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Abstract

Agent control involves reasoning about local problem solving ac-
tivities, interacting with other agents, planning for a course of action
and contingencies in the event of failure of the action and finally carry-
ing out the actions with limited resources and uncertainty about agent
outcomes and the actions of other agents. The growing complexity
and dynamics of agents and the environments in which they interact
requires robust agent control, where the chance of complete failure of
an agent’s plan to achieve the high-level goal is minimized. Design-to-
Criteria is a soft real-time agent control process where schedules are
built to meet dynamic client goal criteria (including real-time dead-
lines), using a task model that describes alternate ways to achieve
tasks and subtasks. In this paper we describe a post-scheduling con-
tingency analysis process that can be employed in deadline critical
situations where the added computational cost is worth the expense.
We describe the uncertainty representation and how it improves task
models and the scheduling process, and provide empirical examples to

—show how robustness-is-built into agent control.
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1 Introduction

Agent control involves reasoning about local problem solving activities, in-
teracting with other agents, planning a course of action and perhaps con-
tingencies and carrying out the actions when there limited resources and
uncertainty about agent outcomes and the actions of other agents. All these
activities have to be done dynamically in real-time and within real resource
and cost constraints. The growing complexity and dynamics of agents and
the environments they interact in requires robust agent control, where the
chance of complete failure of an agent’s plan to achieve the high-level goal
is minimized.

Design-to-Criteria (DTC) scheduling[13] is the soft real-time process of
finding an execution path through a hierarchical task network such that the
resultant schedule meets certain design criteria, such as real-time deadlines,
cost limits, and quality preferences. It is the heart of agent control in agent-
based systems such as the resource-Bounded Information Gathering agent
BIG [10] and the multi-agent Intelligent Home [9] agent environment. Cast-
ing the language into an action-selecting-sequencing problem, the process is
to select a subset of primitive actions from a set of candidate actions, and
sequence them, so that the end result is an end-to-end schedule of an agent’s
activities that meets situation specific design criteria.

The general Design-to-Criteria scheduling process is designed to cope
with exponential combinatorics and to produce results in soft real-time.
However, its somewhat myopic approximation and localization methodolo-
gies do not consider the existence of recovery options or their value to the
client. In the general case, explicit contingency analysis is not required. In
the event of a failure, the scheduler is reinvoked and it plans a new course of
action based on the current context (taking into consideration the successes
as well as the failures, considering the value of results that been produced
to the particular point). In hard deadline situations, however, the scheduler
may not be able to recover and employ an alternative solution path because
valuable time has been spent traversing a solution path that cannot lead to a
final solution. Our uncertainty based contingency analysis tools can help in
this situation by pre-evaluating the likelihood of recovery from a particular
path and factoring that into the utility associated with a particular sched-
ule. The improved estimates (based on the possibility of recovery options)
can result in the selection of a different schedule, possibly one that leads
to higher quality results with greater frequency. We return to contingency
analysis in Section 3.



While Design-to-Criteria is a research focus in its own right, it is of-
ten incorporated into other research projects or used as an analysis expert
by other tools. For example, in multi-agent systems research, Design-to-
Criteria is coupled with the GPGP [5] coordination module enabling an
agent to coordinate its activities with the activities of other agents. GPGP
operates by exchanging the agents’ local views, detecting task interactions,
then forming commitments over the interactions to handle temporal sequenc-
ing of activities. GPGP modulates Design-to-Criteria through hypotheti-
cal/proposed commitments and firm commitments that have been given or
received. When used in a single agent system, such as the BIG information
gathering agent, the local problem solver simply enumerates its problem
solving options in the TAEMS [4] language and passes them to the sched-
uler for analysis along with a set of design criteria that describes the type of
schedules that the problem solver would prefer. For example, if there is little
time to gather information and produce a result, the information gathering
problem solver may specify a desired deadline and the idea that trading-off
quality in favor of shorter duration is preferred.

This paper is structured as follows. Section 2 discusses how uncertainty is
integrated and leveraged in the main Design-to-Criteria scheduling process.
In Section 3 we step outside of the main scheduling process and discuss
secondary contingency analysis methodology that uses Design-to-Criteria to
explore uncertainty and the ramifications of schedule failure. Experimental
results illustrating the strength of contingency analysis, relative to Design-
to-Criteria’s myopic view, for certain classes of task structures are provided
in Section 4.

