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Abstract—Scientific research and practice in multiagent systems focuses on constructing computational frameworks, principles,
and models for how both small and large societies of intelligent, semiautonomous agents can interact effectively to achieve their
goals. This article provides a personal view of the key application areas for cooperative multiagent systems, the major intellectual
problems in building such systems, the underlying principles governing their design, and the major directions and challenges for

future developments in this field.

Index Terms—Multiagent systems, coordination, cooperation, distributed problem solving, distributed artificial intelligence,

computational organizations.

1 INTRODUCTION

ULTIAGENT systems are computational systems in which

two or more agents interact or work together to per-
form some set of tasks or to satisfy some set of goals. These
systems may be comprised of homogeneous or heterogene-
ous agents. An agent in the system is considered a locus of
problem-solving activity, it operates asynchronously with
respect to other agents, and it has a certain level of auton-
omy. Agent autonomy relates to an agent’s ability to make
its own decisions about what activities to do, when to
do them, what type of information should be communi-
cated and to whom, and how to assimilate the informa-
tion received. Autonomy can be limited by policies built
into the agent by its designer, or as a result of an agent
organization dynamically coming to an agreement that
specific agents should take on certain roles or adopt certain
policies for some specified period. Closely associated with
agent autonomy is agent adaptability—the more autonomy
an agent possesses the more adaptable it is to the emerg-
ing problem solving and network context. The degree of
autonomy and the range of adaptability are usually associ-
ated with the level of intelligence/sophistication that an
agent possesses.

Agents may also be characterized by whether they are
benevolent (cooperative) or self-interested. Cooperative
agents work toward achieving some common goals,
whereas self-interested agents have distinct goals but may
still interact to advance their own goals. In the latter case,
self-interested agents may, by exchanging favors or cur-
rency, coordinate with other agents in order to get those
agents to perform activities that assist in the achievement of
their own objectives. For example, in a manufacturing set-
ting where agents are responsible for scheduling different
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aspects of the manufacturing process, agents in the same
manufacturing company would behave in a cooperative
way while agents representing two separate companies
where one company was outsourcing part of its manufac-
turing process to the other company would behave in a self-
interested way.

Scientific research and practice in multiagent systems,
which in the past has been called Distributed Artificial In-
telligence (DAI), focuses on the development of computa-
tional principles and models for constructing, describing,
implementing and analyzing the patterns of interaction and
coordination in both large and small agent societies. Multi-
agent systems research brings together a diverse set of re-
search disciplines and thus there is a wide range of ideas
currently being explored. It is impossible to adequately ad-
dress the full spectrum of issues and research perspectives
of the field in such a short article.* Therefore, this article
will of necessity be biased by my own research experience
that has concentrated mainly on issues involved in coop-
erative interaction among sophisticated agents.

In the remainder of the article, | provide a personal
view of some of the underlying principles governing the
design of such multiagent systems, and the major direc-
tions and challenges of the field. The following three sec-
tions set the context for these discussions. Section 2 details
the major application areas for multiagent systems and the
potential benefits of structuring an application as a multi-
agent system. In Section 3, a model of subproblem interac-
tion is presented as the basis for cooperative interaction
among agents. As part of this section, a number of exam-
ples of different types of subproblem interaction from im-
plemented systems are analyzed. These examples are in-
tended to motivate the need for coordination to effectively
manage the cooperation necessary to solve interacting

1. A more comprehensive and historical view of the field can be obtained
from the following special issues of journals [56], [61], [62]; proceedings of
the main conference of the field [63], [64], [73]; collected sets of articles [57],
[58], [65]; recent books [44], [60]; and a new journal Autonomous Agents and
Multiagent Systems (Kluwer Academic).
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subproblems. Finally, the need for sophisticated quantitative-
based coordination strategies to support effective coopera-
tion among complex agents operating in open environ-
ments is discussed.

2 APPLICATION OF MULTIAGENT SYSTEMS

Multiagent systems over the past few years have come to be
perceived as crucial technology not only for effectively ex-
ploiting the increasing availability of diverse, heterogene-
ous, and distributed on-line information sources, but also as
a framework for building large, complex, and robust dis-
tributed information processing systems which exploit the
efficiencies of organized behavior. Multiagent systems also
provide a powerful model for computing in the 21st cen-
tury, in which networks of interacting, real-time, intelligent
agents seamlessly integrate the work of people and ma-
chines, and dynamically adapt their problem solving to
effectively deal with changing usage patterns, resource con-
figurations and available sources of expertise and informa-
tion. Application domains in which multiagent system
technology is appropriate typically have a naturally spatial,
functional or temporal decomposition of knowledge and
expertise. By structuring such applications as a multiagent
system rather than as a single agent, the system will have
the following advantages: speed-up due to concurrent
processing; less communication bandwidth requirements
because processing is located nearer the source of informa-
tion; more reliability because of the lack of a single point of
failure; improved responsiveness due to processing, sens-
ing and effecting being co-located; and finally, easier system
development due to modularity coming from the decompo-
sition into semiautonomous agents.

