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Abstract

Exploring agent conversation in the context of fine-grained
agent coordination research has raised several intellectual
questions. The major issues pertain to interactions between
different agent conversations, the representations chosen for
different classes of conversations, the explicit modeling of
interactions between the conversations, and how to address
these interactions. This paper is not so ambitious as to at-
tempt to address these questions, only frame them in the
context of quantified, scheduling-centric multi-agent coordi-
nation research.

1 Introduction

Based on a long history of work in agents and agent con-
trol components for building distributed AI and multi-agent
systems, we are attempting to frame and address a set of in-
tellectual questions pertaining to agent conversation. Inter-
action lies at the heart of the matter; the issue is interaction
between different agent conversations, that possibly occur at
different levels of abstraction, but also interaction between
the machinery for holding a conversation with other agents
and the underlying machinery for controlling the individual
agent. Henceforth we will use the term coordination proto-
col to describe the specification for a dialogue between one
or more agents that is held for the purpose of coordinating
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their activities; a conversation is an instantiation of a proto-
col. A coordination mechanism, in contrast, denotes a larger
grouping of concerns — it is the way in which an agent rea-
sons about interactions, plans to resolve them, and carries
out communication activities to do so. We return to the
issue of coordination mechanisms in Section 2.3, however,
the notion of a mechanism is intertwined in the following
intellectual issues:

e Assuming a model where agents are engaged in mul-
tiple conversations concurrently, and asynchronously,
what are the ramifications of interactions between the
different conversations? Should interactions be ac-
counted for at the conversational level or by the un-
derlying agent control components? For example, if
an agent is engaged in dialogues with two other agents
in an attempt to contract-out two different tasks, e.g.,
x and y, and the tasks are mutually exclusive, what
happens if both tasks are contracted at the same time?
Or one is contracted while the other is being negoti-
ated? In our work, recovery would generally take place
via decommitment [1], possibly with some penalty in-
volved, but, this response is generally triggered by the
agent control components, not the conversation ma-
chinery itself.

e Conversations held to coordinate multiple agents gen-
erally entail the exchange of task or goal information
and temporal constraints. This information may be
viewed as particular bindings on variables that are
used by the conversation machinery. Using this view,
one can envision the conversation machinery query-
ing an oracle (temporal belief-base, truth maintenance
system, agent scheduler, etc.) for particular bindings
that should be used during the dialogue, e.g., “I can
provide you the result by time 10.” However, what
if multiple candidate tasks are being negotiated that
require the same resource(s)?* The conversations are
clearly interdependent, however, the underlying agent
control mechanisms that identify the constrained situ-
ation and enumerate possible responses is also part of
the interaction. In other words, the involved conversa-
tions must query the underlying oracle for information,
and in this case, the oracle needs the information from
all the conversations in order to make decisions about

1The issue is more clear if resources are not simple objects that
require exclusive access, but are instead sharable, e.g., network band-
width, where the performance of an action using the resource may
degrade based on the state of the resource — and the degrees of degra-
dation vary.



priorities and what can be accomplished. As soon as
one of the conversations results in a committed or in-
tended course of action, the other conversations are
impacted. The question is what is the appropriate in-
terface between the conversation machinery and the
lower level control components?

e Consider another situation that approaches the same
issue from a different perspective. Let a be an agent
that has a hard deadline looming and lacks sufficient
time to coordinate over all soft task interactions (op-
tional coordination points), it must thus modulate the
conversation machinery to reflect the upcoming dead-
line. Options include curtailing conversational activi-
ties, i.e., ending existing dialogues or refraining from
starting new dialogues, or modifying conversations to
reflect the need for haste. The first case involves sim-
ply terminating standard dialogues, the second case,
however, requires dialogues that are parameterized or
include branches that have different temporal require-
ments (possibly anytime [7, 18, 40] in nature). How-
ever, the problem is not that neat — it is actually cycli-
cal. Non-local information obtained via communica-
tion influences the agent’s beliefs and thus impacts its
intentions or planned actions. Thus, continuing a di-
alogue and gaining more information might actually
change the choices that an agent has made and thus
result in the agent having more time for conversations.
Conversely, time spent conversing may simply detract
from domain problem solving. The question is whether
or not we must address the issue and if so, what are
the implications to the conversational machinery of the
agent? Certainly, one can argue that for agents to ad-
dress real-time and real-resource concerns, the issue
must be addressed.

