB(s) < OEB(s) < AEUB(s).

The optimal policy generated by the MDP based method intigreandles small effects(accumulation
of below expectation performance) and instantiation éfteldence the policy’s performance measure
will be as good as if not better than that of the EB.

Approximate Expected Bound (AEB) It is the schedule rating with rescheduling only &TER’sand
using expected lower bound of the new stable schedule fohadstfollowing theCTER This is
limited contingency analysis &TER’s

Consider a schedule of n methodss= (my, ms..m;..m,). Now supposen;; is a CTERwith a
frequency of occurrence of;;. In order to compute the AEB of the schedule, we replace tiie po
tion of the schedule succeeding”, which ism; 1, m;1a,...mp, BY liy1, livo...... l;, if there exists a
liv1,ligo...... {;; such that

ELB(mlmf;, li—i—l---lk) > ELB(ml...m—f", mi_,_l...mn).
The Approximate Expected Bound for this instance is congatefollows:

AEBZJ (ml, mn)ZELB(ml m—f’", M1 mn) * (1 — fz'j)+ ELB(mlmZCJ’", li+1 lk) *fij . The new
schedule rating thus includes the rating from the origirsat pf the schedule as well the ELB of the
new portion of the schedule. This is basically the calcatatiescribed when the AEB was introduced

in a previous section.

Now we describe the general case scenarionketns, ms, ...m;...m,, be a schedule of n methods

with k CTER’snamedmn;; ,mf; ..mg; . Letthe recovery path available at e€RERm; bes;;

and eachn;; occurs with frequency;. The AEB of the entire schedule is described recursively as
AEB = ELB(my..m{J, Iy, ..y,) * f{7 + AEB(mq..m§ ,mitq,..my) * (1 — 1) which can be
expanded out as follows:

AEB = chrﬁ * ELB(ml'-'mil—ingjlylal-'-lbl)
+(1— fer) * £« ELB(my..mT..mST, | lao...ly)

1171 2]2 i2j27 7@
(U= fih)k x (L= f00 5) fi « ELB(my..mg; .omgom&mil s lag. Dok)+
(1= fingr) * (1= f55,) * o (1= f£5) * ELB(my..mg]..mgl ..mg7 ...my,)
AEUB

The above computation produces an approximate measuesauase the

ELB(my..mij,li+1..l;). A better and more exact computation would be to use the
AEB(my..m;j,liy1..l). So if we recursively refine th& L B(m;..m;j, li1, ..l;), the schedule rat-
ing approaches the expected boy#i3). Thus, the deeper the recursion in the analysi€ BER’s
the better the schedule performance measure and the dasédo ithe actual performance measure
when rescheduling occurs. This describes the potentiginaeyature of the AEB computation. Thus,
EB(s) > AEB(s) andAEB(s) > ELB(s).

The optimal policy takes into account not only the robustrifghe schedule being executed but also
that of the contingent schedules. The AEB if modified to resglcite at critical regions and uses the

41

AEB of the new stable schedule instead of the ELB would haverfopnance measure equivalent to
that of the optimal policy.

Here we would like to add that all computations above aretanéneuristics and hence are approxima-
tions including the OEB and EB. We could define AEUB’,OEB’,EBEB’ and ELB’ which would involve
complete analysis of all paths by the scheduler. The raegu#igent schedules would display higher perfor-
mance characteristics and meet goal criteria better blitaisib be computationally infeasible to generate
[41].

6.3 Rescheduling and Recovery Algorithms

In this section, we describe a generic algorithm, based emliove analysis, that produces a more precise
performance evaluation of schedules when uncertaintyeisgot in the schedule, using the theory described
above.

6.3.1 Algorithm for building stable schedules

The following is a formal description of the algorithm whichooses the agent schedule that provides the
best performance guarantee statistically:

1. Lets® = (mq1,ma, ms,...m;,.m,) be the best schedule returned by the Design-to-Criteriadsdar
for a given task structure, i.e., the schedule selectedxeErigion by the agent.

2. Suppose the scheduler evaluateschedules to decide which is the best schedule, whgre=
(mk...mF) and let S be the set of @il schedules.

3. s® has the highest ELB if§.
4, LetS,em =S — 5. ThenELB(s*) > ELB(s) forall s € Spep, -
5. LetS% Dbe the set 0f € Sy, such thatAEU B(s) > ELB(s%). If S?

rem rem
the AEB(s) for eachs € S, | s°.
6. The new best agent schedufg, is the one with with the highest AEB?_, is more robust where
schedule robustness as defined earlier, is a charact@istischedule in which the schedule allows
for the agent to recover from execution failure of one of thigesluled actions.

= ¢, then we compute

6.3.2 Identifying CTER’S

The AEB is a better estimate than the ELB when there is uriogytan the agent’'s schedule, i.e., there
are CTERs in the schedule and there is a possibility for contingerlapg Earlier we define@TERs as
those regions in the schedule which could potentially leadeigradation in the expected performance and
examinedCTERs in the context of method failure. For example, method A2dagsiality distribution of
(25% 0)(75% 3) — the 25% chance of failure makes it a candi@aiteR Other factors that may be used to
determine whether or not a method i€&ERinclude:

1. Significant variance in the quality distribution: For imeds with a single outcome, we look for vari-
ance in the quality distribution of the method with respecdthie expected values and evaluate if this
variance may critically affect the performance of the scied

42

2. Importance of Non-Local Effects: Certain methods magcfoverall schedule performance indi-
rectly via interactions with other tasks. For example, @&gimethod might produce a result that has
very little quality, but, a result that is needed by otbensumemethods in the task structure. The
failure of such a method may not impact overall quality disedout, indirectly by preventing the
performance of the consumer methods. Methods from whiarantions originate, or from which
importantinteractions originate, may also BT ERs.

3. Relationship between Non-Local Effects and outcomes: nkethods with multiple outcomes, the
variance in the quality distribution is evaluated for eaciicome, as above. Additionally, any non-
local-effects that are tied to particular outcomes mustxaargned for their importance to the over-
all task structure. When scheduling, each outcome has sootalglity of occurrence. Thus the
scheduler reasons from the perspectivalbbutcomes occurringvhere thdikelihood of occurrence
determines the probabilities associated with non-lodalces originating from particular outcomes;
the uncertainty associated with the non-local effectsas fpropagated to the rest of the structure. To
evaluate whether or not a particular method may T &Rin this context requires the evaluation of
each outcome and then some measurement of the probabititye @utcome versus the implications
of the outcome. The thresholds involved are an area of duwerk.

