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Abstract

Open environments are characterized by their uncertainty and non-
determinism. This poses an inevitable challenge to construction of
agents which need to operate in such environments. The agents need
to adapt their processing to available resources, deadlines, the goal
criteria specified by the clients as well their current problem solving
context in order to survive. Our research focuses on constructing a
framework for robust agent control, using a soft-real time scheduling
approach which satisfices all aspects of problem solving. In this paper,
we evaluate the performance of our heuristic-based approach using the
performance of the policy generated by an optimal controller as the
benchmark.
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1 Introduction

It is paramount for agent-based systems to adapt to the dynamics of open
environments. The agents need to adapt their processing to available re-
sources, deadlines, the goal criteria specified by the clients as well their
current problem solving context in order to survive in these environments.
In this paper, we describe a framework for equipping agents to perform
efficiently by ensuring robust control. We evaluate the performance char-
acteristics of this heuristic based controller by comparing it to that of an
optimal policy generated by an MDP-based meta-controller.

We reason about and model an agent’s problem solving activities us-
ing TAEMS (Task Analysis, Environment Modeling, and Simulation), a do-
main independent task modeling framework. TZAEMS models are used in
multi-agent coordination research [5] as well as Cooperative-Information-
Gathering [13, 11], collaborative distributed design [5], and intelligent envi-
ronments [10]. Typically an agent represents domain problem solving actions
in TAMS, possibly at some level of abstraction, and then passes the TAEMS
models on to agent control problem solvers like the multi-agent coordina-
tion modules or the Design-to-Criteria (DTC) scheduler. We present the
task modeling semantics in Section 2.

DTC scheduling [16] is the soft real-time process of finding an execution
path through a hierarchical task network such that the resultant schedule
meets certain design criteria, such as real-time deadlines, cost limits, and
quality preferences. It is the heart of control in agent-based systems such as
the resource-Bounded Information Gathering agent BIG [11] and the multi-
agent Intelligent Home [10] agent environment.

The general DTC scheduling process is designed to cope with exponen-
tial combinatorics and to produce results in soft real-time. However, DTC’s
somewhat myopic approximation and localization methodologies do not con-
sider the existence of recovery options or their value to the client. In the
general case, explicit contingency analysis is not required. In the event of
a failure, the scheduler is reinvoked and it plans a new course of action
based on the current context [18, 7]. In hard deadline situations, such as
those in mission critical systems [12] however, the scheduler may not be
able to recover and employ an alternative solution path because valuable
time has been spent traversing a failed solution path. We have recently ex-
panded the DTC heuristic scheduler to make more informed decisions about
the choice of schedules using contingency analysis. In particular, the cho-
sen schedule takes into account the fact that rescheduling can occur. Our



uncertainty based contingency analysis tools pre-evaluate the likelihood of
recovery from a particular path and factor that into the utility associated
with a particular schedule. The improved estimates can result in the selec-
tion of a different schedule, possibly one that leads to higher quality results
with greater frequency resulting in improved real-time performance. We
return to contingency analysis in Section 3.

Obviously, in the best of all possible worlds, instead of generating a
schedule where we have to reschedule at failure points, we would like to con-
struct an optimal meta-control policy which prescribes the next best action
to take based on performance characteristics of the most recently executed
primitive action. For most reasonable size task structures the computational
overhead of constructing this policy online is unrealistic. However, we would
like to see how well the contingency analysis approach performs relative to
an optimal policy. In Section 4, we describe an approach for constructing
such an optimal policy from our TAEMS task graph representation.

Experimental results illustrating the strength of contingency analysis,
relative to Design-to-Criteria’s myopic view are discussed in [18]. In Sec-
tion 6, we discuss the performance of contingency analysis relative to an
optimal controller’s global view, for certain classes of task structures.