2 Integrating Uncertainty Into Design-to-Criteria

The Design-to-Criteria scheduling problem is framed in terms of a TAMS
task network, which imposes structure on the primitive actions and defines
how they are related. The most notable features of TAMS are its domain
independence, the explicit modeling of alternative ways to perform tasks,
the explicit and quantified modeling of interactions between tasks, and the
characterization of primitive actions in terms of quality, cost, and duration.
To ground further discussion consider the TAEMS task structure shown in
Figure 1. The task structure is a conceptual, simplified sub-graph of a task
structure emitted by the BIG information gathering agent; it describes a
portion of the information gathering process. The top-level task is to con-



struct product models of retail PC systems. It has two subtasks, Get-Basic
and Gather-Reviews, both of which are decomposed into primitive actions,
called methods, that are described in terms of their expected quality, cost,
and duration. The enables arc between Get-Basic and Gather is a non-local-
effect (nle) or task interaction; it models the fact that the review gathering
methods need the names of products in order to gather reviews for them.
Get-Basic has two methods, joined under the sum() quality-accumulation-
function (gaf), which defines how performing the subtasks relate to perform-
ing the parent task. In this case, either method or both may be employed to
achieve Get-Basic. The same is true for Gather-Reviews. The qaf for Build-
PC-Product-Objects is a seq_sum/() which indicates that the two subtasks
must be performed, in order, and that their resultant qualities are summed
to determine the quality of the parent task; thus there are nine alternative
ways to achieve the top-level goal in this particular sub-structure.

Primitive actions are characterized statistically via discrete probability
distributions rather than expected quality values. The quality distributions
model the probability of obtaining different quality results and the possibility
of failure (indicated by a zero quality result).

The schedules shown in Figure 2 illustrate the value of uncertainty in
this model from a scheduling perspective. Schedule A’ is constructed for
a client who needs a high quality solution, requires the solution in seven
minutes or less, and who is willing to pay for it. Note that the quality
distribution for Schedule A’ includes a 20% chance of failure. Schedule O
(Figure 2) is the optimal schedule for the given criteria. Even though the PC-
Connection method has a higher expected value, the PC-Mall method has a
lower probability of failure. Since a failure in one of these methods precludes
the execution of Query-Consumers-Reports (via the task interaction), the
issue of failure is not local to the methods but instead impacts the schedule
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Figure 1: Simplified Subset of an Information Gathering Task Structure
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Figure 2: Uncertainty Representation in Schedules

as a whole. Thus, when uncertainty is modeled and propagated during the
scheduling process, Schedule O is the optimal schedule as it has the highest
net expected quality value and it still meets the client’s deadline constraint.
In general, the different implications of uncertainty to the scheduling
process manifest themselves in two primary ways. One is with respect to
the general scheduling process. By integrating and leveraging uncertainty
within the framework of coping with combinatorics and generating custom
schedules, we can produce better schedules in situations where certainty is
important; this is documented in [13, 14]. The other use of uncertainty in our
work is to step outside of the soft real-time schedule generation context and
to focus instead on detailed analysis that considers schedule recovery options
and revises schedule expectations to reflect this more detailed analysis.

3 Uncertainty-based Contingency Analysis

In the previous sections we explored uncertainty as it is integrated into
the standard Design-to-Criteria scheduling methodology. However, in sit-
uations where hard deadlines exist, a mid-schedule failure may preclude
recovery via rescheduling because sufficient time does not remain to explore
a different solution path. In these situations, a stronger analysis that con-
siders the existence of possible recovery options may lead to a better choice
of schedules. To address such situations, we have developed a contingency
analysis methodology that functions as an optional back-end on the Design-
to-Criteria scheduler.

In this section we discuss contingency scheduling issues and formalize
five different measures of schedule robustness, where robustness describes the
quantity of recovery options available for a given schedule. In Section 4 we
then present experiments comparing the use of the contingency algorithms
to the standard Design-to-Criteria scheduling approach.