4. Small effectsHeretoCTERdetection has focused on the criticality of individual moath. However,
it is possible for a series of low frequency failures to beegpr across several methods in such a
way that no single method is @TERDbut that the cumulative effects of the failures are equiviale
to a standard, localized;TER This cumulative aggregation small effectss potentially equally
important as method-specific failure points because thé&ibating methods may be supported by
recovery options as well. The OEB and EB computations indansider cumulative small effects of
method performance because they entail reschedulingeakey method execution, in the case of the
OEB, and in the case of an envelope being violated in the dake &B. The issue of what constitutes
a CTERof this class and how to detect SUCHERs is an area of future research.

6.3.3 Method reordering

Earlier, we noted that the AEB evaluation, unlike the ELBles#on, views permutations of the same set
of methods as different schedules. We saw that while oneyation {A2,A1,A3} permitted a contingent
schedule, the othgA1,A2,A3} did not. We describe below two types of method reorderingiwian agent
schedule:

Simple reordering Consider a schedule = {mi, mg, ms,..m;,..m,} . Supposen; is a CTER
Then if the AEB computation is unable to find a contingent dcite for the agent in case of failure of
m;, we will automatically try to moven; ahead in the schedule without affecting any of the non-local
effects such as enables or facilitates. Smjfcan be moved ahead of; without affecting any non-local
effects (enables or facilitates), we get a new schedule {m;, mo, m;, ms,.....} and we reevaluate the
AEB rating. Our example uses simple reordering i.e. A2 camloged ahead of A1 and a contingent
schedule can be obtained. However A3 cannot be moved ahe®2l sifice the enabling relationship has
to be preserved. This type of reordering is always advaotsgsince no task interactions are lost by the
reordering. The contingency analysis algorithm in thisgragonsiders the impact of moving only one CTER
ahead at a time.

Complex reorderingConsider the schedukeagain but supposer;_; facilitatesm;, which is aCTER
Also suppose we are unable to find a contingent schedule eveagails. Here, we would try to move
methodm,; forward in the schedule, by ignoring the facilitates andwesz if the AEB rating of the new

43

schedule justifies the loss of the facilitates. This typeewirdering is not always advantageous since the
performance gain achieved by it may or may not make up fordiseiovolved in the detailed analysis.

6.3.4 Better redundancy estimation

The relationship between the redundancy techniques emglioythe main scheduler process and the recov-
ery options explored in this secondary contingency analgsnot obvious. With respect to the redundancy
techniques, contingency analysis yields better estimaibagent schedule performance because it factors
in the probability that recovery options will be needed, &melprobability that they will not be needed. In
contrast, the redundancy techniques employed by the mhadater conceptually assume either failure or
success from a duration perspective, not the probabiligitber. Consider Figure 12 from Section 5. The
standard scheduler may produce the schedule (A2, B1, BRrdmiains embedded redundancy, as well as
schedule (A2, B1). The schedules represent two extremeddritle performance spectrum, one in which
B1 is assumed to succeed and one in which B1 is assumed tdnfalile first case, the probability that B1
may falil is reflected in B1's expected quality and thus in thaldy distribution of the schedule. However,
the fact that if B1 fails, B2 must be employed, is not refledtethe quality or duration distributions of
the schedule. In contrast, in the latter case, the assumigtithat both B1 and B2 will be executed and
the quality and duration distributions of the schedule céflkis. The extra time required to execute B2 is
actually built-in to the schedule.

Regardless of whether or not B2 is actually executed, thedsdh (A2, B1, B2) is evaluated on the
assumption that B1 fails and B2 is required. This resultsiowzer estimation of the time (and/or cost) that
is generally required to obtain a result. In actuality, (&4,) will suffice 75% of the time and B2 will be
required as a recovery option only 25% of the time. The empion of this scenario via the AEUB and AEB
computations correctly view these different possib#itieom a probabilistic perspective and does not suffer
from the over-statement problem of the main scheduler. Tee estimation problem of the (A2, B1, B2)
schedule is important because it may cause the main scheédgielect a different schedule for the agent to
perform, i.e., itis more than a poor estimate, it may sendgtheduler (and thus the agent) down the wrong
path entirely. The stronger contingency analysis apprgaslds much better estimates and consequently
leads to better decisions about which schedule(s) for teatdg execute in these cases.

An interesting extension of the evaluation in our exampléoidook at schedules that are produced
to resolve uncertainty which in some cases instead of asgusuiccess, assumes failure. Suppose in the
Information Gathering example the results of task B is asubkthe results of task A, if task A is executed
successfully. In other words the search at the Adobe sitepnolide only redundant information, if the
Benchin site has been successfully queried by the agentud_assume that the agent’s new criteria is to
maximize quality, a soft duration deadline of 18 minutes afrd duration deadline of 25 minutes.

The Design-to-Criteria scheduler would then present tie@escheduld A2,A1,A3,B} as it would have
the highest ELB. So if A2 fails, execution of B would ensurattthe high level goal is achieved. But the
ELB computation doesn’'t assume rescheduling if A2 succesiish eliminates the need to execute method
B. We know ELB({A2, A1, A3, B}) would never be better thaB LB({A2, A1, A3}) if A2 succeeded
because method B is redundant and its only effect is to isertbge duration of the schedule which decreases
the ELB rating. In general, if the ELB criteria attaches aigygicance to the duration of the schedule, then
the removal of actions from the schedule due to the resuftsiaf actions making this action redundant will
always increase the ELB rating.

The AEB calculation for agent schedules that have builtantingencies, both successful and failure
action evaluation has to be modified. Normally, contingeanglysis is done for the failure region. In

44

this case where the contingency schedule for failure is aetutif the existing schedule, one needs to do
contingency analysis for both success and failure pogsikil We extend the formula described in the
definition of AEB. Lets = mq,ms.. mgi ki, kpy by g, misgmy be a schedule s of n methods with a
critical regionm}” which occurs with frequency of failurg™. Let the recovery path available at critical
regionmg; bely, 12 g and suppose its a subsetiaf ks..k, wherek, ks..k, produces quality only ifnf}
succeeds and the quallty producedys...l, is mdependent of the successmfj’“ The AEB of the entire
schedule is described recursively 48 B(s) = (1 — f{") * AEB(mi,ma..m{", k1, ..kp, mit1,..my,) +

(fe) = ELB(ml,mg..mf;,ll..lq,m,-+1...mn)

So in scheduled2, A1, A3, B, the exact evaluation of the schedule would be one whichstalk¢h
A2success and A2failure into consideration. If A2 is successful, then the methodated to failure of
A2 should be eliminated (method B in this case) while ratdgf“cc¢ss. Likewise, if A2 fails, meth-
ods associated with the success of A2 namely A1,A3 shouldiibénated while ratingA2fure So
AEB(A2, A1, A3, B) = ELB(A25%¢*3 A1, A3) + ELB(A2/%wre B),

7 Experimental Results

Q (5% 40.0)(95% 50.0))
Sl
D ((50% 10.0)(50% 15.0))

