Adapting an Organization Design through
Domain-Independent Diagnosis

Anal. C. Bazzan, Victor R. Lesser, and Ping Xuan
Department of Computer Science
University of Massachusetts, Amherst, MA 01003

Abstract: Coordination is an essentid technique in multi-agent systems. However, sophisticated coordination
drategies are not dways cod-effective in al problem-solving Stuations. This reinforces the need of Stuation-
gpecific control rules, in which the benefits and the costs of coordination for the current Stuation are taken into
account. We focus here on Stuation-specific control based on a long-term understanding of the frequency of
tasks occurring, the characterigtics of these tasks in terms of their resource and coordination needs, and the
available resources. Another way of describing this type of long-term Situation-specific control is an organizationd
design. In this paper, we assume that we are given an initid organizationd design. However, asthe characteristics
of the environment change, this organizational design needs to be adapted. We discuss a domain-independent
goproach to detecting that some important aspects of the environment may have changed and to
diagnosing/explaining exactly what these changes are. This work is done in terms of the GPGP/TAMS domain-
independent coordination architecture.

1 Introduction

In multi-agent systems, an agent's control decisions based only on its locd view of problem-solving task
structures may lead to ingppropriate decisons. From the perspective of the modd of Decker and Lesser (1995)
for instance, each of the agents makes decisions based on a subjective view of its own and other agents activities
and its view of available resources. In certain Stuations this subjective view will lead to an agent taking ineffective
or inappropriate actions because certain non-local activities or the non-locad resources have not been
appropriately taken into account. However, acquiring and exploiting non-loca views, so that an agent could
make more informed choices, is not codt-effective in dl Stuations due to limited computational resources.
Therefore, for specific problem-solving Stuations, it may not be worthwhile to acquire such additiond views or
fully exploit the current view; some level of non-coherent activity may be the most effective Srategy.

An additional moativation to pursue Situation-specific coordination comes from past research’s conclusion that, in
agents as well as in human organizations, there is no one best gpproach to organizing and controlling
computationd activities for dl Stuations when the computational and resource costs of this control reasoning is

" Effort sponsored by the Defense Advanced Research Projects Agency (DARPA) and Rome L aboratory, Air Force Materiel
Command, USAF, under agreement number F30602-97-1-0249. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright annotation thereon.

The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of the Defense Advanced Research Projects Agency
(DARPA), Rome Laboratory or the U.S. Government.



taken into account. Instead, each agent should be able to tailor, to the specifics of the current Situation, al aspects
of control reasoning to balance the resource requirements of this reasoning againg the gains achieved by more
coherent agent behavior.

We focus here on stuation-specific control based on a long-term understanding of the problem-solving
environment including the frequency of specific tasks occurring, the character of these tasks in terms of ther
resource and coordination needs, and the available resources. Another way of describing this type of long-term
Stuation-specific control is an organizationa design. In this paper, we assume that we are given an initid
organizationa design which includes not only Stuation-specific coordination srategies associated with different
agents, and their associated tasks, but dso some of the assumptions about the environment which were the basis
for the specific organizationd design chosen.

In a complex and open operating environment, the characterigtics of the environment can ether change gradualy
S0 that a some point the environmenta characterigtics are quite different from the initia assumptions motivating
the origina organizationa design, or can change abruptly when for instance a key resource goes off-line, or its
performance characteristics change, or the frequency of specific tasks occurring changes markedly, or atask’s
performance characteritics (in terms of resource usage, character of its output, and frequency of specific types of
outputs change markedly. These types of changes require the system to rethink what is the most appropriate
organization it should be in. An understanding of the detail character of these changes in the environment and how
they are effecting performance can then be used to ether modify the organizationd design in some loca manner
or redesign sgnificant parts of it.

In this paper, we discuss a domain-independent approach to detecting that some important aspects of the
environment may have changed and to diagnosing/explaining exactly what these changes are. Thiswork isdonein
terms of an extended version of the GPGP/TAM S domain-independent coordination architecture (Decker, 1995;
Decker and Lesser, 1995; Decker, 1996; Lesser et d., 1997), which permits stuation-specific control to be
represented. In this version, an organizational designer can focus coordination activities to reason only about a
subset of possible coordination relationship, which exist among agents. This focusing can be further sdective so
that it is done on atask and Stuationa perspective (such as the current loading of the agent), can dso indicate
where default assumptions about other agent activities and availability of resources should be used in making
coordination decisions, and how much resources should be spent in making coordination decisions. This
focussng leads to what we cdl a conditioned agent view (by the organization) of locd agent activities and their
relationships to other agent activities that an agent will use to make its coordination decisions. This conditioned
view is in confront to a non-conditioned agent view which is the agent view prior to it being modified by
organizationad knowledge. Findly there is an objective agent view of the present Stuation which includes a
complete and accurate view of locd activities and dl their interactions with non-local activities.

The current research ams a developing a framework to achieve dtuation specific control in changing
environments, which, given the computationd cogts of finding out about the activities of other agents (non-loca
views), is able to acquire just those pieces of information needed to perform a given problem-solving



process. This is especidly important in changing environments, as changes are likdly to require modifications in
the coordination dtrategies as well.

As we want to focus on systems which can survive in changing environments, we present in this paper detection
and diagnosis technologies which are needed in order to detect and explain changesin the behavior of agents and
environments. Diagnosing ingppropriate behavior of the problem-solving system is a crucid step to correct the
system’s domain knowledge about the characterigtics of agents problem-solving, and available resources, which
then dlows a reorganization of the society of agents to permit effective processng. This, in turn, is the key to
survivable systems. Lesser (1998) discusses an agent architecture that includes such a diagnosis component. To
reiterate, we fed that degraded system performances caused by changing task and resource characterigtics, by
hardware or software failures and intrusons can be handle within our framework. The unifying theme among
these many different causes for degraded performance is thet they ether directly or indirectly cause assumptions
that were the basis of current agent organization to no longer be vadid.

In the three next sections of this paper we briefly discuss the related research, introduce the representation and
coordination tools, TAEMS and GPGP, and discuss some gpproaches to diagnosis, respectively. After that we
discuss a scenario in which the behavior of the multi-agent system is not as expected because the environment has
changed. Section 5 returnsto TAAMS by discussing some extensions needed in order to adapt it to diagnosis. We
then present our approach to detecting and diagnosing such Stuations (section 6), and discuss in detail with
respect to the scenario laid out early (section 7). The last section presents the main conclusions and discusses
our research directions.

2 Reated Work

Our development of a detection and diagnosis component as part of an organizational designer builds on the
following previous research. Hudlicka and Lesser (1987) developed causa models to reason about the behavior
of problem-solving systems in order to diagnosis faults in their behavior due to faulty sensors or communication
channds. They saw diagnosis as a way to discover an ingppropriate control setting, which they caled problem-
solving control error. Thisis paticularly interesting for us sSince such a setting can be based on a (partidly or
totaly) wrong assumption for instance.

As in their work, we also see some issues arising from the lack of standards for the correct behavior, from the
potentia combinatoria exploson of possble explanaions and data to andlyze, and thus the need to somehow
avoid an extengve search. This has been indeed one of the main motivations for model-based diagnosis (eg.
Davis, 1984), which we exploit by usng TAAMS to describe the physicd and functiond organization, and the
behavior of the agents during the problem-solving process.

