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Abstract

TAMS is an abstract task modeling framework used to describe the major components of
tasks and to reason about trade-offs between various possible approaches of performing tasks.
To better model certain classes of tasks that arise in distributed environments, we have enhanced
the model to more accurately portray two classes of intermittent processing activities — those
that contain embedded delays, such as embedded I/O, and those that are affected by external
delays, e.g., slow propagation of results from a different location. The enhancements are impor-
tant because they help identify situations where local processing resources are under utilized and
possibly idle. Accordingly, we must modify the Design-to-Criteria scheduling process and lever-
age the enhanced model to produce more efficient schedules. Modifications include determining
when it is possible to overlap actions that contain embedded delays, and the ramifications to
their execution profiles, and deciding what actions may be performed during an external delay.

*This material is based upon work supported by the National Science Foundation under Grant No. IRI-9523419,
the Department of the Navy, Office of the Chief of Naval Research, under Grant No. N00014-95-1-1198, and via
a subcontract from Boeing Helicopter which is being supported by DARPA under the RaDEO program (contract
number TONANB6H0074). The content of the information does not necessarily reflect the position or the policy of
the Government, National Science Foundation, or Boeing Helicopter and no official endorsement should be inferred.



1 Introduction

TAMS (Task Analysis, Environment Modeling, and Simulation) [3, 4, 5] is a task modeling frame-
work used to describe and reason about complex problem solving processes. TAMS models are
abstractions of problem solving processes; they represent major tasks and major decision points,
interactions between tasks, and resource constraints but they do not describe the intimate details
of each primitive action. Alternative approaches for performing tasks are represented explicitly in
TAMS and all primitive actions are statistically characterized in three dimensions: quality, cost
and duration. The explicit representation of alternative approaches to performing tasks, and the
statistical characterization of primitive actions, allow TAMS users and tools to reason about the
quality, cost, and duration trade-offs of different possible courses of action. TAMS models are
the grounding element and medium of exchange for Design-to-Time [13, 15] and Design-to-Criteria
scheduling [20], and multi-agent [7, 6, 8, 2] coordination research, and are being used in Cooperative-
Information-Gathering [18, 19, 10], collaborative distributed design [9], and distributed situation
assessment [1] projects.

Over the last few years TAEMS has been extended to increase its representational power for
modeling “real world” problem solving systems. Most notable among these extensions are the ad-
ditions of explicit representations of uncertainty [14] and multiple outcomes [16]. The uncertainty
enhancement entails representing and reasoning about actions and trade-offs using discrete proba-
bility distributions rather than simple expected values. The detail provided by the full uncertainty
representation enables probabilistic reasoning about different aspects of each dimension. For exam-
ple, using the uncertainty representation tools can consider the probability that a particular range
of values will result, or measure the degree of uncertainty about particular values or ranges of val-
ues, rather than being limited to the expected value alone. The outcomes enhancement associates
multiple possible outcomes with each primitive action, each with its own probability distribution
and its own set of outgoing task interactions. This allows TAEMS users to more accurately model
the semantics of real-world actions where different results may have very different effects (interac-
tions) on the problem solving process. Similarly, different results may have very different statistical
descriptions and separating the outcomes facilitates reasoning from an outcome perspective, rather
than an aggregate perspective, where desired.

In this work, we have enhanced the model to more accurately portray two classes of intermittent
processing tasks — those that contain embedded delays, such as embedded I/O, and those that are
affected by external delays, e.g., slow propagation of computational results from elsewhere on the
network. Modeling these two classes of intermittent processing in TAMS is only half the battle. To
leverage the representation and improve processor' utilization we must also address the enhanced
model from the scheduling perspective. This entails knowing when certain actions must be delayed
pending result propagation and detecting when it is possible to perform multiple actions within
a single time interval. In the sections that follow we provide a brief introduction to TAEMS and
Design-to-Criteria scheduling, define the model enhancements, and describe how the scheduling
process leverages the more expressive representation to build better schedules.

2 TAMS Overview

Graphically the model is a tree where interior nodes, called tasks, denote abstract high-level prob-
lem solving activities and leaves, methods, represent executable actions. In TAMS actions are
modeled statistically along three dimensions, quality, cost, and time. Quality is a deliberately ab-

"We will use the term processor to describe a generic execution unit, e.g., a cpu or an agent.



stract domain-independent concept that describes the “goodness” of performing a particular action.
Thus, different applications have different notions of what corresponds to model quality. Duration
describes the amount of time that a method will take to execute. Cost describes the financial or
opportunity cost inherent in performing the action modeled by the method. The statistical charac-
teristics of the three dimensions are described via discrete probability distributions associated with
each method.

TAEMS diverges from traditional hierarchical representations in that different alternatives for
achieving a task are expressed explicitly and reasoning about trade-offs is a first class activity.
For example, a task may have multiple submethods, one or more of which may be executed to
achieve the task. Different combinations of submethods have different cost, quality, and duration
characteristics and different degrees of uncertainty about these characteristics. The objective in
any TAEMS related activity is to achieve quality for the task structure root, or task group, which
is synonymous with achieving the high-level task.?2 As with most hierarchical representations the
high-level task is achieved by achieving some combination of its subtasks — quality achievement is a
ubiquitous goal. High-level TAEMS tasks accumulate quality from their subtasks, which get quality
from their subtasks recursively until the methods are reached, according to quality accumulation
functions (qaf). Qafs are approximations that model how utilities are calculated and propagated
in the problem solving process described by the model. The primary TAMS qafs are max (), which
is somewhat analogous to a logical OR, min (), comparable to logical AND, and sum() where any
member of the power set 3 of the subtasks may be executed to achieve the task.