Q ((95% 20.0)(5% 10.0))
C (100% 1.0
D ((50% 10.0)(50% 5.0))

M2 Q ((5% 30.0)(95% 15.0))
1.0

C (100%
D ((50% 10.0)(50% 15.0))

‘(Q((50%120.0) Q ((20% 60.0)

(50% 100)) (80% 70))
C (100% 1.0) C (100% 10)
D (100% 5.0) D (100%, 2.0)

Q ((25% 20.0) (65% 80) (10% 0.0))
C (100% 1.0)
D ((20% 15.0)(80% 10.0))
q_mi
7 Enables
L] [] [] [] [] []
Q (5% 0.0)(95% 150)) Q ((35% 140.0) Q ((45% 0.0) Q ((80% 10.0) (20% 150))
C (100% 1.0) (65% 120)) (55% 160)) C (100% 1.0) Q ((50% 10.0)(50% 20)) Q ((95"u/n 10.0)(5% 0.0))
C (100% 1.0) C (100% 1.0) D ((20% 10.0) (80% 15.0)) C (100% 1.0) C (1000/0 1.0)
D ((50% 10.0) (50% 15)) D (100% 10.0) D (100% 1.0) - D ((50% 10.0)(50% 5.0)) D (100% 5.0)

Figure 24: Sample Task Structures A and B

Using the measures described above, effective contingglacying is a complex process. It involves
taking into account a number of factors, including tasktreteships, deadlines, the availability of alterna-
tives, and agent design criteria (i.e., quality, cost, tiona and certainty trade-offs). In this section, we
evaluate the performance of the contingency analysis toplsomparing them to the standard Design-to-
Criteria agent scheduler. Comparison is done by examimadxkpected Lower Bound (standard scheduler
metric) and the Approximate Expected Bound (contingen@lyais metric) and comparing schedules se-
lected on the basis of these metrics to the actual resultsnaut by executing the schedules in a TAEMS agent
simulation environment. As part of the evaluation processhave partially determined the characteristics
of task structures and design criteria that indicate a probinstance for which contingency planning is
advantageous. In this section, we define the characteritid explain why they affect performance.

45

Fail N.Hvalid | T.S. Contingency Normal Perf. OEB

Lo | In count count A.Q. FR. | R.C. A.Q. FR. | R.C Impr.

E M 8 2 0.73512| 0/200 | 72 || 0.63041| 0/200 | O 14.24%| 0.75227

M | M 8 2 0.70125| 2/200 | 64 || 0.63883| 0/200 | O 8.89% | 0.71222

La | M 8 2 0.79936| 21/200| 100 || 0.66246| 38/200| 48 | 17.12%| 0.84531

M| L 10 0 0 0 0 0 0 0 0% 0

M | M 8 2 0.70125| 3/200 | 64 || 0.63883| 0/200 | O 8.89% | 0.71222

M| H 10 0 0 0 0 0 0 0 0% 0
Col.#| 1 | 2 3 4 5 6 7 8 9 10 11 12

Figure 25: Fail Lo is the failure locationjfail In is failure intensity;N.H. valid countis number of task
structures that fail to produce results for the contingesiog standard agent scheduler cases that are statis-
tically significantly different;T.S. counis number of task structures whose performance qualitidowi
comparedContingency A.Qis average, normalized quality of AEB selected scheddtmtingency F.Ris

the failure rate is number of times AEB selected scheduls faiachieve any qualityContingency R.Gs

the reschedule count which is the number of times the AER&sleschedule reschedules due to failure of
a method to achieve qualitlormal A.Q. is average, normalized quality of ELB selected schedut@mal
F.R. is the number of times ELB selected schedule fails to achaeyequality;Normal R.C.is the number

of times the ELB selected schedule reschedules due todaiiua method to achieve qualiterf. Impr

is the average improvement in performance of contingen@yais over normal schedulingDEB is the
average, normalized quality of AEB selected schedule.

The experiments in this section were conducted by randomheiting task structures while varying
certain characteristics. Intuitions of which charactersswould lead to structures that are amenable to
contingency analysis were used to seed the search forstitayeest cases. Since method failure is a crucial
factor for the contingency analysis argument, the germraif task structures was designed to concentrate
on the variance of two factors, namely, the effects of faillocation and failure intensity (probability of
failure) within a task structure. Figure 24 shows two suaidoanly generated structures. In other words,
ten task structure classes or prototypes were producedmdné@nd then these structures were modified to
vary the probability of method failure and to vary the looatbf the method failure within all possible agent
schedules. The latter is accomplished via non-local effacd sequencing-related quality accumulation
functions that force particular actions to be carried oupaticular points in any schedule including the
actions.

The design criteria in these experiments is to maximizeityugiven a hard deadline on the overall
schedule. This simple design criteria setting is one thatdatself to contingency analysis as the existence
of a hard deadline (in contrast to a soft preference, e.dft dsadline) may preclude agent recovery via
rescheduling in certain circumstances. Because of thedwadline, a poorly chosen initial schedule may
not leave time for the agent to deploy recovery options and the normal Design-to-Criteria scheduler
may fail to produce results in situations where contingeaieglysis has planned for the recovery scenario
and chosen an initial schedule accordingly.

The results for the experiments are shown in Figure 25. Fdr sk structure instance, 100 simulated
executions were performed using the agent schedule withighest Expected Lower Bound(ELB) and with
the schedule having the highest Approximate Expected B@ER), i.e., the best agent schedule selected
by the Design-to-Criteria scheduler was executed a 10Gstand the best schedule selected by (or generated

46

by, in the case of method movement) contingency analysisexasuted 100 times. Each row in the table
indicates a differenffailure location, failure probability)parameter setting for the ten task structures; each
row is also an aggregation of results for the ten task stradghstances. In other words, each row represents
data from an aggregate view where the ten task structurseddsave been modified in a certain way to
produce ten task structure instances. Of the two factord wesdifferentiate the task structures in each row,
failure location (Lo) (found in the first column of the tableXers to the position of critical method(s) in a
task structure and hence in the schedule. Failure inte(isitysecond column) refers to the probability of
a method failing. Three different classifications of fadluocation are used in the experiments: early(E),
medium(M), and late(La). Similarly, three different segfs for failure intensity are used in the experiments,
namely, low(L), medium(M) and high(H) where low is 1%-10%lpability of failure, medium is 11%-40%,
and high is 41%-90%.