Sugawara and Lesser (1993, 1998) show how to introduce a domain-dependent detection, diagnosis and
organizationa redesign component into a multi-agent system that generates new coordination rules to correct
detected performance issues. Thiswork is based on sgnificant amount of domain-specific knowledge and the use
of comparative andyss developed by Hudlicka and Lesser (1987), i.e. comparing two smilar cases, when there



is not enough explanatory knowledge to understand why certain activities are important or redundant. In our
framework we use a smilar kind of reasoning, however based on a richer and domain-independent mode that
explicitly models the effects of resource usage; this diminates the need for much of the specidized domain-
specific knowledge that was used by them.

Our work uses the TAAMS and GPGP frameworks to tackle detection and diagnosis of problem-solving systems
in a domain-independent fashion. Our approach focuses on the discovery of those reationships among agent
activities which are important for explaining why an ingppropriate behavior has occurred. We are particularly
interested in detecting ingppropriate assumptions about agent activities and resource usage which are responsible
for the current coordination strategy implemented in GPGP being inappropriate. These assumptions are the basis
of organization knowledge which conditions the information used by the GPGP coordination when making
coordination decisons.

We are do interested in recognizing Stuations where coordingtion codts are very high will respect to gains
achieved. Thisis another form of inappropriate behavior that needs to be diagnosed.

3 TAVMS and GPGP

We use the TAMS framework (Decker and Lesser, 1993; Decker, 1995) to represent formally the coordination
aspect of our problem. TAEMS dlows the congtruction of atask modd in which agent’s activities are represented
in terms of a set of task groups. A task group (as the one depicted in Figure 1) is an acyclica graph representing
tasks and their subtasks. The leaves of the graph are cdled (executable) methods (like M1 to M5 in Figure 1),
which have probability digtribution on their characterigtics like qudity, cogt, and duration. The qudity of a task
group depends on how and when its subtasks and their methods are executed. For example, quality can be
accrued by a qudity accumulation function (gaf) like sum, which indicates that not al subtasks of the parent task
need to be accomplished. Other examples are max (or), min (and), etc. Besides, the loca effects of the
execution of methods on the quality and duration of their supertasks, there exist non-locd effects (NLE) like for
ingance enables, facilitates, etc., that represent data flow relationships among tasks.

A task T may enable amethod M in the sense that the quality of M cannot be accrued until T is completed, i.e.
the earliest start time of M is the finish time of T. Therefore endbles is a hard relationship, which means it has to
be necessarily observed. When atask T, facilitates other task T, the duration and/or quality of T, is postively
affected by afactor, but may not necessarily be observed since facilitates is a soft relationship. Another important
set of NLE's gpplies to methods and their use of resources. Uses, replenishes, etc. are NLE's running from one
method to one resource and dtering its state. Conversely, limited, exclusive access, etc. are NLE'S running
from one resource to a method.

By usng TAMSit is possible to congruct atask mode of a problem-solving Stuation, including dternative ways
that tasks can be carried out. The red sructure is caled an objective mode of the environment. However,
agents have each a subjective modd or view of it, which they use to predict other agents actions. Depending on



how inaccurate the agents subjective views are, unperceived characteristics may lead to either ingppropriate or
unexpected behavior.

The basic idea behind GPGP is that each agent congtructs its own loca view of the activities (that it intends to
pursue in the short-to-medium-term time frame), and the relationships among these activities. This view can be
augmented by information from other agents, thus becoming a view that is not entirdy locd. Individud
coordination mechanisms that are part of GPGP help to congtruct these partid views, and to recognize and
respond to particular task structure relationships by making commitments to other agents. These commitments
result in a more coherent, coordinated behavior by affecting the tasks an agent will execute, when they will be
executed, and whom their results will be transmitted to. The st of mechanisms are: (1) communicate non-loca
views; (2) communicate appropriate results; (3) avoid redundancy; and (4,5) handle hard and soft coordination
relationships that extend between tasks at two agents. The gathered information about the task structure is used
for agents to commit themsdves to the execution of determined methods by certain times with certain qudities.
These commitments are the bad's of coordination of activities among agents.

facilitates
enables
M1

A

D (100%,2) M3 M5

C (100%,3) M2 c C

00%,
Q (100%,5) A B D (100%,2) D (100%,4)

D (100%5) ¢ (1009,3)  C (100%,3
D(1OO:/0 = C (100%,3) Q%loo"/z 5; Q§100°/2 5;
C(100%3)  Jjnpe ' ’
Q (100%,5) ’

Figure 1: TAEMS Task Structure. TG isthetask group. Ti's are the tasks, and M;'s are the methods. Bold, italics | etters (A,B,C)
indicate the agent responsible for the task/method; D, C, and Q are the duration, cost, and quality distributions respectively.
NLEs (enables and facilitates) are asindicated, andf, is the facilitation power.

4 Modificationson TAVS and GPGP to Support a Diagnosis Module

4.1 Organizational Design

An organizationd design specifies roles for agents, consdering the characterigtics of the tasks, and methods as
well resources avalable, thus limiting agent’s activities. This congtitutes the long-term behavior, in oppogtion to
the short-term behavior, in which agents decide which methods to execute in order to achieve the task, based on
the dynamics of the current problem-solving Stuation.

If the nature of the task, or the availability of resources changes substantidly, causing the system functioning to be
ineffective, amethod of detection and diagnosisis required, and thus severd issues regarding representation need
to be addressed:



how to model the characteristics like frequency and which agent or classes of agents are likely to be
respongble for certain tasks, and the rlative importance of the task utility;

how to model aternative methods for accomplishing atask so that the system can reason about the tradeoffs
involved,

how to model resources present in the environment.

An organization is (re)designed ether when a problem of an unknown variety arives or when the current
organization is diagnosed as being inadequate. The inputs to organizationd design, which can be described ether
in the form of grammar that specifies awhole class of potentia problems (Nagendra Prasad et al. 1996), or as a
st of representative TAAM S task dructure, are: i) the current performance gods of the system; ii) long-term agent
knowledge about typical tasks together with their frequencies of occurrence, possible relationships among other
tasks in terms of co-occurrence, and specific performance goa's and resource requirements, and iii) the available
resources and their performance characteristics. The output of this process is an organizationd design - a
description for each agent of: tasks it is respongble for handling and their importance; coordination relationships
among tasks handled by other agents to consider when scheduling this task, and the levd of effort to be spent in
establishing them; and long-term commitments to be honored, their priority, and which agents should be notified
when these commitments cannot be honored.

An organizationa design is used when an agent receives a request to execute anew god (with its associated task
dructure). This request can come from ether itsloca problem-solving component or other agents. Based on the
organizationd design, an agent's coordination component decides how to congtrain the characteristics of the task
S0 the agent can meet coordination requirements with other agents. For example, the coordination component
might introduce a deadline in order for the task’s results to be useful to another agent. Such decisions are made in
collaboration with the coordination components of relevant agents.

4.2 Resource Model

In the origind TAMS mode, resources were not explicitly represented. However, when specifying a task
dructure, it is dill possble to implicitly represent resource congraints by using complex task interdependencies
such as enables, disables, facilitates, and hinders, etc. When the tasks become more complex and more resource
condrants are involved, such implicit representation becomes very inefficient in specifying the task structures.
Therefore, an explicit resource representation for TAAMS is needed. With an explicit resource modd, we can
specify complex resource states and complex relationships between tasks and resources. Specificaly, we identify
two classes of non-locd rdationships, namdy the uses rdationship, which specifies the resource need of the
tasks, and the limits relaionship, which is used to represent the effect a resource has on a task's attributes such
as duration, quality and cost (Decker, 1995).