2 The TAMS Modeling Language

An agent models its domain problem solving actions in
TAMS by framing its activities in the short to medium term view required
to construct the task structure. TAEMS task structures capture several im-
portant features that facilitate the agent’s problem solving. These include
the top-level goals/
objectives/ abstract-tasks that the agent intends to achieve as well as one or
more of the possible ways that they could be achieved expressed as an ab-
straction hierarchy whose leaves are basic action instantiations, called meth-
ods. It models a precise, quantitative definition of the degree of achievement
in terms of measurable characteristics such as solution quality and time.
Information about task relationships that indicate how basic actions or ab-
stract task achievement effect task characteristics (e.g., quality and, time)
elsewhere in the task structure, the resource consumption characteristics of
tasks and how a lack of resources affects them are also embedded in the task
structure.

Consider the TAEMS task structure shown in Figure 1. It is a con-
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Figure 1: Information Gathering Task Structure

ceptual, simplified sub-graph of a task structure emitted by the BIG [11]
information gathering agent; it describes a portion of the information gath-
ering process. The top-level task is to obtain reviews on Adobe Photoshop.
The top-level task is decomposed into a subtask Query-Benchin (A) and a
method Search-Adobe-URL (B). Methods are primitive actions which can
be scheduled and executed and are characterized by their expected quality,
cost and duration distributions. For instance, the quality distribution of
method User-Benchmarks indicates that it achieves quality value of 2 with
probability 0.5, quality of 1 with probability 0.25 and 0.5 with probability
of 0.25. Quality is a deliberately abstract domain-dependent concept that
describes the contribution of a particular action to overall problem solv-
ing. Thus, different applications have different notions of what corresponds
to quality. Duration describes the amount of time that the action mod-
eled by the method will take to execute and cost describes the financial or
opportunity cost inherent in performing the action. With the recent ad-
dition of uncertainty modeling, the statistical characteristics of the three
dimensions are described via discrete probability distributions associated
with each method. Find-Reviews can be achieved by either completing task
Query-Benchin successfully or executing the method Search-Adobe-URL
or both and the maximum of the qualities is propagated to Find-Reviews.
This is indicated by the max() quality accumulation function(qaf), which
defines how performing the subtasks relate to performing the parent task.
The min() qaf under Query-Benchin indicates that either executing method
User-BenchMarks (A1) or completing task Process-User-Reviews (P) or both



may be employed and the minimum of the qualities (indicated by the min()
qaf) will be propagated to Query-Benchin. The enables arc between Find-
User-Reviews (A2) and Apply-NLP (A3) is a non-local-effect (nle) or task
interaction; it models the fact that user reviews need to be obtained in order
to perform sophisticated extraction techniques on the documents.

Two different schedules for achieving the top-level goal of the task struc-
ture, produced for two different sets of design criteria, are shown in Figure 2.
Schedule A is constructed for a client who needs a high quality solution, re-
quires the solution in twenty minutes or less, and who is willing to pay for
it. Schedule B is constructed for a client looking for a cheap and quick solu-
tion. This example illustrates the notion of quantified choice in TAMS and
how the DTC methodology leverages the quantification to build different
schedules for different contexts.

Schedule A:
. . Expected Quality: 0.97
UserBenchMarks FindUser Reviews ApplyNLP Expected Cost: 1035
(A1) (A2 (A3) Expected Duration: 18.0
Schedule B:
Expected Quality: 0.60
SearchAdobeURL Expected Cost: 330
(B) Expected Duration: 6.40

Figure 2: Different Schedules Produced for Different Design Criteria

3 Uncertainty-based Contingency Analysis

Design-to-Criteria is the process of coping with exponential combinatorics
to produce schedules in soft real-time that meet a particular set of design
criteria and hard constraints like deadlines or cost limitations. Because the
scheduling problem entails enumerating the alternative different ways to
achieve the top level task, and determining a sequencing for each different
way for task achievement, the combinatorics are pronounced (w(2") and
o(n™), where n is the number of primitive actions being scheduled) and
finding an optimal solution is not generally possible even for a small task
structure. The scheduler controls the combinatorics through a satisficing
methodology described in [16].

In order to address resource limitations and to produce schedules in
interactive time, DTC exhibits a somewhat myopic view in its schedule
construction. It does not consider the existence of recovery options or their



value to the client. In the general case, explicit contingency analysis is
not required since the scheduler is reinvoked in the event of failure and a
new course of action is taken based on the current context. However, in
situations where hard deadlines exist, a mid-schedule failure may preclude
recovery via rescheduling because sufficient time does not remain to explore a
different solution path. In these situations, a stronger analysis that considers
the existence of possible recovery options may lead to a better choice of
schedules. To address such situations, we have developed a contingency
analysis methodology [15, 18] that functions as an optional back-end on the
Design-to-Criteria scheduler.

