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Abstract. It is crucial for embedded systems to adapt to the dynamics of open environments. This adaptation process becomes
especially challenging in the context of multiagent systems. In this paper, we argue that multiagent meta-level control is an
effective way to determine when this adaptation process should be done and how much effort should be invested in adaptation as
opposed to continuing with the current action plan. We use a reinforcement learning based local optimization algorithm within
each agent to learn multiagent meta-level control agent policies in a decentralized fashion. These policies will allow each agent
to adapt to changes in environmental conditions while reorganizing the underlying multiagent network when needed. We then
augment the agent with a heuristic rule-based algorithm that uses information provided by the reinforcement learning algorithm
in order to resolve conflicts among agent policies from a local perspective at both learning and execution stages. We evaluate
this mechanism in the context of a multiagent tornado tracking application called NetRads. Empirical results show that adaptive
multiagent meta-level control significantly improves the performance of the tornado tracking network for a variety of weather
scenarios.
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1. Introduction

Cooperative multiagent systems (MAS) are find-
ing applications in a wide variety of domains, includ-
ing sensor networks, robotics, collaborative decision
making systems and distributed control. A cooperative
MAS consists of a group of autonomous agents that
interact with one another in order to optimize a glob-
al performance measure. These agents operate in an it-
erative three-step closed loop [35]: receiving sensory
data from the environment, performing internal com-
putations on the data, and responding by performing
actions that affect the environment either using effec-
tors or via communication with other agents. Two lev-
els of control are associated with this loop: delibera-
tive and meta-level control [19]. Each agent has a low-
er control level called deliberative control (or objec-
t level, see Fig. 1.), which involves the agent making

decisions about what domain-level problem solving to
perform in the current context and how to coordinate
with other agents to complete tasks requiring joint ef-
fort. Each agent also has a higher control level that is
meta-level control (see Fig. 1.), which involves the a-
gent making decisions about deliberation control itself
including whether to deliberate, how many resources
to dedicate to this deliberation, and what specific de-
liberative control to perform in the current context. In
the context of MAS, the meta-level component of each
agent should have a multiagent policy that coordinates
its deliberation with other agents to account for what
could happen as deliberation (and execution) plays out.
Fig. 2. describes the interaction among the meta-level
control components of multiple agents.

Meta-level control in complex agent-based settings
was explored in previous work [2] [3] [33] [34] [41]
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Fig. 1. Duality in reasoning and acting [19].

Fig. 2. Meta-level reasoning among multiple agents [19].

where a sophisticated architecture that could reason
about alternative methods for computation was devel-
oped. We build on the earlier work and open a new
vein of inquiry by addressing issues of scalability, par-
tial information, and complex interactions across agent
boundaries. Consider for instance a scenario where t-
wo agents A1 and A2 are negotiating about when A1

can complete task T1 that enables A2’s task T2. This
negotiation involves an iterative process of proposal-
s and counter-proposals where at each stage A2 gen-
erates a commitment request to A1, A1 performs lo-
cal optimization computations (scheduling) to evalu-
ate commitment requests; this process repeats until A1

and A2 arrive at a mutually acceptable commitment.
The multiagent meta-level control decision would be
to ensure that A1 completes its local optimization in
an acceptable amount of time so that A2 can choose
alternate methods in case the commitment is not pos-
sible. In setting up a negotiation, the meta-level con-
trol should establish when negotiation results will be
available. This involves defining important parameters
of the negotiation including the maximum number of
cycles of proposal/counter-proposal, which in part in-
volves trading off time allocated to local optimization
versus the number of cycles of negotiation [33]. We

model multiagent meta-level control (MMLC) as the
process that facilitates agents to have a decentralized
meta-level multiagent policy, where the progression of
what deliberations the agents should do, and when, is
choreographed carefully and includes branches to ac-
count for what could happen as deliberation plays out.

The key contributions of this work are:

1. A multiagent meta-level control approach that
approximates decentralized partially observable
Markov decision process (DEC-POMDP) with
a stochastic decentralized Markov Decision Pro-
cesses (DEC-MDPs) at the meta-level so that it
can efficiently support agent interactions and re-
organize the underlying network when needed.

2. Coordinate DEC-MDPs that use multiagent rein-
forcement learning to learn multiagent meta-level
polices in a decentralized fashion and incorporate
heuristic rules to resolve conflicts among agen-
t polices locally at both learning and execution
stages.

3. Efficiently decrease the exploration costs of DEC-
MDPs by constructing abstract classes of scenar-
ios/ states/actions where instances within a class
have similar features. The use of meta-level ac-
tions that abstract real actions at the meta-level is
especially novel.

4. Leverage the significance of shared tasks in our
domain and the use of a factored reward function
for the reinforcement learning to capture value of
tasks from a partially global perspective instead
of a local perspective.

5. Evaluation results show that our approach signifi-
cantly improves the performance in the context of
a multiagent tornado tracking application.

1.1. The NetRads Application Domain

In this work, we will focus on NetRads, a real-world
application that will need meta-level control. NetRad-
s [26] [46] is a network of adaptive radars controlled
by a collection of Meteorological Command and Con-
trol (MCC) agents that determine for each radar where
to scan based on emerging weather conditions. It has
a dynamically evolving environment (different type-
s of weather phenomena are occurring unexpectedly)
and agents have only limited partial views of the whole
system. The NetRads radar is designed to quickly de-
tect low-lying meteorological phenomena such as tor-
nadoes. The MCC agent can manage multiple radars
simultaneously, where each radar belongs to exactly
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one MCC. The time allotted to the radar and its con-
trol systems for data gathering and analysis of tasks is
known as a heartbeat. The MCC agent is implement-
ed with 3 deliberative-level phases in a heartbeat. The
phases are: Data Processing, Local Optimization and
Negotiation. Fig. 3. is one heartbeat with these phases.
In Data Processing, each MCC gathers moment data
from the radars and runs detection algorithms on the
weather data. The results of this analysis lead to a set
of weather-scanning tasks of interest for the next radar
scanning cycle. In Local Optimization, the MCC de-
termines the best set of scans for the radars associated
with it to maximize the sum of the utilities1 associat-
ed with its selected weather scanning tasks. In Nego-
tiation, the MCC communicates with its neighboring
MCCs to modify their local optimization based on the
need for radars from multiple MCCs to be coordinated
to accomplish some joint tasks and to avoid redundant
scanning of the same area. The goal of NetRads is to
maximize the overall utility of a given configuration of
radars (refer to [27] for more details).

Fig. 3. Heartbeat with three deliberative-level phases.

Fig. 4. Adding MMLC phase in the heartbeat.

In NetRads, an example domain action would be
a radar scan of a weather task (more details will be
discussed in Section 3.1). The deliberative action at
each heartbeat would be the MCC spending some ini-
tial time in processing the radar data obtained during
the last heartbeat, then performing a local optimization
to determine the radar scanning strategies of the radars
under its control, followed by negotiation rounds of al-

1We define utility as a function of priority of tasks and quality of
data. More details are provided in Section 3.1.1.

ternating communication and recomputation of the lo-
cal configuration. We augment the MCC agent with a
new meta-level phase called MMLC to address the fol-
lowing problems:

P.1 How to re-organize the sub-nets of radars under
each MCC to minimize the time required for M-
CC agents to negotiate with their neighboring a-
gents?

P.2 How to adjust the system heartbeat to adapt to
changing weather conditions so as to approx-
imately balance system responses to emerging
weather phenomenon and the accuracy of radar
scanning strategies?

Each heartbeat is now split up into four phases (as
Fig. 4. shown) containing both deliberative-level ac-
tions (Phase 1: Data Processing, Phase 3: Local Opti-
mization and Phase 4: Negotiation are exactly the same
as in [26]) and we insert a new phase, Phase 2: MML-
C, which involves a meta-level decision process that is
coordinated with neighboring MCCs.

In this work, we define two types of meta-level
actions (more details will be discussed in Section
3.1.3) to address problems P.1 and P.2 defined above:
(1) Radar Reorganization that involves potential-
ly transferring the control of radars among differen-
t MCCs and (2) Heartbeat Adaptation that involves
potentially modifying the heartbeat of MCCs. The
MMLC phase implements meta-level actions that han-
dle the coordination of MCC agents and guide the
deliberative-level actions in Local Optimization and
Negotiation. The MMLC phase in each MCC is re-
stricted to a constrained time period (≤ 10% of the
whole heartbeat) to ensure enough time for the Local
Optimization and Negotiation phases.

1.2. Summary of Our Approach

We view the MMLC problem as a decentralized co-
ordination problem and describe a multiagent meta-
level control approach that uses decentralized stochas-
tic Markov decision processes (DEC-MDPs) [7] to im-
plement the meta-level control of each agent. In Ne-
tRads, the agents are assumed to have only partial ob-
servability of the environment and thus additional un-
certainty is introduced into the decision process. For
that reason we use a stochastic [9] [32] approach where
a policy specifies a probability distribution over poten-
tial action rather than one action to take.

It would be appropriate to model the MMLC prob-
lem in Netrads as a decentralized partially observable
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Markov decision process (DEC-POMDP) [7]. DEC-
POMDPs lie in the NEXP-Complete complexity class.
To make the problem tractable, we approximate the
DEC-POMDP in NetRads with a stochastic2 DEC-
MDP model; a DEC-MDP is a DEC-POMDP with
joint full observability [8]. The joint full observability
of the DEC-MDP reduces the interagent communica-
tion significantly. However, it is known that solving a
DEC-MDP is also a NEXP-Complete problem since it
uses a global reward function that maximizes the over-
all reward in the system. We address this issue by ap-
proximating the solution to the DEC-MDP by using a
factored reward function to define the Nash Equilibri-
um [38] instead of the global reward function. More
details are provided in Section 3.2.

Multiagent reinforcement learning (MARL) is an at-
tractive approach for agents to obtain effective coor-
dination policies without explicitly building the com-
plete decision models. We use a MARL [39] algo-
rithm, Policy Gradient Ascent with approximate policy
prediction (PGA-APP) [44] to learn stochastic policies
for the meta-level DEC-MDPs belonging to individu-
al agents offline. We do this offline learning in a very
controlled way as discussed in Section 3.3. It should
be noted that in [44], the PGA-APP algorithm is used
to learn the stochastic policies at the deliberative level
and in our work we use it at the meta level.