For each problem instance, the execution results producdtelAEB selected schedule were compared
to the results for the ELB selected schedule via statissicalificance testing. The third columN,H. valid
count identifies the number of problem instances for which thé imgbothesis of equivalence could not
be rejected at the .05 level via a one-tailed t-test. In ottends, N.H. valid countidentifies the number
of experiments for which the results produced via AEB are statistically significantly different from
the results produced by the ELB. These experiments areamhfitbm subsequent performance measures.
Generally these are instances where the schedule selgcbedbomethodologies are the same, indicating a
lack of many appealing options that may serve to lure thedstahDesign-to-Criteria scheduler away from
the schedule that also happens to have recovery optionsiaggbwith it. The elimination of many of the
task structures is evidence that it is difficult to pre-daii@e whether contingency planning is expedient for
a certain task structure.

The fourth column indicates the number of task structuregbeten possible whose data is compared.
These are task structures that led to schedules for the Et@®arad the AEB case that produced execution
results that are statistically significantly differeng.j.the null hypothesis of equivalence was rejected at the
.05 level. The remaining columns compare the AEB and ELBcseteschedules’ execution results for the
these task structures from an aggregate perspective.

Columns five and eight, title@ontingency A.@ndNormal A.Q.respectively, show the mean, normal-
ized quality that was produced by the AEB and ELB selecte@dules respectively. In other words, the
best schedule per the AEB metric was selected and executadunbiased simulation environment, when
failure occurred the scheduler and contingency-analgsits tvere reinvoked and a new schedule generated
that attempted to complete the task. The resultant quakty mveasured and recorded and the experiment
repeated 100 times. The same procedure was done for the Béddeskschedule, though when reschedul-
ing occurred, the contingency analysis tools were not iadoknor were they invoked in the production
of the initial schedule). The overall maximum quality prodd by either the AEB or the ELB simulation
runs was recorded and all resultant quality then normalmest the maximum, resulting a quality value
that expresses the percentage of the maximum observedyghali a given trial produced. This procedure
was then repeated for the other task structure that prodstegidtically significantly different results, and
the normalized quality values averaged. Thus, the 0.73512 fkom the first row of Table 25, column
four, indicates that contingency analysis yielded scheslthat produced approximately 74% of the maxi-
mum observed quality on average. Column seven indicatéshtbatandard Design-to-Criteria scheduler
produced approximately 63% of the maximum observed qualityaverage, for the same set of task struc-
tures. Thus, contingency analysis yielded a 14.24% peagerihcrease in resultant quality over the standard
Design-to-Criteria scheduler, as shown in column 11.

Columns six and nine show the number of times a given seletieeldule failed to produce any result

47

for the agent within the given deadline for the AEB and ELBesasespectively. It is interesting to note
that the contingency selected schedule failed to produesidtrwith somewhat greater frequency for rows
one and five. This is because both the contingency selectestigie and its recovery option had some
probability of failure, though, we do not actually considiee failure rate in these cases to be statistically
significant. The failure rate in row three illustrates thasslic case in which recovery before the deadline is
often not possible for the schedules chosen by the standssidjipto-Criteria scheduler, whereas it is more
often possible for the schedules selected by contingenalysia.

Columns seven and ten show the number of times rescheduisgiecessary during execution. These
results are somewhat counter intuitive as the contingenajysis selected schedules generally resulted in
more agent rescheduling during execution due to failureis hbecause the contingency analysis tools
explore the possibility of recovery and do not seek to avo@fgilure in the first place. Relatedly, because
the contingency analysis considers the existence of regayions, it may actually select a schedule more
prone to initial failure than the standard Design-to-Gi#escheduler because the schedule has a higher po-
tential quality. For example, say two schedwe®ndss have the following respective quality distributions:
q1 = (25% 0)(75% 10) andgs = (50% 0)(50% 14). The expected value af; is 7.5 whereas the expected
value ofss is 7. The standard scheduler will prefer over so because it has a higher expected quality
value (assuming that the goal is to maximize quality withigiveen deadline). However, the contingency
analysis tools might actually prefeg over s if there are recovery options, e.gs for s,, becauses has
the potential for a higher quality result than. If s3 has a quality distribution likgs = (100% 7), then
the so / s3 recovery scenario has a higher joint expected quality tlees€l alone. Associating a cost with
rescheduling in the contingency algorithms could modutlaite opportunistic risk-taking type of behavior.

If a cost were associated with rescheduling, the utility cf@very option could be weighted to reflect such
a cost.

The last column shows the mean normalized Optimal Expecbesh@® OEB) of the AEB selected sched-
ule. This is the measure where rescheduling is invoked eftery method execution irrespective of the
execution outcome. It describes the optimal performanca sifthedule since the best possible path is se-
lected every step of the way. The quality value shown is tieesage of 100 executions of the OEB schedule,
normalized by the maximum observed quality over all the AER&ted and ELB selected schedules’ ex-
ecutions. The OEB is higher than ba@tontingency A.Qas well asNormal A.Q.for each class of task
structures. This is as it should be, as the OEB is a computljointensive performance measure which
strives to obtain the optimal schedule at every point of the.p

Irrespective of rescheduling, in general, for the taskcstmes that lead to statistically significantly
different results, contingency analysis produced ageméddes that yielded higher average quality than
did the standard Design-to-Criteria agent scheduler. Newaes illustrated by the large number of task
structures that lead to results that were not statisticadjgificantly different, very few of the candidate task
structures were suitable for contingency analysis (ab0t)2

Let us now step back from the aggregate view and comparengamity analysis to the standard Design-
to-Criteria scheduler from a detailed perspective. FigiFeshows a TAEMS task model on which both the
standard scheduler and the contingency analysis tools usexd The expected and actual performance of
the schedules produced by contingency analysis and noghatsling techniques are described in Table
27. The design criteria is again to maximize quality withinaad deadline of 18 minutes.

The agent schedule selected by the contingency tools, loestd AEB, is{)M9, M2, M4} which has
an ELB of 472.94, an Approximate Expected Upper Bound(AEOB)06.9, and an AEB of 494.21. The
CTERIn this schedule i8\/9 becausel/9 has a 20% probability of failure. Because the top-level ipal
accumulation function is aum() and because there are no task interactions, the failubéDis localized

48

M8 M9

Q((70%150) Q((95% 135) Q ((50% 129) Q ((80% 135)(20% 0))

30% 163 5% 130, (40% 118) (10% 0))
(20% 180)) (30% 190)) (0% 178) (1(00%‘)’ 7.0))) b ((1 %L 3%))) D (100% 2.0) D (100% 4.0)

D (100% 2.0
TCH T S
0 4. 0 4. N

Sample Task Structure-3.

Q ((80% 210) Q ((70% 230) Q ((90% 190)

Figure 26: Task Structure C

entirely atA9. This also means that a failure 819, or for that matter the failure of any individual method
within a schedule, will not preclude achieving some quatityhe top-level tasl§. The contingent schedule
is {M8, M2, M4}, whereM8 is the recovery option for methat/ 9. The two schedules considered by the
contingency tools are hend@/9%ucss M2, M4} and{M9/elvre N8 M2, M4}.