Attempting to frame these questions leads one to con-

sider the implications of agents having multiple, asynchronous,

conversations pertaining to different matters and dealing
with activities at different levels of abstraction. As dis-
cussed in Section 5, intra-level and inter-level interaction
in conjunction with interactions between conversations and
agent control components pushes harder on the issue of in-
teraction.

These questions are the outcome of an effort to modify
our agent coordination technology, namely GPGP [26] and
Design-to-Criteria [36], to support openness, situation speci-
ficity, and adaptation to different application domains. For
example, in a current project we are interfacing our agent
control technology with a higher-level process view [21] of
the task of sending robot teams into hazardous environments
to perform unmanned exploration (e.g., damaged buildings
to access structural conditions). This application requires
different protocols and different behaviors than applications
such as the coordination of agents in an intelligent environ-
ment [25], or information gathering agents [8]. In an effort
to open GPGP for different applications and to adapt its
protocols, we redesigned and reimplemented the important
concepts from GPGP and created GPGP? [38].

It is important to note that while our view of agent con-
trol differs from others in the community, from the perspec-
tive of the agent conversation, the questions we have posed
are relevant to other agent technologies. Perhaps the over-
all question is the role of agent conversation research and
work in multi-agent coordination. On one hand conversa-
tional work often focuses on structuring the dialogue be-
tween agents [24, 23, 13], or the formal models, motivations,

and implications of information exchange [6, 30, 31]. On
the other hand, coordination work [29, 33, 34, 19, 14, 9]
generally pertains to making decisions about what an agent
should do, when, and how it should be done. These two
areas of research are related (interdependent?) and we be-
lieve both can benefit from cross fertilization and exploring
our research ideas, and these conversational issues, in con-
text. Work akin to this has begun using abstractions of the
underlying agent machinery or simplified agent task models
[13, 30].

Additional context is required to properly frame and un-
derstand our questions about interactions and the agent
conversational machinery. In some sense, interactions stem
from the complexity of the agent control problem. In our
work, agents have multiple interacting goals or tasks and
multiple different ways to perform them. Agents are also re-
source bounded and must address real-time and real-resource
limitations. The combination of resource limitations and al-
ternative different goals to perform, and alternative differ-
ent ways to perform them, results in agent control as an
optimization style problem rather than a satisfaction style
problem, i.e., the issue becomes evaluation of trade-offs of
different alternative courses of action. The interdependen-
cies and the optimization problem view mean that decisions
rarely have limited or local scope but instead may impact all
of the other choices/decisions made by the agent. In the fol-
lowing sections we clarify by describing our particular view
of agent control and our domain independent architecture.
We also discuss the finite-state machine approach for coor-
dination protocol specification used in GPGP2 and return
to the questions posed this section.

2 Agent Control Components

We frame the general agent control problem as an action-
selection-sequencing activity. Agents have multiple tasks to
perform, different ways to perform the tasks, and the con-
trol problem is to choose subsets of these for scheduling,
coordination with other agents, and execution. The objec-
tive of agent control problem solving is to enable agents to
meet real-time and real-resource constraints, and to facil-
itate agent coordination through islands of predictable or
stable agent activity.

We approach the control problem from a domain in-
dependent perspective, i.e., our research focus is on the
construction of generalized agent control components that
can be coupled with domain problem solvers, planners, or
legacy systems to construct agents suitable for deployment
in a multi-agent system. This generalization is achieved by
abstracting away from the agents internals. In our work,
domain problem solvers describe or translate their prob-
lem solving options, their candidate tasks and the primi-
tive actions used to accomplish them, into a task modeling
language called TAEMS [11]. The TAEMS models are then
passed to generic control components, such as the Design-to-
Criteria (DTC) agent scheduler and the (GPGP/GPGP2)
agent coordination module. Other components include a
learning module [32, 20] and a module for system diagnosis
[17, 22].

With respect to other approaches to agent control, e.g.,
BDI-based [28, 4] problem solvers, our tools operate at a
different level of detail. We return to this issue in Sec-
tion 4, though the general idea is that the DTC/GPGP tools
perform detailed feasibility analysis and implementation of
high-level goals and tasks selected by other components, like
a BDI problem solver. The DTC/GPGP control model as-
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Figure 1: A Portion of the Prototypical Agent Architecture

sumes that some other component is producing the high-
level tasks that the agent is to achieve, either as the result
of local-only domain problem solving or as the result of com-
munication (at higher levels) with other agents. A subset of
the larger generic agent architecture is shown in Figure 1.
In this paper, we describe agent control in the context of
the two primary control components, namely the Design-to-
Criteria scheduler and the GPGP coordination module.