The contingency analysis algorithms operate by examining the highly-
rated candidate schedules produced by the scheduler and exploring failure
/ recovery scenarios for each schedule in the set. The contingency analysis
tools also perform more detailed reasoning about the placement of methods
within a schedule in light of the existence of recovery options. For exam-
ple, recovery for a given schedule may be possible iff some critical method
m is performed first rather than second. The standard scheduler is weakly
biased toward moving uncertain methods earlier in the schedule, but the
determination is local, based only on the attributes of the method in ques-
tion, whereas the method movement explored in the contingency analysis
also takes into account the benefits of method movement from a recovery
perspective.

This work in contingency analysis of schedules is closely related to re-
cent work in conditional planning. However, the planning-centric research
focuses on solving problems which involve uncertainty by probabilistic rea-
soning about actions and information on the value of planning for alternative
contingencies [6, 9] and using utility models [8]. Other approaches use par-
tial Markov decision processes and decision theoretic planning approaches
[2, 3] which prune the search space using domain-specific heuristic knowl-
edge. [14] describes a partial-order planner called Mahinur that supports
conditional planning with contingency selection.

To better illustrate the power of contingency analysis, consider the sim-
ple example in Figure 1. Lets assume the client design criteria specifies that
the task should achieve the maximum possible quality within a hard deadline
of 18 minutes. The DTC scheduler first enumerates a subset of the alterna-
tives that could achieve the high level task. A subset of these alternatives
are selected and schedules are created using the one-pass method-ordering
techniques identified in [18]. The set of candidate schedules are then ranked
using the multi-dimensional evaluation mechanism [16] which compares the



schedules’ statistical attributes to the client design criteria.

The two possible schedules which adhere to the client specified criteria
are shown in Figure 2. The expected lower bound(ELB) [15] is the expected
rating of a given schedule assuming no rescheduling. In this example, since
the criteria is simply to maximize quality, the ELB is equal to the expected
quality!. {A1,A2,A3} has an ELB of 0.97 while schedule {B} has an ELB
of 0.6. Since {A1,A2,A3} has the highest ELB it is chosen and executed.
Suppose Al executes successfully, but A2 fails (i.e. it results in 0 quality),
which it does 25% of the time. Then A3 cannot be executed because it is
not enabled (A2 failed) but there is no time left to reschedule and attempt
method B because there is insufficient time left to execute method B before
the deadline.

Because of the one-pass low-order polynomial method sequencing ap-
proach used by the scheduler to control scheduling combinatorics, the stan-
dard Design-to-Criteria scheduler will only produce one permutation of the
methods Al, A2, and A3. However, if the scheduler did produce multiple
permutations, the schedules {A1,A2 A3} and {A2,A1,A3} would receive the
same ELB ratings. Hence the contention is that there is no difference in per-
formance between the two. However with more detailed evaluation of the
schedules, it is clear that {A2,A1,A3} allows for recovery and contingency
scheduling which schedule {A1,A2 A3} does not permit for the given dead-
line. If {A2,A1 A3} is the schedule being executed and A2 fails, there is time
to schedule method {B} and complete task Find-Reviews. This clearly im-
plies that schedule {A2,A1,A3} should have a better expected performance
rating than {A1,A2,A3} as the schedule {A2,A1,A3} includes the recovery
option from failure in its structure.

A critical task execution region(CTER) is a method that has the po-
tential to seriously degrade the performance characteristics of the overall
schedule if it should fail. The approzimate expected upper bound (AEUB)
is the expected rating(quality in this case) of schedules, computed with the
CTER’s criticality removed. For this example, A2 is a potential CTER
because it is an enabler of method A and it has a relatively high failure
rate(25%). We will now verify if A2 is a CTER. First, we remove the failure
possibility from the performance characterization of A2 and replace method
A2’s 25% chance of quality 0 with the expected value of the distribution.