During learning, we decrease the complexity of the
real state by using abstract features in the meta-level s-
tate (described in Section 3.1). We also use meta-level
action (described in Section 3.1) that is abstracted for
computational reasons. We categorize the real-world
weather scenarios into different classes by considering
how they influence the system performance and learn
policies separately for each class through controlled
experimentation to speed up learning. The learning of
each agent uses both information that is locally ob-
served and received from local interactions with its
neighboring agents to improve performance.

During execution, the MMLC is triggered at each
heartbeat. This is reasonable since the computation and
communication cost of MMLC is acceptable in rela-
tion to the expected utility gained. The meta-level poli-
cies learned for each agent could potentially be opti-
mal policies from a local perspective. However, apply-
ing the meta-level policies may cause conflicts (dis-
cussed in Section 4.1) between neighboring agents at

2We learn stochastic policies since they can cope with the uncer-
tainty of observations to a certain degree and perform better than
deterministic policies in partially observable environments.

both the learning and execution stages. For instance,
a conflict occurs when both MCC agents want control
of the same radar since a radar only can be controlled
by one agent. Such conflicts if left unresolved have
detrimental influences on the overall performance. In
this work, we resolve the conflicts through a heuristic
rule-based approach (discussed in Section 4.2) that us-
es pre-defined rules based on character of the conflict.
We empirically show that this type of distributed meta-
level control gives a performance advantage over an
approach that resolves conflicts in a much more ad-hoc
manner.

The rest of the paper is organized as follows: We in-
vestigate the MMLC problem in the context of the Ne-
trads tornado tracking application. We use an example
to identify and explain the meta-level control problems
that need to be addressed in this application and moti-
vate desired solutions to the problems. In Section 3, we
formalize the MMLC problem and describe the DEC-
MDP and multiagent reinforcement learning algorithm
we use to determine local meta-level policies. In Sec-
tion 4, we explore the conflicts that could occur among
the decentralized local agent policies and describe how
we augment the agent with algorithms to coordinate
the meta-level control decisions when conflicts occur.
In Section 5, we present our empirical evaluation and
discussion of our results. Section 6 is a discussion of
related work and Section 7 is a discussion of our con-
clusions and future work.

2. Motivating Example

At the highest level, the question we plan to address
in NetRads is the following: “How does the meta-level
control component of each MCC agent learn decen-
tralized policies so that it can efficiently support agen-
t interactions with other MCC agents and reorganize
the underlying network when needed?” Specifically in
NetRads, this involves addressing the following prob-
lems:

P.1 What triggers a radar to be handed off to another
MCC and how do we determine which MCC to
hand off the radar to?

P.2 How to assign different heartbeats to sub net-
works of MCCs in order to adapt to changing
weather conditions?

The intuition behind identifying these specific meta-
level problems is that it is preferable that radars with
large data correlation be allocated to the same MC-
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Fig. 5. Example MCC-Radar configuration in NetRads (each MCC
controls three radars).

Fig. 6. Example Radar reorganization.

C. Data Correlation occurs when radars belonging to
different MCCs share data of the same weather phe-
nomenon. The data correlation is in part based on the
overlapping characteristics of potential scanning area
of a radar; it is also based on where weather phenom-
ena are occurring and the speed of their movements.
Allocating such data-correlated radars to the same M-
CC potentially reduces the amount of communication
and the time for negotiation among MCCs. Moreover,
adjusting the system heartbeat allows MCCs to adapt
to changing weather conditions. For example, if many
scanning tasks occur in a certain region, meta-control
may decide to use a shorter heartbeat to allow the sys-
tem to respond more rapidly to closely track the quick-

Fig. 7. Example Heartbeat adaptation.

ly evolving weather phenomena which is especially
important with tornados. In this work, a single heart-
beat of MCC is set3 to be 30 seconds (shorter) or 60
seconds (longer). This decision would also involve re-
organizing the MCC neighborhoods so that there are
clusters of MCCs with each cluster having a different
heartbeat depending on the type and frequency of tasks
that the cluster has to handle.

Fig. 5. is the example Netrads configuration, where
each MCC controls three radars (e.g., MCC2 controls
radars {R4, R5, R6}). Each radar has a scanning area
represented by a circle and may have overlapping s-
canning areas with other radars. Two MCCs are neigh-
bors if the radars share overlapping scanning areas
(In Fig. 5., MCC1 and MCC2 are neighbors while
MCC1 and MCC3 are not). Tasks are defined as
four types of weather phenomena (distinguished by d-
ifferent colors in Fig. 5.): storm, rotation, reflectivi-
ty and velocity. We observe that R3 currently has a
large data correlation with R4 and R5, then reallocat-
ing it from MCC1 to MCC2 improves the perfor-
mance. Suppose MCC1, MCC2 and MCC3 execute
the following solution on radar reorganization: “ Move
R3 to MCC2”, “Move R5 to MCC3” and “Move
R9 to MCC4” . Fig. 6. is the resulting NetRads con-
figuration. In Fig. 6., we observe that many scanning
tasks are occurring currently in the common bound-
ary between MCC2 and MCC3, it is preferable for
these two MCCs to use a shorter heartbeat (30 sec-

3There could be potentially many (more than two) heartbeat op-
tions and none of the mechanisms used in the paper are restricted to
only two heartbeat options.
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onds) to respond rapidly to the changing environments.
MCC2 and MCC3 execute the solution on heartbeat
adaptation: “ Use the 30 second heartbeat”. Fig. 7. is
the resulting NetRads configuration. By making these
meta-level changes in radar reorganization and heart-
beat adaptation, NetRads saves on the communication
cost and the time spent on negotiation among MCC-
s. These changes also enhance the system’s ability to
quickly track dynamic weather phenomena.

3. Solution Approach

In this Section, we describe the formal framework
we have developed for MMLC within the context of
the NetRads tornado tracking application. We first de-
fine some key concepts that lay the foundations for the
role of state and action abstraction in this work; we
then formulate the control flow in the MMLC compo-
nent for each agent. We then formalize the meta-level
control problem handled by MMLC as a DEC-MDP
and use a decentralized reinforcement learning algo-
rithm to learn local optimal policies.

3.1. Formal Framework for MMLC

Like [33], we define the real state of the agent as the
state that has the detailed information related to the a-
gent’s decision making and execution. It accounts for
every task which has to be reasoned about by the agen-
t; the execution characteristics of each of these tasks;
and information about the environment such as types
of tasks (defined later in this Section) arriving at the
agent and frequency of arrival of tasks. Consequently
the real agent state is continuous and complex. This
leads to a combinatorial explosion in the real state s-
pace for meta-level control even for simple scenarios.
The complexity of the real state can be handled by
defining an abstract representation of the state that cap-
tures the important qualitative state information rele-
vant to the meta-level control decision making process.
We call this abstraction of the real state the meta-level
state. The real meta-level action set of an agent is de-
fined as the complete set of actions that each MCC a-
gent needs to execute in order for instance to reorga-
nize the control of radars among MCC agents. Howev-
er, for the meta-level actions of radar reorganization,
we use an abstract representation of the real action sets
that capture the similar qualitative action information
relevant to the meta-level control decision making pro-
cess. We use an abstract representation because the ac-

tion space for radar reorganization is very large if ac-
tions use, for example, “Move Radars {l1, ...lk} from
MCCi to MCCj” where {l1, ...lk} is a subset of all
the radars controlled by MCCi with the length of k.
The use of such a detailed action space increases ex-
ponentially the time to learn effective MDP policies.
More details about how we construct the meta-level
states and actions will be discussed later in Sections
3.1.2 and 3.1.3.

3.1.1. Key Terms
Prior to describing the meta-level states/actions, we

define several key terms used in the rest of this paper:
Task: In NetRads, each radar scanning task in the

system has a position, a velocity, a radius, a priority, a
preferred scanning mode, and a type. Tasks may be one
of a few different types: storm, rotation, reflectivity or
velocity. Each of these types has its own distributions
for the characteristics described above. Tasks may be
either pinpointing or non-pinpointing (described be-
low). The utility of a task is determined by the priority
of the task and a factor meant to represent the quality
of the data that would result from the scan (the priority
is specified by experts in the field e.g. meteorologists).
For each task ti, the utility is defined as:

u(ti) = d(ti)× q(ti) (1)

where d(ti) is determined by the priority of the re-
questing user or the weather pattern and 0 ≤ d(ti) ≤
1; q(ti) is the function for the quality of scan for ti and
q(ti) : ti× (s1, s2, ..., sn)→ r ∈ <, where sj denotes
the scanning strategy of radar j.

Pinpointing and Non-Pinpointing Task: Pinpoint-
ing tasks are those that contribute to a significant u-
tility gain by scanning the associated volume of space
with multiple radars belonging to the same or differ-
ent MCCs at once. The utility gained from scanning a
pinpointing task increases with the number of radars
scanning the task up to a point; whereas, the utility for
a non-Pinpointing task is the maximum of the utilities
from the individual radars.

Degree of Data Correlation: Degree of data corre-
lation captures how much data correlation MCCi has
with its neighbor(s). It is defined as 〈D1, D2, ..., Dn〉,
in which n is the total number of MCCi’s neigh-
bors, Dj ∈ {High,Medium,Low}4, j = 1, 2, ..., n.

4We abstract the degree of data correlation into three buckets to
decrease the total number of explored states in the MDPs. In our e-
valuation, the average number of radars each MCC controls is low
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When radars belonging to different MCCs share da-
ta (especially data about shared pinpointing tasks), the
communication among these MCCs would increase
and thus there is more interdependency. In this paper,
we assume the value to be High if the percentage of
pinpointing tasks between two MCCs is equal or more
than 70%5; the value to be Low if the percentage of
pinpointing tasks between two MCCs is equal or less
than 30%; otherwise it is set to Medium.

Neighborhood Scenario: Each neighborhood sce-
nario is a qualitative abstraction that captures the char-
acteristics of a class of real scenarios that are similar
in structure and policy. For each of these neighbor-
hood scenarios, we will learn the best meta-level ac-
tions to perform, for instance, whether or not to ad-
just the heartbeat; and whether or not to move a radar
to a neighbor. We define a set NSi which consists of
the neighborhood scenarios MCCi might encounter
based on the data correlation degrees it has with its
neighbors. NSi = 〈f1, f2, ..., fN 〉 where N is the to-
tal number of neighbors of the MCC. fj(j = 1, 2...N)
denotes the jth neighbor’s information that consists
of its current heartbeat and the number of its curren-
t radars involved in the data correlation with MCCi.
fj(j = 1, 2...N) is defined as (V hb

j , V radar
j ), in

which V hb
j ∈ {30seconds, 60seconds} and V radar

j ∈
{0, 1,many}6. “many” means more than one radar
is involved in the data correlation. We use the qualita-
tive value “many” to simplify the description of MC-
C’s relation with its neighbors to reduce the number of
different feature sets. In Fig. 5., suppose MCC1 has
a 30 seconds heartbeat and MCC3 has a 60 second-
s heartbeat. From the view of MCC2, it is in NS2=
〈(30seconds, 1), (60seconds,many)〉 which means
that MCC2 has two neighbors (MCC1 and MCC3),
MCC1 has the 30 seconds heartbeat and 1 radar in-
volved in the data correlation withMCC2.MCC3 has
the 60 seconds heartbeat and “many” radars involved
in the data correlation with MCC2.