Examples of application domains that have used a mul-
tiagent approach include:

1) Distributed situation assessment, which emphasizes how
(diagnostic) agents with different spheres of aware-
ness and control (network segments) should share
their local interpretations to arrive at consistent and
comprehensive explanations and responses (e.g., net-
work diagnosis [50]; information gathering on the Inter-
net [11], [39]; distributed sensor networks [3], [36]).

2) Distributed resource scheduling and planning, which em-
phasizes how (scheduling) agents (associated with
each work cell) should coordinate their schedules to
avoid and resolve conflicts over resources, and to
maximize system output (e.g., factory scheduling [38],
[41], [51]; network management [1]; and intelligent
environments [74], [75]).

3) Distributed expert systems, which emphasize how
agents share information and negotiate over collective
solutions (designs) given their different expertise and
solution criteria (e.g., concurrent engineering [32];
network service restoral [6], [30]).

The next generation of applications will integrate char-
acteristics of each of these generic domains. The need for a
multiagent approach can also come from applications in
which agents represent the interests of different organiza-
tional entities (e.g., electronic commerce [40] and enterprise

integration [2]). Other emerging uses of multiagent systems
are in layered systems architectures in which agents at dif-
ferent layers need to coordinate their decisions (e.g., to
achieve appropriate configurations of resources and com-
putational processing [53]), and in the design of survivable
systems in which agents dynamically reorganize to respond
to changes in resource availability, software and hardware
malfunction, and intrusions. In general, multiagent systems
provide a framework in which both the inherent distribu-
tion of processing and information in an application and
the complexities that come from issues of scale can be han-
dled in a natural way.

An example of this next-generation application is the
WARREN system based on the RETSINA architecture [8],
[9]. This multiagent system, which can be considered a
multiuser, distributed information gathering system, (see
Fig. 1) assists with the management of financial portfolios.
Many of the features of the portfolio management domain
are likely to become more common in the future:

1) An enormous amount of available information that
is changing, unorganized, overlapping and possibly
contradictory (e.g., market data, financial report data,
technical models, analysts’ reports, and breaking news).

2) A wide variety of analyses, each implemented as a
separate agent by different designers, that can and
should be brought to bear on the task.

3) Analyses that can differ widely in their resource re-
quirements, quality of results, and speed.

4) Many sources of uncertainty and dynamic change in
the environment.

5) Time pressures that present agents with real-time
deadlines for certain tasks.

6) Resource and cost constraints—since not all data and
processing is available for free.

Efficient performance of this information processing task
requires dynamically locating appropriate expertise and
information sources, high-level planning of how to decom-
pose the overall task based on both user objectives and re-
source/agent availability, protocols for agents to come to
consensus when they have conflicting viewpoints, careful
scheduling of local activities and their interaction with ac-
tivities of other agents so as to achieve coherent interagent
behavior, and execution monitoring/adaptation of agent
activities to guarantee that the overall task is accomplished
in a cost-effective manner given the evolving state of net-
work problem-solving and resources.

As exemplified by the requirements laid out above for a
WARREN-type application, it is the need to be able to adapt
intra-agent and interagent problem solving to the dynamics
of the environment in both short- and long-term ways that
will differentiate these types of agent-based systems from
more conventional distributed systems architectures where
adaptability, especially at the domain problem-solving
level, is not a primary motivation.