Hard and soft interactions between tasks, called NLEs (non-local effects), are also represented in
TAEMS and reasoned about during scheduling and coordination. A complete description of TAMS
is beyond the scope of this paper, however, further background information will be provided where
necessary.

A simplified example of a TAEMS task structure for searching the Web for information on Word-
Perfect is shown in Figure 1. The oval nodes are tasks and the square nodes are methods. The top-
level task is to Find-Information-on-WordPerfect and it has three subtasks: Query-Infoseek,
Query-AltaVista, and Search-the-Corel-Website (Corel is the maker of WordPerfect). The
top-level task accumulates quality according to the sum() gaf so one or more of its subtasks may be
performed to satisfy this objective. The Search-the-Corel-Website task also has three subtasks:
Find-Corel-URL, Best-First-Search-Using-Advanced-Text-Processing, and Query-Simple-
-Corel-Search-Engine. These tasks are governed by a max() qaf thus the quality from any
single method determines the quality of the parent task. Note that the expected quality of the
Find-Corel-URL method is very low relative to the two alternative methods for searching the
Corel website; also note the enables NLE between the URL finding method and the other meth-
ods. These quality attributes and the NLE indicate that finding the URL for Corel is necessary
to perform any of the other methods but that it does not contribute much directly to the task
of searching the Corel Website, or finding information on WordPerfect, relative to the other two
methods. We will return to this example throughout the paper.

2The term task group is used to denote a set of tasks that are related hierarchy and via non-local effects. Tasks
are not joined under a task group if they do not have interactions and are not related hierarchy. A TAMS model
may be comprised of several task groups that are joined under a special meta root. In this case the overall objective
is to achieve the meta root via the individual task groups, rather than to achieve a single task group via its subtasks.

8The number of ways to accumulate quality under the sum() qgaf is the power-set of its subtasks minus the empty
set.
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Figure 1: TAMS Task Structure for Searching for Information on WordPerfect

3 Design-to-Criteria Scheduling

Design-to-Criteria scheduling is the process of finding a satisficing course of action for a complex
problem solving activity represented as a TAMS task structure. The main tenet is to cope with the
combinatorial explosion of possibilities while reasoning about quality, cost, and duration criteria
such as hard or soft limit/threshold requirements for each dimension and factors describing the
relative importance of each dimension. Scheduler client applications or users specify the design
criteria and the scheduler designs a schedule to best meet the criteria, if possible given the task
model. To illustrate this concept, three possible simplified schedules for the WordPerfect search
activity are shown in Figure 2. Depending on the design criteria, any one of these schedules could
be generated and returned to the client. For instance, if the primary issues are speed and no cost,
then the Schedule A is constructed. If time and cost are not at issue then Schedule C is created.
If time and cost are important but the client specifies certain quality requirements, then Schedule
B is constructed.

Schedule A: Fastest Schedule Schedule B: Good Quality Schedule, Fast, with No Cost
Query-AltaVista Find-Corel-URL | Query-Simple-Corel-Search-Engine |
Expected Quality 3.3 Expected Quality 10.8

Expected Duration 45 seconds Expected Duration 2.25 minutes

Expected Cost 0 Expected Cost 0

Schedule C:; High Quality Schedule
| Query-Infoseek [Find-Corel-URL | Best-First-Search-at-Corel-Using-Advanced-Text-Processing
Expected Quality 25

Expected Duration 13.75 minutes
Expected Cost $1.90

Figure 2: Three Satisficing Schedules

Design-to-Criteria scheduling requires a sophisticated heuristic approach because of the schedul-
ing task’s inherent computational complexity. To understand the complexity and get a feel for the
scheduling process, consider a task structure only a single level deep, where a single task has m
children that are methods and it accumulates quality according to the sum() qaf. In this case,
there are 2™ — 1 unordered sets of methods that can be used to achieve the parent task, and within



each set of n methods, n! possible orderings of methods in the schedule. Thus, complexity in the
scheduling task comes from two sources: the number of unordered method sets that can achieve
the high-level objective, O(2™), and the possible orderings of each method within the schedule,
O(n!). This differs from other scheduling tasks where ordering is the primary issue. Clearly, for
any significant task structure the brute-strength approach of generating all possible schedules is
infeasible.

We partly cope with the computational complexity by using a schedule abstraction called an
alternative, shown in Figure 3. Alternatives contain sets of unordered methods that can be ordered
to form a schedule and an estimate of the quality, cost, and duration distributions that may result
from building the schedule. Alternatives are associated with all task nodes in the TAEMS task
structure. Alternatives for tasks closer to the root are combinations of the alternatives associated
with the subtasks; the subs’ alternatives are combined according to the qaf. Thus alternatives are
built bottom-up from the leaves to the root. A subset of the alternatives for the root of the task
structure are turned into schedules to perform the high level task by achieving the lower level tasks.
In a sense, alternatives of the interior nodes represent partial unordered schedules — they describe
the actions that can be performed, i.e., methods, to obtain quality for the task node with which
they are associated.