(≤ 5), thus making the variation of data correlation between MCCs
very small. So categorizing the degree of data correlation into three
buckets is able to roughly capture the difference. Setting more buck-
ets is prone to result in more redundant states.

5We set the values (70% and 30%) manually to categorize the
three levels of degree of data correlation. In the future, we plan to
automatically learn these values.

6In NetRads, the average number of radars each MCC controls is
low (≤ 5) and the probability that only one radar is involved in the
data correlation between two MCC agents is much higher than the
others. So we categorize V radar

j into the three buckets to abstract
and differentiate V radar

j without the state space blowing up.

Weather Scenario: We will learn different meta-
level actions based on the type of general weather
scenarios that NetRads is experiencing. In the do-
main of NetRads, we evaluate the performance of our
meta-level control in three different classes of weath-
er scenarios: High Rotation Low Storm (HRLS), Low
Rotation High Storm (LRHS), and Medium Rotation
Medium Storm (MRMS). We choose to evaluate per-
formance based on these three general classes since
each class stresses the system in different ways. These
are abstractions of real-world weather scenarios. The
number of real-world weather scenarios is enormous,
and learning based on the details of the scenarios is
impossible from a practical perspective. In this work,
HRLS denotes the weather scenario in which the num-
ber of rotations is significantly larger than the number
of storms in a series of heartbeats (e.g. a significan-
t number of rotation phenomena occur followed by a
few storm phenomena, and then followed again by a
significant number of rotation phenomena). LRHS is
the weather scenario in which the number of storm-
s is significantly larger than the number of rotation-
s in a series of heartbeats. MRMS denotes the weath-
er scenario in which the number of storms approxi-
mately equals that of rotations. Storms and Rotation-
s have different distributions for the characteristics so
that radars should adopt different scanning strategies.
Even though this classification of the real world weath-
er scenarios is very coarse, we have found that this lev-
el of detail is sufficient to generate meta-level policies
that can improve the system performance significantly.

Communication Schedule: Each MCC has a com-
munication schedule that is a result of negotiation with
its neighboring MCCs with a similar heartbeat rate. In
Section 4.2, we adapt the communication schedule of
MCCs to resolve conflicts of heartbeats.

Learning Stage: This describes the agent’s offline
learning process when it adapts its behavior to improve
performance.

Execution Stage: This describes the agent’s real-
time execution process when it chooses and imple-
ments the appropriate policy.

Factored DEC-MDP: A factored, n-agent DEC-
MDP [6] is a DEC-MDP such that the world state can
be factored into n + 1 components, S = S0 × S1 ×
. . . × Sn. The factorization separates the features of
the world state that belong to one agent from those of
the others and from the external features. S0 refers to
external features, which are parts of the state that the
agents may observe and be affected by but do not af-
fect themselves, such as weather or time. Si refers to
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the set of state features for agent i, which is the part of
the world state that an agent observes and affects.

3.1.2. Meta-level State
We have defined three features F0, F1 and F2 that

sufficiently capture the meta-level state information
critical to the meta-level decision making process as an
abstract representation at each MCC based on our pre-
vious discussion. We will use the motivating example
from Section 2 to illustrate these features.

Feature F0 contains Information about Self. Specif-
ically it consists of MCCi’s current heartbeat and the
number of MCCi’s current radars involved in the data
correlation with its neighboring MCCs. It is defined as
(V hb

i , V radar
i ), in which V hb

i ∈ {30 seconds, 60 seco
nds} and V radar

i ∈ {0, 1,many}. “many” mean-
s there are more than one radar involved in the da-
ta correlation. As discussed earlier, this helps deter-
mine abstractions of the states and actions of MDP-
s. In the example from Section 2 (Fig. 5.), suppose
MCC2 has a 30 seconds heartbeat and it has two
radars (R4 and R5) involved in the data correlation
with its neighboring MCCs. MCC2 has the feature
F0 = (30seconds,many) in its meta-level state.

Feature F1 contains Information about Neigh-
bor(s). It is the Neighborhood Scenario NSi defined
earlier in Section 3.1.1. MCCi gets a good view of its
neighborhood by introducing communication among
neighboring MCCs during both the policy learning
and execution stages. MCCi communicates with its
neighbors to formalize the feature F1 during the policy
learning and execution stages to determine its current
meta-level state.

Feature F2 is the Degree of Data Correlation as de-
fined earlier in Section 3.1.1. Determining F2 also in-
volves communication between MCCi and its neigh-
bors.

In the Fig. 5. example, MCC2 has the initial s-
tate: s0, in which F0 = (30seconds,many), F1 =
〈(30seconds, 1), (60seconds,many)〉 and F2 =
〈High,High〉. Thus, the total number of meta-level s-
tates in this example is 2646 (F0, F1 and F2 has 6, 49
and 9 domain values respectively; 6×49×9 = 2646).

3.1.3. Meta-level Action
As described in Section 1.1, there are two types

of meta-level actions: radar reorganization and heart-
beat adaptation. The meta-level actions for heartbeat
adaptation do not need to be abstracted, since there
are only two action choices: “Use 30 seconds heart-
beat”and “Use 60 seconds heartbeat”. The action space
of radar reorganization is very large if we use real ac-

tions, and when the action space blows up, the com-
plexity of solving the associated DEC-MDP increas-
es exponentially. The meta-level actions for radar re-
organization are abstracted to two qualitative modes7.
The two modes are: Heavy Move and Light Move. Ab-
stracting meta-level actions for radar reorganization in
this way substantially reduces the number of explored
states in the MDP. For example, suppose each MCCi

supervises x radars and has y neighbors. Without ab-
stracting meta-level actions, each radar of MCCi has
y+1 possible handoff choices (to be handed off to one
of MCCi’s neighbors or stay under MCCi). The to-
tal number of possible action sets for the x radars is
(y + 1)x which leads to (y + 1)x exploring states in
the MDP. Using abstracted meta-level actions, for each
neighbor ofMCCi,MCCi has 3 possible choices {φ,
Heavy Move, Light Move}. The total number of pos-
sible action sets in this case is 3y . In the domain of
NetRads, the number of radars each MCC supervises
can be large. 3y is substantially smaller than (y+1)x in
most cases, especially in the case that x is large8. Sup-
pose MCCi has high data correlation with its neigh-
bors which then leads to taking the meta-level action
Heavy Move of MCCi. This meta-level action is im-
plemented as a series of detailed actions that “Move
radars to neighboring MCC agents until data correla-
tion degree between MCCi and its neighbors changes
to Low”; Light Move of MCCi is defined as “Move
less than 20% of MCCi’s radars to its neighbors
until data correlation degree between MCCi and it-
s neighbors changes to Low”. The meta-level ac-
tion of radar reorganization of MCCi is defined as:
Mode(MCCi toMCCj), which means “Move radars
from MCCi to MCCj using the qualitative mode
Mode”. In Fig. 5., one action for MCC2 could be
“LightMove(MCC2 to MCC1) & LightMove
(MCC2 to MCC3)”.

When a certain agent takes an action, the “ac-
tion” that is really implemented is a detailed plan. A
detailed plan is an instantiation of an meta-level ac-
tion. Each meta-level action for radar reorganization
could have different detailed plans associated with. For
example, in Fig. 5., “HeavyMove(MCC3 toMCC2)”
has the detailed plans such as: “Move R7 and R8 to

7In this work, we use only two qualitative modes since the average
number of radars each MCC controls is low. Setting more modes is
prone to result in more redundant states.

8In the case that x = 8 and y = 3, using abstracted meta-level
actions reduces the number of explored states in the MDP by 99.9%.
((3 + 1)8 = 65536, 33 = 27)
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MCC2”and “Move R7, R8 and R9 to MCC2”. The
heuristic rule-based algorithm that changes the de-
tailed plans of meta-level actions to resolve conflicts
will be described in Section 4.

3.1.4. Meta-level Control Flow

Fig. 8. Control flow in MMLC of each MCC. Each MCC has a
meta-level control layer that includes: the Offline RL Module, the
Meta-level Action Choice Module, the Detailed Plan Generation
Module and the Conflicts Resolution Module.

Fig. 8. describes the control flow within each MC-
C. The Scenario Library Module stores the MDPs of
each weather scenario as well as the meta-level poli-
cies. More details on how the module is constructed
will be discussed in Section 3.2. It is also worthwhile
to note that we do not include in the meta-level state
a factored component indicating the local neighbor-
hood weather pattern. In this work, each MCC is as-
sumed to know the class of weather scenario it cur-
rently is experiencing. Consider the motivating exam-
ple in Section 2, suppose when MMLC is triggered by
the heartbeat (Step 1 in Fig. 8.), the weather scenari-
o is HRLS. Each MCC chooses the MDP for HRL-
S and applies its policy according to its current meta-
level state (Step 2 in Fig. 8.). The policies for each
weather scenario are learned offline which is the role
of the Offline RL Module (discussed in Section 3.3).
The Meta-level Action Choice Module chooses the ap-
propriate meta-level action based on current policy, de-
pending on the specific weather scenario that the agent
is in. For example, MCC2 chooses its meta-level ac-
tion (“Light Move (MCC2 to MCC3)”9, “Use short-

9“Light Move”and “Heavy Move”are the two modes of meta-level
actions as defined in Section 3.1.3.

er heartbeat”) based on using the HRLS weather sce-
nario MDP policies (Step 3 in Fig. 8.). The Detailed
Plan Generation Module maps the meta-level action
to a detailed plan associated with this action which in-
cludes radar/MCC reconfiguration and heartbeat adap-
tation. This module uses a greedy search to compute
the first detailed plan. This may cause the conflicts a-
mong detailed plans of the meta-level actions of neigh-
boring MCCs. The Conflicts Resolution Module re-
solves the conflicts (the heuristic rule-based algorith-
m that is used will be discussed in Section 4). Sup-
poseMCC2 chooses the detailed plan of its meta-level
action: “Move R4 to MCC3” and “Use 30 seconds
heartbeat”10 (Step 4 in Fig. 8.). As a result of conflicts
resolution, MCC2 changes its detailed plan to “Move
R5 toMCC3” and “Use 30 seconds heartbeat” (Step 5
in Fig. 8.) and executes it. At runtime, when the MMLC
phase is triggered at every heartbeat (more details will
be discussed in Section 3.3), each MCC agent adopts
the scenario-appropriate policy, resolves conflicts and
executes the detailed plan of its meta-level action.

