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Abstract

Design-to-Criteria scheduling is the process of custom building a schedule to meet dynamic
client goal criteria, using a task model that describes alternate ways to achieve tasks and sub-
tasks. Formerly, Design-to-Criteria scheduling relied on simple expected value characterizations
of method outcomes. The recent addition of uncertainty to the task model and its ubiquitous
application in Design-to-Criteria scheduling has greatly improved four aspects of the scheduling
process: modeling of tasks and task interactions, evaluation of schedules and schedule approxi-
mations, focusing of scheduling activities on more certain schedules when uncertainty reduction
is important to the client, and construction of schedules that have more certainty and perhaps
employ multiple ways to achieve a particular task to improve certainty. We describe the uncer-
tainty representation and how it improves task models and the scheduling process, and provide
empirical examples of uncertainty reduction in action.
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1 Introduction

Representing and reasoning about uncertainty is one of the keys to scheduling computational struc-
tures in uncertain environments. This is particularly true when quality requirements and time and
cost constraints are present. Additionally, with the inclusion of uncertainty modeling and propa-
gation it is clear that there are many different dimensions and aspects of utility that can be used
to evaluate the appropriateness of schedules. Consider the task of gathering information via the
highly uncertain WWW to support a decision about the purchase of a statistical analysis software
package. Certain clients may prefer a risky information gathering plan that has a potentially high
pay-off in terms of information gathered, but also has a high probability of failure. Other, more
risk averse clients might prefer a course of action that results in a lower pay-off in exchange for
more certainty about the pay-off and a lower probability of failure.

Design-to-Criteria [3, 6] scheduling is the process of custom tailoring a way to achieve a high-
level task via actions described in a TAEMS [2] model of the task, to fit a particular client’s quality,
cost, and duration criteria or needs. Recently the TAMS task modeling framework was extended
to model uncertainty about the quality, cost, and duration characteristics of tasks using discrete
probability distributions. We have augmented and extended the Design-to-Criteria scheduling
system to leverage this new explicit representation of uncertainty to build better custom schedules.

Uncertainty plays several roles in the Design-to-Criteria scheduling process. First, it enables
the scheduler to represent and propagate uncertainty about tasks and their outcomes. This results
in more accurate models of individual tasks, and more importantly, more accurate models of task
sequences and task interactions. In contrast to reasoning from a single expected value, this en-
hancement supports notions like “30% of the time Task A will fail, 40% of the time it will generate
fair results, and 30% of the time it will generate high-quality results.” Because the models of tasks,
task interactions, and sequences of tasks are more accurate, the scheduler builds better schedules.

The second role of uncertainty is in evaluation; it enables the scheduler to evaluate quality,
cost, duration, and uncertainty trade-offs when custom building schedules to meet a particular
client’s needs. The addition of uncertainty to both the task model and goal criteria allows clients
to specify how important, if at all, uncertainty reduction is relative to other schedule features like
raw-goodness and threshold/limit specifications in each of the three modeled dimensions: quality,
cost, and duration. Uncertainty’s third role is in focusing; the scheduler uses the client’s impor-
tance measure throughout the scheduling process to focus efforts on building schedules and partial
schedules that best satisfice to meet the client’s criteria. When uncertainty reduction is important,
the scheduler may select tasks that have a high degree of certainty about the specified dimen-
sion(s) and trade-off utility in other dimensions as specified by the client’s criteria. For example,
if certainty in the quality dimension is important to the client relative to raw quality goodness,
the scheduler may trade-off high quality for more certainty about quality when building schedules,
resulting in schedules with lower overall quality but higher quality certainty. In situations where
a deadline must be met, the scheduler may elect to trade-off quality or even short duration in
exchange for certainty about duration, producing schedules whose durations are not as short as
possible, but whose durations are more certain than the schedules that have the shortest durations.
These simple examples are members of a large class of multi-dimensional attribute trade-offs that
Design-to-Criteria considers when building schedules.

The fourth use of uncertainty in the scheduling process is in construction; when uncertainty is
important to the client, the scheduler may take a more active approach to uncertainty reduction
and elect to use more than one way of achieving various tasks in order to increase the certainty
of results in the desired dimension(s). We discuss the use of uncertainty in the scheduling process
in detail in Section 2 and demonstrate the power of uncertainty to produce better schedules in
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Section 3.