However, the ease of task specification isjust one reason for adding the explicit resource representation. Another
reason is that coordination over resource condraints is a very important aspect of distributed problem solving,
and thus we need to have a resource model common to al agents so that they can coordinate based on
descriptions of resource state as well as their own belief of the resource states (Decker and Li, 1998). Another

6



important reason is that when resource becomes more complex, eg. having complex sate information and state
trangition dynamics, an abstraction of resource is needed. Such abstraction can be provided through an agent that
wraps around the resource. It is often the case that the access to aresource is controlled by an agent, rather than
in the smple case that the resource is passive and the management of the resource is through the coordination of
the agents using the resource.

Resouce modeling is tackled by Decker and Li (1998) and by Lesser et d. (1998a). The former discuss the
coordinated hospital patient scheduling scenario, using TAMS and GPGP, augmented by a sixth coordination
mechanism, which handles the use of mutudly exclusive resources by the tasks. When severd agents try to use
one of these resources at overlapping times, only one can actudly get it and execute the task. Therefore, agents
must send a bid for the resource in a specific time interval. Agents aso have to compute the loca priority of the
task, which is a function of the utility. The agent which wins the bid, gets the resource and can keep its schedule;
the others have to execute another task if possible and try to get that resource later.

In Lesser et d. (19984a), resource coordination are handled in a broader way. The Intelligent Home (IHome)
scenario dedls with task events and their use of resources, represented by means of TAAMS. When there are
insufficient resources to meet al demands, there is a negotiation from a tempora perspective, dso using priority
dlocation. There is no specific coordination over the interaction of agents (like in GPGP). These interactions are
detected when agents announce their need of a given resource.

We base our model in both approaches. in order to support detection and diagnosis for resource related
problems, as detailed in Section 5. Besides, we do resource monitoring and tracing. As for the explicit resource
representation in TAAMS, we follow the implementation of Decker and Li (1998).

5 Conceptual Examples of I nappropriate Behavior

The gtuation specific nature of coordination activities means that coordination decisons based on locd and
possibly imprecise knowledge of the Stuations are error prone. Next, we show through severd examples
Stuations where this happens.



5.1 Overcoordination: Turning On GPGP Coordination Mechanisms

5.1.1 Mechanisml (Update Non-Loca Views)

enables

M1

A
D (100%,2) M3 M4 M5
C (100%,3) M2 c c
OOO
Q (100%,5) A B D (100%,2) D (100%,4)

D(100%3 DU cr10063  C(100%3)
cooes)  CU100%3) G (10005  Q(100%5)
(100%3) 5 (1009.8)
Q (100%,5) :

Figure 2:

Consder the objective TAAMS task structure depicted in Figure 2 and corresponding subjective task structures,
shown in Figure 3, hold by agents A, B, and C (left, center, and right) respectively. We can see that the
subjective task structures agent have are correct related to the objective one. This is not dways the case. Thus
the local beliefs (B, denoting the beliefs set of the k-th agent) hold by agents can be expressed the following
way:

Ba- = {subtask (M1,T1); subtask (M2,T2); subtask((M1,T2), T1); subtask (T1, TG), enables (M1, M2);
duration (M1,(100%,2)), duration (M2,(100%,3)); gaf (T1,min), gaf(TG,min), cost(M1,(100%,3)),
cost(M2,(100%,3))}

Bg- = {subtask (M3,T3); subtask (T3TG), duration (M3,(100%,5)), oaf (TLmin), gaf(TG,min),
cost(M 3,(100%,3))}

B = {subtask (M4,T5); subtask (M5,T5); subtask((T5,T4); subtask (T4, TG), duration(M4,(100%,2)),
duration (M5,(100%,4)); gaf (T5,max), gaf(TG,min), cost(M4,(100%,3)), cost(M5,(100%,3))}

The case we want to examine is one where the designer of the system, possibly unaware of the consequences,
opts for turning on al GPGP coordination mechaniams, in particular the mechanism number 1, updating of non-
local views. For details on how this and other coordination mechanisms discussed below work, please refer to
Decker and Lesser (1995). The result of such updating produces the following bdiefs B/ where the index |

denotes the bdliefs set resulting after the use of the coordination mechanism j):
BAl = BAL +{n||}
BBl = BAL +{n|}
Bct = Ba" H{nil}

This means that there was no addition of bdiefs resulting from the use of the coordination mechanism 1, and
hence this is a clear Stuation where there was overcoordination. If we assume that the use of this mechanism
costs 1 unit for each agent, the total cost associated with the task group TG isthe cost of coordination, namely 3,
plus the cost of T1 (whichis computed by adding costs of M1 and M2), the cost of M3, and the cost of M4 (this

8



one is preferred over M5 due to lower duration and higher qudity), which adds up 15 units. Without the
unnecessary coordination, the cost would be only 12.

min min

min @
wi] G

A

D (100%,2) o M3 M4 M5

C (100%,3)

100%,5 c c

Q069 A B D (100%2) D (100%4)
D (100%,3) D (100%5) C(100%3)  C(100%,3)
C (100%,3) C (100%,3) Q(100%5  Q(100%)5)

Figure 3:

5.1.2 Mechaniam 3 (Recognizing Simple Redundancies)

Any task that uses amax qudity accumulation function indicates that only one of its subtasks needs to be done.
The mechanism 3 of GPGP addresses this kind of smple redundancy: when more than one agent wants to
execute a redundant method, this mechanism randomly chooses one to execute. Let us assume that the designer
turned on this mechanism too for the scenario discussed in the last section (Figures 2 and 3). The use of

mechanism 3 produces:
Ba2 = Ba" + redundant{ nil}
Bg® = Ba" + redundant{ nil}
Bc® = Ba" + redundant{ nil}

That means, again the use of a coordination mechaniam did not add useful information to the agent's knowledge;
agents only know a new piece of information, namely that their activities are not redundant. But this might have a
high codt!

5.1.3 Mechanisms4 and 5 (Recognize Hard and Soft Relationships)

Smilarly to the cases above, assuming mechanisms 4 and 5 as turned on for that example, after triggering

mechaniam 4, the bdiefs set looks like:
BA4 = BAL + manll} !
BB4 = BAL + e’]d)les{nll}
B! = Ba- + endbles[nil}

! Actually this summation goes on with other defined hard NLEs (disables, etc.). The same applies to the soft NLEs as other
may be defined (hinders, etc.)



That means that no previoudy unknown hard NLE was discovered (remember that the enables gppearing in
Figure 3islocd and isdready inthe set BA").

Smilarly, usng mechanism 5:
Ba® = Ba" + fadilitates] nil}
Bg® = Ba" + fadilitates{ nil}
Bc® = Ba- + fadlitates nil}

Again, no useful information is added to the agents beliefs sats.
5.1.4 Coordination Mechanism 6 (Resource Congtraint)

To discuss this example, let us use a scenario motivated by the IHome (Intelligent Home) project (see Lesser et
a., 19983) for a detailed description), which dedls with usng coordination of several home gppliances and
resources usage. Figure 4 shows the task structure for the scenario: when the user comes home after work, she
expects to find hot water for a shower, plus the room a a preset temperature, and the following tasks done:
dishes washed and the food ready to be served. These tasks involve severd gppliances agents like the dish-
washer (DW), the micro-wave (MW), the air conditioner (A/C), the shower (S), as well as the agent controlling
the boiler for hot water (B).

Figure 4: TAEM S Task Structure for the IHome scenario. Dot lines are enabl es rel ationships. The agentsresponsible (S, MW,
DW, A/C) are shown below each task, and below these, the resources needs (e = electricity, hw = hot water, cw = cold water).
Duration, cost and quality distributions are omitted for the sake of clarity.