!The example exhibiting these characteristics was deliberately chosen to simplify the
discussion. The contingency analysis tool is capable of handling the general client criteria
specification.
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Method A2 hence is assigned a quality of 3, with a probability of 1, i.e.
for method A2, Q (100% 3). Then the DTC scheduler is reinvoked with
the modified task structure and rescheduled. The following are the AEUBs
returned by the scheduler.

1. {A1, A25uecess ' A3}: AEUB 1.29
Quality : (32% 0.5)(23% 1.0)(45% 2.0)
Duration: (100% 18)

2. {B} : AEUB 0.6
Quality: (20% 1) (80% 0.5)
Duration: (80% 6) (20% 8)

The AEUB statistic describes performance expectations if failure is not
possible. The relationship between the AEUB and the ELB is a clue to
the importance of the potential CTER to the overall schedule. In this case,
the schedule {A1,A2 A3} now has an expected quality value of 1.29. The
%9397 x 100 = 33 % improvement in quality with respect to the ELB is
significant. This 33% improvement in quality confirms that the possibil-
ity of failure in method A2 significantly decreases the rating of schedule
{A1,A2,A3} and A2 is indeed a CTER. The next step is to consider the
optional schedules for the original task structure to neutralize the effect of
this CTER.

The approximate expected bound(AEB) is the schedule rating with reschedul-
ing only at CTERs and using the ELB of the new stable schedule following



the CTER. The tree structure in Figure 3 presents all possible schedul-
ing options, including recovery scenarios, that meet the hard deadline of
18 minutes. From this diagram, we see that schedule {41, A2, A3} does
not have an option to reschedule and still meet the deadline if method A2
fails. Thus we consider a simple reordering of schedule {A1, A2, A3} which
is {A2, A1, A3}. To assess the effects of rescheduling when A2 fails on this
schedule {A2,A1,A3}, we combine the ratings for schedules { A25%c¢¢$5 A1, A3}
and {A2/eure Bl based on their likelihoods of occurrence. So a sched-
ule starting with A2 gets a rating of % x 1.29 + % x 0.60 = 1.1175.
We use a similar analysis to get the values of schedules starting with Al
= % x 1.29 + % * 0 = 0.9675 and B = 1 % 0.60 = 0.60. Note that
with this detailed analysis it is clear that schedule {A2, A1, A3} has bet-
ter expected performance than {A1, A2, A3}. However, the ELB computa-
tion of the Design-to-Criteria scheduler returns an identical ELB for both
{A1, A2, A3} and {A2, A1, A3} as it does not take into account the recovery
options present within {A2, A1, A3}.

The contingency analysis algorithms use the DTC scheduler to explore
mainly the “good” portions of the schedule solution space — that is those
schedules that best address the client’s design criteria. This serves to con-
strain the computation and reduces the combinatorics from their general
upper bounds. More importantly, the algorithm presented here is amenable
to future research in bounding the algorithm directly, which would enable
the contingency analysis approach to operate in interactive time, as does
the underlying DTC scheduler.

4 Markov Decision Processes as optimal meta-controllers

Effective contingency planning is a complex process. It involves taking into
account a number of factors, including task relationships, deadlines, the
availability of alternatives, and client design criteria (i.e., quality, cost, du-
ration, and certainty trade-offs). The use of DTC as an oracle enables the
contingency analysis tools to cope with the combinatorics of the general
scheduling problem.

In a perfect world scenario, an optimal meta-control policy would deter-
mine the best possible method to execute at each instant so as to achieve
the desired high-level goal while optimizing the criteria and resource speci-
fications. The drawback with such an approach is that for most reasonable
size task structures the computational overhead of constructing this policy



online is infeasible. However, we would like to see how well the contingency
analysis approach performs in relation to optimal, assuming the policy is
computed off-line.

Our approach for constructing an optimal policy is to define the problem
as a finite-horizon Markov Decision Process(MDP) which tries to maximize
its expected accumulated reward i.e. The MDP provides an optimal policy
for achieving the high level goal given the criteria (quality, cost, duration)
specification. It is a finite-horizon MDP because a primitive action can be
executed only once in a particular execution path and hence there are no
loops. MDPs are widely used in artificial intelligence as a framework for
decision-theoretic planning [3, 4], reinforcement learning [1] and reactive
control techniques [19].