(-—./\\

~ —

J Method Z \

Alternative 1
Potential Quality Distribution I Method A )

Potenid Daration Dianiution | Method K /
\ Method X /
~ I

~

Abstraction

Schedule o= —————————————
Compued quality Disribution | M ethod X [Method A [Method K [Method Z |
Computed Cost Distribution |
Computed Duration Distribution | For each method:
Commitments Satisfied Startt |
Commitments Violated | Finisht
Goodness Rating I Computed Quality Distribution

|
Computed Cost Distribution |
| Computed Duration Distribution

Reschedule Criteria |

Figure 3: The Alternative Abstraction

The quality, cost, and duration estimates contained in alternatives describe the potential char-
acteristics of a schedule created from the alternative. The potentials are calculated by ignoring
ordering information and applying all NLEs. The alternative abstraction defers the O(n!) ordering
component of the complexity problem until schedule time, when orderings are imposed and another
technique is used to reduce the O(n!) complexity. However, the alternative abstraction does not
address the O(2™) complexity factor which is driven by the number of possible method sets that
can achieve the high-level objective. This complexity is handled dynamically during the alternative
generation process. There are exactly three situations that lead to combinatorial explosions of this

type:

Build-Up Gradual complexity “build-up” occurs when a task node has a typical number of child
nodes, each of which has many alternatives, and the children are joined under the sum() gaf.

Complexity of this type is controlled by pruning each alternative set post-hoc. In other words,



the gradual build-up is eliminated by pruning the alternative sets of the child nodes after they
are generated to keep the number of alternatives, at each step, within a reasonable bounds.
The alternatives are pruned according to the quality, cost, and duration criteria specified by
the scheduler client and the potentials associated with the alternative. The caveat is that the
potential quality, cost, and duration distributions may be overly optimistic depending on the
interactions between tasks. This is partly addressed by improvement heuristics touched-on
later.

Instant Instant complexity problems occur when task node has a large number of child nodes,
each with few alternatives, and the children are joined under the sum() gaf.

Complexity of this type is predictable by a simple look-a-head operation. In this case, we
cannot first generate the alternative set and then prune because the actual number of alter-
natives that would be generated is too large. Instead, we must heuristically generate a set of
alternatives that characterizes the set of possible alternatives with an eye towards the client’s
quality, cost, and duration criteria. The details of this operation are current research. Note
that if the number of child nodes is moderate, we can just generate the alternative set and
prune if necessary, as described above, because the exponential factor O(2™) still translates
into a manageable number of alternatives.

Combination Combinations of instant and build-up as described above. This occurs when a task
node has a large number of child nodes, each with many alternatives, and the children are
joined under the sum() gaf. In this case, the solution for the build-up problem above will
control the number of alternatives that reside a the child nodes before alternatives are created
for the parent node, and the instant solution will control the number of alternatives generated
at the parent node.

Thus the O(2™) type of complexity is controlled by pruning large alternatives sets and heuris-
tically generating partial alternative sets that cannot be exhaustively generated, and subsequently
pruned, because of their size. As mentioned previously, not all alternatives associated with the root
task node are turned into schedules. Alternatives are selected for scheduling the same way that
they are “kept” during the pruning process — by rating alternatives using their potential quality,
cost, and duration characteristics according to how well they meet the client’s specified criteria.

Once an alternative is selected to be scheduled, a heuristic method rating process is used to
determine the proper ordering of alternative methods to create a schedule. The method rating
approach controls the O(n!) complexity by not generating all possible orderings of the methods.
Methods are rated using the types of heuristics described below. While the complexity of some
of the method rating heuristics is polynomial in the number of task structure nodes, overall the
savings of this approach versus the O(n!), w(2"), possible orderings is pronounced and makes the
problem tractable.

e Enforce hard NLEs, i.e., enforce precedence constraints.

e Enforce earliest start times and deadlines.

e Try to take advantage of positive soft NLEs, where doing one activity before another improves
overall utility.

e Try to avoid negative soft NLEs, where doing one activity before another degrades overall
utility.

e Try to satisfy external commitments and avoid violating them.

e Try to improve overall schedule quality quickly - a greedy heuristic.



While the method rating heuristics in place today used fixed trade-off information, such as
deadlines being more important than commitment satisfaction, future method rating heuristics
will utilize client specified criteria where appropriate. This will enable clients to specify things like
“meeting commitment C' is more important that anything else, including quality, cost, and dura-
tion.” The satisficing approach will be similar to that used to handle satisficing at the alternative
and schedule level with respect to quality, cost, duration, thresholds and uncertainty [20].

After each schedule is generated (all methods are added or discarded due to constraints) it is
critiqued by a set of improvement heuristics that ascertain if adding other methods or alternatives
to the schedule will improve its overall quality, cost, and duration characteristics. Typically, the
critics look for methods that are positively affected by hard or soft interactions that are missing
from the current schedule. For example, if performing method A may improve the quality and
reduce the cost of method B, but method A is omitted from a schedule that includes method B,
it may be worthwhile to add A. Improvements are suggested to the system not by tweaking the
schedule at hand, but by suggesting an alternative that includes the items lacking in the current
schedule. The new alternative is added to the set of eligible alternatives and selected, or not,
according to how well its potentials meet the client’s criteria relative to the other alternatives.