The main difference between this scenario and the one discussed in the last sections, is that the case here involves
resources on which usage agents may need to negotiate. In Decker and Li (1998) and in Lesser et d. (19983),
the authors discuss many issues related to usage of resources, like the use of a sixth GPGP coordination
mechanism (resource congraint), and “agentification” of resources, repectively. Here we follow a mixture of
both gpproaches, tregting resources as non-exclusve commodities, but also usng the resource congraint
mechanism, plus the assgnment of a priority to each resource request. The designer may opt for turning on or off
the resource congtraint coordination mechanism. In this section we discuss the former case. For the sake of
clarity, resources are represented in Figure 4 not by the use of relaionships like uses or limits but in a way
amilar to the icons depicted in the figures appearing in Lesser et a. (1998a). We use a notation for each task
where below the task itself, we show the agent responsible for the task (bold, capitdized), and, in the next lines,

10



the resources necessary (lower letter). The bars denote that a given resource may admit options like for instance,
if there is no hot water, the user may opt for a short cold shower, or the dishes can be washed in cold water as
well.

By turning on the resource congtraint mechanism, potential overlap of resource usage are discovered, so agents
are asked to send a directed bid of the time interva they need the resource, and the loca priority they put on the
execution of the task. In the implementation of Decker and Li (1998) concerning the sixth mechanism, as they
ded with non-sharable resources only, after the bidding, the agent with higher priority gets the resource. We do
not redtrict the type of resource, thus in our model the agent’s bid with higher priority gets as much of the
resource it needs, and so on until the resource capacity is over.

To describe how the use of the mechanism works, we show the beliefs set updated by the use of the mechanism

(the sets By~ are smiilar to those depicted in Section 5.1.1 and omitted here):
B® = B"s + gets{ (hot water, 100%)}
Bw = B ww + gets{ (electricity, 100%)}
B®w = B"pw + gets{ (dlectricity,100%),(hot water,100%)}
B®Ac = B" ac + gets{ ( electricity, 100%6)}

This means that, in this rather standard scenario, resources are enough, hence agents bid for them and get 100%
of their needsin al cases.

The conclusion of al examples presented in Section 5.1 is that when the designer of the organization turns on one
or more coordination mechanism, this may cause agents to overcoordinate and in some cases, this is associated
with prohibitive costs. However, turning off those mechanisms is no solution ather, as it is discussed in the next
sections. Our work ams a providing agents with tools to recognize both situations via diagnos's.

5.2 Turning Off Coordination M echanisms
521 Mechanismland4

Now condder the task structure depicted in Figure 1 (dightly modified in relation to the one of Figure 2).
Assuming that the designer of the system does not want to pay the overhead of coordination (e.g. because in
gmilar Stuations the costs did not pay off), then one or more GPGP mechanisms will be turned off. In this section
we want to discuss the case where mechanisms 1 and 4 are turned off. The subjective task structures agents hold
are dill like those depicted in Figure 3. If they go on with the set of local beiefs, they will produce the following

local schedules (L S«) and commitments (Cy):
LSs ={M1,(1,2); M2,(3,5)}
LSe ={M3, (15)}
LSc ={M5, (1,2)}
Ca ={deadline (T1,5)}
Cg = {deadline (T3,5)}
Cc ={deadline (T4,2)}

11



These schedules fal by not considering the NLES, which agents are not aware. Method M3 for instance cannot
dart a time t=1 because it depends on results enabled only after task T2 finishes. Agent B expects the
termination time for M3 to be t=5, and thus commits with this deadline for finishing M3. But by thistime, M3isin
fact not yet Sarted.

The detection mechanism which will be described later in Section 6, informs agent B that the Sart time is delayed,
s0 that a diagnosis should be triggered to explain why this happened.

5.2.2 Mechanisn5

To continue with the example above, |et us discuss the case where mechanism 4 is turned on but mechanisn 5 is

off, and focus on the facilitates NLE which gppears in Figure 5. In this case, A commits to finish T2 a t=5 and

task M3 can dart a time t=6 and finish by t=11. By the time M3 is starting, agent C has finished the execution of

T5. Although agents B and C are unaware of the facilitation power of TS5 over M3, it exists and causes a
reduction of f 4 = 80% of M3's duration, that means from 5 unitsto 1 unit of time, thus M3 finishes by t=7. This

unexpected sooner termination is an indication of undercoordination, and may start a diagnosis process as well.

5.2.3 Maechaniam 3 (Recognizing Redundancy and Overlgpping)

We are particularly concerned with the issue of under or no coordination regarding task structures involving
resources, and with of recognition of overlapping of activities. As the example discussed in Sugawara and Lesser
(1993, 1998) proves, thisis a serious issue, which may end up with the system showing a completely unexpected
behavior. To address this issue, one of the extensons of GPGP proposed in Lesser et d. (1998Db) is the
recognition of overlapping activities by agents. We discuss here the implications of not using this mechanism. Two
scenarios where these issues appear will be discussed in this and in the next section.

Firg, consder the following example pictured in Figure 5 which is abdtracted from the WARREN system
(Decker et al., 1997), a multi-agent and multi-user system for management of financid portfolios WARREN
condsts of heterogeneous agents that work together in dynamicaly organized teams to retrieve financid
information like stock prices, news, and fundamental data from various locations in the Internet. This scenario
dedls with agents (Ag; to Ag,) performing problem-solving activities like information filtering, planning how to
obtain a data, or reporting it to the user. In this scenario severa agents are accessing one information source
(shared resource) concurrently for different users. These agents do not coordinate over their resource usage or
the relationships among the godss that they are trying to achieve, nor perform an information gathering action to
check whether the agents are performing overlapping gods, i.e. that extended version of mechanism number 3 is
off.

This is normally acceptable because it is rardly the case that information sources are overloaded, or agents are
requesting similar information from them. In fact, the overhead to coordinate these agents would in normad
Stuations decrease agent performance. However, suppose there is a mgor new story about a company that has
just gppeared. This may in turn cause a large number of users to request smilar information about the company.
In this case, specific information sources may get overloaded performing similar accesses of informetion about the

12



company. For this new stuation, introducing agent coordination so as not to overload a resource and to avoid
agents doing redundant queries would pay off in improving system performance.

Ag, for user U Process Quer
9 1 Q Ag, for user U, Brocess Quer
GetData eS”
Formulate Plan (Get Daa> ReturnResults Formulate Plan Get Data Return Results

Ask Broker for Addr Query Info Agent Ask Broker for Addresses Query Info Agent
uery Info uery Info
ggeni, Eg:ny Query Info Query Info
< Agent Agent

Figure 5: Task Structure for WARREN's Task Agents.

The question we are concerned with is how to detect that our default assumptions (information sources are not
heavily loaded, agents are doing little redundant work, etc.) are no longer valid. Knowing that these assumptions
are invdid would then dlow us to change the coordination drategy of agents, so that they use an enhanced
subjective view of the Stuation in making coordination decisons. This enhanced view will indicate whether there
are other agents who are working on the same god and whether the resources that are being accessed are
dready overloaded?. This ability to recognize redundancy would alow agents to share results of a query, so that
the number of queries to the information source could be significantly reduced.

The first step to recognize redundanciesis to anayze the type of the failure detected in a symptom-driven fashion.
When the failure is related to a resource overload, this increases the likelihood that the agent is working with an
incorrect view of the objective task structure. It might pay off to turn on one or more coordination mechanisms
not previoudy used to congtruct the enhanced view we talk above. We return to this example later in Section 7.