This work in contingency analysis of schedules is closely related to re-
cent work in conditional planning. However, the planning-centric research
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Figure 3: Gather review information on Adobe Photoshop.

focuses on solving problems which involve uncertainty by probabilistic rea-
soning about actions and information on the value of planning for alternative
contingencies [6, 8] and using utility models [7]. Other approaches use par-
tial Markov decision processes and decision theoretic planning approaches
[1, 3] which prune the search space using domain-specific heuristic knowl-
edge. [11] describes a partial-order planner called Mahinur that supports
conditional planning with contingency selection. The authors concentrate
on two aspects of the problem, namely, planning methods for an iterative
conditional planner and a method for computing the negative impact of
possible sources of failure.

[2] discusses an algorithm for a specific domain namely a real telescope
scheduling problem where the stochastic actions are managed by a splitting
technique. Here the Just-In-Case scheduler pro-actively manages duration
uncertainty by using the contingent schedules constructed by analyzing the
problem using off-line computations.

To better illustrate the power of contingency analysis, consider a sim-
ple example. Figure 3 shows a task structure for gathering information
on Adobe Photoshop. The top-level task can be achieved by either com-
pleting task Query-Benchin-Site (A) successfully or executing the method
Search-Adobe-URL (B), or both. If both A and B are executed the max-
imum quality of these two is the quality propagated to the parent node
(per the max() qaf). The quality, cost and duration distributions for the
executable methods denote expectations about method performance. For in-
stance, the quality distribution of method End-User-Benchmarks indicates
that it achieves quality value of 2 with probability 0.5, quality of 1 with



probability 0.25 and 0.5 with probability of 0.25. Lets assume the client
design criteria specifies that the task should achieve the maximum possi-
ble quality within a hard deadline of 18 minutes. The Design-to-Criteria
scheduler first enumerates a subset of the alternatives that could achieve
the high level task. A subset of these alternatives are selected and sched-
ules are created using the one-pass method-ordering techniques. The set of
candidate schedules are then ranked using the multi-dimensional evaluation
mechanism [12] which compares the schedules’ statistical attributes to the
client design criteria.

We will use the term ezpected lower bound (ELB) to denote a slightly
modified schedule utility rating returned by the standard Design-to-Criteria
scheduler. In the ELB computation, the standard utility value associated
with the schedule is computed without any relative scaling components.
This enables comparison between the ELB for a schedule belonging to one
set, e.g., S1, and a schedule belonging to a different set, Sy. For the purposes
of illustration simplicity, we will discuss the ELB in this document as being
directly related to the expected quality of a given schedule, i.e., in this
document, the ELB is the expected quality of a given schedule assuming no
rescheduling. In terms of the design criteria, this is equivalent to a client
specifying a preference for maximizing quality within a given deadline —
no weight or value are given to any of the other criteria dimensions. The
algorithms presented in the following sections operate on more interesting
criteria settings, but, the analysis is more easily understood if the metrics are
cast in terms of expected qualities rather than a multi-dimensional objective
/ utility function.

For the example in Figure 3, the two possible schedules are {A1,A2,A3}
and {B}. Figure 4 describes the computation of the ELB for the schedule
{A1,A2,A3}. Consider the first entry in the table. It describes the case
when method Al achieves a quality of 2, which occurs with a probability of
0.5 as described in the TAMS task structure. Method A2 achieves a quality
of 0 with probability 0.25. ! The probability of the methods achieving these
qualities in a single execution is 0.125, given in column 4. The expected
quality of the schedule {A1,A2,A3} is 0 in this case, described in column 5.
The duration and cost distributions and their expected values are computed
in a similar fashion. The ELBs for schedules {A1,A2,A3} and {B} are as
follows:

!Failure of A2 (where quality= 0) results in zero quality for the schedule due to the
way in which the task structure is defined, i.e., under min() qafs, failure results in zero
quality for the parent task as well. Hence the quality of A3 is a not a determining factor
and is represented by nil.



Al A2 A3 Frequency Quality
50% 2 | 25% 0 nil 5%*25%=12.5% 0.0
50% 2 | 75% 3 | 90% 4 33.75% 2.0
50% 2 | 75% 3 | 10% 0.5 3.75% 0.5
25% 1 | 25% 0 nil 6.25% 0.0
25% 1 | 75% 3 | 90% 4 16.875% 1.0
25% 1 | 75% 3 | 10% 0.5 1.875% 0.5
25% 0.5 | 25% 0 nil 6.25% 0.0
25% 0.5 | 75% 3 | 90% 4 16.875% 0.5
25% 0.5 | 75% 3 | 10% 0.5 1.875% 0.5

Figure 4: Each row represents a possible permutation of the quality distributions
of methods Al, A2, A3 in schedule {A1,A2,A3}. The first three columns repre-
sent the possible expected quality values achieved by each of the methods Al, A2,
A3. The fourth column shows the probability of the particular quality distribution
combination occurring and the last column shows the final expected quality of the
schedule.