3.2. DEC-MDP Formalization

We frame the decentralized meta-level control in
NetRads as a stochastic, factored DEC-MDP which is
a DEC-MDP where the policy for each agent can be
stochastic. A DEC-MDP [8] is an extension of MD-
P, where the outcome of an action can potentially de-
pend on the state of all the other agents and their ac-
tions. The main difference between other models such
as MMDP [10] and DEC-POMDP [8] concerns the ob-
servability assumption: MMDP uses full observation
of the global state; DEC-POMDP uses only partial ob-
servation. We map the multiagent meta-level control
problem (n agents in the system) to a factored DEC-
MDP model in the following way. The model is a tuple
〈S,A, T ,R〉, where

– S = S1 × S2 × . . . × Sn is a finite set of fac-
tored world states, where Si is the state space of
agent i. In NetRads, the local state of each MCC
agent is the meta-level state as defined in Section
3.1.2 and it is not directly observed by the agen-
t but computed as a result of communication a-
mong neighboring agents and detailed local state
information of the agents.

10This is one of the meta-level actions for heartbeat adaptation as
defined in Section 3.1.3.
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– A = A1 × A2 . . .× An is a finite set of joint ac-
tions, whereAi is the action set for agent i. In Ne-
tRads, the action of each MCC agent is the meta-
level action that includes radar reorganization and
heartbeat adaptation as defined in Section 3.1.3.

– T : S ×A× S → R is the transition function.
T (s′ | s, a) is the probability of transiting to the
next state s′ after a joint action a ∈ A is taken by
agents in state s.

– R = {R1, R2, . . . , Rn} is a set of factored re-
ward functions. Ri : S × A → R provides a-
gent i with an individual reward ri ∈ Ri(s, a) for
taking action a in state s. In NetRads, the reward
Ri(s, a) for MCCi represents the average of u-
tilities (as defined in Section 3.1.1) of all tasks in
the coverage areas of MCCi and its neighbors.
Ri(s, a) = 1

N

∑N
k=1 u(tk), where {t1, ..., tN} is

the set of all tasks in the coverage areas ofMCCi

and its neighbors.Ri(s, a) is computed as a result
of communication among neighboring agents.

We make this a stochastic DEC-MDP by defining
a solution as a stochastic policy for each agent. A s-
tochastic policy of an agent i is denoted by πi(s) ∈
PD(Ai), where PD(Ai) is the set of probability dis-
tributions over actions Ai; s is the abstract meta-level
state for agent i. Stochastic policies can cope with the
uncertainty of observation and perform better than de-
terministic policies in partial observable environmen-
t. As described in Section 3.1.4, the Scenario Library
Module stores the MDPs of each weather scenario
as well as the meta-level policies. We argue that the
learning is speeded up by categorizing different weath-
er scenarios and learning policies for each MDP of
each weather scenario. We take into consideration that
learned policies of the overlapping states in individual
factored MDPs may not converge, the policies stored
in the Scenario Library Module are averaged polices
learned from the individual factored MDPs. It should
be noted that the policies for the overlapping state for
different weather scenario could be different which
makes sense for us to learn polices for different weath-
er scenarios.

In Netrads, the global reward is the sum of the u-
tilities of all the tasks completed by all the MCCs.
The sum of the local rewards does not always reflec-
t the global reward since the existence of overlapping
and shared tasks could lead to redundant accounting
of task utilities. So the reward function (Ri(s, a)) for
the learning phase has a partially global componen-
t that accounts for the utility of tasks completed by the

neighborhood agents. The environment of NetRads is
dynamic and the number of tasks is changing rapidly,
so we use average of utilities (instead of sum of util-
ities) of the tasks to reflect the radar scanning perfor-
mance. During the learning stage, each agent commu-
nicates with its neighbors to compute its reward from
a neighborhood perspective (Step 7 in Fig. 8.). This
partially global reward function is a better reflection of
real global reward compared to a purely local reward
because when the partially global reward increases (or
decreases), the real global reward will also increase (or
decrease) correspondingly.

The decentralized learning process in NetRads is
thus made much easier by the reduced amount of
communication facilitated by the DEC-MDP model
and the factored partially global reward function that
moves the Nash equilibrium approximate solution of
the DEC-MDP closer to the global reward which is ac-
tual solution to the stochastic DEC-MDP.

3.3. Policy Learning Using PGA-APP

Learning is a key component of MAS, which allows
an agent to adapt to the dynamics of other agents and
the environment and improves the agent performance
or the system performance (for cooperative MAS). Ef-
fective learning algorithms are a key component to de-
velop policies in cooperative MAS. However, due to
the non-stationary environment (just as our NetRads
domain) where multiple interacting agents are learn-
ing simultaneously, single-agent reinforcement learn-
ing techniques are not guaranteed to converge in mul-
tiagent settings. Multiagent Reinforcement Learning
(MARL) is a common approach for solving multiagen-
t decision making problems that allows agents to dy-
namically adapt to changes in the environment, while
requiring minimum domain knowledge.

Several MARL algorithms have been proposed and
studied [5] [11] [18] [22], all of which have some the-
oretical results of convergence in general-sum games.
A common assumption of these algorithms is that an a-
gent (or player) knows its own payoff matrix. To guar-
antee convergence, each algorithm has it own addition-
al assumptions, such as requiring an agent to know a
Nash Equilibrium and the strategy of the other play-
ers [5] [11] [18], or observe what actions other agents
executed and what rewards they received [18] [22]. For
practical applications, these assumptions are very con-
straining and unlikely to hold, and, instead, an agent
can only observe the immediate reward after selecting
and performing an action.
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Zhang and Lesser [44] proposed a practical MARL
algorithm, called Policy Gradient Ascent with approx-
imate policy prediction (PGA-APP), that exploits the
idea of policy prediction. PGA-APP only requires an
agent to observe its reward when choosing a given ac-
tion. PGA-APP empirically converges faster and in a
wider variety of situations than other state-of-the-art
MARL algorithms. We describe the PGA-APP algo-
rithm which is implemented in the Offline RL Module.
In this work, offline learning is preferred for two rea-
sons. The first is to control the scenarios in the sim-
ulation system. While the real NetRads environmen-
t could have varying weather scenarios in play at any
point in time, we make a simplifying assumption in our
simulation work that the entire radar network sees only
one specific scenario at any point in time. This ensures
that multiple agents simultaneously contribute to a par-
ticular weather scenario’s DEC-MDP policy, thereby
speeding up the learning process. Further more, we can
control communication in offline learning since our re-
ward function is targeted for policy generation and not
necessarily for execution. We plan to relax the single
scenario assumption in the future as discussed in Sec-
tion 7 (on future work). The learning component will
learn stochastic policies based on a Nash Equilibrium
solution concept for radar reorganization and heartbeat
adaptation.

We map the PGA-APP algorithm to the domain of
NetRads to learn the MMLC policies offline (the Of-
fline RL Module in Fig. 8.). PGA-APP uses Q-learning
to learn the expected value of each action in each s-
tate to estimate the partial derivative with respect to
the current strategies (line 5, Algorithm 1). The val-
ue function Q(s, a) stores the reward MCCi expects
if it executes action a at state s. The stochastic policy
π(s, a) stores the probability that MCCi will execute
action a at state s. The actions here are meta-level ac-
tions and the states are meta-level states as defined in
Sections 3.1.3 and 3.1.2. We use the ε − Greedy [39]
exploration scheme to pick actions for learning (line
4, Algorithm 1). The ε − Greedy exploration scheme
balances the exploration with exploitation by select-
ing both greedy actions and random actions during the
learning stage. As shown by Line 5 in Algorithm 1,
Q-learning only uses the immediate reward to update
the expected value. The reward r is the partially glob-
al reward defined in Section 3.2. We are thus intro-
ducing communication among neighboring agents in
the learning stage to better model the reward function
in the DEC-MDP. In the online execution of the poli-
cy, we do not need to compute this immediate reward,

thereby avoiding any extra communication among M-
CC agents11. We also introduce communication among
MCC’s neighbors in the learning and execution stages
to calculate some features of the meta-level states.
With the value function Q and current policy π, PGA-
APP then can calculate the partial derivative, as shown
by Line 8, Algorithm 1 [44]. As shown in Line 9, Al-
gorithm 1, PGA-APP approximates the second com-
ponent by the term−γ|δ̂(s, a)|π(s, a). When MCCs’
strategies converge to a Nash equilibrium, this approx-
imation derivative will be zero and will not cause the
agents to deviate from the equilibrium. The negative
sign of this approximation term is intended to adjust
the policy with the derivative prediction length and in-
crease the convergence speed.

Algorithm 1 Zhang & Lesser’s PGA-APP Algorithm
1: Let θ and η be the learning rates, ξ be the discount

factor, γ be the derivative prediction length;
2: Initialize value function Q and policy π;
3: repeat
4: Select an action a in current state s according to

policy
π(s, a) with suitable exploration;

5: Observing reward r and next state s′, update
Q(s, a) ← (1 − θ)Q(s, a) + θ(r +

ξmaxa′ Q(s′, a′));
6: Average reward V (s) ← Σa∈Aπ(s, a)Q(s, a);
7: foreach action a ∈ A do
8: if π(s, a) = 1 then δ̂(s, a) ← Q(s, a)−V (s)

else δ̂(s, a) ← (Q(s, a) − V (s))/(1 −
π(s, a));

9: δ(s, a) ← δ̂(s, a)− γ|δ̂(s, a)|π(s, a);
10: π(s, a) ← π(s, a) + ηδ(s, a);
11: end
12: π(s) ←

∏
∆[π(s)];

13: until the process is terminated;

NetRads is designed to quickly detect low-lying me-
teorological phenomena, so time is a critical concern.
A heartbeat consists of four phases, it is important that
the MMLC takes negligible amount of time so that
there is enough time for the complex operations of Lo-
cal Optimization and Negotiation phases. During the
learning stage, the MMLC is triggered at every heart-
beat which means the meta-level actions of the MCC-

11This is very little considering that meta-level control is operat-
ing at a 30 or 60 second heartbeat and there is already much more
communication occurring as a result of negotiation.
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s are changed at every heartbeat. This is acceptable
in our work, since the offline learning takes very little
time by exploring the state space that is abstracted and
computing the partially global reward using neighbor-
hood communication. Our evaluation results show that
triggering MMLC at every heartbeat during learning
helps improve the overall performance. A long period
trigger for the MMLC during learning will make the
meta-level policy obsolete due to dynamic nature of
the environment (the weather phenomena are changing
quickly and dynamically that results in the changes of
the current meta-level states of the MCCs).