5.2.4 Mechanism 6

The last example we want to discuss is a variation of the one presented in Section 5.1.4 above. Once the
designer of that organization recognizes the high cost of the coordination versus the low or null benefits of it, ghe
may opt for a no-coordination verson. Assume that the organization depicted in Figure 4 appears (with a low
frequency) in its dightly modified verson shown in Figure 6. This is the party verson, in which the user desires
everything ready by 6 p.m. in order to serve the dinner for the guests.

2\We also would recognize the reverse, namely that the assumption there was a lot of redundant agent activity isno longer
valid.

13



min

JIOWer adjust
S room
hw | cw temperature
Wwash
table- AIC
cloth e
w
e
cw | hw

Figure 6: Party Version of the IHome Scenario.

New agents appear in this scenario: washer (W), dryer (D), coffee machine (CM), and the vacuum cleaner (VC).
Resources are the same, namely eectricity, cold and hot water. Serving the dinner involves activities that may
need to be coordinated and that use more units of the existing resources. The fact that the coordination
mechanism number 6 is off means that agents do not bid for resources, they just schedule activities as these
resources were not constrained. What happens is that during the actua execution of methods and tasks®, each

agent requests the quantity necessary of resource, and either getsit or not. Hence, the presence of a clause like
B6MW = BLMW + gas{ (d&trlCIty, 00/0)}

indicates that the assumption of resource uncongraint is not valid anymore, which should trigger the diagnoss
process.

This example shows that even if there is no redundancy, the recognition of a resource overload could cause an
agent to search for other causes of afailure in the problem-solving process. Thisis a case where the agent could
ether trade-off spending more time and/or money to use the desired resource to perform the task, or perform it
with less qudity but quickly. Examples are to prepare coffee with instant powder instead of grinding beans, or to
wash the table-cloth using cold cycles to wash and/or rinse.

Similar scenarios could as well occur because of hardware failures of information sources or the intruson of a
rogue agent (or a software bug) into the system that accesses information from the information sources at a very
high rate.

53 Summary

The sections above discussed many examples where the type of coordination chosen by setting GPGP
coordination mechanism on or off in some possible ways, falls. Many other scenarios exist and our main god isto
develop a tool which tackles any of this scenarios via a diagnosis which is general enough since it works on the
TAEMS and GPGP domain-independent frameworks. The next section presents our proposal for such tool.

% The tasks depicted in Figure 6 are all decomposable. See for instance Lesser et al. (1998a) for the task structure of the
CoffeMachine agent.

14



6 Domain-Independent Diagnosis of Problem-Solving Failures

6.1 Proposed Architecture

7

environment oroblem to changein knowledge about
be solved environment potential
characteristics f intrusions
organizational
design level

task characteristics | frequency, occurrence, resource requirements, structure, goal criteria

static (long term) commitments

assumptions
resource characteristic usage model, failure model
\_ - N\
AN \
4 Y N\
level Scheduler and
SYM Coordinator
DCO 4
cTS / ScH
[ diagnosis agent causal model ]
\_ A3 J
N\
[general causal model N ]

Figure 7: Architecture of the Diagnosis Module

This section discusses our domain-independent framework to detect changes from an expected behavior in the
problem-solving system (which may point to potentia intrusions in the environment), diagnose the causes for this
incorrect behavior, and, if it is the case, isolate faults caused by inappropriate coordination or changes in
environment characteristics. We see this process having asinput:
a database containing the current organizationa design including its assumptions concerning the environmernt;
atrace of the problem-solving process representing the activities executed, their results in terms of
performance characteristics (duration, quaity, and cost), messages sent, commitments generated, symptoms
detected, and resource usage®.

Figure 7 shows the three components in the architecture. The organizational design level is composed of two
parts. an acquisition of environmenta, long-term knowledge as discussed in Section 4.1, and the output of the
design process itsdlf, namely, a description of the organization and the role of each agent in it (including

* We may also include some meta-level measures of the current state of agent activities such as those developed in Nagendra-
Prasad and L esser 1996.

15



description of dternative methods to accomplish tasks), as well as effort necessary, commitments to be honored,
and assumptions made. We do not tackle here the process of design itsdlf.

The agent level is composed of a coordination module, a scheduler, a module to keep atrace of the activities,
and a diagnoss module. Details on the scheduler can be found in Decker (1995) and in Wagner et d. (1997).
The trace and diagnosis are detailed beow. The third leve is the causal model, which shows the relation
between symptoms and explanations for them. Notice that, at the agent leve, there is dso an ingtance of the
causal modd, which represents the agent’ s local perception of that more generd model.

Thetrace (recording of agent behavior) is andyzed and symptom for an eventua abnormal behavior is detected.
Agents then congruct a locd view of the actions leading to that Stuation. In case there is a need to exchange
views with diagnosis component by other agents, a communication may take place. The process of diagnosis is
triggered by generic symptoms, which reinforces the domain-independence of the framework. For instance,
diagnosis is triggered when agents notice that either a resource used to accomplish the task, or a processor
involved in the planning of the problem-solving is overloaded. The other main trigger conditions are commitments
not being kept, and an unexpected result of task execution, such as its level of resource usage, qudity of its
results, and its duration or cost of its execution. In each of these cases, the system analyzes the symptom, finds an
acceptable explanation, and modifies the parameters that control the agent behavior (part of the organizationa
design)®.

We make a series of assumptions concerning the organizationa design, the trace, and the diagnosis module. We
assume that the activities of the agents in the environment are represented in a TAAMS task dructure, that some
components of the system are invulnerable to break-ins (e.g. the coordination and the diagnosis modules are
protected by firewals or run in different processors so that they are not corrupted), and that we have a means to
keep a trace of these activities, as well as of the usage of resources available (through a resource monitor).
Although we do not have to necessarily monitor al resources congtantly, that we keep dtatistics of the high-level
tasks arigng in the environment. We treat both software bugs and lying agents in the same way. Also, we assume
that the problem-solving component cannot decide if the description of the quality of results passed to it is
accurate. On the other hand, in certain Stuations the diagnoss component may initiete a problem solving task
(based on the known task structures) to verify the quaity characteristics of an intermediate resuilt.

Finaly, we adso make the assumptions that there is often multiple ways of deriving a result, dternative resources
that can be used by amethod in their execution, and that some methods have the capability, if so asked, to verify
the quality of their input or the characterigtics of an intermediate result. Thisams at an auto-diagnosis process by
the sysem itsdf through the use of its own problem solving capabilities.

6.2 Trace

The monitoring of parameters like resource usage and task execution characterigtics alows the determination of
whether a change in behavior is gatidticadly sgnificant or not. If it is, a diagnosis process is triggered; otherwise

® Also symptoms such as resource underload, and wrong coordination |eading to no commitments made.

16



the moddls (e.g. duration, quaity, and cost distribution) have to be further monitored over time to check their
vdidity.

« event (format of object):

time type id triggered_by description

—P  object embodying
the types described below
—® id of the event triggering thisone

> id of thisevent

— idof atype
—P timesamp

* types of events:

- MSG (any kind of msg. exchanged between agents.)

- NTS (non-conditioned task structure)

- CTS(conditioned task structure for each agent)

- ASS (assumption(s) made)

- SCO (dtatic commitments)

- DCO (dynamic commitments, both local and non-locd)
- SCH (schedule)

- EXE (execution of aplan)

- SYM (symptom)

Figure 8: Structure of a Trace Event

The trace recording the events associated with the behavior of agents can contain objects of the following types:
the task structure presented to the scheduler as aresult of conditioning the task schedule generated by the
problem solver with organization knowledge, and the task structure prior to this conditioning®
the assumptions made (e.g. about resource availability, process|oad, and frequency of tasks arising in the
environment’)
the current organizationd structure, the coordination strategy (including status of GPGP coordination
mechanisms), and reasonable ranges for dternative organizational models (in case one needs to test the
vaidity of arevised modd of the environment)
messages exchanged during coordination or execution of tasks; this includes the updating of beliefs which

occur for instance after a coordination mechanism detects non-loca views
commitments made by agents

schedule for the execution of methods

the actua characterigtics of method execution
symptoms

messages

® This corresponds roughly to the subjective and objective task structures, respectively.
" Reasonable ranges for models allow us to recognize that an intrusion may have occurred.