1. {A1,A2,A3}: ELB: 0.97 (Expected Quality)
Quality : (25% 0.0) (24% 0.5) (17% 1.0) (34% 2.0)
Duration : (100% 18)

2. {B}: ELB: 0.6
Quality : (20% 1) (80% 0.5)

Duration: (80% 6) (20% 8)

Since {A1,A2,A3} has the highest ELB (indeed, the highest rating us-
ing the standard normalized utility functions), it is chosen and executed.
Suppose Al executes successfully, but A2 fails (i.e. it results in 0 quality),
which it does 25% of the time. Then A3 cannot be executed because it is
not enabled (A2 failed) but there is no time left to reschedule and attempt
method {B} because there is not sufficient time to execute method B before
the deadline.

Because of the one-pass low-order polynomial method sequencing ap-
proach used by the scheduler to control scheduling combinatorics, the stan-
dard Design-to-Criteria scheduler will only produce one permutation of the
methods Al, A2, and A3. However, if the scheduler did produce multiple
permutations, the schedules {A1,A2,A3} and {A2,A1,A3} would receive the
same expected lower bound value. Hence the contention is that there is
no difference in performance between the two. However with more detailed



evaluation of the schedules, it is clear that {A2,A1,A3} allows for recovery
and contingency scheduling which schedule {A1,A2,A3} does not permit for
the given deadline. If {A2,A1,A3} is the schedule being executed and A2
fails, there is time to schedule method {B} and complete task TG1l. This
clearly implies that schedule {A2,A1,A3} should have a better expected per-
formance rating than {A1,A2,A3} as the schedule {A2,A1,A3} includes the

recovery option from failure in its structure.

3.1 Performance Measures

In this section we formalize a general theory relating to the contingency
planning concepts discussed in the previous section. The question we strive
to answer formally here is the following: What performance measure is the
most appropriate estimator of the actual execution behavior of a schedule
given the possibility of failure? Our basic approach is to analyze the un-
certainty in the set of candidate schedules to understand whether a better
schedule can be selected or an existing schedule can be slightly modified such
that its statistical performance profile would be better than that normally
chosen by the Design-to-Criteria scheduler. We accomplish this analysis
through the use of several performance measures. Prior to presenting the
measures, a few basic definitions are needed:

1. A schedule s is defined as a sequence of methods (my, ma,..mp_1, my).

2. Each method has multiple possible outcomes, denoted m;;, where j denotes
the j’th outcome of method m;. This is part of the TAMS definition of
methods or primitive actions. Though the examples generally present meth-
ods as having quality, cost, and duration distributions, methods actually may
have sets of these distributions where each set is one possible outcome. For
example, if method m may produce two classes of results, one class that is
useful by method my, and one class that is useful by method ms, method m
will have two different possible outcomes, each of which is modeled via its
own quality, cost, and duration distributions. Additionally, these different
outcomes will have different nles leading from them to the client methods,
my and my respectively.

3. Each outcome is characterized in terms of quality, cost, and duration, via a
discrete probability distribution for each of these dimensions and each out-
come has some probability of occurrence.

4. m{] is a CTER when the execution of m; results in outcome j which has

a value or set of values characterized by a high likelihood that the schedule
as a whole will not meet its performance objectives. For instance, m;; is a
CTER if the probability of the quality of m;; being zero is non-zero.



5. A schedule s could have zero, one or more CTER’s in it. A general representa-

tion of such schedule with at least one CTER would be s¢" = (m, M2, MMy MG M1, Mp).
6. fi is the frequency of occurrence of m;’s , j’th outcome where m;; is a
CTER.