As mentioned earlier, the Design-to-Criteria scheduling problem is framed
in terms of a TAMS task network, which imposes structure on the primitive
actions and models the task interactions. The execution characteristics of
primitive actions are modeled in terms of quality, cost and duration distri-
butions. The following are some of the functional differences between the
TAMS framework and the MDP framework.

1. TAEMS does not represent the actual effects of the individual alter-
native paths. In other words, it does not carry through the implica-
tions of choices. The MDP framework, on the other hand, explicitly
describes the primitive actions and their precise execution character-
istics.

2. TAEMS specifies constraints on an ordering rather than explicitly rep-
resenting the implications of the ordering. Consider, for instance,
the primitive methods User-Bench-Marks, Find-User-Reviews, Apply-
NLP and
Search-Adobe-URL in Figure 1. The only constraint on ordering spec-
ified by the TAMS task structure is that execution of method Find-
User-Reviews should precede that of Apply-NLP. There is no require-
ment of immediate precedence and no constraint on immediate succes-
sion either. An MDP representation, on the other hand, would lay out
exact precedence and succession orderings of methods within a path
in the MDP tree.

3. TEMS can be thought of as a compact representation of a class of
MDP problems. It implicitly describes the enumerated search space
which is explicitly described by the MDP.

10



The translation process of a TAEMS task structure to a MDP involves fol-
lowing a procedure which lays out each possible execution path for achieving
the high level goal. The algorithm for expanding the compact TAEMS rep-
resentation to an elaborate MDP representation is described in the next
section.

5 The Translation

The MDP translation is a procedure which allows for the transformation of
a TAEMS task structure T to the corresponding MDP M. The state in the
MDP representation is a vector which represents the methods that have been
executed in order to reach that state along with their execution characteris-
tics. The MDP action is the execution of a particular method. MDP actions
have outcomes and each outcome is characterized by a 3-tuple consisting of
discrete quality, cost and duration values obtained from the expected perfor-
mance distribution of the MDP action. The rewards are computed only for
the terminal states, i.e. the intermediate states have null rewards. The re-
ward is computed by applying a complex criteria evaluation function? of the
quality, cost and duration values obtained by the terminal state. Value iter-
ation is the dynamic programming algorithm used to compute the optimal
policy. In theory, value iteration requires an infinite number of iterations to
converge to the optimal policy. In practice, however we stop once the value
function changes by only a small amount in a sweep. The following is the
algorithm for the translation process.

Let TG be the top level goal in T and let METHODS be the set of
primitive actions in 7.

1. Initialize MDP with state s;
2. Translate(s)
(a) Identify the set of actions(subset of METHODS) which are possible
from s.

(b) Iterate over each action

i. If action is not TERMINATE

A. Expand each outcome(characterized by discrete quality, cost,
duration values).

2the same multi-dimensional evaluation mechanism used by DTC is used here to ensure
a fair comparison.
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B. Determine if outcome can lead to a new state while adhering
to the criteria constraints.

C. if new state Spyime is reached,
Translate(sprime )

ii. Else if action is TERMINATE, set reward of terminating state to
be a function of the quality, cost and duration values of the state.

3. Valuelteration(StateSet);

4. Return optimal policy.

To make this discussion on the translation process more concrete, we
will apply a few iterations of the algorithm on the example discussed in this
paper. Upon translation, the corresponding MDP has 49 states. Figure 4
describes the translation process in progress. The input to the algorithm is
the task structure in Figure 1 described in textual format. The start state
SO is initialized. The PossibleActionSet for state SO is {SearchAdobe URL,
UserBenchMarks, FindUserReviews}. ApplyNLP is not a valid action since
it has an inactive incoming enables from FindUserReviews. For each action
in PossibleActionSet, we consider the outcomes of each of the action starting
with SearchAdobe URL which has 4 outcomes resulting in the states S1, S7,
513, 521 respectively. The outcome resulting in state SI has a quality of 0.5,
cost of 8.0 and duration of 3.0 and occurs with a frequency of 16%. We now
determine the PossibleActionSet for state SI. The set is { UserBenchMarks,
FindUserReviews, Terminate}. UserBenchMarks has 3 possible outcomes
resulting in the states S2, S8 and S4. The PossibleActionSet for state S2 is
{Terminate and FindUserReviews}. We exit from the current loop when a
Terminate action is encountered and also exit from current loop if a deadline
is crossed as is the case for both outcomes of FindUserReviews.