This work falls into the general area of flexible computation [4], but differs from most flexible
computation approaches in its use of multiple methods for task achievement (one exception is
[5]), in its first class treatment of uncertainty, and in its ability to use uncertainty information in
the selection of methods for execution. Much work in flexible computation makes use of anytime
algorithms [1], algorithms that always have an answer at hand and produce higher quality results as
they are given more time, up to a threshold. Our multiple methods approach can model any activity,
including anytime algorithms, that can be characterized statistically and we place no constraints
on the statistical behavior of the activities in question. In our work, uncertainty is a first class
concept that both appears in the statistical descriptions of the available methods and is propagated
and related as schedules and schedule approximations are generated. Unlike most work in anytime
algorithms that focuses on the propagation of uncertainty[7], we can also include uncertainty and
uncertainty reduction in the goal criteria and focus work on reducing uncertainty when important to
the client. This ability stems from our task model’s representation of alternative ways to perform
various tasks. Because multiple-methods often exist to perform tasks, we can reason about the
quality, cost, duration, and uncertainty trade-offs of different actions when determining which
actions to perform, achieving the best possible overall results.

2 TAMS and Design-to-Criteria Scheduling

TAEMS (Task Analysis, Environment Modeling, and Simulation) is a domain independent task
modeling framework used to describe and reason about complex problem solving processes. TAMS
models serve as input to the Design-to-Criteria scheduler. TAMS models are hierarchical abstrac-
tions of problem solving processes that describe alternative ways of accomplishing a desired goal;
they represent major tasks and major decision points, interactions between tasks, and resource
constraints but they do not describe the intimate details of each primitive action. All primitive
actions in TAMS, called methods, are statistically characterized in three dimensions: quality, cost
and duration. Quality is a deliberately abstract domain-independent concept that describes the
contribution of a particular action toward achieving the overall goal and the relative importance of
its contribution. Thus, different applications have different notions of what corresponds to model
quality. Duration describes the amount of time that the action modeled by the method will take to
execute and cost describes the financial or opportunity cost inherent in performing the action. With
the recent addition of uncertainty modeling, the statistical characteristics of the three dimensions
are described via discrete probability distributions associated with each method.

To ground further discussion of scheduling TAMS models, consider the simple information gath-
ering task structure shown in Figure 1. The task structure models multiple different approaches for
gathering information about WordPerfect via the WWW. A set of satisficing schedules produced by
the Design-to-Criteria scheduler using four different sets of evaluation criteria is shown in Figure 1.
Schedule A is constructed for a client interested in a fast, free, solution with any non-zero quality.
Schedule B suits a client who wants a timely and free solution, but wants less uncertainty about the
expected quality of the results. Schedule C is constructed for a user interested in a good quality,
free, solution that can be obtained while she goes for a cup of coffee. Schedule D is generated to
meet the criteria of a fourth individual who is willing to pay and wait for a high-quality response.

As demonstrated by this simple example, Design-to-Criteria scheduling is about custom building
schedules to fit a particular client’s criteria or needs. The two most important features of the Design-
to-Criteria paradigm are the ability to reason about the quality, cost, duration, and uncertainty
trade-offs of different solutions and partial solutions based on different goal criteria, and the ability
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Figure 1: Info. Gathering Task Structure & Satisficing Schedules

use these utility attribute trade-offs to focus every step of the scheduling process. Satisficing also
plays an important role in Design-to-Criteria. Satisficing in the scheduling process itself enables
the scheduler to produce results when computational combinatorics preclude finding an optimal
solution. Satisficing with respect to meeting the goal criteria allows the scheduler to produce a
result that adheres to the spirit of the goal when the criteria cannot be satisfied optimally due to
environmental and resource constraints.

Goal criteria are generated using a client specification metaphor called sliders. Sliders take
on values from 0 to 100% and are arranged in slider banks where each bank contains a slider for
quality, cost, and duration. The sliders in each bank sum to 100%. There are five banks in the
current specification metaphor, each relating to a different class of concerns:

Raw Goodness This bank describes the relative importance of each dimension. For example, setting the
quality slider to 50% and cost and duration to 25% expresses the notion that quality is twice as
important as each of the other dimensions.