The process of selecting alternatives and building schedules iterates until the number of sched-
ules crosses a threshold, all the alternatives are scheduled, or the remaining alternatives cannot lead
to better schedules (determined by the alternatives’ potentials). Schedules are then rated against
the client’s quality, cost, and duration criteria and the best one is returned for execution. This
iterative process has an anytime [22, 21] flavor since generating the set of alternatives for the root
task is relatively cheap complexity-wise and fast real-timewise, due to complexity control, compared
to the process of building schedules. The scheduler can generate a small set of schedules quickly,
but given more time, it can explore more schedules and increase the probability that a “better”
schedule is created.*

It is important to recognize that the scheduling process is typically not a one-shot activity.
Because of the uncertainty involved, it is entirely possible for a method execution to return results
outside of the bounds of expectations thus requiring rescheduling. However, in situations where
rescheduling is not appealing, the scheduler can create less efficient schedules that are more fault
tolerant by making more conservative probabilistic assumptions about quality, cost, duration and
uncertainty. This relates somewhat to previous work done by Durfee and Lesser [11] in which
schedules are made “loose” by increasing duration expectations when building schedules, effectively
creating a slack-time buffer between each action. Our model is much stronger in that we change
expectations based on probabilities rather than using magic numbers, and we do so in all dimensions,
quality, cost, and duration.

4 Intermittent Processing

Formerly, TAMS methods have been viewed as actions that require all the computational resources
of the agent for which they are scheduled. We have extended the method model to describe actions
that do not require 100% of the agents’ resources during their execution intervals. This allows us
to accurately model activities that contain interleaved I/O, like interacting with an external sensor
or interleaving http get requests and local processing as shown in Figure 4. Note that we do
not model when the delays occur during execution because TAEMS makes no assumptions about

“If the potential distributions for quality, cost, and duration that are contained in the alternatives are good
indicators of the schedule quality, then the algorithm will produce “good” schedules from the start and adding time
only increases the certainty that “better” schedules will not be generated.



the execution characteristics of methods during their time intervals (methods are black boxes)?.
Another reason not to model when the delays occur is simply that in some cases it is difficult to
predict when a particular action will engage in an activity that causes delays, i.e., it might be
dependent on the inputs. We also do not assume or require that the delays actually take place each
time the action is performed®. However, if the action is likely to have internal delays, and this can
be described statistically, then the embedded delay model is appropriate.

Generic Method

[ Local Processing [ Delay | Local Processing [Delay |

WWW Related Method
[ Query Name Server | Delay | Formulate and Issue http Request |Delay | Process Document

Figure 4: Embedded Delays

In addition to embedded delays, the enhanced TAEMS model also supports external delays that
arise when the results from one processor must be communicated to another spatially distributed
processor. Note that the processors may be agents or processors that are working on a common
task or external resources that exhibit the same delayed propagation of results. Figure 5 illustrates
this concept.

Propagation of Results
Producer Method |- — — — — — — — — — — — »| Consumer Method
Enables NLE
Duration (50% x seconds)(50% y seconds)

Figure 5: External Delays

4.1 Embedded Delays

Actions with embedded delays utilize only a portion of the processor during their execution in-
terval. Embedded delays are expressed in TAMS by noting that a particular method uses only a
certain percentage of the processor during its execution. Literally, a simple utilization factor
is associated with each method.

Since the processor’s capacity is under utilized during the execution interval of methods that
contain embedded delays, and one of the primary objectives in Design-to-Criteria scheduling is
to meet soft real-time deadlines, it is advantageous to attempt to use the unused processing re-
source by performing other actions during the interval containing the delay. This “doubling up” of
methods is different than the previous concurrent TAMS related scheduling work [17, 12] in which
schedules are constructed for multiple processors or multiple lines of control. The most important
difference between the models is not the issues they must address, but rather their applicability

SFor clarity, consider the issue of when methods actually accumulate quality. The black box assumption means
that even though methods may accumulate quality linearly during execution, or during the last moment of method
performance, the model regards methods as producing quality only when they are completed. This is the most general
assumption possible with respect to methods and their execution behaviors — it enables us to model a wide range of
activities using the same modeling construct. However, the assumption sacrifices some degree of modeling precision
to obtain this generality.

SIf the delays do not occur, however, the execution performance of the schedule will not adhere to the predictions
made by the scheduler, i.e., it must assume that the delays will occur and act accordingly.



to certain domains or certain classes of task structures. To effectively utilize multiple processors,
task interactions must fall in such a way that processors can work concurrently in an indepen-
dent fashion most of the time. In other words, the interactions between tasks cannot lead to a
serialization, or partial serialization, of tasks or it is difficult to use multiple processors effectively.
On the other hand, the single processor “doubling up” approach is useful for task structures that
contain task interactions because it is easier to keep the single processor busy doing useful work.
To examine the difference from an analytical perspective: creating n efficient parallel schedules
requires n asynchronous lines of control, creating 1 parallel schedule requires only 1 line of control
which can be mostly synchronous if embedded delays are to be utilized, or completely synchronous
if not. Thus, modeling embedded delays and scheduling for them promotes a good balance between
resource efficiency and performance when task structures are moderately complex.