The optimal policy for the above problem is shown in Figure 5. The
policy suggests the method sequence {FindUserReviews, UserBenchMarks,
ApplyNLP} (A2,A1,A3) as the best schedule when method FindUserReviews
achieves non-zero quality and { FindUserReviews, SearchAdobeURL} (A2,B)
would be an alternate schedule in the event of FindUserReviews’s failure to
achieve quality.

As mentioned earlier, the MDP state space of task structures modeling
real-world applications undergoes a combinatorial explosion. For task struc-
tures with 30-40 primitive actions, the DTC scheduler takes generally less
than ten seconds to execute on a mid-range Pentium III running Linux [17].
The contingency enhanced version of DTC requires more time and resources,
however, because it generally explores only a portion of the possible solution

12
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Figure 4: Translation process from TAEMS task structure to Markov Decision
Process for Gather-Review-Information-on-AdobePhotoshop example.
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FindUserReviews Terminate
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Terminate
Terminate
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Figure 5: Optimal policy for Gather-Review-Information-on-AdobePhotoshop

space, it is able to schedule problems too large for the optimal MDP. Hence,
this approach has mainly been researched to serve as an off-line theoretical
benchmark to evaluate our real-time heuristic schedulers.

13



6 Experimental Results

Effective contingency planning is a complex process. It involves taking into
account a number of factors, including task relationships, deadlines, the
availability of alternatives, and client design criteria (i.e., quality, cost, dura-
tion, and certainty trade-offs). In this section, we evaluate the performance
of the contingency analysis tools by comparing them to the standard Design-
to-Criteria scheduler as well as to the MDP-based optimal meta-controller.
It is possible to characterize the types of task structures that are amenable
to contingency analysis, i.e., those for which analysis of recovery options is
beneficial from a cost/benefit perspective. As part of the evaluation process,
we have partially determined the characteristics of task structures and de-
sign criteria that indicate a problem instance for which contingency planning
is advantageous.The general characteristics include:

1. Methods in task structures should have a possibility of failure in their
distribution. Contingency analysis is worth the associated computa-
tional overhead only if there is a possibility of failure of the current
schedule to meet the high-level goal due to individual method failure.
If the performance of the best schedule is deterministic, contingency
analysis is dispensable.

2. Task structures should contain alternate paths. The absence of of
possible recovery paths in the face of failure also makes contingency
analysis dispensable.

3. A possibility of moving failure methods forward (absence of associ-
ated hard non-local effects) would further the potential of contingency
analysis, i.e., structures in which there is some flexibility in terms of
method placement within a schedule. If methods have strong prece-
dence and succession constraints by way of enables non-local effects,
and the failure points are in the latter portion of the schedule, then
there is little possibility of finding good recovery options for failure
within the resource constraints.

4. Dependence of methods with good average performance on critical
methods (enables non-local effect from a critical method to a non-
critical method). Extensive contingency analysis is required only if
the critical regions affect the rest of the schedule significantly. Oth-
erwise, a cheap local fix by replacing the critical method by a more
stable method or just adding a redundant method within the criteria
requirements is a better choice than contingency analysis.