The agent schedule selected by the standard scheduled basbe ELB, is{M2, M4, M8} which
has an ELB of 484.2. The schedule is processed by the contimganalysis tools only to compute the
contingency related metrics so that the schedules may bparach. The AEUB of the schedule is 494.72
and its AEB is 474.89. During the contingency analysis of #thedule, thtmove CTER forward heuristic
moved M 8 forward to pull the critical region closer to the front of teehedule to leave more time for
recovery. Thus, the scenarios considered when computmgnitrics are:{ M/ 8%ucc¢ss M2, M4} and
{MgTeilure Mo M4, M9}. Regardless of the results of this analysis, the originakduale produced by
the scheduler, and selected on the basis of the ELB, nafdéBy, /74, M8}, is the schedule subsequently
executed by the agent.

The quality achieved by the contingency selected schethaehaving the highest AEBM9, M2, M4},
after 100 simulation runs is 502.5 which is higher than thd.4%chieved by the best ELB schedule
{M2, M4, M8}. Becausg M9, M2, M4} has a higher probability of failure, the schedule failedrawece
as often as did the schedule selected on the basis of its BiiBri§k-taking behavior is again because con-
tingency analysis revealed the existence of a good quaitgvery option ford/9, namely M8, and that
sufficient time existed to recover from a failure &f9. Thus, the best schedule from a quality perspective
is one that includes the riskié/9 but also considerd/8 in the failure case as a backup. In comparison,
the standard DTC agent scheduler does not consider themsésbf recovery options and thus it made its
choice based on expected quality alone. It is interestimgte that the ELB performance estimate for both
schedules is below that which actually resulted from exeou&nd recovery. This is related to the risk-
taking behavior of the contingency analysis tools — thedaieshscheduler does not consider the existence of
recovery options nor their value to the selected scheduias The fact that whef/ 8 fails, there is actually
a probability of obtaining even a higher quality result bgaeering and employing/9 is completely lost
on the scheduler and not reflected in the ELB computations &@ample illustrates the difference between

49

the statistical, but local or single-schedule view emptblgg the Design-to-Criteria scheduler and the more
accurate, contextual view, generated by performing cgetigy analysis on the schedules produced by the
scheduler.

Schedule Analysig Schedule Produced ELB | AEUB | AEB | Resched count Actual Quality
Contingency {M9, M2, M4} | 472.94| 506.9 | 494.21 23 502.35
Normal {M2, M4, M8} 484.2 | 494.72| 474.89 12 495.13

Figure 27: Performance Information For Task Structure C

We now evaluate the performance of the contingency anadygaithm by comparing it to the perfor-
mance of the optimal agent control policy produced by the MiaBed meta-control system. The experi-
ments in this section were performed on the same 8 task stasctvhose rating of schedule with highest
Approximate Expected Bound(AEB) were found to be statidiiicsignificantly higher than the schedule
with the highest Expected Lower Bound(ELB). The designedit is to maximize quality within a given
deadline.

The results of our experiments are shown in Figure 28. Fdn e&the task structures, we computed
the average quality achieved by the schedule with higheBt, Ethedule with highest AEB and the optimal
policy over 100 simulations. Rescheduling in the event éifa within the deadline is permitted. For each
task structure, the qualities achieved in all three cases narmalized by the actual ELB estim&tef the
highest rated ELB schedule for that task structure.

The row namedTC shows the normalized average quality of the schedules Withhighest ELB for
each task structure. In six of the eight cases, the estintdt@d(with no rescheduling) is equivalent to the
actual ELB, since there were no reschedulings in those sigscalhere is a slight improvement in perfor-
mance in the 2 cases when there is rescheduling. Howeweplikervation cannot lead to the generalization
that rescheduling leads to improved performance. The preoce of the schedule with recovery from fail-
ure does not necessarily have to be better than that of tgmakischedule with no failure. Also if there is a
cost associated with rescheduling, the option with faitevery and higher quality becomes less desirable
than the option with no failure and lower accrued qualitye Tow namedContingencyin the middle shows
the normalized average quality of the schedules with highE8 for each task structure, with rescheduling
in the event of failure. In all eight cases, the quality ish@gthan the estimated ELB as well as the actual
average ELB value. The row namé&ptimal shows the normalized average quality of the optimal policy
and in all eight cases it is better than the DTC scheduleh(ariid without rescheduling).

For each task structure, it can be observed the Performatoeg@l controller)> Performance(contingency
enhanced scheduleg} Performance(normal scheduler with rescheduling on &jlerPerformance(normal
scheduler with no rescheduling on failure).

The above experimental results leads to the following perémce characterization of the various sched-
ulers for a certain class of task structures/problems wheragent is situated in mission-critical environ-
ments or application areas [30], i.e., they have criticak taxecution regions and are constrained by hard
deadlines and mid-stream schedule failure could lead sstraphic system-wide failure.

1. The performance of the contingency-enhanced DTC agéedster is significantly greater than the
standard DTC scheduler.

21This is the statistical measure computed by DTC'’s ratingharism and it assumes no rescheduling. This is in contrast th
actual qualities achieved by the schedule with highest Elfhd simulations, which allow for rescheduling in the ewvefifailure.

50

TaskStructure ## 1 2 3 4 5 6 7 8

DTC 0 0 0 0 |1.28|128| O 0
Contingency | 1.06 | 1.25| 1.07| 1.02| 1.38| 1.3 | 1.08| 1.2
Optimal 1.13]1.36| 1.4 | 1.07|1.38| 1.46| 1.16| 1.36

Figure 28: Normalized Average Quality (NVA) of DTC, contamry enhanced DTC and Optimal Selected
Schedules relative to estimated highest ELB for the tasictitre

2. The performance of the contingency-enhanced DTC aghatlster is in some cases (e.g., task struc-
ture 5) equivalent to the performance of the optimal policy.

3. Itis advantageous to reschedule in the event of failulermpas the overhead associated to reschedul-
ing is minimal.

Based on the results presented here, it is possible to ¢aeracthe types of task structures that are
amenable to contingency analysis, i.e., those for whichyaisaof recovery options is beneficial from a
cost/benefit perspective. The general characteristidsdac

1. Methods in agent task structures should have a posgibfifailure in their distribution. Contingency
analysis is worth the associated computational overhebdfdahere is a possibility of failure of the
current schedule to meet the high-level goal due to indalidaethod failure. If the performance of
the best schedule is deterministic, contingency analgsispensable.

2. Task structures should contain alternate paths. Thenaebsd of possible recovery paths in the face
of failure also makes contingency analysis dispensable.