2.1 TAMS Task Models

TEMS (Task Analysis, Environment Modeling, and Simu-
lation) is a domain independent task modeling framework
used to describe and reason about complex problem solv-
ing processes. TAMS models are used in multi-agent co-
ordination research [10, 37] and are being used in many
other research projects, including: cooperative-information-
gathering [27], collaborative distributed design [12], intelli-
gent environments [25], coordination of software process [21],
and others [5, 35, 3, 9]. Typically a problem solver repre-
sents domain problem solving actions in TAEMS, possibly at
some level of abstraction, and then passes the TAEMS mod-
els on to agent control problem solvers like the multi-agent
coordination modules or the Design-to-Criteria scheduler.?
TAMS models are hierarchical abstractions of problem
solving processes that describe alternative ways of accom-
plishing a desired goal; they represent major tasks and ma-
jor decision points, interactions between tasks, and resource
constraints but they do not describe the intimate details of
each primitive action. All primitive actions in TAEMS, called
methods, are statistically characterized via discrete probabil-
ity distributions in three dimensions: quality, cost and dura-
tion. Quality is a deliberately abstract domain-independent
concept that describes the contribution of a particular action
to overall problem solving. Duration describes the amount
of time that the action modeled by the method will take to
execute and cost describes the financial or opportunity cost
inherent in performing the action. Uncertainty in each of
these dimensions is implicit in the performance characteri-
zation — thus agents can reason about the certainty of par-
ticular actions as well as their quality, cost, and duration
trade-offs. The uncertainty representation is also applied to

2In the process work, a translator transforms and abstracts process
programs into TAMS task structures for scheduling and coordination.

task interactions like enablement, facilitation and hindering
effects, ® e.g., “10% of the time facilitation will increase the
quality by 5% and 90% of the time it will increase the qual-
ity by 8%.” The quantification of methods and interactions
in TAEMS is not regarded as a perfect science. Task struc-
ture programmers or problem solver generators estimate the
performance characteristics of primitive actions. These esti-
mates can be refined over time through learning and reason-
ers typically replan and reschedule when unexpected events
occur.

To illustrate, consider Figure 2, which is a conceptual,
simplified sub-graph of a task structure emitted by the BIG
[27] information gathering agent; it describes a portion of
the information gathering process. The top-level task is to
construct product models of retail PC systems. It has two
subtasks, Get-Basic and Gather-Reviews, both of which are
decomposed into methods, that are described in terms of
their expected quality, cost, and duration. The enables arc
between Get-Basic and Gather is a non-local-effect (nle) or
task interaction; it models the fact that the review gather-
ing methods need the names of products in order to gather
reviews for them. Other task interactions modeled in TAEMS
include: facilitation, hindering, bounded facilitation, sigmoid,
and disablement. Task interactions are of particular interest
to coordination research because they identify instances in
which tasks assigned to different agents are interdependent
— they model, in effect, implicit joint goals or joint problem
solving activity. Coordination is motivated by the existence
of these interactions.

Returning to the example, Get-Basic has two methods,
joined under the sum() quality-accumulation-function (qaf),
which defines how performing the subtasks relate to per-
forming the parent task. In this case, either method or both
may be employed to achieve Get-Basic. The same is true for
Gather-Reviews. The qaf for Build-PC-Product-Objects is
a seq-sum() which indicates that the two subtasks must be
performed, in order, and that their resultant qualities are
summed to determine the quality of the parent task; thus
there are nine alternative ways to achieve the top-level goal

3Facilitation and hindering task interactions model soft relation-
ships in which a result produced by some task may be beneficial or
harmful to another task. In the case of facilitation, the existence of
the result, and the activation of the nle generally increases the quality
of the recipient task or reduces its cost or duration.
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Figure 2: Simplified Subset of an Information Gathering Task Structure

in this particular sub-structure. In general, a TAEMS task
structure represents a family of plans, rather than a single
plan, where the different paths through the network exhibit
different statistical characteristics or trade-offs.

TAMS also supports modeling of tasks that arrive at
particular points in time, individual deadlines on tasks, ear-
liest start times for tasks, and non-local tasks (those belong-
ing to other agents). In the development of TAEMS there has
been a constant tension between representational power and
the combinatorics inherent in working with the structure.
The result is a model that is non-trivial to process, coor-
dinate, and schedule in any optimal sense (in the general
case), but also one that lends itself to flexible and approxi-
mate processing strategies.