7. mg" is mg] with its current distribution being redistributed and normalized

after the removal of its critical outcome. In other words, the criticality of
my] is removed and the new distribution is called m{".
8. If 7 = (ml..,mi_l,mf]’-",mi+1, m§y . mE My 1, my.), then

cr — cr cr cr
s, = (ml..,mi_l,mi ,mi_H,..mkl..mno..mn_l,mn.)

cr cr cr cr
5§, (my.,mi—1,mS", migp1, . m.my5..m,_,my.) and

SCT’

(my.,mi_1,mS", M1, . my . m& .My, mp.)
The five statistical measures that aide in detailed schedule evaluation are:

Expected Lower Bound (ELB) The expected lower bound rating, of a sched-
ule s, is the performance measure of a schedule execution without taking
rescheduling into consideration [13]. Tt is an expected rating because it is
computed on a statistical basis taking quality, cost and duration distribu-
tions into account, but ignoring the possibility of rescheduling. As mentioned
previously, in this paper, to simplify presentation of the algorithms we will
concentrate on the case in which the ELB is only the expected quality of a
given schedule.

Approximate Expected Upper Bound (AEUB) The AEUB is the statistical
schedule rating after eliminating all regions where rescheduling could occur.
The assumption is that there are no failure regions and hence the schedule
will proceed without any failures and hence no rescheduling will be necessary.
The following is a formal definition of AEUB:

Suppose mg; is a CTER in the schedule s = (m;..m;) and it occurs with

— — ELB(55)-ELB
- Let s¢"=(my, my.m§"..my,). If % > «, then

m;j is a CTER, where « is a percentage value that determines when a
region should be classified a CTER and thus a candidate for more detailed
analysis. The value of a is contextually dependent and should be specified
by a scheduler client. For instance, if saving on computational expense is
more important to the client than high certainty, a should be high, and thus
the threshold for CTER classification is also high. However, if certainty is
paramount, then «a should be low, indicating that any significant change in
the ELB should be explored. When this computation is done on an entire
schedule for all of its CTER’s, we call it the Approximate Expected Upper
Bound. Generalizing this formula for k CTER’s m;, j, ...mi, j,, AEUB(s) =
ELB(my..mj, 1, m.m§....... m¢r...my). The AEUB is thus the best rating
of a schedule on an expected value basis without any rescheduling.

frequency

10



Optimal Expected Bound (OEB) The OEB is the schedule rating if reschedul-
ing were to take place after each method execution. So the first method
is executed, a new scheduling subproblem which includes the effects of the
method completion is constructed and the scheduler is re-invoked. The first
method in this new schedule is executed and the steps described above
are repeated. Hence the optimal® schedule is chosen at each reschedul-
ing region. For complex task structures, the calculation would require a
tremendous amount of computational power and it is unrealistic to use it
for measuring schedule performance in a real system. In most situations,
ELB(s) < OEB(s) < AEUB(s), since the OEB(s) is based on recovery
from a failure while AEU B(s) assumes no failure.

Expected Bound (EB) Let m¢; be the set of actual quality, cost, duration values
when method m;; is executed. After each method execution the schedule is
re-rated. If for some schedule s = (my,ma..m;..my) ;,and ELB((my...my)) >
ELB((m{;, mgy,...mg, mit1..my)), i.e. the actual execution performance of
a schedule is below expectation, then a new schedule is constructed based on
the partially complete schedule {m{;, m3,...m§}.

So the EB is the schedule rating when rescheduling occurs only when there is
a possibility for the partial execution of the current schedule will fail to meet
expected criteria as a result of the outcomes of methods already executed.
This computation, like the OEB, will require extensive computational power.
Again in most situations, ELB(s) < EB(s) < OEB(s) < AEUB(s).

Approximate Expected Bound (AEB) It is the schedule rating with reschedul-
ing only at CTER’s and using expected lower bound of the new stable
schedule for methods following the CTER. This is limited contingency anal-
ysis at CTER’s. Consider a schedule s of n methods s=(my,ma..m;..my).
Now suppose m;; is a CTER with a frequency of occurrence of f;;. In order
to compute the AEB of the schedule, we replace the portion of the schedule
succeeding mfj", which is M1, Mg, .oo.miy by lig1, ligo...... l;, if there exists a
li+1, lH_Q ...... l;. such that ELB(m1 mf]’", li+1 lk) > ELB(m1 m—f’", M1 mn)
The Approximate Expected Bound for this instance is computed as follows:
AEB;j(my,...mp)=ELB(my..m§",miy1..my)%(1=fi;) + ELB(my..mS], i1 .y)*
fij- The new schedule rating thus includes the rating from the original part
of the schedule as well the ELB of the new portion of the schedule. This is ba-
sically the calculation described when the AEB was introduced in a previous
section.