17



Each trace event (shown schematically in Figure 8) involves the event time, type, ID, and the ID of the event that
had triggered it. Using the trace it is possible to locate a symptom and those portions of the task structure which
relate to the symptom, from the characteristics of method execution and resources usage, to the assumptions
behind the condtruction of that particular task structure. For the sake of darity, information such as ID and
triggering object will be omitted of the descriptions of traces depicted in the next figures; only time, type of event,
and description will be shown.

To understand the trace information, we will present an example of an agent’s trace related to the WARREN
scenario discussed in Section 5.2.3. The detailed non-conditioned (objective) and conditioned (subjective) views
for the example, generated by the organizationa designer, are shown in Figure 17, and in Figure 18, respectively.
However, here we focus on the task structure decomposed among 3 agents (A, B, and C) for each user
(previoudy we have considered Ag; to Ag, responsible for the whole task structure for each user).

time type description

050 MSG nsg. to task assessor to solve a problem
150 NTS taensld

250 ASS defaul t Assunption

260 SCO static non-local commitnent

270 CTS [AgentA taens2]?

285 DCO [ Agent A, M, 50]

290 SCH [M,1,50]

301 EXE M Started Execution at AgentA

350 EXE M, Finished Execution at AgentA

Figure 9: Standard Trace for Agent A. @) Non-Conditioned Task Structure depicted in Figure 17. b) Conditioned Task Structure
depicted in Figure 18.

When there is no abnorma stuation, the traces for agent A, B, and C look like those depicted in Figure 9, Figure
10, and Figure 11 respectively. After the organizational designer receives a request to generate a design for a
given problem, a non-conditioned task structure for it is created (object taemsl in those cases), then assumptions
are made (here a default assumption is used), long-term commitments are established, and a conditioned task
gructure is creeted for each agent. After, schedules and dynamic commitments, both loca and non-locd, are
established a agent level. The rest of the trace concerns the execution of the methods and tasks, and will be
discussed in more detail in Section 7, when traces of abnorma behavior are depicted.

18



tinme type description

050 MSG nmeg. to task assessor to solve a problem
150 NTS taensl

250 ASS defaul t Assunption

260 SCO static non-local conmm tnent

270 CTS [AgentB,taens3]

280 DCO® [ Agent B, M,, 100]

285 DCO?) [ Agent B, T,, 200]

290 SCH [[M, 51,100],[M, 101, 150], [ M,, 151, 200] ]

351 EXE M, Started Execution at AgentB
400 EXE M, Finished Execution at AgentB
401 EXE M, Started Execution at AgentB
450 EXE M, Finished Execution at AgentB
451 EXE M, Started Execution at AgentB
500 EXE M, Finished Execution at AgentB

Figure 10: Standard Trace for Agent B. @) Local Commitment. b) Non-Local Commitment.

time type description

050 M5G nsg. to task assessor to solve a problem
150 NTS taensl

250 ASS defaul t Assunpti on

260 SCO static non-local comm tnent

270 CTS [AgentC, taens4]

290 SCH [M, 201, 250]

501 EXE M Started Execution at AgentC

550 EXE M, Finished Execution at AgentC

Figure 11: Standard Trace for Agent C.

6.3 Causal Moded

In order to understand the trace of agents problem-solving, we introduce a causal modd (CM). The CM isa
graph object that maps symptoms to explanations, constructed from specifying the trace. It is intended to be as
generd as possble, in order to analyze various organizations described usng TAAMS. Each agent congtructs a
particular ingtance of the general CM, in which the nodes refer to particular objects of the agent’s trace kept
during the process of problem-solving, like the task structure (TS) such as methods, tasks, resources, or NLE's.
Also, some nodes and edges are trimmed off because they do not gpply to the particular problem the agent is
solving.

The dgorithm | for creating the agent’ s ingtance of the generd CM is shown in Figure 12.

19



for each agent Aj:

create the agent CM by trinmmng off those portions which do not apply?®
while there is a trace event for A

read the trace event
if event is a synptom
find synptomin the agent CM
generate a Di ag\eb containing the synmptomand its ancestors®
while there is a node in the D agWeb
if node is an explanation for the synptom
add its ancestors to the D ag\Web
end
if no explanation is found, the CMis incorrect?®
end

Figure 12: Algorithm | (searching the trace for symptoms)

Once a symptom is detected in the trace, there is a set of possble explanations for it. These sets are domain-
independent and will work on any problem-solving system which meets the assumptions discussed before. The
main classes of symptoms identified are unexpected duration, quality, and cost of a method execution, resource
overload or underload, and commitments not being met. The latter class of explanations alows us to represent
symptoms involving unexpected performance characteristics of deeper level tasks.

Some explanations discussed below are close related to intruson. If an atack happens, delays in method
execution, lowering of quaity achieved, usage of resources and ultimately cost of execution of methods are very
likely to occur. Within the framework, it is possible to trigger alearning process to try to understand the pattern
of the changes, to verify why the change happens, or whether an agent is somehow cheeting.

6.3.1 Explanationsfor Symptoms Related to Completion of a Method

When the symptom is that the completion of a task/method is delayed, say T, the possible explanations, as they
appear in the causa modd (Figure 13), are:
Task-related (explanations which are related to the characteristics of the task):

completion timeis delayed: the scheduled time for the task T to finish is delayed, which meansthat either
T Sarted later than expected, or its duration is longer than scheduled
gart time delayed: ether T is preempted by another task, or the completion of a previous task, say T,is
ddlayed, or results from an enabling task (not necessarily T) are delayed
previous (scheduled) task completion is delayed: atask scheduled to be finished before (like T) did not
finish on time, in which case another diagnoss reasoning for T isinitiated (seethe explanation for the first
node of thislist)
preemption of task by scheduler: T is delayed because a higher-priority task was put ahead of that one;
the designer of the organization must andyze the task structure to find out why this happened
duration is longer than expected: if the duration of T takes longer than scheduled, the possible
explanations are as below

8 Such as NLE’ s or resources not appearing in the task structure of the particular problem being solved
® See agorithm 11
1% Or a combination of symptoms must be checked