3 THE NATURE OF MULTIAGENT INTERACTION

One of the key problems in cooperative multiagent systems
is how to get agents to cooperate effectively. The need to



LESSER: COOPERATIVE MULTIAGENT SYSTEMS—A PERSONAL VIEW OF THE STATE OF THE ART 135

Interface
Agents

News Agent1 |, .,
|

Portfolio .
Picture Agent

Financial News
Filtering Agent

Quote Agent 1

Portfolio

Picture Agent

Fundamental |...
Analysis Agent
Earnings Agent | """

‘ News Server ‘

‘ WWW quote server ‘ ‘

SEC database

Fig. 1. The WARREN system as represented in RETSINA.

interact in such systems occurs because agents solve sub-
problems that are interdependent, either through conten-
tion for resources or through relationships among the sub-
problems. These relationships arise from two basic situa-
tions related to the natural decomposition of domain prob-
lem solving into subproblems. The first situation is where
the subproblems are the same or overlapping, but different
agents have either alternative methods or data that can be
used to generate a solution. For example, in a distributed
situation assessment application, overlapping subproblems
occur when different agents are interpreting data from dif-
ferent sensors (independent information sources) that have
overlapping sensor regions (cover similar information) [3].
Another form of interdependence occurs when two sub-
problems are part of a larger problem in which a solution to
the larger problem requires that certain constraints exist
among the solutions to its subproblems. For example, in a
distributed expert system application involving the design
of an artifact where each agent is responsible for the design
of a different component (subproblem), there are con-
straints among these subproblems that must be adhered to
if the individual component designs will mesh together into
an acceptable overall design [32]. We include in this latter
case the simple situation where the results of one subprob-
lem are needed to solve another. Additional interdependen-
cies among subproblems, not inherent in the problem do-
main, arise when it is not possible to decompose the prob-
lem into a set of subproblems such that there is a perfect fit
between the computational requirements for effectively
solving each subproblem and the location of information,
expertise, processing, and communication resources in the
agent network [33], [34]. This lack of a perfect fit often leads
to a situation where there may be insufficient local infor-
mation or resources for an agent to completely or accurately
solve its assigned subproblems through its own processing.
Further, resource contention issues in multiagent systems
do not entail simply reasoning about exclusive access to a
shared resource, but may involve more subtle issues such as
what percentage of a resource’s capacity an agent will use
(e.g.,, a communication channel), the creation of shared
agent plans so that the use of a scarce resource can satisfy

multiple objectives [52], or the reconfiguration of resources
to better meet the competing needs of agents [53].

Depending upon the character of subproblem interde-
pendencies, the interactions among agents in a multiagent
system can be complex, often requiring a multistep dia-
logue similar to an asynchronous co-routine type of inter-
action. For example, it may be impossible for one agent to
completely solve subproblem p; without another agent first
partially solving subproblem p;, or solving p; may simply
make it easier to solve p;, or knowing the solution to p; may
obviate the need to solve p;. These types of interactions are
exemplified in a recently fielded commercial multiagent
system for service restoral of an electricity transportation
grid involving agents for fault detection, fault isolation and
diagnosis, and network reconfiguration [6]. Consider the
example of two expert agents in this system performing
different forms of fault diagnosis, i.e., overlapping sub-
problems whose solutions need to be consistent. Each of
these agents, operating concurrently, uses very different
algorithms to do their diagnosis and the information they
use is not identical. Both can make mistakes but generally
will not make the same mistake. They interact by exchang-
ing partial results to focus their local diagnostic search pro-
cesses toward promising areas of the transportation grid
where the fault likely originated, and away from unprom-
ising ones. They also exchange final results to increase the
confidence in the eventual diagnosis that they agree to; if
they disagree then a more complicated interaction is war-
ranted (i.e., negotiation) in order to understand the basis of
the disagreement and to subsequently reach a different di-
agnosis based on this resolution of conflicting viewpoints.
Thus, by working together, they not only produce a solu-
tion of higher quality, but will often accomplish the task
quicker as well.

These types of agent interactions can lead to the need
for coordination decisions by agents about which tenta-
tive diagnosis hypotheses to communicate and how reliable
and precise these hypotheses need to be before they are
sent to another agent. Choices also need to be made about
the areas on which to focus diagnosis, based on the infor-
mation needs of other agents. Though not emphasized in
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Fig. 2. Example of a two-agent distributed aircraft monitoring scenario.?

this example, there can be additional needs for coordina-
tion in order to:

< recognize when other agents are working on inter-
acting subproblems;

« identify which other agents can and should solve a
specific subproblem; and

« decide if, how, and when to solve a specific subprob-
lem based on local and nonlocal criterion.