Now we describe the general case scenario. Let mi,ms, ms,...m;...my be a
schedule s of n methods with k CTER’s named mS”™, ,mS". ..m5" Let

i1j10 " Vinga ik g

2«Optimal” in this case is meant in a satisficing fashion. In the context of Design-to-
Criteria, the “best” schedule for a given task structure is not guaranteed to be optimal
as the combinatorics prevent an exhaustive search. As it is used here, optimal means the
best possible schedule within the space searched by Design-to-Criteria.
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the recovery path available at each CTER m{] be s}; and each m{ occurs
with frequency f;7. The AEB of the entire schedule is described recursively as
AEB = ELB(mi..m], by, . lp)x f] + AEB(my..m§",miqq, ...my)*(1— )
which can be expanded out as follows:

AEB= lc131 * ELB(m1 Mgy —1, mfl"h , lal ---lbl)

(1= ) % £ % ELB(my..mT T Lao...lp)

t1J1 1272 injar @
(L f Vet (L= fET o VR FET *ELB(my ST, - T i€, g dog)
(U= frirg) (1= f§03,) # oo (L= £573,) % ELB(my ] .0 .. .m)
AEUB

The above computation produces an approximate measure since we use the
ELB(my..mj,liy1.1;). A better and more exact computation would be to
use the

AEB(mi..mij,liy1..l). Soif we recursively refine the ELB(my..mgj, lit1, ..lx),
the schedule rating approaches the expected bound (EB). Thus, the deeper
the recursion in the analysis of CTER’s, the better the schedule perfor-
mance measure and the closer it is to the actual performance measure when
rescheduling occurs. This describes the potential anytime nature of the
AEB computation. Thus, in most situations, EB(s) > AEB(s) and the
AEB(s) > ELB(s) by definition.

Here we would like to add that all computations above are based on
heuristics and hence are approximations including the OEB and EB. We
could define AEUB’,OEB’,EB’, AEB’ and ELB’ which would involve com-
plete analysis of all paths by the scheduler. The resulting schedules would
display higher performance characteristics and meet goal criteria better but
will also be computationally infeasible to generate [13].

4 Experimental Results

Using the measures described above, effective contingency planning is a com-
plex process. It involves taking into account a number of factors, including
task relationships, deadlines, the availability of alternatives, and client de-
sign criteria (i.e., quality, cost, duration, and certainty trade-offs). In this
section, we evaluate the performance of the contingency analysis tools by
comparing them to the standard Design-to-Criteria scheduler. Comparison
is done by examining the ELB (standard scheduler metric) and the AEB
(contingency analysis metric) and comparing schedules selected on the basis
of these metrics to the actual results obtained by executing the schedules in
a simulation environment.

12



The experiments in this section were conducted by randomly generat-
ing task structures while varying certain characteristics. Intuitions of which
characteristics would lead to structures that are amenable to contingency
analysis were used to seed the search for interesting test cases. Since method
failure is a crucial factor for the contingency analysis argument, the gener-
ation of task structures was designed to concentrate on the variance of two
factors, namely, the effects of failure location and failure intensity (probabil-
ity of failure) within a task structure. Ten randomly generated task structure
classes were then modified to varying degrees with respect to these two fac-
tors. The design criteria in these experiments is to maximize quality given
a hard deadline on the overall schedule. This simple design criteria setting
is one that lends itself to contingency analysis as the existence of a hard
deadline (in contrast to a soft preference, e.g., soft deadline) may preclude
recovery via rescheduling in certain circumstances.

The results for the experiments are shown in Figure 5. For each task
structure instance, 100 simulated executions were performed using the sched-
ule with the highest ELB and with the schedule having the highest AEB.
Each row in the table indicates a different (failure location, failure prob-
ability) parameter setting for the ten task structures; each row is also an
aggregation of results for the ten task structure instances. Of the two fac-
tors used to differentiate the task structures in each row, failure location
(Lo) (found in the first column of the table) refers to the position of critical
method(s) in a task structure and hence in the schedule. Failure intensity
(In) (second column) refers to the probability of a method failing. Three dif-
ferent classifications of failure location are used in the experiments: early(E),
medium(M), and late(La). Similarly, three different settings for failure inten-
sity are used in the experiments, namely, low(L), medium(M) and high(H)
where low is 1%-10% probability of failure, medium is 11%-40%, and high
is 41%-90%.