During the execution stage, the MMLC is also trig-
gered at every heartbeat. This is acceptable since the
cost of MMLC is negligible compared with the expect-
ed utility gained. Communication with neighbors is al-
so used for MCCs to calculate some features of the
meta-level state at this stage. Each MCC then chooses
the proper policy and applies the appropriate detailed
plan (it is generated after conflict resolution) based
on its meta-level state. We argue that it is worthwhile
running the conflict resolution algorithm in the Con-
flicts Resolution Module as long as the expected util-
ity gained outweighs the cost of running the algorith-
m at the execution stage. After the two deliberative-
level phases (Local Optimization and Negotiation) are
completed, domain actions of radar scanning are im-
plemented based on the set of tasks (Step 6 in Fig. 8.).

In the next Section, we investigate the conflicts that
could occur when agents apply PGA-APP locally and
present a heuristic rule-based algorithm to resolve con-
flicts between two agents during both the learning and
execution stages in order to compute the approximate-
ly optimal meta-level actions.

4. Conflict Resolution

The policies learned using the PGA-APP algorithm
for each MDP could be optimal policies for each agent
from a local perspective. However, as mentioned earli-
er, the chosen meta-level actions could cause conflict-
s between agents when the associated detailed plans
are generated by the Detailed Plan Generation Mod-
ule. As will be discussed in the experimental Section,
resolving such conflicts in an intelligent manner im-
proves overall system performance. We first define the
types of conflicts that may happen in this case. We
present a heuristic rule-based algorithm that uses pre-
defined rules to locally resolve the conflicts by chang-
ing the detailed plans of the meta-level actions among
agents at both learning and execution stages.

4.1. Conflict Type

We define the following types of conflicts among
agents’ detailed plans associated with meta-level ac-
tions:

a) Local Radar Conflicts (LRC) refer to situations
in which meta-level action choices of MCC agents
fail to efficiently balance the load of the multia-
gent system. Consider the situation (Fig. 5.) where
both MCC2 and MCC4 decide to move radars
to MCC3. It is acceptable for MCC3 to receive
radars from either MCC2 or MCC4, but receiving
radars from both will result in a very high12 load for
MCC3 (MCC3 controlling too many radars could
increase the time and messages for local negotia-
tion). This is a LRC betweenMCC2 andMCC4. A
LRC is recognized in the following way: Neighbor-
ing MCCs exchange messages to inform each oth-
er about their current detailed plans. If MCCi find-
s that its neighbor MCCj has the detailed plan of
moving radars to the same agent MCCk, it send-
s a message to tell MCCk the number of radars
it plans to move to MCCk. Meanwhile, MCCj

does the same type of communication with MCCk

as MCCi does. MCCk receives messages from
MCCi and MCCj , adds the potential number of
radars to the current number of radars associated
with. If the sum exceeds the threshold for high load,
MCCk will notify MCCi and MCCj that a LRC
exists between them.

b) Shared Radar Conflicts (SRC) are inconsistencies
that may arise when two or more agents attempt to
move the same radar(s). In Fig. 5., a SRC occurs
when MCC1 and MCC3 both require the control
of the same radar belonging to MCC2. A SRC is
recognized in the following way: Neighboring M-
CCs exchange messages to inform each other about
their current detailed plans. If MCCi finds that it-
s neighbor MCCj has the detailed plan that com-
petes for the same radar, it recognizes this as a SR-
C. Meanwhile, MCCj also recognizes the SRC in
a similar fashion.

c) Inconsistent Heartbeat Conflicts (IHC) occur
when two neighboring agents have different heart-
beats and have to communicate with each other dur-

12The threshold for a high load of the MCC varies according to
different simulation scenarios. For example, in a simulation scenario
that each MCC has an average number of 5 radars associated with,
the threshold is set to be 8 radars under one MCC.
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ing the Negotiation phase. The MCCs are assumed
to communicate with neighboring MCCs that have
the same heartbeats during the Negotiation phase.
Suppose in Fig. 5.,MCC1 decides to use the short-
er heartbeat (30 seconds) andMCC2 decides to use
the longer one (60 seconds). It is not possible for
MCC1 to communicate with MCC2 at the end of
every 30 seconds’ heartbeat as defined in Section
1.1. An IHC is recognized when MCCi finds the
neighboring agent MCCj tries to use a different
heartbeat by exchanging messages.

4.2. The Heuristic Rule-based Algorithm

Fig. 9. Heartbeat Adaptation.

Algorithm 2 is the heuristic rule-based algorithm for
MCCi. This algorithm uses the following pre-defined
heuristic rules to solve the three types of conflicts:

a) Resolution Rule for LRC: To resolve a LRC be-
tween two MCCs, the two MCCs exchange mes-
sages describing the degree of data correlation, the
MCC with larger data correlation first applies its
current detailed plan, the other MCC stochastically
chooses another of the candidate detailed plans that
will not result in a LRC and applies it. It should be
noted that the candidate detailed plan only involves
changing of radar reorganization, the current heart-
beat should remain the same since the change of
heartbeat may incur new IHC conflicts. If no such
detailed plan is found, the other MCC aborts its
current detailed plan. If both MCCs have the same
amount of data correlation, the MCC is to first ap-
ply its detailed plan by a pre-defined ordering. The
detailed plan of the MCC that has larger data corre-
lation is always more valuable to implement since
this MCC has more information about pinpointing
tasks in its region. Pinpointing tasks are generally
more valuable since they affect multiple agents.

b) Resolution Rule for SRC: To resolve a SRC be-
tween two MCCs, the two MCCs exchange mes-
sages describing the current number of radars as-
sociated with, the MCC with fewer radars receives
the shared radar(s). If both MCCs have the same
number of radars, the MCC is chosen to receive the
shared radar(s) by a pre-defined ordering. The more
radars one MCC controls, the more time and mes-
sages it spends for local negotiation that decreases
the utility for radar scanning. It is preferred to as-
sign the shared radar(s) to a MCC with the lower
load.

c) Resolution Rule for IHC: To resolve an IHC, let
the MCC with shorter heartbeat adapt its commu-
nication schedule to the MCC with longer heart-
beat (as Fig. 9. shown, MCC1 communicates with
MCC2 every two heartbeats). In this work, we are
not resolving IHC by changing heartbeats of MCC-
s.

Algorithm 2 The Heuristic Rule-based Algorithm
1: for each neighboring MCCj ( j > i )do
2: MCCi send message to MCCj describing
ai,DP

3: MCCj check aj,DP and ai,DP

4: if Con_Check(aj,DP , ai,DP ) = true then
5: MCCj apply rules (defined in Section 4.2) to

resolve the conflict
6: aj,DP ← a

′

j,DP

7: ai,DP ← a
′

i,DP

8: MCCj send message to MCCi describing
new ai,DP

We now describe the heuristic rule-based algorithm
presented in Algorithm 2. Let ai,DP and aj,DP be the
current detailed plans for MCCi and MCCj respec-
tively; let a

′

i,DP and a
′

j,DP be the new detailed plans
after conflict resolution forMCCi andMCCj respec-
tively; let Con_Check(aj,DP , ai,DP ) be the function
that returns whether any type of conflict (LRC, SRC or
IHC) exists between aj,DP and ai,DP . This function
uses the mechanism described in Section 4.1 to recog-
nize the conflicts. Each MCCi initializes the conflic-
t resolution process by sending messages to its neigh-
boring13 MCCs (Line 1-2, Algorithm 2). Each neigh-
boring MCC then applies the heuristic rules to resolve

13We only consider the subsequent (j > i) neighboring MCCs in
order to avoid resolving the conflict between two MCCs repeatedly.
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the conflict (Line 5, Algorithm 2) if any type of conflic-
t exists and updates the new detailed plan for MCCi

and itself (Line 6-7, Algorithm 2).
In this algorithm, each conflict is resolved by replac-

ing the original detailed plan with a new one. Howev-
er, each updated detailed plan does not take into ac-
count the influence it has on other neighboring agents
and may introduce new conflicts with other agents. For
example, in Fig. 5., the conflict between MCC2 and
MCC3 is resolved by changing the detailed plan of
MCC2 and this change may result in a new conflic-
t between MCC2 and its another neighbor MCC1.
Thus, while this localized algorithm has low overhead,
it provides no guarantee that all conflicts in the system
will be resolved.

In the next Section, we will evaluate the impact of
MMLC in the performance of NetRads. We first gener-
ate meta-level heuristics manually to show meta-level
control is useful and then show that our learning al-
gorithm allows the network of NetRads to dynamical-
ly adjust to changing weather phenomena. At the end,
we show that our heuristic rule-based algorithm helps
resolve the conflicts among agent’s meta-level actions.

5. Empirical Evaluation

We use the simulator of the NetRads radar sys-
tem [26] to evaluate our algorithm. In this simulator,
radars are clustered based on location, and each cluster
of radars has a single MCC. Each MCC has a feature
repository where it stores information regarding tasks
in its spacial region, and each task represents a weath-
er event. The simulator additionally contains a func-
tion that abstractly simulates the mapping from phys-
ical events and scans of the radars to what the MCC
eventually sees as the result of those scans. MCCs dis-
cover and track the movement of the weather events
through this process.

Tasks are created at a MCC based on radar moment
data that has been just received. Tasks can be either
pinpointing or non-pinpointing.