2.2 Design-to-Criteria Scheduling: Local Agent Control

The Design-to-Criteria (DTC) scheduler is the agent’s local
expert on making control decisions. The scheduler’s role is
to consider the possible domain actions enumerated by the
domain problem solver and choose a course of action that
best addresses: 1) the local agent’s goal criteria (its pref-
erences for certain types of solutions), 2) the local agent’s
resource constraints and environmental circumstances, and
3) the non-local considerations expressed by the GPGP coor-
dination module. The general idea is to evaluate the options
in light of constraints and preferences from many different
sources and to find a way to achieve the selected tasks that
best addresses all of these.

The scheduler’s problem is framed in terms of a TAMS

task structure emitted by the domain problem solver. Schedul-

ing problem solving activities modeled in the TAEMS lan-
guage has four major requirements: 1) to find a set of actions
to achieve the high-level task, 2) to sequence the actions, 3)
to find and sequence the actions in soft real-time, 4) to pro-
duce a schedule that meets dynamic goal criteria, i.e., cost,
quality, duration, and certainty requirements, of different
clients. TZAMS models multiple approaches for achieving
tasks along with the quality, cost, and duration character-
istics of the primitive actions, specifically to enable TAMS
clients to reason about the trade-offs of different courses
of action. In other words, for a given TAMS task model,
there are multiple approaches for achieving the high-level
task and each approach has different quality, cost, duration,
and certainty characteristics. In contrast to classic schedul-
ing problems, the TAEMS scheduling objective is not to se-
quence a set of unordered actions but to find and sequence
a set of actions that best suits a particular client’s quality,
cost, duration, and certainty needs. Design-to-Criteria is

about examining the current situation, the current options
before the agent, and deciding on a course of action — it is
about targetable contextual decision making.

Design-to-Criteria scheduling requires a sophisticated heuris-

tic approach because of the scheduling task’s inherent com-
putational complexity ( w(2") and o(n™) ) it is not pos-
sible to use exhaustive search techniques for finding opti-
mal schedules. Furthermore, the deadline and resource con-
straints on tasks, plus the existence of complex task interre-
lationships, prevent the use of a single heuristic for produc-
ing optimal or even “good” schedules. Design-to-Criteria
copes with these explosive combinatorics through approxi-
mation, criteria-directed focusing (goal-directed problem solv-
ing), heuristic decision making, and heuristic error correc-
tion. The algorithm and techniques are documented more
fully in [36].

2.3 GPGP Coordination: Managing Non-Local Interac-
tions

GPGP (Generalized Partial Global Planning) is the agent’s
tool for interacting with other agents and coordinating joint
activity. GPGP is a modularized, domain independent, ap-
proach to scheduling-centric coordination. In GPGP, coor-
dination modulates local control by posting constraints on an
agent’s local DTC scheduler. The GPGP coordination mod-
ule is responsible generating communication actions, that is
communicating with other agents (via their local commu-
nication modules), and making and breaking task related
commitments with other agents. The coordination module
is comprised of several modular coordination mechanisms,
subsets of which may be applied during coordination de-
pending on the degree of coordination desired. More specif-
ically, GPGP defines the following coordination mechanisms
(for the formal details see [10]):

1. Share Non-Local Views - This most basic coordi-
nation mechanism handles the exchange of local views
between agents and the detection of task interactions.
Exchanging local views is the only way in which agents
can detect and coordinate over task interactions. The
mechanism exchanges information, or not, according
to three different exchange policies: ezchange none,
where no information is exchanged; erchange some,
where only part of the local view is communicated;
and exchange all, where the entire local view is com-
municated. This coordination mechanism is necessary
for all other coordination mechanisms — without a local
view of non-local tasks and an understanding of exist-
ing task interactions there is nothing to coordinate.
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2. Communicate Results - This coordination mecha- method execution being performed by another agent,

nism handles communicating the results of method ex-
ecution to other agents. It is governed by three differ-
ent policies: the minimal policy where only the results
necessary to satisfy external commitments are com-
municated; the task-group policy where all the mini-
mal results plus the final results for a task group are
communicated; and the all policy where all results are
communicated. This mechanism is meaningless with-
out mechanism 1 above or the following mechanisms
that form commitments.

. Avoid Redundancy - This mechanism deals with de-

agent B, and they form a deadline commitment, agent
A can then plan other activities based on the expec-
tation of receiving the results from B by the deadline
T.