A more detailed example of the issues involved in the
sharing of partial results involves a distributed interpreta-
tion application [3]. In this application, each agent is sens-
ing and interpreting data from overlapping acoustic sensor
regions in order to track vehicle movements in the sensed
environment (see Fig. 2). This example shows that a com-
plete and accurate track map could not be created from
agent A and B’s independently developed solutions. Major
adjustments of individual interpretations are required.
Agent A can use the information from agent B to recognize
that its interpretation of the data associated with track G,
was faulty. This data, instead of being a representation of an
actual vehicle moving in the environment at those loca-
tions, was in reality environmental reflections of a vehicle
moving in a different region, i.e., a ghost track. Agent A can
also use agent B’s portion of track T, as predictive informa-
tion, allowing agent A to make assumptions about its sen-
sor having missed signals at times 4 and 5 that could com-
plete track T,. Further, agent A can produce an acceptable
interpretation for the remainder of its original ghost track
(times 4 through 7 data), based on communication with
agent B to confirm most of this data (times 5 through 7 in
the overlapping region) as ghost data and can provide a
source (T,) for the G, ghost track. Agent B’s uncertainty
over its interpretations (the time 5 through 10 portion of
track T,) because of the limited number of points over
which it is able to track the vehicle can be decreased due to
agent A’s ability to find a continuation of the track in its
area. This cooperative adjustment process requires back-
and-forth communication between the agents rather than
simply having one agent’s “better” solutions override the
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|Final Solution
1

Agent A

others. As in the first example, the coordination decisions
about when and what hypotheses (and what level of detail)
to transmit, what hypotheses to work on, and how much
effort to put into the development of specific hypotheses
can have dramatic impact on how fast this resolution proc-
ess converges.

A final example of the need for cooperative interaction in
order to solve interdependent subproblems (in this case
subproblems related through the use of similar resources) is
distributed airport scheduling [66]. In this application, each
arriving plane needs to be assigned not only a gate at which
to land but also baggage handlers/trucks to unload and
load baggage, and equipment and personnel for servicing
the plane (fueling, cleaning, etc.). If we assume that differ-
ent concourses of an airport are scheduled by different
scheduling agents with their own complement of resources,
the need for cooperation (the lending of resources) occurs
when there are insufficient resources assigned to a particu-
lar concourse given the set of flights that need to be han-
dled during a specified period. This lack of sufficient re-
sources will then delay the scheduled landing and depar-
ture times for planes. In this overload situation, other con-
course agents could potentially lend resources (assuming
cooperative agents) if they have appropriate resources
available during the period of overload. An example of one
of the coordination problems in this domain is how to de-
cide which agent(s) should be asked to lend resources and

2. The left-hand figure is the acoustic input to the two agents and the
right-hand figure is the final interpretation of the agents. Agent A’s sensor
region is the upper and middle regions of the figure and agent B’s sensor
region is the middle and lower regions. The agents independently sense
events occurring in the middle region. The data point symbols represent the
positions of groups of acoustic signals detected by the sensors. The hum-
bers associated with the data points give the times that these signals were
generated and the subscripts indicate the agent receiving the data. Data
points include the position of the signal source and the frequency class of
the signal. The shading of each box indicates the loudness of the sounds
being sensed (the darker the shading the louder) and is an indication of the
likelihood of the sensory data being correct. Box 4 of track T4, which only
appears in the final solution, is not directly supported by acoustic data
(only high-level predictions) and thus is not shaded. T and T4 are vehicle
tracks, and G2 is a ghost track caused by the environmental reflections of
sounds from Ta.
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how much this agent should disrupt the scheduling of its
own concourse’s activities in order to accommodate the
needs of another. An interesting aspect of this problem is
that when there is no coordination among agents it is often
the case that when an overloaded agent asks for help it will
be costly and disruptive to the lending agents’ concourse
schedule to revise it to make the needed resources avail-
able. However, if the scheduling agents can communicate
about their anticipated resource needs for particular time
periods before the detailed allocation of resources has been
made, then this metalevel information can be extremely
helpful in allowing underloaded agents to anticipate spe-
cific resource shortages. This anticipation allows them to
not prematurely commit those resources that may be
needed by other agents until they understand the exact
nature of the requests by overloaded agents. In this way,
they will maintain as much scheduling flexibility with re-
spect to the overloaded resource as is consistent with their
own needs; thus, they will be able to respond to a borrow-
ing request with less disruption to their own concourse
schedule. By implicitly coordinating through the exchange
of metalevel information, the agents’ solutions to their own
local scheduling problems will be more optimal from a
global perspective.

In summary, the need for interaction among agents to ef-
ficiently solve their interacting subproblems may require
agents to closely coordinate their activities during problem
solving. This coordination is based on reasoning about the
nature of subproblem interdependencies, the agents’ cur-
rent state of problem solving, and the status of network
resources. Inappropriate or lack of any coordination can
contribute to groups of agents generating solutions that are
suboptimal, wasting both computational and communica-
tion resources due to generating and communicating un-
needed, redundant or poorly timed results, and in the most
serious case, failing to generate an overall solution because
of the outright failure to generate key results.