In terms of the alternative generation process, the precursor to scheduling, embedded delays
are handled automatically by the alternative abstraction, which is to say, they are ignored. This is
deliberate and in keeping with the objective of alternatives as cheap to compute schedule abstrac-
tions. It is necessary to ignore embedded delays because it cannot be determined prior to building
the schedule whether or not the unused processing power can be utilized by other methods. To
the extent that the unused processing power can be utilized by the scheduling algorithm, the es-
timated duration associated with alternatives that contain methods with embedded delays will be
an overstatement. Overestimation occurs because durations of methods with delays, by necessity
as stated, are treated at face value.

To utilize the unused processing power generated by embedded delays, our scheduling solution
relies on one assumption, actions are interruptible and there is a mechanism for doing so. Recall that
the model does not express when the delays occur. Consequently, the “interruptibility” assumption
is necessary and sufficient to take advantage of the unused processing resources’ A sketch of the
proof follows.

The invariant is processor load, i.e., at no time can the processor actually execute more than
one method. Let Requires(x), = is a method, denote the amount of time required to complete
method x including the time used by any embedded delays. Let Unused(x), x is a method, denote
the amount of execution time of method x during which the processor is unused. For methods that
do not contain embedded delays, Unused(x) = 0. Let M, denote a method containing delays. Let
M4 denote a method that contains no delays.

M1 uses 3 out of its 6 time units to process locally. Block where M1 delays and M2 executes.
M2 requires 3 consecutive time units to execute. Block where M1 executes.

Possible Processor Usage
During M1's Execution Interval

/\

% 1 % 3 % 5 | Not usable, blocks not consecutive.
lo VA¥Z) 3| 45 Notusble
BRZ77BE

Figure 6: Overlap Difficult to Utilize without Interruptible Methods

Assume that methods are not interruptible. Consider a simple case where Unused(My) =
Requires(Myg), that is the processing resources unused during the execution of My are exactly

"This interruptibility assumption is in keeping with the general black box view of methods in TAMS. We do not
assume, for example, that methods are now anytime and may be interrupted and still produce a result. A method
that is interrupted is simply stopped in time — if it does not resume and complete execution, no results will be
produced.



sufficient to cover the resources required by M,,;. To take advantage of the unused processing
resources, we must overlap M, and M. However, since methods are not interruptible and we
have no guarantees about when M ’s delays occur, there are many possible execution traces in
which M,,; does not get enough consecutive time slots to execute, illustrated in Figure 6. To
quantify the problem for this simple case, assuming time is an integer, the number of ways that
the delays can fall to yield a consecutive block large enough to execute M,; without interrupting
either method is Requires(My) — (Unused(My) — 1). The number of possible combinations for
Requires(My)
Unused(Mg)
sufficient consecutive block, Equation 1, can be very small indeed.

the delays if they fall randomly is ), thus the probability of randomly getting a

Requires(Mg) — (Unused(My) — 1) Requires(Mg) — (Unused(Mg) — 1)
Requires(My) = Requires(Mg)!
Unused(My) Unused(Mg)!(Requires(Mg) — Unused(My))!

(1)

Given the assumption that methods are interruptible, we overlap methods during scheduling
following a straightforward algorithm. When scheduling a method, we determine the amount of
unused processor time in the last method that was added to the schedule. If there is unused
processor time, there are two basic cases for overlapping.

1. The method being scheduled can be performed entirely within the time boundaries defined by
the previous method(s). Recall that we do not assume that delays are uniformly distributed
during execution time nor do we make any assumptions about where the delays may fall.
Thus, if the method currently being considered “fits” within the previous interval, we insert
it there and adjust the remaining slack time for that interval accordingly.

To determine if a method will fit within the previous interval, we compute the method’s finish
time without utilizing the slack time in the previous interval, then subtract the slack available
in the previous interval. If this brings the method’s finish time into the previous interval, we
know that Requires(Myey) is less than or equal to the slack in the previous interval. Note, the
computation is more straightforward in the form of if Requires(Mpey) <= Unused(Mprey).
The longer form is useful as it also determines the finish time of M, if it must go beyond
the first interval (the following case).

2. The other case is that the finish time of M., must extend beyond Mp,e,. This is be-
cause either there is insufficient slack left during M,e, or simply because Requires(Mpey) >
Requres(Mprey). In either case, because Mye, may also contain embedded delays, and we
cannot make assumptions about these, just as we cannot make assumptions about Mpy,ey,
we must overlap the portion of M, into the previous interval, and then extend beyond
the previous interval by the quantity of Requires(Mpey) that will not fit into the previous
interval. This introduces an apparent inefficiency into the overlapped methods, however, to
compensate, if there is slack time left, though we cannot reason about where it falls, we know
it falls during the interval between M,,’s starting time and My,,’s adjusted finish time.