Certainty Whereas the set above expresses the relative importance of quality, cost, and duration, this set
expresses the relative importance of certainty about quality, certainty about cost, and certainty about
duration. Certainty about a particular dimension is the probability that the expected value or one
better will result from execution. We discuss how certainty is calculated in greater detail below.

Threshold and Limits This bank allows the client to set limits and thresholds for quality, cost, and
duration either using a fixed limit/threshold value or using a utility function that describes gradual
changes in utility.

Certainty Thresholds This bank is analogous to the thresholds/limits bank above except that this bank
focuses on the uncertainty associated with quality, cost, and duration. Schedules or alternatives whose
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certainty in a particular dimension meet or exceed the defined threshold are preferred. This enables
clients to expression notions like “certainty in the quality dimension is not important as long as the
schedule is at least 80% likely to produce the expected quality value or one better,” as opposed to raw
certainty objectives like “certainty in the quality dimension is important” that are expressed using the
certainty bank.

Meta This slider set relates the importance of the four previous slider sets. This separation allows clients
to focus on relating quality, cost and duration with each other in each of the classes above, then to
“step back” and decide how important each of the different classes are relative to each other.

The incorporation of uncertainty into the criteria specification provides clients with a means to
describe how important reducing uncertainty is for their application relative to raw-goodness and
limits/thresholds. While the mapping from the sliders to utility functions is beyond the scope of this
paper, it is necessary to describe how a particular dimension’s uncertainty is computed. Certainty
about a quality value is the probability that a quality equal-to or greater-than the expected value
will result, i.e., the sum of the densities of all quality values in the quality distribution greater
than or equal to the expected quality value for that particular distribution. The reason for this is
semantic — more quality is always a good thing. Certainty about duration and cost is computed
similarly, albeit that what is “good” is reversed — less cost and less duration are good things.
Certainty about cost or duration is the probability that a value equal-to or less-than the expected
value will result. It is important to note that the probabilities associated with expected values in
all dimensions can be quite low as the distributions in question are not necessarily normal.

Unlike traditional scheduling tasks where the primary issue is how to order a particular set
of methods, Design-to-Criteria must also consider the many possible combinations of alternative
approaches for achieving the high-level task. Prior to the process of building schedules, the tradi-
tional method-ordering scheduling problem, the scheduler must enumerate the different ways that
the high-level tasks can be achieved. Each “way” is a cheap to compute schedule approximation
called an alternative. Alternatives contain unordered sets of primitive actions and estimates for
the quality, cost, and duration distributions that would result from building a schedule from the
alternative. Alternatives differ from schedules in that the ordering for the primitive actions has not
yet been defined and the attribute estimates are computed without regard for complex task interac-
tions. Alternatives are constructed bottom-up from the leaves of the task hierarchy to the top-level
task node, i.e., the alternatives of a task are combinations of the alternatives for its sub-tasks.

The complexity of the alternative generation process is pronounced. A task structure with
n methods leads to O(2") possible alternatives at the root level. We control this combinatorial
complexity by focusing alternative generation and propagation on alternatives that are most likely
to result in schedules that meet the spirit of the client’s goal criteria; alternatives that are less
good at satisficing to meet the goal criteria are pruned from intermediate level alternative sets. For
example, a criteria set denoting that certainty about quality is an important issue will result in the
pruning of alternatives that have a relatively low degree of quality certainty.

After the alternative set for the high-level task is constructed, a subset of the alternatives
are selected for scheduling. Again, complexity is the issue. For alternatives that have m methods,
schedule construction via exhaustive search, O(m/!), is not feasible and even our polynomial heuristic
approach precludes building schedules for all alternatives. Satisficing with respect to the client’s
goal criteria is used at this stage to select the alternatives that are most likely to lead to schedules
that fit the criteria. As with alternative generation, if uncertainty is important to a particular
client, schedules that reduce uncertainty in the desired dimensions will be produced.