4 QUANTITATIVE/STATISTICAL PERSPECTIVE
ON COORDINATION

Coordination strategies enable groups of agents to solve
problems effectively through decisions about which agents
should perform specific tasks and when, and to whom
they should communicate the results. The potential com-
plexity involved in making these decisions can be seen in
the simple situation where one agent needs the results of a
subproblem that another agent is solving. If it can be ar-
ranged that the producing agent will deliver the desired
result in a timely fashion so that the consuming agent does
not have to idle waiting for the results, then system per-
formance is improved. On the surface this coordination
decision is simple. However, suppose that the producing
agent has other tasks to do with their own deadlines in ad-
dition to producing a result for the other agent. To further
complicate this decision process, the agent may have alter-
native methods for doing those tasks that trade off the
quality of the task solution against the time to complete the
task. Similarly, the consuming agent may also have flexibil-
ity about when it does its tasks because there are other tasks

it is also working on, and it may also be able to make trade-
offs in how it accomplishes its tasks. Additional complexity
is introduced when neither the time that a method takes
nor the quality of its results are known precisely but rather
can be described by a statistical distribution. Metalevel rea-
soning may also be involved in the coordination decision
process when there are alternative coordination strategies
that can be used in the current situation. In this case, alter-
native coordination strategies must be analyzed in terms of
their computational and communication resource require-
ments, the end-to-end delay in reaching a decision, the op-
timality of the coordination achieved, the potential gains
achieved as a result of more effective coordination, and the
current need for resources by other activities and their rela-
tive priority.

This coordination decision process can be further com-
plicated when the information an agent is using to make its
decisions is incomplete, out-of-date or inconsistent with
that of other agents. Obtaining all the appropriate nonlocal
information is often not practical due to:

1) Limited communication bandwidth and computa-
tional capabilities which make it infeasible to pack-
age, transfer, and assimilate all pertinent information
in a timely manner.

2) The heterogeneity of agents which makes it difficult
to share information; and the potential for competi-
tive agents who, out of self-interest, are not willing to
share certain information.

3) The dynamic character of the environment due to
changing problems, agents, and resources and the
inability to predict with certainty the outcome of
agents’ actions.

Thus, making effective coordination decisions that ap-
propriately deal with the uncertainty of information com-
bined together with the large number of factors that need to
be taken into account is potentially a difficult process.

It is my strong feeling that in order to design efficient
and effective coordination strategies that will work in a
wide variety of environments they must explicitly account
for the benefits and the costs of coordination in the current
situation in a quantifiable way [69]. The current situation
includes the goals (and their importance or value) that the
agent is currently pursuing and likely to pursue in the near
term, the performance characteristics of the methods avail-
able to the agent for achieving its goals, the requirements
these goals/methods impose on other agents, the require-
ments that the goals/methods of other agents impose on
this agent, the state of network resources, and domain con-
straints on agent activities. Another way of saying this is
that making coordination decisions is a complex, multilevel
optimization problem based on how coordination actions
(usually involving a statistical perspective) contribute to
high-level system tasks meeting their performance objec-
tives, and the relative importance of each of these tasks.

This emphasis on a quantitative/statistical perspective
on coordination should not distract from the importance of
mechanisms, protocols and formal frameworks [2], [6], [7],
[16], [20], [21], [29], [43], [71] that: establish which tasks are
important to accomplish and which agents/resources are
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capable of accomplishing them; determine how to decom-
pose tasks into subtasks and provide sequencing con-
straints among these tasks; decide what information to
transmit upon completion of a task and to whom; and de-
fine how to react to unexpected events in terms of what
needs to be communicated to whom and what further ac-
tions need to be taken. These intended activities are in re-
sponse to the various objectives (desires) of the agent, such
as the local processing goals it is pursuing and the various
requests by other agents for its assistance.

In essence, what is being suggested is that there must be
a quantitatively oriented mechanism [77] at the lowest
control layer to arbitrate among activities generated by
higher, nonquantitative layers. This is especially true in
situations where there are complex subproblem interde-
pendencies among agents, where there are time pressures
and resource bounds which preclude all goals of the system
being solved in an optimal manner, where there are many
choices available about how to solve a goal, and where the
goals being solved and the agents/resources available to
solve them are changing over time.

5 KEY PRINCIPLES USED IN BUILDING MULTIAGENT
SYSTEMS

The ubiquitousness of uncertain and incomplete informa-
tion and the computational complexity of making optimal
coordination decisions leads to a number of principles that
are useful for structuring multiagent systems.