Note, this discussion is cast in terms of expected values. The probabilistic case is more compli-
cated. The cases above are pictured algorithmically in Figure 7. To illustrate case two, consider a

10



// Let Mn be the new method being added to the schedule.
/[ Let Mp be the previous method on the schedule.
I

if ( this_is_the_first_element == true | | slack_time_in_prev ==10)

append Mn to the schedule
slack_time_in_next_interval = Unused( Mn )

else
Mn_candidate_finish_time = Mp_finish_time + Requires( Mn ) - slack_time_in_previous
if ( Mn_candidate_finish_time <= Mp_finish_time )

/[ it fits, but we cannot make assumptions about where delays fall. endtimes are the same.
I

Mn_start_time = Mp_start_time

Mn_finish_time = Mp_finish_time

slack_time_in_next_interval = slack_time_in_prev - Requires(Mn) + Unused(Mn)

else
/1 it doesn't fit, we must extend beyond region of Mp.

/l

Mn_start_time = Mp_start_time

Mn_finish_time = Mn_candidate_finish_time
length_of_extension = Mn_finish_time - Mp_finish_time

/[ we don’t know when the delays fall, but, we know how much is being used over the whole interval.
Il
slack_time_in_next_interval = slack_time_in_prev + length_of_extension -
( Requires(Mn) - Unused( Mn ))
endif

endif

Figure 7: Algorithm for Handling Embedded Delays when Scheduling a Method (Expected-Value
Representation)
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situation in which there are three methods being scheduled, M1, M2, and M3. Say each method re-
quires 5 time units to execute and each method uses only 10% of the processor during its execution
period.

e Method M1 will be scheduled from 0 to 5, and there will be 4.5 units of unused processor
time during that interval.

e Method M2 will be scheduled from 0 to 5.5 rather than 0 to 5. Even though M2 only needs .5
units of processor time, we cannot be certain that M2’s processor needs will fall at a different
time than M1’s, thus we must extend M2’s finish time beyond the end of the interval by that
amount. However, we record the fact that during the 0 to 5.5 interval, there are 4.5 units of
unused processor time.

o Method M3 will be scheduled from 0 to 6 for the same reasons that M2 was extended. During
this interval, there are still 4.5 units of unused processing time.

e If a fourth method, M4, arrives that requires 5 units of processing time and uses 100% of the
processor during this time, M4 will also start at time 0 and will end at 6.5, and there will be
no slack remaining during the 0 to 6.5 interval.

Observant readers will notice that in the first case, where a method’s duration requirements
completely fit within the previous method’s slack time, any slack time of the method being scheduled
is added to the pool of slack time for that interval. The reason for using requirements, rather than
Requires(m) — Unused(m) to determine if a method will fit into existing slack time is that a
method’s duration requirements are considered hard specifications, i.e., under no circumstances
can methods be put into intervals smaller than their Requires(m) distribution. From an analytical
perspective, if we remove that constraint and overlap using the Requires(m) — Unused(m) factor,
it is possible for the delays of the methods sharing an interval to overlap resulting in no processing
being done on any of the methods and correspondingly execution times violating expectations.

In addition to affecting the manner in which methods get added to the schedule, we must
also consider embedded delays whenever we ask “what-if” type questions about when a method
is expected to start or finish. The issue of embedded delays is ubiquitous in the method rating
functions described in Section 3. Design and implementation wise, the change is less pronounced
than it sounds. The class responsible for maintaining and reasoning about schedules considers
embedded delays when answering questions posed by the method rating functions. Supporting
embedded delays also does not increase the complexity of any of the method rating functions as
the expense is dominated by other factors.

4.2 External Delays

Unlike embedded delays that are associated with method internals, external delays are associated
with NLEs between tasks or methods. In other words, when one action is dependent on the results
of some other action or task, it is represented explicitly in TAEMS using either hard or soft NLEs.
If appreciable communication time is required to send the results it is represented as a propagation
delay, expressed statistically as a discrete probably distribution, associated with the NLE arc.

As with embedded delays, external delays are handled automatically with respect to alternative
generation and estimates — the potentials or estimates for quality, cost, and duration, are computed
without regard for propagation delays. External delays, like other time related constraints, e.g.,
earliest allowable start times, can affect the estimates associated with alternatives by causing their
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Determine-Earliest-Time-Method-May-Be-Scheduled
gather-hard-nles-with-delays and store in hard-delay-set
//
// We must wait until all results associated with hard NLEs have time
// to reach this method.
//
latest-hard-delay = find-latest-hard-delay( hard-delay-set )
if ( latest-hard-delay > earliest-start-time )
earliest-method-may-be-scheduled = latest-hard-delay
else
earliest-method-may-be-scheduled = earliest-start-time

Figure 8: Determining Earliest Time a Method may be Considered

durations to be understated. Underestimates in duration occur with this class of constraints because
idle time may have to be inserted into the schedule to enforce the time constraints, i.e., an agent
may be forced to go idle while waiting for results from elsewhere. However, the underestimation of
duration will decrease to the extent that the time spent waiting for results can be used by other
processing activities.

To schedule for models that are affected by external delays, the scheduling algorithm must
defer the execution of methods that are on the receiving end of the delay at least until the expected
results have time to propagate. This is enforced by the method rating heuristics. Methods that are
on the receiving end of hard NLEs with delays cannot be scheduled until the results have time to
propagate, that is they are rated in such a way to remove them from the candidate set of methods
until the delay time has passed. In keeping with the overall collage’ of rating heuristics, methods
that benefit from delayed soft NLEs are not deferred solely to take advantage of the NLEs. When
a method is affected by an external delay, the earliest “time” at which the method will again be
considered for scheduling is either the greatest of its hard delays or its earliest start time, whichever
is greater, described algorithmically in Figure 8. As methods that are on the receiving end of hard
external delays are deferred, methods that are on the sending end of the data are given preferential
treatment, i.e., they are scheduled as early as possible given all other scheduling constraints and
considerations. This too is handled by method rating heuristics.