20




the gatigticd variance of the digtribution of the duration fals in an unacceptable range: dl tasks admit a
vaiation in the duration, which is given by a datistica digtribution
the model for duration digtribution isingppropriate: it is necessary to collect more information through
further observations, in order to learn the correct distribution
insufficient local processing capecity: if T takes too long because the capacity of the agent to perform it is
not as expected, the assumptions associated with processor usage must be revised by the designer of the
organization
incorrect mode of resource usage by specific tasks: the model of usage of a given resource by T isnot as
expected
incorrect resource modd: the designer has an incorrect model of the resource characteristics when the
organization is planned
unacceptable satistica variance of resource usage: like the duration of atask, resource usage isdso
based on a gatigtica digtribution; variations on it might be unacceptable
resource computation does not consider resource usage, elther because the access to resource was not
consdered in the duration of the method, or because the resource was not monitored
no coordination because of incorrect conditioned view (e.g. resource usage was not considered)
Resource-related (explanations which relate to usage of resource):
incorrect modd of resource usage: the modd of overall usage of T (not necessarily and not only by T) is
not as expected (e.g. other agents lied or were unaware of their actua usage)
unacceptable statistica modd of resource load: Smilar to other Satistical models
Non-Loca Redationship-reated (explanations which are related to the existence of NLE reationships
between tasks):
enabling task delayed: it is hecessary to trace back in the task structure, find out which isthe agent
respongble for delivering these results, and explain why these are ddayed
incorrect modd of facilitation power: thisis aso a case in which the agent responsible hasto be
contacted; it might be that it was lying about this power
incorrect modd of fadilitation qudity: smilar to facilitation power
Coordination-related (explanations which are tied to the coordination type):
no coordination: the designer opted to ignore coordinating with other agents, i.e. this decision gppears as
an assumption (see assumption-related below); agents need to understand which assumptions were the
basis for the organizationa designer deciding that it was not necessary to coordinate over resourcesin
this pecific Stuation; after agents modds have to be modified to include the coordination in that particular
dtuation causing the symptom to arise
incorrect coordination: the coordination with other agentsis incorrect; for instance, incomplete
coordination does not include and/or explore information about corrdated usage like redundancy,
overlapping, or possible exchange of favors between agents (von Martid, 92); the modd needs to be
enhanced to include these rlationships
coordination with incorrect information: the designer possesses incorrect information when deciding the
type of coordination

21



unacceptable statistical
variance of duration incorrect duration model

incorrect model of

facilitation power
insufficient processing
incorrect model of dureti capacity
e . uration
facilitation quality longer <
than
ted
unacceptable statistical variance opee
of facilitation quality completion
time delayed
W &y

start failed or is delayed

/

incorrect model of

method resource usage
_ preemption of
*? incorrect model previous task task by scheduler
of resource usage completion
delayed
enabling task
delayed -
B
. Q-
S
e 1§31
* incorrect R ' 5 § .
+ coordination . * coordination with i\l gl
---------- . - incorrect information * . % g’i
.......... IR |
no coordination - _%_'
""""""" no coordination because of -
incorrect resource model Incorrect objective view \I g |
(e.g. no resources) .S .
I§ [
o)
©

unacceptable statistical unacceptable statistical model = -
variance of resource usage of resource load lg . L7
=gl
EE-
resource computation does | é %5 I
not consider resource usage - . =

Figure 13: Causal Model for Explanations Related to Duration of Method. Explanations (boxes) are related to: resource (bold
line), task (doubleline), coordination (dot line), NLE (single ling), assumption (dash and dot)
Assumption-related (explanations which relate to assumptions made):
enough resource capacity: it is assumed that resources are unconstrained
default view: the organization assumed a default view for the use of resource, which might not be vdid
anymore; normaly, it isthe case that agents do not want to pay the overhead of congtantly finding out the
update states of a resource and then computing a new distribution for expected duration
norma frequency of tasks: it is assumed that the frequency of tasks arising in the environment adheres to

some known distribution.

22



6.3.2 Explanationsfor Symptoms Related to Resource Overload

A resource overload, which may occur due to either unpredictable activities (using that resource), lack of
resource model, an incorrect or incomplete model of resources (i.e. one which does not cdl for coordination), or
afailure to account for the use of that resource. Thiskind of symptom islikely to occur together with others since
lack of or ingppropriate coordination over resource usage or delay in information exchanging are associated with
methods taking too long or incurring more cost than expected.

incorrect resource model

resource computation does not \\

consider resource usage _
incorrect mode! of

E. ...................... :/' method resource uwe

resource
overloaded

unacceptable statistical variance

unanticipated
of resource usage

overload

(random effects)
P
-8
| % 0 .
| E 'é unacceptable statistical model
- 2% of resource load
L. -.
13!
| ; I —»|| no coordination because of
© 3 incorrect objective view incorrect model of
! L) l (e.0. no resources) resource usage
T anticipated
i g'l overload
- g g I E..l.l.la..l.;..l.l..l..tlr.]ll lllE
l . i coordination wi !
+ 5 @ / incorrect information :
18 c-
. £ 9|
I % 0 .
.8 B
h LI

Figure 14: Causal Model for Explanations Related to Resource Overload

The possible explanations (most dready discussed in the last section, thus only cited here), as depicted in Figure
14 are:
Resource-related:
anticipated overload: the designer predicted a potential overload but opted not to consider it
unanticipated overload: caused by ether an incorrect mode of method resource usage, or by an incorrect
generd modd of resource usage

23



the modd of resource usage isincorrect

unacceptable statistical model of resource load
Task-related:

incorrect model of method resource usage (the uses relaionship)

incorrect resource modd (the limitsrelationship)

unacceptable Satistica variance of resource usage

resource computation does not consider resource usage

no coordination because of incorrect non-conditioned view (e.g. no resources in the model)
Assumption-rel ated:

the assumption of frequency of method execution isincorrect, and this has to be reported to the

organization designer

avalability of resource is different than assumed

default view isused

- frequency of tasksis norma
oordination-related

incorrect coordination

no coordination over resource usage
incorrect coordination over resource
coordination with incorrect information

6.3.3 Explanaionsfor Symptoms Related to Qudity of a Task

The explanations for qudity related symptoms in the causa modd (Figure 15) are:

Non Local Relationship-related:
incorrect modd of facilitation power
incorrect modd of facilitation quality
unacceptable datistica variance of facilitation quality: the quality accrued is not as predicted by the
datigtica didribution
no enabling task: the organizationa design isincorrect so that atask kegps waiting for enabling results
which do not arrive, possibly because the agent supposed to deliver them ignored an enabling relationship
(commitment that would cause an agent to send the results) and thus fails to report the results associated
with it

Task-related:
preemption by scheduler
insufficient local processing capacity
quality lower than expected in a previous task: this finishes with quality lower than expected, and cannot
keep the commitment on the qudlity to be delivered
low expected quality: caused by an agent lying about its cgpabilities
incorrect modd for qudity digtribution: the Satistical didtribution the designer is working with might be
incorrect; this hasto be verified vialearning

24



unacceptable statigtica variance of quality

incorrect model of facilitation power incorrect model of
fecilitation quality

unacceptable statistical of facilitate quality

another instance. of quality
lower than expected

low expected. quality

(caused by lying) quality

lower
than

expected

incorrect quality model

unacceptable statistical variance of quality preemption

by scheduler
no enebling task [—_ g | task finished / insufficient processing

with no qudity | capacity

Figure 15: Causal Model for Explanations Related to Quality Lower Than Expected

6.4 Diagnosis

The process of diagnosing starts at agent level when a symptom is detected. First, aloca view of the problemis
congtructed, using the events retrieved from the trace: the symptom, the portion of the task structure tied to the
method or task which is related to the symptom (e.g. a deay in the execution of a method), the coordination
strategy used, the assumptions behind it, messages exchanged, etc.

Once the diagnosis component of the agent congructs its loca causal view, it has to analyze the need for
exchanging of views with diagnos's components in other agents. This is the case if, for instance, a subtask thet is
related to the symptom is part of a large task that is distributed among multiple agents, or the subtask requires
information for its execution from a task being executed by another agent, or if some non-loca resource is
accessed. In this case the agent will send a request for other agents possibly involved, to start a diagnoss
themsalves (if thisis not aready the case), and share their loca views. In ether case, the loca or extended view
darts the diagnosis reasoning. Thisis based on the causd model held by the agent.