For each problem instance, the execution results produced by the AEB
selected schedule were compared to the results for the ELB selected sched-
ule via statistical significance testing. The third column, N.H. valid count,
identifies the number of problem instances for which the null hypothesis of
equivalence could not be rejected at the .05 level via a one-tailed t-test.
In other words, N.H. wvalid count identifies the number of experiments for
which the results produced via AEB are not statistically significantly differ-
ent from the results produced by the ELB. These experiments are omitted
from subsequent performance measures.

The fourth column indicates the number of task structures of the ten
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possible whose data is compared. These are task structures that led to
schedules for the ELB case and the AEB case that produced execution re-
sults that are statistically significantly different, i.e., the null hypothesis of
equivalence was rejected at the .05 level. The remaining columns compare
the AEB and ELB selected schedules’ execution results for the these task
structures from an aggregate perspective.

Columns five and eight, titled Contingency A.Q and Normal A.Q. re-
spectively, show the mean, normalized quality that was produced by the
AEB and ELB selected schedules respectively. In other words, the best
schedule per the AEB metric was selected and executed in an unbiased sim-
ulation environment, when failure occurred the scheduler and contingency-
analysis tools were reinvoked and a new schedule generated that attempted
to complete the task. The resultant quality was measured and recorded and
the experiment repeated 100 times. The same procedure was done for the
ELB selected schedule, though when rescheduling occurred, the contingency
analysis tools were not invoked (nor were they invoked in the production of
the initial schedule). The overall maximum quality produced by either the
AEB or the ELB simulation runs was recorded and all resultant quality then
normalized over the maximum, resulting a quality value that expresses the
percentage of the maximum observed quality that a given trial produced.
This procedure was then repeated for the other task structure that produced
statistically significantly different results, and the normalized quality values
averaged. Thus, the 0.73512 A.Q. from the first row of Table 5, column four,
indicates that contingency analysis yielded schedules that produced approx-
imately 74% of the maximum observed quality on average. Column seven
indicates that the standard Design-to-Criteria scheduler produced approxi-
mately 63% of the maximum observed quality, on average, for the same set
of task structures. Thus, contingency analysis yielded a 14.24% percentage
increase in resultant quality over the standard Design-to-Criteria scheduler,
as shown in column 11.

Columns six and nine show the number of times a given selected sched-
ule failed to produce any result, that is, recovery before the deadline was
not possible, for the AEB and ELB cases respectively. It is interesting to
note that the contingency selected schedule failed to produce a result with
somewhat greater frequency for rows one and five. This is because both the
contingency selected schedule and its recovery option had some probability
of failure, though, we do not actually consider the failure rate in these cases
to be statistically significant. The failure rate in row three illustrates the
classic case in which recovery before the deadline is often not possible for
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the schedules chosen by the standard Design-to-Criteria scheduler, whereas
it is more often possible for the schedules selected by contingency analysis.

Columns seven and ten show the number of times rescheduling was nec-
essary during execution. These results are somewhat counter intuitive as the
contingency analysis selected schedules generally resulted in more reschedul-
ing during execution due to failure. This is because the contingency anal-
ysis tools explore the possibility of recovery and do not seek to avoid the
failure in the first place. Relatedly, because the contingency analysis con-
siders the existence of recovery options, it may actually select a schedule
more prone to initial failure than the standard Design-to-Criteria sched-
uler because the schedule has a higher potential quality. For example, say
two schedules s; and s have the following respective quality distributions:
@1 = (25% 0)(75% 10) and g2 = (50% 0)(50% 14). The expected value of
$1 is 7.5 whereas the expected value of s is 7. The standard scheduler will
prefer s; over s9 because it has a higher expected quality value (assuming
that the goal is to maximize quality within a given deadline). However, the
contingency analysis tools might actually prefer ss over s; if there are recov-
ery options, e.g., s3 for so, because ss has the potential for a higher quality
result than s;. If s3 has a quality distribution like g3 = (100% 7), then the
s9 / s3 recovery scenario has a higher joint expected quality than does s;
alone. Associating a cost with rescheduling in the contingency algorithms
could modulate this opportunistic risk-taking type of behavior. If a cost
were associated with rescheduling, the utility of a recovery option could be
weighted to reflect such a cost.