The first principle relates to the need to view the per-
formance of a multiagent system in terms of an interdepen-
dent set of criteria in which there is rarely a way to opti-
mize all criteria simultaneously. This principle, usually
called “satisficing” behavior [35], [47], [48], was developed
as a way of explaining how large organizations function. It
underlies most of the other principles to be discussed in
this section. For most real-world multiagent applications,
the design goal of producing an “optimal” answer with
minimal use of communication and processing resources,
while at the same time being able to respond gracefully to a
dynamically changing environment, is unrealistic; this is
due to the communication and computational costs and
delays that would be necessitated in acquiring the informa-
tion necessary to make these “optimal” decisions. Instead,
“satisficing” criteria for successful performance are adopted
based on using a “reasonable” amount of resources to re-
duce uncertainty “sufficiently” so that it is “likely” that an
“acceptable” answer will be achieved [33]. This emphasis
on satisficing behavior also subtly moves the focus from the
performance of individual agents to the properties and
character of the aggregate behavior of agents.

An associated corollary is, given the rich set of criteria
that can be used to define satisficing behavior and the tre-
mendous diversity of environments and tasks, there is no
single approach to organizing agent behavior that will be
right for all situations. It has been shown that even in a
relatively simple environment where there is a lot of vari-
ance in the performance characteristics of tasks, a single
coordination strategy is not optimal over the range of task
characteristics. In this situation, dynamically choosing a

strategy at runtime based on the known characteristics of
the tasks leads to better performance than using any one
fixed strategy [37]. It is my conjecture that in the future
agents will be required to perform some form of metalevel
reasoning so as to balance the level of optimality of their
control decisions with the level of resources required to
make the decisions, based on the characteristics of their
tasks and the environment [9], [12], [15], [34], [76].3

The second principle relates to the need for flexibility
in agent problem solving. Agent flexibility with respect to
the availability, completeness and accuracy of its informa-
tion and the availability and capabilities of external re-
sources is often a key aspect of a multiagent system de-
sign. It enables agents to react dynamically to the emerging
state of the group problem-solving effort. In other words,
hard-coded assumptions about the character and avail-
ability of information and resources are typically avoided.
In general, agent problem-solving architectures that deal
explicitly with the uncertainty of information and the in-
completeness of their local data bases are more adaptable
for use in a multiagent context [25], [33], [34]. This flexibil-
ity can be equated with agent autonomy. One way this
can be accomplished is through a sophisticated domain
problem-solving architecture that can respond opportunis-
tically to emerging conditions. Another way of achieving
flexibility is for agents to have alternative methods avail-
able for solving subproblems that have varying information
and resource requirements. The agent then pieces together
at runtime a set of methods that will be appropriate for the
given situation. These are end points on a spectrum and,
obviously, combinations of these approaches are possible.
Additionally, flexibility can come from increasing the scope
of activities that an agent is involved in so that the agent
may pursue multiple goals. Thus, the agent can change fo-
cus when information or resources are not currently avail-
able to pursue a specific goal. This flexibility can come at
the cost of increased reasoning about the nature of the
problem-solving system itself, resulting in less computa-
tional time directed toward actual problem solving and
more directed toward coordinating effectively with other
agents. It can be expected that, for agents in some of the
more advanced multiagent applications that are beginning
to emerge, this coordination reasoning could be quite com-
plex and time consuming.

Sophisticated control of local domain problem solving is
also necessary in many cases for effective agent interaction.
Agents need to explicitly reason about the intermediate
states of their computation (in terms of what actions they
expect to take in the near term, what information from
other agents would be valuable for making further progress
in their local problem solving, etc.). An aspect of this rea-
soning can involve an explicit representation of the uncer-
tainty and incompleteness of its current problem-solving
state. By having this representation, an agent can make
more informed decisions about the value of obtaining spe-
cific information or doing further work locally to resolve

3. A key issue is how to make this metalevel reasoning sufficiently pow-
erful, yet not a significant computational cost in its own right.
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its uncertainty [3].4 Agents also need to be able to acquire,
represent and reason about beliefs concerning the state of
other agents, and to use assumptions about the rationality
of other agents’ problem solving in their reasoning. It has
been shown that even the exchange of a coarse description
of other agents’ states (metalevel information) can be used
to make effective coordination decisions [12]. However, if
agents have very good models of the behavior of other
agents, it may not be necessary to coordinate through the
exchange of metalevel information but, rather, just the ob-
servation by one agent of the external actions of another
agent may be sufficient [26].