5.1. Experiment Setup

For the experiments reported here, we use the sim-
ulation setup where there are 3, 12 and 30 MCCs (a-
gents). This is the setup used by Krainin et. al [26].
Fig. 10. is the snapshot of the radar simulator for a par-
ticular real-time scenario. In Fig. 10., each hollow cir-
cle represents a radar and each filled circle represents a

task (we are only concerned about rotation and storm
tasks in the evaluation.). The Radar Information Pan-
el (Fig. 10.) provides information about a particular
radar including its name, its MCC supervisor, its phys-
ical location in the plane coordinate system, the angle
range it sweeps, the target task it scans and the belief
value of the negotiation algorithm in Phase 4: Nego-
tiation. We test the results for three different types of
weather scenarios: High Rotation Low Storm (HRLS),
Low Rotation High Storm (LRHS), and Medium Rota-
tion Medium Storm (MRMS). There are a total of 80
tasks in each weather scenario. HRLS contains 60 ro-
tation tasks and 20 storm tasks; LRHS contains 60 s-
torm tasks and 20 rotation tasks; MRMS contains 40
storm tasks and 40 rotation tasks.

Fig. 10. Snapshot of Radar Simulator.

We generate the training/test cases by varying such
parameters as number of MCCs, number and types of
tasks, initial heartbeat for each MCC, percentPinpoint-
ing and etc. percentPinpointing is defined as the per-
centage of pinpointing tasks relative to all tasks in a
specific training/test case. We vary percentPinpointing
to evaluate the performance on different numbers of
pinpointing tasks. We also scale up the number of tasks
in training/test cases. Utility and Negotiation Time are
the parameters that are used to analyze performance.
Utility is defined as the overall utility of a give config-
uration of radars where two sets of factors contribute
to the utility [27]. The first set of factors is concerned
with how well a particular portion of the atmosphere
is sensed by the given radar configuration. The second
set of factors is concerned with how important the s-
canned sectors are to the end users. Negotiation Time
denotes the average time (seconds) that MCCs spend
in Negotiation (Phase 4). If a MCC chooses to spend
less time in Negotiation, then the remaining amount of
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time in the fixed heartbeat is allocated to Data Pro-
cessing and Local Optimization. This is an instance of
MMLC determines what resources to allocate to dif-
ferent deliberative actions.

For the experiments, we have the following assump-
tions:

1. All the MCCs are in the same type of weather
scenario that is set for the simulation.

2. All the MCCs have the same number of radars as-
sociated and same heartbeats (all are 30 seconds
or 60 seconds) initially.

As described in Section 3.3, the real NetRads environ-
ment could have varying weather scenarios in play at
any point in time. The first assumption is made to en-
sure that multiple agents simultaneously contribute to a
particular weather scenario’s DEC-MDP policy, there-
by speeding up the learning process. We plan to relax
the single scenario assumption in future work as dis-
cussed in Section 7. The second assumption is made to
ensure fairness in comparison to make the results more
interpretable.

We compare the results of four algorithms: No-
MLC, Adaptive Heuristic Heartbeat (AHH), PGA-APP
and PGA-APP-CR.

– No-MLC is the algorithm that with no explicit or
implicit meta-level control (It has all the phases
except MMLC in a heartbeat).

– AHH is the algorithm where we incorporate hand-
generated heuristics in meta-level control to adap-
tively change the heartbeat of each MCC. The
rules are simple: For each MCCi, at the end of
Data Processing (Phase 1), if there are more rota-
tion phenomena in the region of MCCi, MCCi

increases the heartbeat for its next period, other-
wise, MCCi decreases the heartbeat for its nex-
t period (longer heartbeat is better for rotation-
s due to the need for more scanned elevations,
and shorter heartbeat is better for storms). The
heuristics also help to address the radar reorgani-
zation problem. Assigning the same heartbeat to
the neighboring MCCs with overlapping region
results in better communication/negotiation in the
Negotiation phase to help reducing the amount of
data correlation in the next heartbeat period which
has some of the same effect as handing off radars.

– PGA-APP augments MCCs with meta-level con-
trol based on offline RL (PGA-APP) to adjust the
system heartbeat and re-organize the subnets of
radars to adapt to changing weather conditions.

– PGA-APP-CR (PGA-APP with conflict resolu-
tion) is the algorithm where we incorporate
heuristic rules to resolve local conflicts.

For the MMLC phase, we used 1000 training cases
and each has a long sequence of training data to learn
the policies for each abstract scenario offline.

Learning parameters (defined in line 1, Algorith-
m 1) will affect the convergence of PGA-APP. For non-
competitive problems (e.g., NetRads), with too large a
γ (derivative prediction length), MCCi may not pre-
dict its neighbor’s strategy correctly. Then the gradi-
ent based on the wrong neighboring MCC’ strategy
deviates too much from that of the current strategy,
and MCCi adjusts its strategy in the wrong direction.
In the experiments, PGA-APP used prediction length
γ = 0.2. With higher learning rates θ and η, PGA-APP
learns a policy faster at the early stage, but the policy
may oscillate at late stages [44]. Properly decaying θ
and η makes PGA-APP converge better. PGA-APP us-
es value-learning rate θ = 0.8 and policy-learning rate
η = 1/(1000 + t), where t is the current number of it-
erations. We ran 30 test cases for each of the four algo-
rithms described above for the three different weather
scenarios (defined in Section 3.1.1).

In the experimental evaluation, we first compare
PGA-APP with No-MLC and AHH. We show that
adaptive multiagent meta-level control significantly
improves the performance for a variety of scenarios.
Then we compare PGA-APP-CR with PGA-APP to
show the effects of applying rules to resolve conflicts
between agents.

5.2. Performance of PGA-APP

We ran test cases for each weather scenario consist-
ing of 3, 12 and 30 MCCs with 9, 60 and 150 radars re-
spectively. The number of tasks is 80 for all test cases
and percentPinpointing is set to 60%. Fig. 11. shows
the performance of No-MLC, AHH and PGA-APP on
Utility for a variety of scenarios. AHH performs sig-
nificantly better than No-MLC on Utility in all compar-
isons (Fig. 11.(a)). The improvement is 7%, 11% and
4% for networks with 3, 12 and 30 MCCs respectively.
This shows the effectiveness of adding meta-level con-
trol to agent reasoning in HRLS scenarios. According
to the hand-generated rules in AHH, the three MCCs
would all set their heartbeat to 60 seconds for HRLS.
The three MCCs would then have more time on Local
Optimization and Negotiation so that the final config-
urations of scanning tasks for the next heartbeat peri-
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(a) HRLS Scenarios

(b) LRHS Scenarios

(c) MRMS Scenarios

Fig. 11. Utility of No-MLC, AHH and PGA-APP in different weather
scenarios for number of MCCs to be 3, 12 and 30.

od would be more optimized. This results in larger U-
tility. In HRLS scenarios, PGA-APP performs signifi-
cantly better than No-MLC and a little better than AH-
H. p values from t-tests are 0.0074, 0.037 and 0.016 for
the 3, 12 and 30 MCCs cases respectively compared
with No-MLC. The minor difference in performance
between PGA-APP and AHH on HRLS scenarios lead-
s to the speculation that the heartbeat is a critical factor
for rotations compared with radar reorganization.

In both LRHS and MRMS scenarios (Fig. 11.(b)
and Fig. 11.(c)), AHH performs a little better than No-
MLC. The improvement is 1%, 1% and 3% for the 3,
12 and 30 MCCs cases respectively. PGA-APP per-
forms significantly better than No-MLC. In LRHS sce-
narios, p values are 0.023, 0.0095 and 0.0071 for the
three cases respectively while in MRMS scenarios, the
p values are 0.008, 0.029 and 0.035 respectively. PGA-
APP performs significantly better than AHH. In LRHS
scenarios, p values are 0.0086, 0.0013 and 0.0028 for
the 3, 12 and 30 MCCs cases respectively; in MRMS
scenarios, the p values are 0.0074, 0.0082 and 0.034
respectively. We observe that the 30 seconds heartbeat
is not an important factor in LRHS scenarios (AHH in-
creases small amount of Utility.). In PGA-APP, each
MCC adopts the policy appropriate to its neighbor-
hood scenario. The meta-level action for radar reorga-
nization that allocates radars with large data correla-
tion to the same MCC helps reduce the time for nego-
tiation between MCCs which would increase the time
for Local Optimization. As discussed in Section 5.1,
MMLC is able to leverage that in different situations.
In certain situations (e.g., there are many internal tasks
compared to boundary tasks) it is better to do a good
job in local optimization and allocate fewer cycles to
negotiation while in other situations more cycles for
negotiation would be better (e.g., many pinpointing
tasks exist in boundary regions between MCCs). PGA-
APP performs significantly better on learning policies
to control when and which radars should be moved.

Fig. 12. Negotiation Time of No-MLC, AHH and PGA-APP in dif-
ferent weather scenarios.

In Fig. 12., PGA-APP performs significantly better
than No-MLC on Negotiation Time for each weather s-
cenario with p values of 0.0028, 0.033 and 0.0058 re-
spectively. PGA-APP uses the least time in the Nego-
tiation phase and achieves the highest Utility in each
weather scenario. This shows that adaptive meta-level
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Fig. 13. Utility of No-MLC, AHH and PGA-APP, for percentPin-
pointing to be 20%, 60% and 90%.

Fig. 14. Utility of No-MLC, AHH and PGA-APP, for number of tasks
to be 80, 160 and 200.

control allows for effective use of the heartbeat i.e. by
ensuring that meta-level control parameters are coordi-
nated so that negotiations converge quickly, more time
can be spent on Data Processing and Local Optimiza-
tion. AHH does not perform better than No-MLC on
all weather scenarios since AHH is not as adaptive as
PGA-APP in dynamic conditions. It spends 1% more
Negotiation Time than No-MLC in LRHS scenarios.

We varied percentPinpointing (setting it to 20%,
60% and 90%) and ran test cases on all the three weath-
er scenarios. In Fig. 13., we note that Utility increas-
es with the increase of the percentage of pinpointing
tasks to all tasks for No-MLC, AHH and PGA-APP.
More pinpointing tasks occurring in the boundary re-
gions between MCCs would increase the utilities for
scanning pinpointing tasks to increase Utility of all the
scanning tasks. In all percentPinpointing settings, AH-
H performs better than No-MLC (The increase is 5%,
5% and 6% for the 20%, 60% and 90% percentPin-
pointing cases respectively compared with No-MLC)
and PGA-APP achieves the best performance (The in-

crease is 9%, 10% and 17% for the three cases respec-
tively compared with AHH).