Figure 2 illustrates the scheduler’s ability to focus processing on the goal criteria at hand.
The figure shows the root-level alternative sets generated for two different criteria specifications;
one where raw quality is the only factor of importance and one where certainty about quality
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Figure 2: Alternatives Generated for Two Different Criteria Sets

is the only factor of importance. The task structure in question is moderately complex and has
approximately 4 x 10? possible alternatives at the root level if focusing is not used to reduce the
number of alternatives generated. When quality is the only factor, the alternatives generated have
a high expected quality but also considerable quality uncertainty. In comparison, the alternatives
generated for the the quality certainty case have lower expected quality but a much higher degree
of certainty. The distributions are statistically significantly different in both the quality and quality
certainty dimensions; one-tailed t-tests reject the null hypothesis of equivalence at the .05 level. If
a third case where quality and quality certainty are equally important (omitted for clarity), was
added to the figure the alternatives would fall partly in the quality only range and partly in the
certainty only range; the overlap is due to the properties of the task structure where high quality
methods tend to be uncertain and high certainty methods tend to have low quality. In this third
case, the highest ranked alternative would be the same as the highest ranked in the certainty only
case because it has the highest certainty to quality ratio.

In addition to its contribution to focusing the scheduling process, modeling uncertainty sig-
nificantly improves the accuracy of task models resulting in better schedules. The simple task
structure shown in Figure 3 illustrates this property. The distributions are simplified to make the
point clear and although we will focus on the quality dimension, the same properties apply to cost
and duration as well.

The enables arc between Task A and Task B denotes a hard precedence relationship — Task A
must have quality before Task B can be performed. In other words, one of the methods for Task
A, Method Al or Method A2, must be executed before Method Bl; any schedule that includes
Method B1 must also include Method A1l or A2. The distributions associated with the methods
are the a priori models of method execution and do not reflect the effect of the enables relation.

Rest of the Task Structure

Method A1

[ Method A2]

[ Method B1|

Quality (49% 0)(51% 1) Quality (100% .51)

Quality (100% 10)

Expected Value .51

Expected Value .51  Expected Vaue 10

Figure 3: More Accurate Models Lead to Better Decisions

Consider a situation where the scheduler is comparing two schedules, one containing (A1,B1)
and one containing (A2,B1). If the scheduler operates without a model of uncertainty the task model
contains only the expected values associated with the methods. In this case, the expected value



of both A1l and A2 is .51, but more importantly, is non-zero. From the scheduler’s perspective,
this means that the the enablement always occurs regardless of whether Al or A2 is executed.
Consequently Method Bl is always enabled regardless of which sequence, (A1,B1) or (A2,B1),
is chosen and both sequences have an expected quality value of 10. In this case, the inaccurate
expected value model of method outcomes hides information from the scheduler and can lead to
poor choices, i.e., (A1,B1) and (A2,B1) are equally likely to be chosen if the durations and costs
are identical.

However, when uncertainty is added to the model the uncertainty associated with the outcome
of Al is propagated and reflected in the expected results of (A1,B1). The 49% probability that
Method A1 will fail to generate any results means that the required enablement relation occurs only
49% of the time. The resulting distribution of (A1,B1), (49% 0)(51% 10), reflects this uncertainty
and the expected value of (A1,B1) is 5.1 rather than 10. For the (A2,B1) sequence the certainty
about A2’s outcome generates an appropriately certain quality result for (A2,B1), namely (100%
10), with an accordingly higher expected value of 10. With this improved model, even when
uncertainty is not emphasized in the client’s goal criteria, the scheduler makes better and more
accurate scheduling decisions. In all cases (A2,B1) would be picked over (A1,B1) as long as all
other factors were equal, i.e., assuming that A1l and A2 have similar durations and costs.

The scheduler can also take a more active role in uncertainty reduction by generating alternatives
that contain more than one way (other alternatives) to achieve various tasks. This redundancy
flavored scheduling may serve to reduce uncertainty and it provides the scheduler with more options
to consider. This is critical in some situations involving hard deadlines because in the event of a
failure there is not always enough time left to try a different solution approach, i.e., once committed
to a course of action, it is sometimes too late to reschedule and try again if a failure occurs. Consider
a brief example. Figure 4 shows a task structure fragment, the relevant method attributes, and two
schedules. The results generated by Task A are necessary for Task B and there is a hard deadline
of 30 minutes. Schedule 1 contains no redundancy, having one method for achieving Task A and
one for achieving Task B. Schedule 2 contains redundant methods for achieving Task B and uses a
lower quality but more certain and faster method for achieving Task A. If Schedule 1 is executed
and method A1 fails, 20 minutes are wasted and there is not time to reschedule and execute method
A2 followed by either B1 or B2 prior to the deadline. Additionally, if method B1 fails there is also
not time to reschedule and execute B2. However, if Schedule 2 is executed, we are as certain as
possible that some results will be generated by the deadline because Al is very certain and the less-
certain-but-higher-quality B1 is followed by the more-certain-but-lower-quality B2. Considering
uncertainty in conjunction with redundancies is clearly important in some situations. When the
redundancy alternative generation feature is used, the alternatives that contain redundant activities
are added to the alternative set and compared to the goal criteria in the same fashion as the non-
redundant alternatives. Thus, the scheduler continues to focus processing on alternatives that best
satisfice to meet the overall goal criteria — uncertainty does not dominate the evaluation mechanism
unless so specified by the goal criteria.