Earliest Start Time Commitment This commitment de-

notes an agreement not to start executing a particu-
lar method prior to an agreed upon time. This type
of commitment is the converse of the deadline com-
mitment. In the two agent scenario above, this com-
mitment could be used to denote that while agent B
should execute M by time T, it should also not start

tected redundancy by picking an agent at random to
execute the redundant method in question. The agent
then becomes committed to performing the action and
the other agents will have non-local commitments de-
noting that some other agent will carry out the task at
a predetermined time. Note, the type of redundancy
in question here is simple duplication of work, in con-
trast to the redundancy of being able to generate a
similar result using different methods.

executing M before time T’.

Do Commitment This commitment is weak and simply
denotes a commitment to execute a particular method
at some time.

Don’t Commitment This commitment denotes an agree-
ment not to perform a particular method during a par-
ticular interval. It is particularly useful for coordina-
tion over shared resources.

4. Handle Hard Task Relationships - The enables
NLE pictured in Figure 2 denotes a hard task relation-
ship. This coordination mechanism deals with such
hard, non-optional, task interactions by committing
the predecessors of the enables to perform the task by
a certain deadline.

Salient features of GPGP-based coordination include a
domain independent approach to coordination, exchange of
non-local information to construct a partial global view, a
worth driven view of tasks and actions (from TAEMS), differ-
ent information exchange policies for many of the coordina-
tion mechanisms, a subset of mechanisms that are indepen-
dent and can be applied, or not, depending on the current
context (e.g., looming deadlines).

Figure 3 shows a multi-agent problem solving situation
in which an information gathering task structure (akin to
Figure 2) is distributed across several agents. The high-
level objective is to build product objects. The two sub-
tasks are to build objects for PC software products, and
to build objects for Mac products. Note that the actions
used to perform tasks like Gather-Reviews are abstracted
out of this figure. The entire PC related branch of the tree
is contracted out to a single agent, Task Agent A, while the
Mac related branch is broken down and contracted out to
two other agents, Task Agents B and C. There are interac-
tions between the Get-Basic-Product-Information tasks and
the Gather-Reviews tasks, as well as interactions between
the PC and Mac versions of these tasks (products may be
multi-platform). Using GPGP, the agents coordinate as fol-
lows:

5. Handle Soft Task Relationships - Soft task inter-
actions, unlike hard interactions like enables, are op-
tional. When employed, this coordination mechanism
attempts to form commitments on the predecessors of
the soft interactions to perform the methods in ques-
tion before the methods that are on the receiving end
of the interaction.

As mentioned above, the GPGP coordination module
modulates local control by placing constraints, called com-
mitments, on the local scheduler. The commitments repre-
sent either deals that GPGP has made with other agents,
e.g., agreeing to perform method M by time T, or deals that
GPGP is considering making with other agents. The com-
mitments fall into four categories:

Deadline Commitment This type of commitment denotes
an agreement to execute a particular method by a par-
ticular time. Thus if agent A needs the results from a



e Step 1: Exchange local views. Agents A, B, and C
exchange their local views, i.e., they exchange portions
of their task structures. This gives each agent a limited
view of the activities being performed by the other
agents.

e Step 2: Detect interactions. In this case, the interac-
tions may be specified a priori by the User Interface
Agent. However, if the interface agent did not have a
complete view of the task beforehand, the agents will
compare inputs and outputs of their different actions
and match up relationships accordingly.

e Step 3: Coordinate over interactions. Agent A has mu-
tual facilitations with agents B and C. Agent B has
a mutual facilitation with agent A, as well as an en-
ables relationship with C'. C' has a mutual facilitation
with A, but also requires input from B in order to do
its problem solving. The sequencing and interaction of
coordination over these interactions is one of the issues
of this paper, however, in general, the interactions are
handled by:

1. Agent B evaluating its intended course of action
and offering agent C' a deadline commitment that
specifies the deadline by which it will produce a
result so that agent C can execute.

2. Agent A evaluating its intended course of action
and offering a commitment to agent B that spec-
ifies when a portion of the results for A’s Get-
Basic-Product-Information will be available.

3. Agent B evaluating its schedule and offering agent
A a similar commitment about the partial results
of its Get-Basic-Product-Information task.

4. Agent A, after considering its schedule, will then
offer agent C' a commitment about when the par-
tial results of its Gather-Reviews task will be avail-
able.

5. Agent C will offer a similar commitment to agent
A about its Gather-Reviews task’s results.

e Step 4: Execute, recommit, and exchange. The agents
will then perform their scheduled primitive actions,
rescheduling and recommitting if necessary, and ex-
changing results as specified by the commitments they
have formed.