The third principle relates to the need to exploit the effi-
ciencies of organized behavior in coordinating large agent
societies. Organizing the agents in terms of roles and re-
sponsibilities can significantly decrease the computational
burden on coordinating their activities since there are fewer
options and constraints that need to be evaluated in order
to make appropriate coordination decisions. However,
these assignments (long-term commitments) should not be
so strict that an agent does not have sufficient latitude to
respond to unexpected circumstances, nor should they be
necessarily fixed for the duration of problem solving. Or-
ganizational control should be thought of as modulating
(circumscribing) local control rather than dictating [8]. Im-
plicit in this discussion are the concepts of commitment and
intention. The ability to appropriately bound the intentions
of agents, and to create and sufficiently guarantee the
commitments of agents to accomplish certain tasks is at the
heart of efficient organized behavior. These concepts, either
implicitly or explicitly represented, are important keys to
not only understanding but also implementing complex
organized agent behavior in both small and large agent
societies [5], [15], [19], [21], [29], [31].

6 MAJOR CHALLENGES AND RESEARCH
DIRECTIONS

The field faces many challenges, some pragmatic and oth-
ers deeply theoretical. A pragmatic one that seems very
important and pressing is the development of an appropri-
ate high-level software infrastructure/framework to sup-
port the building of multiagent systems. At this point, the
programming overhead to create a nontrivial multiagent
system is still high and, thus, the number of fielded com-
mercial applications is small. The development of such a
framework is timely because of the emerging software in-
frastructure and standards being developed for mobile
computing and interoperability among programs residing
at distant sites (e.g., Java) which will simplify the construc-
tion of agents. However, this work will only partially solve
the problems of building multiagent systems since it does
not deal with high-level coordination issues. There are two
possible approaches to building these higher level capabili-
ties. One takes a language-oriented view, providing a set of

4. Resolution of all uncertainty may not be necessary for meeting the cri-
teria of “satisficing” performance. In general, problem-solving architectures
that deal explicitly with the uncertainty of information and the incomplete-
ness of their local data bases are more adaptable for use in a multiagent
context [25], [33], [34].

operations and associated protocols for locating and com-
municating with agents such as KQML [16]. The decision
about when to use the protocol, what information to trans-
mit, etc., is left to the agent programmer. An alternative
approach is a high-level framework where, once an agent
has described its needs and capabilities for interacting with
other agents in a domain-independent way, the framework
will automatically make all the coordination decisions [10].
Again, these are extreme points on a continuum of possible
approaches [6] to creating a software framework to ease the
burden of implementing multiagent coordination strategies.
Another continuum in terms of choices for coordination
frameworks is centered on the following question: When is
an end-to-end planning viewpoint (in terms of how a spe-
cific choice explicitly contributes to achieving the global
objective) warranted for making an effective coordination
decision, versus a reactive and local view of the effects?

Along these lines, one of the important developments in
the field over the last few years has been the development
of high-level coordination frameworks inspired by logic-
based approaches to explicitly modeling cooperative inter-
action among small human teams. The computational vi-
ability of these agent coordination frameworks is often ac-
complished by limiting their model semantics so that they
can be implemented via procedural reasoning. Examples
include the joint intentions framework [7], [43], [70], the
SharedPlan model [20], [21], joint responsibility [6], [67],
[68], and hybrid models such as [71]. There is also recent
work, in this case motivated by modeling of complex soft-
ware processes, on an agent coordination language that also
shows much promise for being able to specify and imple-
ment complex agent interaction patterns [72].

Multiagent research has long been divided into two
camps, one concerned with cooperative (benevolent) agents
and the other concerned with self-interested agents [14].
There has been very little cross-fertilization of ideas be-
tween these camps. Research on self-interested agents is
often based on classical game theory with its assumptions
of common knowledge among agents and complete ration-
ality of agent reasoning. This is in contrast with the research
on cooperative agents which makes no such assumptions;
rather, it has generally been based on heuristic approaches
having their roots in knowledge-based Al search, planning
and scheduling mechanisms. However, researchers study-
ing self-interested agents have recently begun to realize, as
the class of problems being solved by their agents have be-
come more complex, that these assumptions are not always
reasonable [23], [45]. It is interesting to speculate whether
there is more in common among cooperative and self-
interested coordination mechanisms than currently be-
lieved—especially as the environments within which these
mechanisms operate become more complex in terms of the
computational difficulty of taking all appropriate factors
into consideration and the increased level of information
uncertainty and incompleteness [78]. An obvious challenge
is how to construct agent societies consisting of a mixture of
self-interested and cooperative agents that need to coordi-
nate their activities. For example, consider a variant of the
example in the introduction. Suppose in this case factory-1
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is outsourcing both to factory-2 (owned by a different or-
ganization) and factory-3 (which is also owned by the par-
ent company of factory-1). In this scenario, the scheduling
agent of factory-1 will interact in a self-interested way
with the scheduling agent of factory-2 while concurrently
interacting in a cooperative way with the scheduling agent
of factory-3.