Schedule 1

ToskA )7 7 Tamim T T T TB
Schedule 2
Quality (50% 0)(50% 4) Quality (100%1)  Quality (25% 0)(75% 30) Quality (100% 12)
Duration (100% 20) Duration (100% 10) Duration (100% 10) Duration (100% 10) t=20 t=30

deadline
Figure 4: Redundancy Can Be Critical

Modeling uncertainty improves and empowers other aspects of the scheduling process as well. In
environments where rescheduling is undesirable the scheduler can use the probability distributions
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to design more fault tolerant schedules. For instance, if fault tolerance with respect to duration
is desired, the scheduler can build schedules by estimating method execution times using the 95th
percentile duration value rather than the expected value. In this situation, uncertainty about finish
times still gets propagated throughout the schedule, but timing assumptions are based on a higher
value that is by definition very certain.

The uncertainty representation can also improve the probability that little work is wasted in
the event of a mid-schedule failure. Because of task interactions it is possible that a method failure
anywhere in the schedule can void all the work done up to that point. Modeling uncertainty
makes it possible for the scheduler to move the highly uncertain activities toward the front of the
schedule, thus reducing the likelihood of doing work that is voided later in the schedule. We are
investigating integrating this concept with the other method rating heuristics that build schedules
from alternatives.

3 Demonstrating the Power of Uncertainty

To illustrate the type of leverage provided by an explicit model of uncertainty, let us consider the
problem of custom building schedules for two different clients from a moderately complex task
structure. The task structure has methods that fall into three general categories. 1) Methods that
have high expected quality values also tend to take longer and are highly uncertain in both the
quality and duration dimensions. 2) Methods that have low expected quality also tend to take less
time to execute and are more certain in both the quality and duration dimensions. 3) Methods that
have medium expected quality also take a moderate time to execute and are moderately certain.

The high-quality-but-uncertain methods model information gathering tasks that are risky but
also have a probability of a large information pay-off. For example, methods of this type may find
information about a software product by submitting multiple queries to Infoseek and Altavista,
going to the URLs, retrieving multiple documents from each site, and processing them. As the
information located can range from useful new information with wide-scale ramifications to ut-
terly useless information that is not relevant, there is the probability of big pay-offs and also the
probability of zero or poor results. Since methods of this type use a large amount of active web
search on sites that are unknown a priori, predicted duration is also long and uncertain. The
low-quality-but-more-certain methods model information gathering tasks where information is re-
trieved from individual sites that are known and modeled. Since the information is predicted to be
fairly narrow in scope, these methods lack the potential for big pay-offs, however, since the methods
search only one site and the site in question is modeled, durations are short and fairly certain. The
middle-quality-middle-certainty methods employ combinations of these behaviors.

Since the first client, Client A, is planning other activities based on the predicted outcome of
schedule execution, this client is interested in both schedule raw-goodness and schedule certainty. In
the raw-goodness slider bank the quality slider is set to 75% and the duration slider set to 25%, i.e.,
overall quality is 3 times more important than overall duration. In the certainty bank the quality
and duration sliders are each set to 50%, meaning that certainty about the estimated quality and
certainty about the estimated duration are equally important. The meta slider for raw-goodness is
set to 40% and the meta slider for certainty is set to 60%, denoting that uncertainty reduction is
1.5 times more important than raw schedule goodness. Unlike Client A, Client B has much simpler
needs and is only interested in raw-goodness. As with Client A, the raw-goodness quality slider
for this client is set to 75% and the raw goodness duration slider is set to 25%. The meta-slider
for raw goodness is set to 100% denoting that raw goodness is the only issue of importance to this
client.