As mentioned, coordination or agent conversation must
rely on an underlying oracle or analysis procedures to de-
termine bindings on particular variables that are exchanged
during the agent dialogue. For example, an agent must have
a good idea of when a particular result can be provided to
another agent in order to propose a commitment to that
effect. In the GPGP/DTC world view, this information is
generally provided by the scheduler. However, GPGP also
requires non-scheduler analysis code, for example, code to
detect task interactions or to determine which information
policy should be used. Thus, GPGP mechanisms embody
both analysis aspects of the coordination problem and co-
ordination protocol aspects. The problem is that this inte-
gration of concerns makes extending the protocols difficult
— they are, in essence, built into the code and isolated from
the outside world. GPGP2 addresses this problem by sepa-
rating the analysis procedures from the specification of the
agent coordination protocol.

3 GPGP2

The GPGP2 label on our current generation of agent coor-
dination tools is primarily for historical reasons. The goal
of the GPGP2 project is to develop a new approach to spec-
ifying coordination mechanisms that separates the coordi-
nation protocol from the supporting analysis code so that
coordination protocols may be easily modified and adapted
for particular contexts. One step in the verification of the
new tools is to reimplement the functionality of GPGP, in-
cluding its fairly simple coordination protocols and one-shot
coordination nature. However, the main objective is to take
the work beyond the territory already covered by GPGP.

Whereas GPGP grouped analysis functionality and pro-
tocol specification into a single body of embedded code,
GPGP2 takes a very different approach. Coordination pro-
tocols are specified using an extended finite state machine
(FSM) model where states denote conversational states and
transitions are associated with calls to communication ac-
tions or analysis code. This approach to specification is
widespread and akin to AgenTalk [23] and COOL [2], but
the work differs in the way in which conversations interact
with the underlying agent control machinery. Implementa-
tionally, FSMs are specified via scripts that are processed
by a java-based FSM interpreter. The interpreter emits
java code that is then incorporated into a coordination bean
which is integrated into the generic java agent framework
[16]. The coordination bean interacts with the rest of the
agent components through an event/registration mechanism
and by direct invocation when using certain support features
of the framework. Features of the FSM model / interpreter
include:

e Support for multiple concurrent asynchronous conver-
sations between a given agent and other agents in the
environment.

e FSM variables enabling protocols to store information
explicitly — in addition to the implicit information con-
tained in each conversation state. For example, to
store the commitment time last proposed by another
agent.

e Shared FSM variables that enable different conver-
sations (FSM instances) to interact. For example,
conversations focused on a particular set of interre-
lated tasks (possibly sequentially dependent) might
contain points of synchronization to serialize their ef-
forts. The synchronization phase would entail a shared
semaphore-like variable and the passing of particular
bindings. This information could also be passed out-
side of the coordination bean via the standard agent
data structures / knowledge bases, but, intuitively it
seems more efficient to do this sort of operation in-
side the coordination machinery rather than through
the general agent control structures. This is a design
decision, but, it is the embodiment of the issue of han-
dling interactions between different conversations. It
is unclear, at this time, which is the right approach
and unclear as to whether or not a stronger, explicit,
representation of conversation interaction is needed.

e Timers enable machines to set timers and then block,
waiting for particular events to occur. The timers en-
able conversations to time-out if responses are not pro-
duced within a given window. The timeout duration
can be specific to the conversation or a global default
used by all conversations.



Declare-variable Commitment-Status

Declare-variable Negotiation-Counter

Regi ster-Condition(Negotiation-Counter=10,
Count-Out-Handler)

/ Notify other of NLE

ACK/

NAK /

Pre: Compute possible
commitment time

/ Propose Commitment

Count-Out-Condition-Handler

Pre: Compute possible commitment time

/ Propose Commitment

RN

Post: Negotiation-Counter++

/ Notify other of Count-Out

/‘%/

Timeout if no response and resend.
Keep track of # of resends and give up after some number.

(i.e., need to register another condition here and keep another counter.)

Accept /
Post: Add firm

local commitment :

| Accept

Post: Add firm
local commitment

Propose Commitment /
Post: Evaluate proposed commitment

Set Commitment-Status to indicate whether

/ Reject ) nent \
accepting, rejecting, or counter proposing.

Negotiation-Counter++

»

/~ Test-variable(Commitment-Status) :
""""""" Case: Counter Propose - Branch A+
Case: Reject - Branch B .
Case: Accept - Branch C

Message Received / Message Sent

Pre: = Code that is executed before the message is processed or sent.

Post: = Code that is executed after amessage is processed or sent.
Register-Condition() = informing the FSM environment to watch for a condition.
Test-variable() = Testing a FSM variable for a particular value.