The added advantage of handling external delays via the method rating heuristics is that the
gap required between a consumer method and its producer method is automatically filled with
the best available method or methods. In the event that no methods are available, due to various
other constraints on the remainder of the method set, slack time is inserted. As with other time
related constraints, e.g., earliest start times, it is possible to schedule combinations of methods and
slack time elements during an external delay interval depending on other scheduling constraints.
It is also likely for the items “plugged in” to the delay interval to take more time than strictly
required by the interval — the automatic stretching of the interval is another feature of integrating
external delays with the other method rating mechanisms. Figure 9 illustrates this feature. Mp is
a producer method, M¢ is a consumer method, and they are joined by a hard NLE that includes
a delay distribution, i.e., it takes time for the results to propagate. The figure shows a conceptual
schedule and various possible uses of the local processing capability during the propagation delay.
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Figure 9: Various Approaches in which External Delays are Utilized

5 An Example

In this section we revisit the TAMS task structure from Section 2. Appropriate embedded delays
have been associated with all methods, Figure 10, as they all involve embedded I/O. In the case of
the Query-Infoseek and Query-AltaVista methods, the embedded delays represent the expected
amount of time spent waiting during the interval from when the internal http requests are issued
and answers are received. The longer duration and the lower local CPU utilization factor of
Query-Infoseek models the relatively slow response from the Infoseek search engine. The AltaVista
site, on the other hand, tends to respond in a more timely fashion thus the overall duration of
Query-AltaVista is less and less time is expected to be spent waiting for a response. However,
quality is independent from duration — the higher expected quality for the Infoseek related method
models the expectation that the Infoseek information retrieval engine will do a better job of finding
relevant URLs than the AltaVista engine.

The methods related with the Search-the-Corel-Website task likewise have embedded de-
lays. The Find-Corel-URL method’s embedded delays reflect the time spent waiting for a re-
sponse from a remote name server or remote URL knowledge base. The delays associated with
Query-Simple-Corel-Search-Engine are related to expected delays in getting information from
the Corel site. Similarly with the embedded delays of the Best-First-Search-Using-Advanced-
-Text-Processing method, however, as this method requires the services of another location’s
text processing system, and it performs many separate http get requests from the Corel site, this
method’s CPU utilization factor is much lower. In other words, because of all the network related
activity and remote processing this method will actually use very little of the local CPU. Note that
the quality expectations for the two search methods also vary. The method that uses the advanced
text processing techniques is expected to return much better results, but also to take much longer
and to incur a service fee from the technology source.

This example also contains external delays. The methods that rely on the Corel URL must
wait a small amount of time for the results to propagate from the method that obtains the URL.

14



Find-1nformation-on-WordPerfect w‘mask Relation
N

sum() \ EncblesNLE
4
Query-Infoseek Query-AltaVista Search-the-Corel-Website
Quality  (30% 0)(70% 10) Quality  (40% 0)(50% 5)(10% 8)
Duration (50% 60sec)(25% 180sec) Duration (50% 30sec)(50% 60sec)
(25% 240sec) Cost (100% 0)
Cost (100% 0)
CPU Utilization  80%
CPU Utilization ~ 60%
: EnablesNLE __ _ —>| Query-Simple-Corel-Search-Engine
Find-Corel-URL | Z — ~  Propagation Delay Quality (10% 0)(90% 12)

Quality (5% 0)(95% .1) ~ __ (50% 45sec)(50% 120sec) Duration (50% 1min)(50% 2min)

Duration (50% 30sec)(50% 60sec) S~ Cost (100% 0)

Cost (100% 0) ~ ! o

~a CPU Utilization  80%
CPU Utilization  90% Best-First-Search-at-Corel-Using

Advanced-Text-Processing

Quality  (10% 0)(90% 20)
Duration (50% 8min)(50% 14min)
Cost  (100% $2)

CPU Utilization  30%

Figure 10: Find Information Task Structure with Delays

This relationship is expressed as an enables NLE from the producer method to the consumers.

A simplified Design-to-Criteria generated schedule for this task structure, given criteria that
specifies quality is the paramount objective, is shown in Figure 11. The embedded delays in
Query-Infoseek and Query-AltaVista allow them to be overlapped entirely. As the unused
processing time during the interval in which these methods execute is insufficient to execute
Find-Corel-URL, its finish time is extended beyond the end of the interval. Since the URL found by
Find-Corel-URL requires time to propagate, and there are no other methods to be performed, slack
time is inserted before Best-First-Search-Using-Advanced-Text-Processing. It is interesting
to note that the scheduler did not choose to execute the Find-Corel-URL method first, and then
overlap the other two search engine methods during the URL finding interval and the subsequent
delay interval. This is because one of the method rating heuristics is greedy — it attempts to get
some quality to the root task as soon as possible.® In this particular case, the various method
constraints fell in such a way that the greedy heuristic dominated the heuristics that prefer to
schedule producer/enabling methods earlier in the schedule.