Figure 5 shows the expected quality and expected duration of the top-level alternatives gener-
ated for Clients A and B; intermediate alternative sets were pruned according to the client’s goal
criteria as discussed in Section 2. Despite both clients setting the raw quality and duration sliders
to the same values, Client B’s alternatives always have higher expected quality and higher expected
duration than Client A’s. Since neither client is using hard deadlines, this is attributable to Client
A’s emphasis on certainty about quality and certainty about duration. Figure 6 tells the rest of the
story. As Client A put 60% of the overall weight on certainty in the quality and duration dimen-
sions, the alternatives generated for Client A trade-off between raw quality, raw duration, quality
certainty, and duration certainty, rather than just trading-off quality and duration. Figure 6 also
shows the price of B’s high expected quality — the expected values are also predicted to be much
more uncertain than those of Client A.
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Figure 6: Probability of Expected Values of Alternatives



The quality and duration attributes of the schedules produced from a subset of these alter-
natives are similar to the attributes of the alternatives. In this case, the estimates contained in
the alternatives are fairly good indicators of the schedules produced from the alternatives. This
indicates that subtask interactions in the alternatives generated and targeted for scheduling were
fairly simple and generally involved hard-precedence constraints. In keeping with intuitions, the
highest rated schedule for Client B is that which has the highest expected quality with respect
to duration. However, Client A’s “best schedule” has a reasonably good quality for its expected
duration and a high degree of certainty about its expected quality and duration values.

The quality and duration results of executing the best schedules for each client thirty times
are shown in Figure 7. Whereas Client A’s executions produced a tightly spaced set of quality
and duration values, Client B’s highly uncertain schedule produced a wide range of results. Of
the thirty runs, Client A’s results meet or beat expectations in the quality dimension 90% of the
time, in the duration dimension 50% of the time, and in both the quality and duration dimensions
50% of the time. In contrast, Client B’s results only meet or beat quality expectations 63%
of the time, duration expectations 16% of the time, and both dimensions combined 13% of the
time. Additionally, the uncertainty in B’s quality dimension incurred more rescheduling because
of methods failing to return any results (problematic because of task interactions). On average,
B’s plan required scheduling 2.1 times per each execution, with a variance of .71, whereas A’s only
required 1.2 schedulings on average with a variance of .21. The 25% trimmed mean brings out the
contrast even more — B’s scheduling average remains 2.1 but A’s 25% trimmed mean drops to 1.0,
denoting no rescheduling during execution.
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Figure 7: Execution Results for A and B

4 The Future Role of Uncertainty

As discussed in Section 2, the addition of uncertainty to the TAMS modeling framework increases
the accuracy of TAMS models. The uncertainty enhancement is leveraged ubiquitously by Design-
to-Criteria scheduling to better statistically reason about task interactions, to produce schedules
that more fully satisfice to meet client’s needs, and to improve the efficiency of the scheduling
process. We have discussed these issues and demonstrated the power of using uncertainty in Design-
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to-Criteria scheduling. The issues of modeling improvement, measuring uncertainty, reasoning
about attribute trade-offs with uncertainty, and working to reduce uncertainty are all applicable to
research beyond Design-to-Criteria scheduling.

One area of future uncertainty-related work in Design-to-Criteria scheduling involves moving
uncertain actions toward the front of the schedule to reduce the amount of work that is potentially
wasted by an action failure. Because of complex task interactions and the complex semantics of the
functions that determine how quality is accumulated by tasks via their subtasks, determining which
actions are most important to the schedule and to what degree, is not a trivial or computationally
cheap process. Contingency scheduling for methods likely to fail is also a possibility. Other future
efforts in Design-to-Criteria will center around negotiation between the scheduler and its clients,
which may be other AI problem solvers or humans. Negotiation during the scheduling process can
iteratively refine client goal criteria based on what is actually being produced by the scheduler. This
is important because often if the scheduler cannot produce schedules that satisfice well enough with
respect to the goal criteria, due to task limitations or resource constraints, the client may prefer to
submit a different set of goal criteria and try again, exploring the solution space prior to selecting
a course of action.
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