In Fig. 14., we scaled up the number of total tasks to
160 and 200 and compared the performance with that
of 80 tasks (percentPinpointing is fixed at 60%). Util-
ity increases substantially with the increase of number
of tasks for all three methods. This is mainly because
the increase of pinpointing tasks results in large in-
crease of utility. PGA-APP performs significantly bet-
ter than No-MLC on Utility with p values of 0.0046,
0.023 and 0.0076 for networks with 80, 160 and 200
tasks respectively. PGA-APP also performs signifi-
cantly better than AHH on Utility with p values of
0.049, 0.00063 and 0.0035 for the three cases respec-
tively. Thus, these results show that in situations where
activities in different MCCs need to be coordinated,
meta-level reorganization of control responsibilities is
an effective tool.

5.3. Resolving Conflicts with Heuristic Rules

In PGA-APP, the SRC and LRC conflicts are re-
solved implicitly based on the order of MCCs. For ex-
ample, a SRC betweenMCC1 andMCC3 is resolved
by assigning the shared radar to MCC1 since it has a
lower index. A LRC is resolved in PGA-APP that one
MCC with lower index takes its action and the other
aborts its action. When an IHC occurs, the MCC will
only communicate to the neighbors that have the same
heartbeat. In PGA-APP-CR, such conflicts are resolved
in an explicit way. In the following part, we empiri-
cally show that resolving conflicts explicitly improves
overall system performance.

We re-ran the test cases for Fig. 11. to compare
PGA-APP-CR and PGA-APP. Fig. 15. shows the per-
formance on Utility. Compared with PGA-APP, PGA-
APP-CR achieves the highest increase with respect to
Utility when the number of MCCs is 3 (PGA-APP-CR
increases 9%, 17% and 7% respectively for the three
weather scenarios). When the number of MCCs in-
creases from 3 to 12 in each weather scenario, the im-
provement of PGA-APP-CR on Utility decreases. The
increase on Utility is only 2%, 2% and 3% for the
three weather scenarios respectively. When the num-
ber of MCCs increases, each MCC has more depen-
dency with other MCCs and the probability of having
conflicting actions with neighboring MCCs increases
significantly. On the other hand, resolving conflicts lo-
cally between two MCCs using heuristic rules in PGA-
APP-CR in this situation will more likely introduce ad-
ditional conflicts. Combining these factors, we can ex-
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(a) HRLS Scenarios

(b) LRHS Scenarios

(c) MRMS Scenarios

Fig. 15. Utility of PGA-APP and PGA-APP-CR in different weather
scenarios for number of MCCs to be 3, 12 and 30.

plain why the performance goes down with the scaling
of MCCs. In the LRHS scenarios, PGA-APP-CR per-
forms 5% worse than PGA-APP with respect to Util-
ity when the number of MCCs goes up to 30. When
the utility lost by bringing in new conflicts outweigh-
s the expected utility gained by locally resolved con-
flicts, Utility would decrease. PGA-APP-CR performs
well on Utility in small problems (3 agents in NetRad-
s). Due to its mostly localized view, PGA-APP-CR is
not expected to perform well as the number of MCCs

Category
Average number of
conflicts before con-
flict resolution

Average number of
conflicts after conflict
resolution

0 ∼ 5
3

(LRC: 1; SRC: 1;
IHC: 1)

0

5 ∼ 10
7

(LRC: 2; SRC: 3;
IHC: 2)

2
(LRC: 1; SRC: 1;
IHC: 0)

> 10
18

(LRC: 8; SRC: 7;
IHC: 3)

10
(LRC: 6; SRC: 4;
IHC: 0)

Table 1
Results showing the average number of conflicts before and after
conflict resolution in three categories.

scales up and the dependencies among agents increase
significantly.

Fig. 16. Utility of PGA-APP-CR and PGA-APP, number of conflicts
varies.

We ran test cases on all the three weather scenar-
ios based on the number of conflicts in each case (the
number of MCCs is 12, the number of tasks is 160).
In Fig. 16., we observe that PGA-APP-CR performs
better (18%, 8% and 4% respectively) than PGA-APP
with respect to Utility in each bucket. The rules to re-
solve local conflicts work quite well with few conflict-
s. When the number of conflicts increases, the effec-
t of rules fades. This is mainly because the rules are
defined to resolve local conflicts between two agents,
not capable to prevent new conflicts among subsets of
agents when applying the rules. Resolving local con-
flicts from a local perspective is not sufficient to find
globally optimum solution. Table 1 shows the conflict
resolution performance in the three different categories
as well as Fig. 16. All the IHC conflicts are resolved
in the three categories because the two MCCs adapt
their communication schedule without changing either
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of their heartbeats. In simple cases when there are few
conflicts (the first category in table 1), PGA-APP-CR
is capable of resolving all of them. When the number
of conflicts increases, the heuristic rules are not capa-
ble of eliminating all the conflicts in the problem. In ta-
ble 1, we note that when there are more than 10 simul-
taneous conflicts in the network, the heuristic rules can
resolve only about 44% of the conflicts. Let us consid-
er the motivating example in Section 2 (Fig. 5.). Sup-
pose there is one conflict between MCC1 and MCC2

and another conflict between MCC2 and MCC3. The
heuristic rules help to resolve these two conflicts lo-
cally by changing the actions of MCC1 and MCC3

separately. There is a possibility that a conflict exists
in the newly changed actions of MCC1 and MCC3

and this could not be detected in our current approach.
For example, MCC1 decides to take the control of R5

after resolving the local conflict between MCC2 and
itself. At the same time, MCC3 also decides to take
the control of R5 after resolving the local conflict be-
tween MCC2 and itself. Thus, a SRC occurs between
MCC1 and MCC3.

Fig. 17. Percentage of conflicts resolved in different weather scenar-
ios for number of MCCs to be 3, 12 and 30.

Fig. 17 shows the results of conflict resolution us-
ing PGA-APP-CR with number of MCCs increasing.
As mentioned earlier, all the IHC conflicts are success-
fully resolved by adapting communication schedules
between two MCCs. In the cases that there are only
3 MCCs, both LRC and SRC conflicts are resolved
very efficiently. 95% of LRC conflicts and 93.5% of
SRC conflicts are resolved in this situation. When the
number of MCCs increases, there are more dependen-
cies among different agents which makes the conflic-
t resolution more complicated because of the shared
tasks in the overlapping areas, especially the pinpoint-
ing tasks that need significant coordination among M-

CCs. In such complicated situations, the performance
of PGA-APP-CR on resolving LRC and SRC conflicts
decreases significantly. We observe that the percentage
of conflicts resolved for LRC drops below 50% when
the number of MCCs reaches 30.

The results of our initial evaluation show that PGA-
APP performs significantly better when learning meta-
level policies for radar reorganization (P.1) and heart-
beat adaptation (P.2). The results also show that the
heuristic rule-based algorithm helps resolve some con-
flicts and improve the overall utility.

6. Related Work

In this Section, we will discuss the current state of
the art as it relates to this research. We will discuss re-
search in bounded rationality, multiagent deliberation
and multiagent meta-level control, stochastic models,
multiagent reinforcement learning algorithms and Ne-
tRads application domain and compare it to our work.

6.1. Bounded Rationality, Multiagent Deliberation
and Multiagent Meta-level Control

In complex environments, autonomous systems gen-
erally require the ability to reason about resource allo-
cation to computation at any point in time. The basic
idea of bounded rationality arises in the work of Simon
with his definition of procedural rationality [37]. He
argues that people find satisfactory solutions to prob-
lems rather than optimal solutions because people do
not have unlimited processing power. Simon’s work
has addressed the implications of bounded rationali-
ty in the areas of psychology, economics and artificial
intelligence. In the area of agent design, he has con-
sidered how the nature of environment can determine
how simple an agent’s control algorithm can be and
still produce rational behavior. Russell, et al. [36] cast
the problem of creating resource-bounded rational a-
gents as a search for the best program that an agen-
t can execute. In searching the space of programs, the
agents, called bounded-optimal agents, can be optimal
for a given class of programs or they can approach op-
timal performance with learning, given a limited class
of possible programs.

Recent research efforts in distributed control share
the goal of applying agent technology to intelligen-
t network management and data harvesting. A mul-
tiagent system (MAS) allows for the distribution of
knowledge, data, and resources among individual a-
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Raja and Lesser’s work Our work

Applica-
tion do-
main

Meta-level control is
used in a task allo-
cation domain where
meta-level control
supports decisions on
when to accept, delay,
or reject a new task.

Meta-level control
is used in a more
complex application
of real-world system
to support agent in-
teraction and network
reorganization.

Abstrac-
tion

Abstract agent states
and scenarios are im-
plemented for meta-
level control policies
learning.

The agent s-
tates/scenarios as well
as the agent actions are
abstracted which helps
bound the size of the
state/policy set making
the problem tractable.

Single/
Multi
agent(s)

Meta-level control is
implemented in an in-
dividual agent and in
multiple agents.

Multiagent meta-level
control is implement-
ed to guide the deliber-
ative actions, because
the application domain
is time-critical and dis-
tributing the meta-level
control among agents
help save the time on
learning and executing
policies.

Stochastic
model

The problem is mod-
eled as a MDP to learn
deterministic policies.

The problem is formal-
ized as a DEC-MDP
because each agent has
local observability of
the global state and the
actions of agents in-
teracted. The polices
learned are stochastic
polices.

Frequency
of meta-
level
control

The need for meta-
level control is trig-
gered at each event.

Meta-level control is
triggered at each heart-
beat. We will also use
methods to adaptively
trigger meta-level con-
trol.

Table 2
Comparison between Raja and Lesser’s work and our work.

gents and its modularity supports the development and
maintenance of complex highly reliable systems [42].
Several distributed control algorithms based on multi-
agent systems have been proposed to solve centralized
control problems efficiently and proved to converge to
the global optimal solution [29] [28] [31]. In our work,
the agents learn and apply policies at the meta-level
which is time constrained. We do not use these dis-
tributed control algorithms to learn the policies due to
high communication overhead and long convergence
time.

Meta-level control is the ability of an agent to op-
timize its long-term performance by choosing and se-
quencing its deliberation and execution actions appro-
priately. To the best of our knowledge, Raja and Less-
er [33] were the first to explore the issue of meta-level
control in complex agents situated in social and dy-
namic environments. A meta-level agent architecture
for bounded-rational agents which supports alternative
approaches for deliberative computation was described
and experimental results showed the benefits of using
this architecture. We compare their work and ours in
Table 2.