Another schedule for a different set of criteria is shown in Figure 12. This schedule is the
best given the objective of keeping down the cost while obtaining good quality and not being
too concerned about duration. Since the advanced text processing method incurs a charge, and
takes a very long time, the best schedule does not use that method but instead uses the free
Query-Simple-Corel-Search-Engine. The initial portion of the schedule is unchanged as the
constraints governing method placement are also unchanged.

Given the objective of finding information very quickly without spending any money, the sched-
uler will produce the schedule found in Figure 13. The expected quality of this schedule is less
than half of the expected quality for the schedule in Figure 12, however, the duration is greatly
reduced. The fact that two methods are scheduled, rather than just one of Query-Infoseek or

8In uncertain environments, obtaining some quality or some solution as quickly as possible is not an unreasonable
approach.
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Conceptual Criteriac  Quality Importance High, Cost Importance NIL, Duration Importance NIL

Query-Infoseek i

Query-AltaVista Slack-Time Advanced-BFS-Search
Find-Corel-URL |

Schedule Quality:  (15% 0)(50% 30)(30% 35)(6% 38), Expected Value = 27
Schedule Cost: (5% 0)(95% 2.0), Expected Value = $1.90
Schedule Duration: (5% 154sec)(47% 844sec)(24% 994sec)(24% 1204sec), Expected Value = 871 seconds

Figure 11: Best Schedule where Quality is the Emphasis

Conceptual Criteriaz  Quality Importance High, Cost Importance High, Duration Importance Low

Query-Infoseek )

Query-AltaVista Slack-Time Query-Simple-Corel-Search-Engine
Find-Corel-URL |

Schedule Quality: (13% 0)(51% 22)(30% 27)(6% 30), Expected Value = 21
Schedule Cost: (100% 0), Expected Value = $0.00
Schedule Duration: (2% 154sec)(18% 214sec)(44% 274sec)(36% 484sec), Expected Value = 329 seconds

Figure 12: Best Schedule for High Quality, Zero Cost, and Some Weight on Duration

Query-AltaVista, may seem troubling. However, this is not an error. Because both methods
contain embedded delays they can be executed during the same interval with no addition to ex-
pected duration, modeling the embedded delays obtains two method executions for the duration of
one and increases quality to boot. A lower ranked candidate schedule produced with this criteria,
that contains just the execution of Query-Infoseek, returns an expected quality value of seven in
contrast to this schedule’s expected value of ten.

Conceptual Criteriac  Quality Importance Low, Cost Importance High, Duration Importance High
Query-Infoseek
Query-AltaVista

Schedule Quality: (20% 0)(39% 10)(35% 15)(7% 18), Expected Value = 10
Schedule Cost: (100% 0), Expected Value = $0.00
Schedule Duration: (50% 60sec)(25% 180sec)(25% 240sec), Expected Value = 135 seconds

Figure 13: Best Schedule Given “Cheap and Fast” Criteria

6 Conclusion

Enhancing the TAEMS task model to represent embedded and external delays improves its ability
to represent particular classes, e.g., network or sensor related, of problem solving activities. The
CPU utilization factor used to denote the occurrence of embedded delays supports better proces-
sor utilization by the Design-to-Criteria scheduler, which can then overlap or multiplex multiple
methods during a given execution interval. When overlapping methods, particular care must be
paid to start and finish times, and any remaining unused processor resource, to guarantee that load
does exceed 100% at any given time. As discussed, violating the 100% invariant during schedul-
ing translates into method overlap failure at execution time, resulting in the multiplexed methods
taking more time to execute. In contrast to previous concurrent TAMS scheduling approaches,
the small concurrency provided by doubling up methods appears to be the right grain-size for the
types of problems (having interactions) modeled with T/AEMS.

The external delays enhancement allows the scheduler to explicitly reason about the amount of
time required for results or messages to propagate from one task to another. Without modeling this
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class of delays, the scheduler would have no choice but to create schedules destined for duration
overrun as the propagation delay component would be “hidden” from the scheduler’s view. However,
the model enhancement does more than lead to better duration expectations. Because it describes
formerly hidden durations that do not use the local processing resource, other methods may be
executed during this interval. The process of selecting which methods to execute during an external
delay interval is handled automatically integrating the external delay support into the existing
Design-to-Criteria method rating heuristics.

Future work on Design-to-Criteria scheduling and the TAMS task model lies in the areas
of satisficing method selection and runtime negotiation between the scheduler and its client. A
satisficing approach to method selection, discussed in Section 3, would allow clients to express
goals like “for this task, satisfying commitment C' is twice as important as keeping down the
cost.” Currently, the relative importance of the different method rating heuristics is built-in to the
scheduler and not specified by the client.

Due to the computational complexity of determining a course of action for a given TAMS
task structure, client’s often do not know a priori what classes of solutions are possible. Runtime
negotiation between the scheduler and the client would help refine the client’s goal criteria based on
what is actually possible given the task structure at hand. In a situation where the even a reasonable
approximation of the client’s goal criteria cannot be found (though the scheduler will return the
best possible satisficing schedule), the client may decide to change the goal criteria and try again.
Interleaving scheduling and criteria refinement would make this entire process more more efficient
as the changing criteria would dynamically target the scheduler at the client’s evolving satisficing
goal.
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