Declare-variable = Declaring a FSM variable.

Notation:

Figure 4: Initiator FSM to Coordinate Hard Task Interaction

e Event registration and creation. Events may be gener-
ated from within the FSMs as well as from within the
agent. In effect, each conversation is a first class object
within the agent framework in terms of event genera-
tion and event catching. Conversations can thus inter-
act even without explicit a priori knowledge of which
other conversations are likely to interact.

e As part of the event mechanism, FSMs can initiate
other conversations, i.e., one FSM may detect the need
for a new dialogue and can fire-up a new FSM to han-
dle the dialogue.

e Inheritance. Coordination protocols can be subclassed
and specialized. This facilitates rapid protocol devel-
opment and simple specialization of existing protocols.

e Pre and post conditions on transitions. Transitions
may have a set of actions (including tests of FSM vari-
ables) that take place before the transition and sets of
actions that take place as the transition completes.

e Exceptions. FSMs may throw and catch exceptions.
This allows FSMs to handle timeout conditions and
other events that drastically change the execution flow
through the FSM, and to do so in a succinct fashion.
The alternative is complete specification of all excep-
tions as transitions from each state.

Figure 4 show an example of an initiator FSM* to handle
the coordination of a hard task interaction (the temporal se-
quencing of task performance). The FSMs in the figure are
designed to handle the formation of a single commitment.

4Generally the responder is a reflected version of the initiator, in
these cases, it is probably reasonable to specify a single FSM and then
adapt the interpreter to output two versions. This would remove the
need to analyze the FSMs for reachability and related issues.

One of the outstanding research questions is determining
the appropriate grainsize for an agent conversation. We are
currently using a model where conversations and task inter-
action coordination are 1:1. However, consider a case where
there is an interaction from task a to 3, and then from (3 to
v. Chains of such interactions may require one conversation
to coordinate the chain of interactions, rather than mul-
tiple independent conversations or multiple conversations
that interact via shared variables. Relatedly, consider a case
where agent A and agent B have multiple different task in-
teractions. With our current model, these will be handled
by multiple concurrent and asynchronous conversations be-
tween the agents. However, they could also be handled by a
single conversation that dealt with the multiple task interac-
tions at once. In both cases, interactions between the FSMs
are at issue. In the first case, the conversations are interde-
pendent because the tasks over which they are coordinating
are interdependent. In the second case, the conversations
are interdependent because the tasks are associated with
the same agents, i.e., the interdependence is not between
the tasks per se, but, stems from the particular assignment
of tasks to agents.

4 Interactions Revisited

The issue of interactions is potentially larger than described
in Section 1. We have thus far identified the issue of in-
teractions between different conversations, and interactions
between the conversation machinery and the agent control
machinery. However, we are currently considering new agent
dialogues or coordination mechanisms that potentially oper-
ate at a higher-level than the conversations held to perform
GPGP style coordination.

GPGP and GPGP2 deal with the temporal sequencing
of tasks and with exploring different tasks and constraints
assigned to a set of agents. In some sense, this style of
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Figure 5: Conversational Levels and Interactions

coordination is about feasibility analysis and solution en-
actment based on the assumption that tasks are generated
dynamically during problem solving by the agent problem
solver or by an external (possibly human) client. In other
words, GPGP assumes that some other process is respon-
sible for determining the set of candidate tasks to schedule
and coordinate. Note that TEMS models alternative dif-
ferent ways to perform tasks, and does so hierarchically, so
the GPGP problem is not simply to coordinate and sched-
ule a set of primitive actions that must be performed but
instead to choose which actions to perform based on util-
ity and feasibility. However, GPGP’s (and DTC’s) choices
are limited to the set of tasks and actions emitted by the
problem solver. All GPGP conversations pertain to the de-
tection of interactions, the sequencing of activities to resolve
interactions, and the sharing of results; they do not pertain
to the determination of the high-level goals of the agent.
Our current work in integrating GPGP2 with a process-
level controller, however, requires that we address the issue
of task allocation to agents and the determination of which
tasks to perform from a more global perspective. Note that
these are two separate, but similar, issues. Task allocation
is the problem of assigning members of a set of tasks, say 7 ,
to individual agents belonging to a set of candidate agents.
This requires knowledge about the capabilities and resources
of the agents and knowledge about the structure of the tasks
(possibly a high-level view of interdependence or ordering).
The determination of which tasks the overall agent network
should pursue is a different matter — this is the process of
generating 7 . Both of these activities require that agents be
able to engage in conversations other than those required for
GPGP-style coordination. These conversations must convey
information such as the capabilities of the agents but also
information pertaining to the state of the overall problem
solving network. It appears that these conversations per-
tain to different concerns and operate at different levels of
detail.> However, there is clearly an interaction between
the production of 7, the assignment of members of T to
agents, and the feasibility of the tasks, i.e., in this case we