14



TS # Normal Contingency MDP pl p2
A.Q. o A.Q. o A.Q. o
1 145.80 | 8.19 160.2 | 33.09 || 166.20 | 32.31 || 0.00 | 0.20
2 73.6 19.77 91.9 16.06 | 90.40 | 16.93 || 0.00 | 0.52
3 73.4 21.75 88.3 24.21 || 86.80 | 24.57 | 0.00 | 0.66
4 309.0 | 281.63 || 342.20 | 204.20 || 391.40 | 278.50 || 0.34 | 0.16
5 119.99 | 47.15 | 131.58 | 39.97 | 122.59 | 50.29 || 0.06 | 0.16
Col. # 1 2 3 4 5 6 7 8

Table 1: Experimental Results:Normal A.Q. is average quality of ELB se-
lected schedule; Normal o is the standard deviation ELB selected schedule’s
quality; Contingency A. Q. is average quality of AEB selected schedule; Con-
tingency o is the standard deviation AEB selected schedule’s quality; MDP
A.Q. is average quality of optimal meta-control policy; MDP o is the stan-
dard deviation of the optimal policy’s quality; p1 is the p-value for the t-test
comparing Normal A.Q. and Contingency A.Q.; p2 is the p-value for the
t-test comparing Contingency A.Q. and MDP A.Q.

The following are the design criteria characteristics which augment contin-
gency planning.

1. The objective function could specify a hard deadline, and emphasis
should be given to either the quality or duration slider. The hard
deadline and other such hard resource constraints voids the possibility
of simply rescheduling at failure points and instead requires off-line
contingency analysis.

2. The deadline should also provide enough time for contingency anal-
ysis, if the scheduling cost is factored into the equation. Regardless,
the deadline must provide sufficient time for recovery options to be
deployed otherwise the existence of such options is meaningless. In
these cases, the contingency analysis tools must resort to the same
single-pass execution view that is used in the main Design-to-Criteria
scheduler.

The first stage of the performance evaluation compares the contingency-
enhanced DTC scheduler to the normal DTC scheduler. Comparison is
done by examining the Expected Lower Bound (standard scheduler metric)
and the Approximate Expected Bound (contingency analysis metric) and
comparing schedules selected on the basis of these metrics to the actual

15



results obtained by executing the schedules in a simulation environment.
The second stage of the evaluation compares the performance of the schedule
with highest Approximate Expected Bound to that of the optimal policy
prescribed by the MDP-based meta-controller.

The experiments in this section were conducted by randomly generating
task structures while varying some of the above mentioned characteristics.
This produced structures amenable to contingency analysis and were used
to seed the search for interesting test cases. Since method failure is a crucial
factor for the contingency analysis argument, the generation of task struc-
tures was designed to concentrate on the variance of two factors, namely, the
effects of failure location and failure intensity (probability of failure) within
a task structure. Failure location refers to the position of critical method(s)
in a task structure and hence in the schedule. Failure intensity refers to
the probability of a method failing. Three different classifications of fail-
ure location are used in the experiments: early, medium, and late. This is
accomplished via non-local effects and sequencing-related quality accumu-
lation functions that force particular actions to be carried out at particular
points in any schedule including the actions. Similarly, three different set-
tings for failure intensity are used in the experiments, namely, low, medium
and high where low is 1%-10% probability of failure, medium is 11%-40%,
and high is 41%-90%. Ten randomly generated task structure classes were
modified to varying degrees with respect to these two factors, producing in
86 task structure instances.

The design criteria in these experiments is to maximize quality given a
hard deadline on the overall schedule. This simple design criteria setting
is one that lends itself to contingency analysis as the existence of a hard
deadline (in contrast to a soft preference, e.g., soft deadline) may preclude
recovery via rescheduling in certain circumstances. Because of the hard
deadline, a poorly chosen initial schedule may not leave time for the deploy-
ment of recovery options and thus the normal Design-to-Criteria scheduler
may fail to produce results in situations where contingency analysis has
planned for the recovery scenario and chosen an initial schedule accordingly

The results for the experiments are shown in Table 1. For each task struc-
ture instance, 100 simulated executions were performed using the schedule
with the highest Expected Lower Bound(ELB), the schedule having the
highest Approximate Expected Bound(AEB) and the optimal meta-control
policy, i.e., the best schedule selected by the Design-to-Criteria scheduler
was executed a 100 times, the best schedule selected by (or generated by, in
the case of method movement) contingency analysis was executed 100 times
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and the optimal control policy for the task structure was executed a 100
times.