Cox and Raja [19] [41] presented in plain language
and simple diagrams a brief description of a mod-
el of metareasoning that mirrors the action-selection
and perception cycle in first-order reasoning. In our
work, meta-level control is used in a more complex
application involving a real-world system to support
agent interaction and network reorganization. The
meta-level states and actions are abstracted that help-
s bound the size of policy set and make the problem
tractable. Kennedy [23] introduces distributed meta-
management where a single agent has multiple meta-
levels (metareasoning methods) that monitor each oth-
er and the same object level. This requires chore-
ographing the meta-levels, albeit within the same a-
gent. To our knowledge, there is very little work done
in the area of exploring the coordination of meta-level
control parameters across agents that I exploit in this
work. Carlin and Zilberstein [14] considered a de-
centralized monitoring problem that allows the use of
metareasoning to monitor the progress of the anytime
algorithms, where the meta-level actions are known to
each agent (having 4 options). Our work has a similar
basis but handles an application where the set of meta-
level actions is more complicated and exponential in
size.

6.2. Stochastic Models

A stochastic model [35] is a tool for estimating
probability distributions of potential outcomes by al-
lowing for random variation in one or more inputs over
time. NetRads is taken as a stochastic model, since the
environment is partially observable and each agent has
uncertainty of observations. In [30], Peshkin et al. de-
scribe partially observable identical payoff stochastic
game (POIPSG), the interaction of a set of agents with
a Markov environment in which they all receive the
same payoffs and the agents do not have the identi-
ty observation function. The POIPSG model does not
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work for NetRads, since the reward function of a MC-
C agent is implemented as a function of its neighbors
that directly relates to system performance.

The multiagent MDP (MMDP) [10] is a straightfor-
ward extension of the MDP to multiple agents by fac-
toring the action space into actions for each of the a-
gents. The disadvantage of the MMDP and related ap-
proaches is that it makes an important assumption that
renders it inappropriate for many multiagent systems.
This is that each agent has the same (complete) world
view. Many multiagent systems have each of the agents
observing a different part of the environment. The M-
MDP model does not work for NetRads, because: 1)
In NetRads, each MCC has its local observability of
the global state. 2) Communication in meta-level con-
trol(it is time-critical) is very expensive, if we assume
that each MCC can communicate its observation with
other MCCs, the cost is too huge for MMLC phase to
survive. The performance of MMLC phase will influ-
ence that of deliberative phases.

In [8], decentralized and centralized control prob-
lems are studied with a view of computational com-
plexity. They consider two different models of de-
centralized control of MDPs. One is a generaliza-
tion of a partially-observable Markov decision process
(POMDP), which they call a decentralized partially-
observable Markov decision process (DEC-POMDP).
In a DEC-POMDP, the process is controlled by multi-
ple distributed agents, each with possibly different in-
formation about the state. It does not scale well with
large number of agents. The other is a generalization
of an MDP, which is called a decentralized Markov de-
cision process (DEC-MDP). A DEC-MDP is a DEC-
POMDP with the property of joint full observability.
We map the multiagent meta-level control problem in
NetRads to a DEC-MDP, because it satisfies the joint
full observability that the observations made by the a-
gents fully determine the current state. In [43], the au-
thors view communication as a way of expanding an
agent’s partial view by exchanging local information
not observed by other agents. In NetRads, we intro-
duce the neighborhood communication to access rele-
vant information in the neighborhood.

6.3. Multiagent Reinforcement Learning

Multiagent Reinforcement Learning (MARL) [13]
is a common approach for solving multiagent deci-
sion making problems. It allows agents to dynamical-
ly adapt to changes in the environment and keep sta-
bility of the agents’ learning dynamics, while requir-

ing minimum domain knowledge. Previous techniques
of MARL have the problem of not converging in the
worst case. Bowling [11] uses a variable learning rate
to overcome this shortcoming. Bowling presents the
Win or Learn Fast heuristic (WoLF) that makes a ratio-
nal algorithm convergent in a two-agents, two-actions
game. WoLF has its own assumption that requires an
agent to know a Nash Equilibrium and the strategy
of the other players. For practical application like Ne-
tRads, this assumption is not hold. The MCC agen-
t can only observe the immediate reward after select-
ing and performing an local action. Abdallah & Less-
er’s Weighted Policy Learner (WPL) algorithm [1] is
a variant of the WoLF [12] algorithm for multiagen-
t meta-level control. The main characteristic of the
WoLF algorithm is its ability to change the learning
rate to encourage convergence in a multiagent RL sce-
nario. In early work, WPL was used to learn the meta-
level control policies for NetRads [15] [17] [16]. How-
ever since then, we found that another learning ap-
proach provided better results. Zhang and Lesser [44]
presented a new gradient ascent algorithm with policy
prediction, called Policy Gradient Ascent with approx-
imate policy prediction (PGA-APP), that outperform-
s WPL in learning results. PGA-APP guarantees that
an agent can estimate its policy gradient with respect
to the opponent’s forecasted strategy without knowing
the current strategy and the gradient of the opponent.

Zhang and Lesser [45] used the networked distribut-
ed POMDP (ND-POMDP) framework to model coop-
erative multiagent decision making. They presented a
scalable learning approach that synthesizes multiagent
reinforcement learning and distributed constraint opti-
mization. They grouped agents that have interactions
among them and constructed interaction hypergraph to
model this relationship. In NetRads, the joint actions
of agents may change the network configuration from
time to time and a fixed interaction hypergraph is not
able to model this.

In the RL literature, temporal abstraction and hier-
archical control are used to combat the curse of di-
mensionality in a principled way. Sutton et al. [40] ex-
tended the usual notion of action to include options -
closed loop policies for taking action over a period of
time. They showed that options and primitive action-
s can be used interchangeably in both planning and
learning methods. Ghavamzadeh & Mahadevan [20] p-
resented a hierarchical RL framework that studied how
lower level policies over subtasks or primitive actions
can themselves be composed into higher level polices.
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These works emphasize the importance and advan-
tages of abstraction in RL. Our work in meta-level
control is different from these works. We use meta-
level state/action as an abstract representation of the
state/action that captures the similar qualitative infor-
mation relevant to the meta-level control decision mak-
ing process. The use of options is inappropriate for Ne-
tRads, since the environment is highly dynamic and a
policy needs to be applied at each heartbeat to closely
track the emerging weather phenomena.

Guestrin et al. [21] showed factored value function-
s allowed agents to find globally optimal joint action
using one single MDP. We use smaller MDPs to learn
local policies and then coordinate them, thus avoiding
the explosion of the size of policies when the num-
ber of agents scales up. Kok & Vlassis [25] used a
framework that exploited the dependencies between a-
gents to decompose the global payoff function. In their
work, the global reward was factored as a sum of lo-
cal rewards; while in NetRads, we use a partially glob-
al view that reflects shared overlapping tasks to model
the individual reward for each agent.

6.4. State of the Art Research on NetRads

Krainin et al. [26] proposed a distributed negotiation
mechanism in NetRads that improves the overall sys-
tem utility with a significantly reduced computation-
al load. An et al. [4] extended this work to introduce
the concept of “goal" to model end-users’ preferences
over multiple heartbeats and casts the complex sensing
resource allocation problem as a continuous time op-
timization problem. An et al. uses a genetic algorithm
to generate optimal scanning strategies of each single
MCC and a distributed negotiation model to coordi-
nate multiple MCCs’ scanning strategies over multiple
heartbeats. Meta-level control was not introduced in
either of their work. We use MARL algorithm to learn
the meta-level policies for DEC-MDP. In [24], the au-
thors used an approximate distributed optimization ap-
proach to coordinate radars for real-time weather sens-
ing. The approach performed efficiently in terms of
resource utilization and communication for most sce-
nario settings in comparison to a negotiation-based al-
gorithm specifically designed for this domain struc-
ture. Like Krainin et al., they are concerned about op-
timizing the deliberative actions (radar scanning), not
meta-level actions (such as heartbeat adaptation and
radar re-organization) and our approach could be easi-
ly built on their distributed optimization algorithm.

7. Conclusion and Future Work

In this paper, we describe a MMLC model that co-
ordinates DEC-MDPs at the meta-level and imple-
ments a multiagent version of a RL-based algorith-
m, called PGA-APP, to learn the policies of the in-
dividual MDPs. Previous work in the domain of Ne-
tRads [26] showed that a decentralized technique at
the deliberation-level with a low number of required
optimizations improved tasked allocation in this time-
constrained domain. Our hypothesis in this paper is
that MMLC that reasons about the deliberative-level
approach and coordinates the deliberation across a-
gents leads to improvement in performance.

MMLC allows each agent to carefully choreograph
the progression of what deliberations agents should do
and when. It also makes agents account for what could
happen as deliberation plays out. In our approach, poli-
cies for each weather scenario are learned offline and
each agent adopts the policy appropriate to its meta-
level state at runtime. We efficiently decrease the ex-
ploration costs of DEC-MDPs by constructing abstrac-
t classes of scenarios/states/actions where instances
within a class have similar features. The reward in our
learning algorithm captures the utility from a partially
global perspective to measure the correlation among a-
gents. We use heuristic rules to guide the learning and
resolve conflicts among agent policies. Empirical eval-
uation shows that multiagent meta-level control is an
efficient way as the problem scales (up to at least 30
agents) to adjust system parameters and reorganize the
network with the goal of improving performance in the
context of a multiagent tornado tracking application.
Our model can be applied to other domains such as
meeting scheduling and sensor networks where two a-
gents with different views of policies for negotiation
need to be reconciled.

While our reinforcement learning-based approach
described in this paper provides good policies for each
agent from a local perspective, the heuristic rule-based
approach to conflict resolution provides no guarantee
of optimality at the global level. We plan to inves-
tigate the use of decentralized constraint-based coor-
dination algorithms to guarantee coordination at the
global level in our future work. Currently we resolve
the conflict of heartbeat between agents by adapting
their communication schedule. In the future, we will
investigate conflict resolution by changing heartbeat-
s of a subset of the agents. We will extend our work
to learn the strategies that adaptively balance the fre-
quency of MMLC trigger in situations where the cost
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of MMLC increases substantially. As mentioned ear-
lier we make a simplifying assumption that the entire
NetRads system simultaneously experiences a single
weather scenario in order to speed up learning. In fu-
ture work we will extend this work to more compli-
cated environments where different MCCs experience
and track different weather scenarios simultaneously.
We plan to study how the policies learned under sim-
plified environmental assumptions apply to real-time
heterogeneous weather environments. We will inves-
tigate when heterogeneous weather scenarios lead to
more conflicts and whether MMLC will result in the
same level of global performance improvement.
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