5We are currently also exploring the integration of our tempo-
ral/constraint based coordination with BDI approaches to agent con-
trol. We believe that a BDI framework can be used in the upper
level of the agent control to determine which tasks to perform from
a coarse-grained perspective (intentions). The fine-grained coordina-
tion and scheduling of the activities is then carried out by our tools.

are faced with interactions between the conversations held
to determine overall objectives, conversations held to deter-
mine task assignment, and conversations held to determine
task feasibility and task performance. Additionally, these
conversations are asynchronous; not just with respect to the
different levels, but there might be different conversations at
each level going on simultaneously. Figure 5 illustrates this
idea. In some sense, decisions made at the upper levels set
the policy for conversations at the lower levels. For example,
deciding to pursue tasks a and 3 at the upper level deter-
mine that at the GPGP-level, conversations will be held to-
ward that ends. However, there is also a feedback process in
which the lower-level must explore the feasibility of the tasks
selected by the upper levels. Consider a situation in which
a set of tasks are selected but when the agents attempt to
coordinate, sequence, and perform the required actions it is
discovered that the agent network lacks sufficient resources
to carry out the activities (recall, we address problems where
task interactions and temporal constraints make it difficult
to ascertain what is possible without actually going through
the process of attempting to coordinate and schedule the ac-
tivities). In this case, the choice of which tasks to pursue for
the overall network must be modified.® Again, we return to
the issue of interaction. Should these interactions be explic-
itly modeled and handled by the conversation machinery?
Does this require a negotiation style interface [15] between
the different conversational levels? Relatedly, should there
be different conversational machinery for these different lev-
els of conversation?

Once one begins regarding agent conversation as being
stratified, other levels become obvious. Work in organizing
the computation and organizing multi-agent systems obvi-
ously entails conversations that take place at yet another
(higher) level of abstraction. In these conversations agents
determine the structure in which the problem solving will
take place. Again, conversations at this level appear to in-
teract with the lower levels, and vice versa. Again, are new
representations needed? Is new machinery needed to hold
conversations of this type?

6An alternative is to provide the lower-level feasibility and imple-
mentation tools with a larger view of the space of candidate tasks. In
this model, the lower-level tools could provide guidance about which
tasks should be pursued at the higher-levels based on the analysis.
Note that in this case, the upper and lower-levels have essentially the
same information, just at different levels of abstraction.



The stratification also moves down the food chain. If
we examine GPGP, there are clearly two different levels of
conversation within GPGP itself. At one level, agents ex-
change local information to construct partial global views of
the rest of the world. The agents then carry out dialogues to
attempt to handle various task interactions. These activities
fall under the general umbrella of feasibility and solution en-
actment. However, the act of communicating results can be
viewed as a different type of activity. In GPGP2, the same
machinery is used to communicate results as to carry out
the other activities, but, the activities are inherently differ-
ent. In this case it appears that new representations and
machinery are not needed, possibly because the interactions
between these levels are one way — results being communi-
cated does not affect existing conversations, though the re-
sults may cause agents to engage in new conversations with
other agents as their problem solving state evolves.

5 Conclusion

We have attempted to identify the issue of interactions in
agent conversations and to provide the reasons that interac-
tions are a research question worth addressing. In summary,
we believe that both the agent conversation community and
the coordination community could benefit from the integra-
tion of our technologies and that the meaningful integration
of these technologies leads to the issue of interaction be-
tween the conversational level and the control level. Addi-
tionally, based on our work in coordination, we hypothesize
that different levels of interacting, asynchronous, conversa-
tions are necessary to scale multi-agent systems for deploy-
ment in complex, open environments. The main issues are
what representations or formalisms are useful and whether
or not explicitly representing and reasoning about interac-
tions is required.

Stepping aside from the notion of levels and interactions
— there is also the issue of uncertainty in conversations and
uncertainty in agent coordination. In TAEMS we explicitly
represent, and reason about, the certainty of actions. We
have begun to reason about the role of uncertainty in GPGP-
style coordination [39], but, it seems intuitive that the un-
certainty question is ubiquitous and applies to all levels of
agent conversation.
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