3. Task structures should contain alternate paths with ss@apping structure (preferably in the initial
stage) and with significant performance differences. Fstaimce, suppose a task structure has a path
{A,B,C,D} with high potential quality but also a high risk of failurealto either C or D, and another
path to reach the same high-level goal, namglyB,E,F,G}, has low quality, low duration but has
no possibility of failure. The presence of an alternate d&tF,G that achieves some quality and
takes advantage of the successful work already done is akiretconceptual notion of a “quick and
dirty” approach to problem solving. The existence of thgpes of methods provide the contingency
planning approach with a recovery option that is usable @véight resource situations.

4. A possibility of moving failure methods forward (absemé@ssociated hard non-local effects) would
further the potential of contingency analysis, i.e., dtites in which there is some flexibility in terms
of method placement within a schedule. If methods have gpoecedence and succession constraints
by way of enables non-local effects, and the failure poirdgrathe latter portion of the schedule, then
there is little possibility of finding good recovery optiofts failure within the resource constraints.

5. Dependence of methods with good average performancetimalomethods (enables non-local effect
from a critical method to a non-critical method). Extensieatingency analysis is required only if the
critical regions affect the rest of the schedule signifigar®therwise, a cheap local fix by replacing
the critical method by a more stable method or just addingdarréant (contingent) method within
the criteria requirements is a better choice than conticgenalysis.

The following are the characteristics of the design ciétevhich augments contingency planning.

51

1. The agent goal criteria could specify a hard deadline gamghasis should be given to either the qual-
ity or duration slider. The hard deadline and other such hesdurce constraints voids the possibility
of simply rescheduling at failure points and instead rezgioff-line contingency analysis.

2. The deadline should also provide enough time for contingeanalysis, if the scheduling cost is
factored into the equation. Regardless, the deadline mnmagide sufficient time for recovery options
to be deployed otherwise the existence of such options isimglass. In these cases, the contingency
analysis tools must resort to the same single-pass exactitor that is used in the main Design-to-
Criteria scheduler.

8 Conclusions and The Future Role of Uncertainty

We have shown that dealing with uncertainty as a first clagcoboth within the agent scheduling process
and via the secondary contingency analysis is beneficia¢ atition of uncertainty to the TAEMS mod-
eling framework enables them to more accurately model arwalege of agent problem solving process.
The uncertainty enhancement is leveraged ubiquitously &sidgh-to-Criteria agent scheduling to reason,
from a probabilistic perspective, about the performanaaatteristics of the agent’s primitive actions and
task interactions. Including explicit models of uncertgiimproves the scheduling process not simply by
increasing modeling power, but also by increasing the sgprational power of all the computations in the
scheduling process. As discussed in Section 5.3, the pit@babmodels occasionally lead to significant
increase in scheduling time, but, even with the loss of tdefpendence assumption, improvement of com-
putation accuracy outweighs the associated computatisis.cBetter models and a richer computation that
leverages the models leads to better agent control in genera

As discussed in Sections 5.1 and 5.2, integration of uriogytin the agent goal or design criteria
specification enables agents or agent clients to descréethtive importance of certainty, and uncertainty
reduction, to a particular application. Integration ofstimnetric into the utility calculations that govern
scheduler problem solving enables the scheduler to eeatyslity, cost, duration and quality-certainty,
cost-certainty, and duration- certainty trade-offs oftigatar courses of action for the agent. This integra-
tive approach enables agents to specify a the balance betweertainty reduction and the other utility
metrics, i.e., uncertainty reduction does not dominateptiblem solving processnlessso specified. The
integration and use of uncertainty in the main Design-tibe@a scheduling process provides a means for
reasoning about, and working to reduce, uncertainty withérconfines of addressing soft real-time schedul-
ing deadlines and other real performance constraints mir@seeployed agent systems (i.e., online agent
control for dynamic environments).

The secondary contingency analysis procedures presamt@dciion 6 step outside of this context to
perform a more detailed analysis of schedule performansedan the existence of recovery options. Since
the algorithms explore the agent’s schedule recovery spsing the Design-to-Criteria scheduler, they still
exhibit a satisficing, approximate, resource conservatatare. It is interesting to note that even the coarse
analysis performed in the Approximate Expected Bound (A&R) Approximate Expected Upper Bound
(AEUB) computations is beneficial to the agent in certaircwinstances. Future efforts in contingency
analysis will involve explicitly bounding and controllirthe complexity of the contingency analysis process
to make it more suitable for online agent control.

Intertwined with this research objective is the ability tassify particular problem solving instances.
From the experiments performed in Section 7, it is clear teatain classes of task structures are more
amenable to contingency analysis than others. Contrijpdidgiators include the location of the failure point

52

and the number and quality of recovery options availablees€htask structures exhibit mission-critical
properties i.e. they have critical task execution regiomd are constrained by hard deadlines and mid-
stream schedule failure could lead to catastrophic systata-failure. Given the ability to classify task
structures, an input task structure could be examined &rmi@ie 1) whether or not contingency analysis
should be performed and 2) if the analysis should be perfdrrhew deep the algorithms should search
when exploring recovery options. In some cases, deep atjgarmay not be fruitful and in others, it may
be critical to the agent.

Another area of future exploration in contingency anal{isis in the determination of critical regions,
critical task execution regian (CTERs), within agent schedules. One aspect of this is detergni@GihER
status based on the existence and types of task interachmesher aspect is in the determination@fER
status by examining the cumulative or aggregation of lowdency failures in methods. The algorithms
discussed earlier focus onl@cal determination of criticality, that is, as being localizeda given method.
However, it is possible that low frequency failures spreadss multiple methods may also result in a critical
region within a given agent schedule. Themall effectscondition may also benefit from the existence
of recovery analysis and contingency planning. Anotheateel area is that of dynamically re-evaluating
the CTERstatus of methods. In this work, we considered only staiiical task execution regions i.e.
the identification of critical task execution regions is épéndent of the progressive results of schedule
execution. However, as execution unfolds, methods thahereritical to begin with may become more
important. In general, changing context is handled by tlemtigescheduling, however, envelopes or triggers
could be specified and examined incrementally during exatudkin to [1]. Understanding the relationship
between more interesting or diverse criteria settings Bedcontingency analysis is also an area of future
work; though results suggest that contingency analysidvaasfits beyond the hard deadline (or hard cost)
scenarios. For example, in some instances, contingendysaeads to results in less time as the failure
points appear earlier in the schedule.

Related to the issue of envelopes is caching the recoverynspexplored and identified during contin-
gency analysis. As the recovery options are explored frotatistcal perspective, where primitive actions
have ranges of characteristics, it is not immediately dat storing the recovery options and deploying
them automatically in the case of failure is a good solutibhis is somewhat related to the issuesafall
effectsdiscussed earlier in that during actual agent executidoegaare produced and while a single value
may not fall outside of a conventionally generated resclieglenvelope (e.g., reschedule if results are not
within 25% of the trimmed mean), the cumulate effects of #gutts may lead to different recovery options
being more desirable in the event of a failure. Because th€é BJent scheduler and contingency analysis
tools reason about non-local effects from a probabilisticspective, these aggregation effects may be even
more pronounced than treenall effectdealt with in CTERdetermination (as thETERcomputation uses
the same probabilistic view used in the rest of the schedwlerputations).