Each row in the table represents a specific task structure. The null
hypothesis of equivalence could not be rejected at the .05 level via a one-
tailed t-test for 83 of the total 86 task structures. In other words, the
results produced via AEB are not statistically significantly different from
the results produced by the ELB for 83 of the total 86 task structures.
Rows four and five show the execution results on two such task structures
where all three algorithms have the same level of performance. Generally
these are instances where the schedule selected by all three methodologies
are the same, indicating a lack of many appealing options that may serve to
lure the standard Design-to-Criteria scheduler away from the schedule that
also happens to have recovery options associated with it. The elimination of
many of the task structures is evidence that it is difficult to pre-determine
whether contingency planning is expedient for a certain task structure.

Rows one, two and three represent the three task structures for which
the the null hypothesis of equivalence was rejected at the .05 level. These are
the task structures that led to schedules for the ELB case and the AEB case
that produced execution results that are statistically significantly different.

Columns one, three and five show the average quality that was produced
by the ELB selected, AEB selected and optimal control policy respectively.
Columns two, four and six show the corresponding standard deviations. In
other words, the best schedule per the ELB metric was selected and executed
in an unbiased simulation environment, when failure occurred the scheduler
was reinvoked. The resultant quality was measured and recorded and the
experiment repeated 100 times. The same procedure was done for the ELB
selected schedule, though when rescheduling occurred, the scheduler and
the contingency analysis tools were reinvoked. In the case of the optimal
control policy, the policy was executed a 100 times and for each state that
was reached, the best action prescribed by the policy was executed and the
action outcome of the action dictated the next reachable state. For rows
one, two and five the average quality of the MDP-based policy is lower than
the average quality of the schedule with highest AEB. On examining the
data in detail, we found that this was essentially due to the skew of the
random number generator. Increasing the number of runs to 500 resulted
in the average quality of the optimal policy to be greater than or equal to
that of the schedule with highest AEB, which is as expected.

Columns seven, titled p1, shows the p-value for the t-test comparing the
ELB selected schedule and the AEB selected schedule. For the first three
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rows, the p-value is less than or equal to 0.05. Hence for these three task
structures, performance of contingency-enhanced scheduler is statistically
significantly different from the performance of the normal scheduler. For
rows four and five, the p-value is greater than 0.05, hence the null hypothesis
could not rejected. Hence there is no statistically significant difference in
the performance achieved by applying contingency analysis on these task
structures.

Column eight, titled p2 is th p-value for the t-test comparing the AEB
selected schedule to the optimal meta-control policy. For all five task struc-
tures, the p-values were greater than 0.05. Hence for these five task struc-
tures, the performance of the AEB selected schedule is not statistically sig-
nificantly different from the performance of the optimal controller. One
might infer that in these specific cases the AEB selected schedule is near
optimal or closely approximates optimal.

7 Conclusions and Future Work

Constructing an optimal controller is an NP-hard problem and makes this
approach infeasible. We have hence constructed a heuristic scheduler which
satisfices all aspects of problem solving. We then augmented the scheduler
with contingency analysis tools to effectively deal with and reason about
mission-critical situations [12] . In this paper, we identify the characteristics
of problem instances for which contingency analysis is amenable. We then
evaluate the performance of the schedule produced by contingency analysis
to that of an optimal controller.

Our preliminary results in Section 6 show that for a certain sub-class of
task structures, namely those task structures which have the properties of
mission-critical systems, applying contingency analysis is advantageous and
leads to performance that is not statistically significantly different from that
of the optimal policy. These task structures have critical task execution re-
gions and are constrained by hard deadlines and mid-stream schedule failure
could lead to catastrophic system-wide failure.

Further experiments comparing the normal DTC scheduler to the contingency-
enhanced scheduler are discussed in [15]. Our current research focuses on
extending our experimental evaluation and pre-classifying task structures
that are potentially amenable to contingency analysis. We are looking into
applying formal search techniques to construct the policy. This approach
would allow the use of the vast amount of legacy algorithms to handle ap-
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proximations and provide guarantees of optimality.

In the current implementation, the cost of rescheduling is considered to

be a small overhead and the costs associated with rescheduling are effectually
ignored. We are exploring techniques to handle situations where non-trivial
costs are associated to rescheduling.
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