There has also been a long tradition of work dating
back to the inception of the field on coordination based
on logical reasoning about the beliefs, desires, intentions
(BDI) and commitments of agents [7], [20], [43], [49], and
more recent work on the use of market mechanisms for
solving multiagent resource allocation problems [54]. Simi-
larly, there has been little cross-fertilization among these
areas and the self-interested and cooperative camps. The
synthesis of ideas from each of these different ap-
proaches to coordination holds great potential for future
developments in the field.

Another issue is how to scale up to agent societies of
hundreds and thousands of agents. There has been inter-
esting work on cooperative behavior of a large number of
agents [22], [27], and on organization self-design [13], [18].
However, this work has been done on simple reactive
agents operating in artificial environments. Whether or not
the results of this work can be applied to more complex
agent societies operating in real-world environments is an
open question. The challenge of how to design large-scale
agent societies and how to evolve them as the environment
changes is rapidly becoming a major issue in the field.
Working on this problem will also shed light on many of
the basic issues in multiagent systems research. For exam-
ple, how complex must an agent be in order to interact ef-
fectively with other agents in a societal context? Is it best to
think about an agent organization as an emergent property
based on simple agent interactions, or do agents need to
explicitly reason about and analyze their roles in the cur-
rent organization to effectively adapt them to the changing
state of the environment and the demands placed on the
agent organization?

An important trend in the field is the development of
analysis techniques to predict the performance of multi-
agent systems [4], [9], [46]. These performance characteri-
zations also relate to the applicability of specific coordina-
tion mechanisms. For example, it has been shown that cer-
tain self-interested agent interaction protocols can be guar-
anteed to produce truthful communications in problem
domains with particular properties, while other domains
can be guaranteed to produce lying [44]. The ability to
bound the performance characteristics of systems is crucial
to the acceptance of this field by the larger computer sci-
ence community. Both the work on large-scale agent socie-
ties and this work on performance analysis are beginning to
shift the field from focusing mainly on the syntax and se-
mantics of agent interaction to the more encompassing
study of the statistical properties and characteristics of the
aggregate behavior of agents.

Multiagent learning has also emerged as a major focus
of study in the field over the last few years [55], [59]. This
is not surprising because of the increasingly complex nature

of multiagent systems, the fact that system performance
can be very sensitive to the characteristics of the environ-
ment, and the dynamic and “open” operating environ-
ments of these systems. Thus, the ability to automatically
tailor a system to its possibly evolving environment is
crucial for its effectiveness. In the future, a learning
component will be an integral part of the design of a multi-
agent architecture. To my knowledge, most of the cur-
rent work in multiagent learning exploits existing learning
algorithms that were designed to operate in a single-agent
context; it will be interesting to see whether new learn-
ing techniques will evolve out of the multiagent character
of the learning.

The issues and challenges discussed here so far are on
the active agenda of the field. More long-term issues in-
volve, for example, semantic interoperability among agents.
How can agents with different internal representations,
created at different times and operating in different envi-
ronments, communicate and coordinate effectively? For
example, can agents with different coordination protocols
construct a new protocol that is appropriate for their in-
tended interactions? Some of the surface issues associated
with this problem are beginning to be studied in both the
multiagent systems community [28], [42] and in the feder-
ated and multidatabase community. However, the deeper
issues still await serious work [17]. Another long-term issue
is the integration of the work in the computer-supported
cooperative work community, the intelligent user interfaces
community, and the multiagent community. If a model of
computing in which networks of computational agents and
21st century, then it seems obvious that these disparate fields
will have to be more tightly integrated.

In summary, even though the use of multiagent systems
technology is still in its infancy and the number of fielded
commercial applications to date are small, there is tremen-
dous potential and an exciting research agenda for the field.
The field has already developed a rich set of concepts and
mechanisms, both theoretical and practical, which will pro-
vide a solid base for future work. | expect the impact of
multiagent systems on computer science to increase signifi-
cantly during the next decade.
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