In the current implementation, the cost of an agent resdhmegdis considered to be a small overhead
and the costs associated with rescheduling are effectigabred. This has proven effective in practice and
schedule times tend to be less than one percent of totalnsyestecution time. However, we are currently
exploring the implications of scheduling in environmentsene the rescheduling cost is non-trivial. In such
situations, interesting techniques like including slaoketin schedules or viewing a schedule as partially-
ordered set of methods (rather than a linearly ordered seetfiods) may be appropriate.

Another area of future uncertainty-related work in Dedigr€riteria scheduling involves leveraging the
uncertainty-enhanced TAMS models in multi-agent schegwind coordination. In multi-agent systems
the scheduler is typically coupled with a multi-agent camation module that forms commitments to per-
form work with other agents; local concerns are thus moddlaty non-local problem solving. Uncertainty

53

in this context could be used to reason about the utility efdbmmitments made with other agents and
to understand how the uncertainty about commitments maadgh®gr agents affects local problem solving
[47].

We also plan to look into more efficient methods for determgrthe optimal policy in the MDP frame-
work. Previous research in the area has shown that the stocheature of some MDPs has important
consequences for complexity and not all MDPs are equalficdif to solve. Classification of task struc-
tures to help pre-determine the complexity of the MDP wouddulseful in deciding whether to use the
heuristic scheduler or MDP-based optimal controller farcific problems. We also plan to evaluate policy
performance by applying existing approximation techngj(faste-approximation algorithms and Marko-
vian chains) which trade-off solution accuracy for time.

9 Acknowledgments

We would like to acknowledge the work and contributions affBssor Alan Garvey. His Design-to-Time
scheduling work provided the conceptual foundation forssgjpient work in this area. We thank Professor
Shlomo Zilberstein for his contribution in the presentataf the contingency analysis algorithm as well as
the discussions on the translation of TAEMS task structuréddarkov Decision Processes. We also thank
the anonymous reviewers for their detailed comments.

References

[1] R. St. Amant, Y. Kuwata, and P. Cohen. Monitoring progregth dynamic programming envelopes. In
Proceedings of the Seventh International IEEE Conferemc€mwls with Artificial Intelligencepages
426-433, 1995.

[2] A. Arnt, S. Zilberstein, J. Allan, and A.l. Mouaddib. Dgmic composition of information retrieval
techniquesJournal of Intelligent Information Systen3(1):67-97, 2004.

[3] A.G. Barto, S. J. Bradtke, and S.P. Singh. Learning tousihg real-time dynamic programming.
Artificial Intelligence 72:81-138, 1995.

[4] C. Boutilier, T. Dean, and S. Hanks. Planning under utaiety: Structural assumptions and compu-
tational leverage. IProceedings of 3rd European Workshop on Planning (EWSPX9)5.

[5] J. Bresina, M. Drummond, and K. Swanson. Just-in-cabedwding. InProceedings of the Twelfth
National Conference on Artificial Intelligenc&994.

[6] T. Dean and M. Boddy. An analysis of time-dependent piagn In Proceedings of the Seventh
National Conference on Artificial Intelligencpages 49-54, St. Paul, Minnesota, August 1988.

[7] T. Dean, L. Kaelbling, J. Kirman, and A. Nicholson. Plamyp under time constraints in stochastic
domains.Artificial Intelligence 76(1-2):35—-74, 1995.

[8] R. Dearden and C. Boutilier. Abstraction and approxindecision-theoretic planningAtrtificial
Intelligence 89:219-283, 1997.

[9] K. Decker and J. Li. Coordinated hospital patient schiedu In Proceedings of the Third International
Conference on Multi-Agent Systems (ICMAS$S98pes 104—-111, 1998.

54

[10] K. S. Decker.Environment Centered Analysis and Design of Coordinati@thénisms PhD thesis,
University of Massachusetts, 1995.

[11] K. S. Decker and V. R. Lesser. Quantitative modelingafiplex environmentdnternational Journal
of Intelligent Systems in Accounting, Finance, and Managgni(4):215-234, December 1993. Spe-
cial issue on “Mathematical and Computational Models ofdDigations: Models and Characteristics
of Agent Behavior”.

[12] D. Draper, S. Hanks, and D. Weld. Probabilistic plagnivith information gathering and contingent
execution. InProceedings of the Second International Conference offiéati Intelligence Planning
Systems (AIPS-94pages 31-36, 1994.

[13] A. Garvey.Design-to-Time Real-Time ScheduliiRhD thesis, University of Massachusetts, 1996.

[14] A. Garvey, M. Humphrey, and V. Lesser. Task interdeggmies in design-to-time real-time schedul-
ing. In Proceedings of the Eleventh National Conference on Adilfiitelligence pages 580-585,
Washington, D.C., July 1993.

[15] A. Garvey and V. Lesser. Design-to-time real-time skiimg. IEEE Transactions on Systems, Man
and Cybernetics23(6):1491-1502, 1993.

[16] A. Garvey and V. Lesser. Representing and schedulitigfieing tasks. In Swaminathan Natarajan,
editor,Imprecise and Approximate Computatigrages 23-34. Kluwer Academic Publishers, Norwell,
MA, 1995.

[17] P. Haddaway and S. Hanks. Utility models for goal-dieelcdecision-theoretic planner€omputer
Intelligence 14(3), 1998.

[18] B. Horling, V. Lesser, R. Vincent, and T. Wagner. Thet¥éal-Time Agent Control Architecture.
Autonomous Agents and Multi-Agent SysteBeptember 2005.

[19] B, Horling, B, Benyo, and V. Lesser. Using Self-Diagiso® Adapt Organizational StructureBro-
ceedings of the 5th International Conference on Autonom@esnts pages 529-536, June 2001.

[20] B. Horling, V. Lesser, R. Vincent, T. Wagner, A. Raja, Zhang, K. Decker, and A. Garvey. The
TAEMS White PapeiUnpublished January 1999.

[21] B. Horling, R. Vincent, R. Mailler, J. Shen, R. Becker, Rawlins, and V. Lesser. Distributed Sensor
Network for Real Time Tracking.Proceedings of the 5th International Conference on Autangsn
Agents pages 417-424, June 2001.

[22] E. Horvitz, G. Cooper, and D. Heckerman. Reflection actiba under scarce resources: Theoretical
principles and empirical study. IRroceedings of the Eleventh International Joint Confeesna
Artificial Intelligence August 1989.