The last column shows the mean normalized OEB of the AEB selected
schedule. This is the measure where rescheduling is invoked after every
method execution irrespective of the execution outcome. It describes the
optimal performance of a schedule since the best possible path is selected
every step of the way. The quality value shown is the average of 100 exe-
cutions of the OEB schedule, normalized by the maximum observed quality
over all the AEB selected and ELB selected schedules’ executions. The OEB
is higher than both Contingency A.Q. as well as Normal A.(Q. for each class
of task structures. This is as it should be, as the OEB is a computationally
intensive performance measure which strives to obtain the optimal schedule
at every point of the plan.

Irrespective of rescheduling, in general, for the task structures that lead
to statistically significantly different results, contingency analysis produced
schedules that yielded higher average quality than did the standard Design-
to-Criteria scheduler. However, as illustrated by the large number of task
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structures that lead to results that were not statistically significantly differ-
ent, very few of the candidate task structures were suitable for contingency
analysis (about 20%).

Fail N.H valid | T.S. Contingency Normal Perf. OEB

Lo | In count count A.Q. F.R. R.C. A.Q. F.R. R.C || Impr.

E | M 8 2 0.73512 | 0/200 72 0.63041 | 0/200 0 14.24% | 0.75227
M| M 8 2 0.70125 | 2/200 64 0.63883 | 0/200 0 8.89% | 0.71222
La | M 8 2 0.79936 | 21/200 | 100 || 0.66246 | 38/200 | 48 || 17.12% | 0.84531
M| L 10 0 0 0 0 0 0 0 0% 0

M | M 8 2 0.70125 | 3/200 64 0.63883 | 0/200 0 8.89% | 0.71222
M| H 10 0 0 0 0 0 0 0 0% 0

Figure 5: Fail Lo is the failure location; Fail In is failure intensity; N.H.
valid count is number of task structures that fail to produce results for the
contingency and standard scheduler cases that are statistically significantly
different; T.S. count is number of task structures whose performance qual-
ities will be compared; Contingency A.Q. is average, normalized quality of
AEB selected schedule; Contingency F.R. is the failure rate is number of
times AEB selected schedule fails to achieve any quality; Contingency R.C.
is the reschedule count which is the number of times the AEB selected sched-
ule reschedules due to failure of a method to achieve quality. Normal A.Q.
is average, normalized quality of ELB selected schedule; Normal F.R. is the
number of times ELB selected schedule fails to achieve any quality; Normal
R.C. is the number of times the ELB selected schedule reschedules due to
failure of a method to achieve quality. Perf. Impr is the average improve-
ment in performance of contingency analysis over normal scheduling. OEB
is the average, normalized quality of AEB selected schedule.

5 Conclusions and Future Work

Ensuring robust agent control requires dealing with uncertainty as a first
class object both within the scheduling process and via the secondary con-
tingency analysis is beneficial. The addition of uncertainty to the TAMS
modeling framework increases the accuracy of TAMS models. Including
explicit models of uncertainty improves the scheduling process not simply
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by increasing modeling power, but also by increasing the representational
power of all the computations in the scheduling process.

The secondary contingency analysis procedures presented in Section 3
step outside of this context to perform a more detailed analysis of schedule
performance based on the existence of recovery options. Since the algorithms
explore the schedule recovery space using the Design-to-Criteria scheduler,
they still exhibit a satisficing, approximate, resource conservative nature. It
is interesting to note that even the coarse analysis performed in the AEB
and AEUB computations is beneficial in certain circumstances. Future ef-
forts in contingency analysis will involve explicitly bounding and controlling
the complexity of the contingency analysis process. Intertwined with this
research objective is the ability to classify particular problem solving in-
stances.

Another area of future exploration in contingency analysis lies in the
area of determining critical regions, CTERs, within schedules. One aspect
of this is determining CTER status based on the existence and types of task
interactions.

Another area to be explored involves leveraging the uncertainty-enhanced
TAMS models in multi-agent scheduling and coordination. In multi-agent
systems the scheduler is typically coupled with a multi-agent coordination
module that forms commitments to perform work with other agents; local
concerns are thus modulated by non-local problem solving.

Other, more general, future efforts in Design-to-Criteria include using
organizational knowledge to guide the scheduler decision process when op-
erating in multi-agent environments and to support negotiation between the
scheduler and its clients, which may be other Al problem solvers or humans.
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