[23] E. Horvitz and J. Lengyel. Flexible Rendering of 3D Grigs Under Varying Resources: Issues and
Directions. InProceedings of the AAAI Symposium on Flexible Computatidntelligent Systems
Cambridge, Massachusetts, November 1996.

55

[24] D. Jensen, M. Atighetchi, R. Vincent, and V. Lesser. ingeg Quantitative Knowledge for Multiagent
Coordination. Under review, also available as UMASS Department of Compstéence Technical
Report TR-99-041999.

[25] N. Kushmerick, S. Hanks, and D. Weld. An algorithm foopabilistic planning. IrProceedings of
the Twelfth National Conference on Atrtificial Intelligend®94.

[26] V. Lesser, M. Atighetchi, B. Benyo, B. Horling, A. Raj&. Vincent, T. Wagner, P. Xuan, and S.
Zhang. The UMASS Intelligent Home Project. Pmoceedings of the Third International Conference
on Autonomous Agentgages 291-298, Seattle, 1999.

[27] V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garveytrling, D. Neiman, R. Podorozhny, M. Na-
gendraPrasad, A. Raja, R. Vincent, P. Xuan, and X.Q. ZhangluEon of the gpgp/taems domain-
independent coordination framewodutonomous Agents and Multi-Agent Systed(ik):87-143, July
2004.

[28] V. Lesser, B. Horling, F. Klassner, A. Raja, T. Wagnerd&. Zhang. BIG: An Agent for Resource-
Bounded Information Gathering and Decision Makirgytificial Intelligence Journal, Special Issue
on Internet Information Agentd418(1-2):197-244, May 2000.

[29] V. Lesser, B. Horling, A. Raja, T. Wagner, and X. ZhangsBurce-Bounded Searches in an Informa-
tion Marketplace lEEE Internet Computing: Agents on the N&{2):49-57, March 2000.

[30] D. Musliner. Plan Execution in Mission-Critical Donmai. InWorking Notes of the AAAI Fall Sympo-
sium on Plan Execution - Problems and IssUuE396.

[31] N. Onder and M. Pollack. Contingency selection in plameration. InProceedings of the Fourth
European Conference on PlannintP97.

[32] A. Raja, V. Lesser, and T. Wagner. Toward Robust Agemttb in Open Environments. |Rro-
ceedings of the Fourth International Conference on AutammsnAgentspages 84-91, Barcelona,
Catalonia, Spain, July, 2000. ACM Press.

[33] S. Russell and S. Zilberstein. Composing real-timgesys. InProceedings of the Twelfth Interna-
tional Joint Conference on Atrtificial Intelligencpages 212—-217, Sydney, Australia, August 1991.

[34] H. Simon.Administrative BehaviorMacmillan Company, New York, NY, 1945,
[35] H. Simon.Models of Bounded RationalitIT Press, Cambridge, MA, 1982.

[36] W. Slany. Scheduling as a fuzzy multiple criteria opation problem. Fuzzy Sets and Systems
78:197-222, March 1996. Issue 2. Special Issue on FuzzyipiulCriteria Decision Making; URL:
ftp://ftp.dbai.tuwien.ac.at/pub/papers/slany/fsp86yz.

[37] J. Tash and S. Russell. Control strategies for a stdichpnner. InProceedings of the Eleventh
National Conference on Artificial Intelligencgnages 1079-1085, 1994.

[38] R. Vincent, B. Horling, V. Lesser, and T. Wagner. Implemting Soft Real-Time Agent Control.
Proceedings of the 5th International Conference on AutansyAgentspages 355-362, June 2001.

56

[39] T. Wagner and V. Lesser. Evolving Real-Time Local Ag€ntrol for Large-Scale Multi-Agent
Systems Intelligent Agents VIl Agent Theories, Architectureadd_anguages2333:51-68, August
2002.

[40] T. Wagner, A. Garvey, and V. Lesser. Complex Goal Ciatand Its Application in Design-to-Criteria
Scheduling. InProceedings of the Fourteenth National Conference on Aidlfintelligence pages
294-301, July 1997. Also available as UMASS CS TR-1997-10.

[41] T. Wagner, A. Garvey, and V. Lesser. Criteria-Directéduristic Task Scheduling.International
Journal of Approximate Reasoning, Special Issue on Scimggll9(1-2):91-118, 1998. A version
also available as UMASS CS TR-97-59.

[42] T. Wagner, V. Guralnik, and J. Phelps. A key-based cioaittbn algorithm for dynamic readiness and
repair service coordinatiorProceedings of the 2nd International Conference on Autanaigents
and MAS, (AAMAS2003pages 1140-1147, 2003.

[43] T. Wagner, V. Guralnik, and J. Phelps. Software agefisabling dynamic supply chain manage-
ment for a build to order product lindnternational Journal of Electronic Commerce Research and
Applications, Special Issue on Software Agents for BusiAegomation2:114-132, 2003.

[44] T. Wagner and V. Lesser. Design-to-Criteria ScheduliReal-Time Agent ControlProceedings of
AAAI 2000 Spring Symposium on Real-Time Autonomous Sysiages 89-96, March 2000.

[45] T. Wagner.Toward Quantified, Organizationally Centered, Decisionkihg and Coordination.PhD
thesis, University of Massachusetts, 2000.

[46] T. Wagner, B. Horling, V. Lesser, J. Phelps, and V. Guital The struggle for reuse: Pros and cons of
generalization in taems and its impact on technology ttiansiProceedings of the ISCA 12th Interna-
tional Conference on Intelligent and Adaptive Systems aritivd@re Engineering (IASSE-2003uly
2003.

[47] P. Xuan and V. Lesser Incorporating Uncertainty in Aggéammitments Intelligent Agents VI: Agent
Theories, Architectures, and Languagé&$57:57—70, 2000.

[48] X. Zhang, V. Lesser, and T. Wagner. A Two-Level Negatiat-ramework for Complex Negotiations.
In Proceedings of the 2003 IEEE/WIC International Conferemicéntelligent Agent Technology (IAT
2003) pages 311-317, Halifax, Canada, 2003. IEEE Computer §ocie

[49] S. Zilberstein and S. Russell. Optimal composition @alftime systems. Artificial Intelligence
82(1):181-214, December 1996.

[50] S. Zilberstein. Using anytime algorithms in intelligesystems Al Magazing 17(3):73—-83, 1996.

[51] S. Zilberstein and S. Russell. Constructing utilityven real-time systems using anytime algorithms.
In Proceedings of the IEEE Workshop on Imprecise and ApprdginGmputation pages 6-10,
Phoenix, AZ, December 1992.

[52] M. Zweben, B. Daun, E. Davis, and M. Deale. Scheduling eescheduling with iterative repair. In
M. Zweben and M. Fox, editoréntelligent Schedulingchapter 8. Morgan Kaufmann, 1994.

57