25



(using the agent CM and the synpt om f ound!?)
while there is a node in the agent CM
if node relates to the object described in synptom
instantiate the correspondi ng nodes with object?!?
end

Figure 16: Algorithm Il (generation of the agent Causal Model upon finding a symptom)

Besdes the sets of symptoms, explanations, and actions, there are sets of anadyss associated with each
explanation, which am a deciding whether it is a vaid explanation for the given symptom or set of symptoms, in
a paticular dtuation. For ingdance to verify the explanation “the expected results from a facilitate NLE are
delayed’, there must be determined whether i) the delayed method is linked to another agent through a fecilitates
NLE, and in case the link exists, whether ii) the results expected are delayed. Basicaly each explanation is
associated with a set of at least one type of prescribed verification procedure.

7 Diagnosisof Incorrect Behavior in the WARREN
7.1 Scenario

Our firgt attempt towards testing the domain-independent framework was to mode those diagnosis problems
posed by Sugawara and Lesser (1993, 1998) by representing the network scenario (LODES agents) discussed
in terms of TAMS task dructures. Since they explicitly represent the interdependence between subtasks, it
provides a way to decompose the structure in congtituent components, which are then easier andyzed as for
possible ingppropriate behavior. By andyzing the components it is possble, for instance, to determine which
methods or resources are responsible for the changes. This attempt was successfully concluded with Sugawara's
first and second examples being represented as TAMS task structures, in which we add a moddl of resources
usage by the methods and assumptions on resource availahility, and acceptable range for the model’ s parameters.

We are currently modeling smilar problems from the WARREN scenario as the one dready discussed in Section
5.2.3. There are many smilarities between LODES and WARREN scenarios in what concerns diagnoss of
problem-solving failures. One typical example is the assumption that normally there is enough communication
and computationd resources available on the environment to sustain a certain level of non-coherent behavior, so
it is not necessary to pay the overhead of discovering and implementing each time the appropriate coordination
drategy. Those Stuations in which this is unacceptable need to be identified and the appropriate coordination
drategy for them discovered. If, for some reasons, the volume of accesses to the shared resource increases
beyond a threshold, requests to it will be queued and this might cause the duration of methods accessing them to
be delayed: when this happens, agents start a diagnosi's process to discover why a symptom was triggered that is
related to the execution of a method taking too long. The relevant part of the trace is then recovered for further
andyds. Since this particular symptom is not directly related to a need of exchanging locd views with other
agents, the diagnogtic process startsin that agent according to our diagnosis agorithm.

" The symptom event retrieved from the trace hasinformation relating it to some TS objects like for example: SYMPTOM
“duration of method <method_object> longer than expected"
12 For example the node “ start time delayed” of the general CM, turns “ start time delayed at <method_object>*

26




(MI)

Formulate Plan

(M2) (T2)
Ask Broker for Addresses | % Query Info Agent

M3) M (M4)

Query Info Query Info
Agent Agent
/
7

7/
/

7
(R1) ’
shared

Ro
eS

Figure 17: Task Structure of the WARREN scenario (Query of One User)

B
Process Quer
Formulate Plan Get Data Return Results

(M1) (T1)

Formulate Plan Get Data

(M2) (T2

€3

Ask Broker for Addresses | Query Info Agent

A
(M3) (M4) C
Query Info Query Info
Agent Agent (TO)
//
/
/
4
RY)  p? (T1) (M5)
Re &

Figure 18: Subjective Task Structuresfor Agents A, B, and C.

7.2 The Situation in Which the AssumptionsHold

Condder the example depicted in Figures 17 and 18. If the frequency of access to resource R, is normd, then
only afew agents are likely to be concurrently accessng it, thus R, is not likely to become overloaded, and the

27



method M, completion time will be as expected. If no other abnormdlity occurs, the trace of the problem-solving
looks like the one depicted in Figure 9. All methods start and finish as scheduled, and no symptom appears.

7.3 Changesin the Environment

When there are changes in the environment and/or the nature of the task changes, it is likely that the problem-
solving process needs to adapt to these changes. This section describes how the scenario may change, why, and
how a diagnoss may hdlp.

The fallowing list contains the mogly likely changes in the environment affecting the problem-solving process built

in the agents

1. with too many agents accessing agiven resource, it gets overload

2. aprocessor in one of the agents falls, causng communication problems with the other agents, or problems in
processing the task itsdlf

3. atask with its subtasks/methods fails to begin executing, as for example T, or T,

as above, but here an dternative task to the falled one is then sdlected (dternate tasks are not shown n

Figure 17, but we assume that they exist)

atask with its subtasks/methods, which should co-occur with another one, fails to appear in the environment

atask gets preempted by another

amethod falls, as a consequence of a software bug or an intrusion

amethod uses aresource above the level forecasted due to a software bug or an intrusion

two methods take too long, both within the statisticd variance, but their combined effect causes further ddays
10. the transmission of results from an enable reationship (e.g. e,) isdightly ddayed, and M5 or M, takes longer,

so that the overall deadline of T, isnot met
11. atask previoudy assumed as not important is delayed enough to be worth coordinating over

»

© 0o N o O

The next subsections show examples of some of the Situations described above. Although the symptom detected
in the trace is the same in dmost every case, namely “duration of method M, longer than expected”, the causes

behind it can be quite different.

7.3.1 Diagnosing Resource Overload

Figure 19 shows atrace of agent B activities. At time t=520, a symptom related to the execution of method M,
gopears. Thistriggers the use of the Algorithm I, which congtructs a causa modd based on the agent view of the
problem. The node in the causa mode which matches the symptom is found, and the portion containing this node
and its ancestors is further revised so to trim off nodes which do not gpply. For ingtance, looking at Figure 13, the

node “duration longer than expected” is further ingtantiated with the method object reported in the symptom
message of the trace (_m,). Table 1 shows how the ancestors of this node are instantiated.

28



Node
duration longer than expected (object)
insufficient processing capacity (object)
incorrect duration model (object)
unacceptable satistica variance of duration (object)
incorrect modd of facilitation power (object)
incorrect model of facilitation quaity (object)
unacceptable Satigtica variance of facilitation quaity
(object)
incorrect mode of method resource usage (object)
incorrect model of resource usage (object)
unacceptable Satistical variance of resource load
(object)
no coordination/incorrect objective view (object)

a)

coordination with incorrect information (object)
assuming normal frequency of tasks (object)
assuming default view (object)

assuming enough resource capacity (object)

Object Instantiated
_met hod-my

_agentB
_duration-nodel -for-nmethod-nv

_statistical -nodel -for-nethod-m

not ingtantiated: no facilitation to method
not ingtantiated: no facilitation to method
not ingantiated: no facilitation to method

_nodel - usage- of -r 1- by- ma”
_nodel -usage-of-r1l
_statistical-nodel-for-load-of-rl

_coordi nati on-assi gned-f or -

agent B”

_coordi nati on-assi gned-for-agentB
_assunption

_assunption

_assunption

Table 1: Instantiation of Agent B Causal Model. a) Ancestors of this node not further detailed. b) Objectsr; and m, come from
the symptom message. ¢) Object embodied in the assumption object.

tinme type description

050 MSG msg. to task assessor

150 NTS taensl
250 ASS defaul t Assunption

to solve a problem

260 SCO static non-local commitnent

270 CTS [AgentB,taens3]
280 DCO [ Agent B, M,, 100]
285 DCO [ Agent B, T,, 200]

290 SCH [[M, 51,100],[M, 101, 150],[M,, 151, 200] ]
351 EXE M, Started Execution at AgentB

400 EXE M, Fini shed Execution at AgentB

401 EXE M, Started Execution at AgentB

450 EXE M, Fini shed Execution at AgentB

451 EXE M, Started Execution at AgentB

520 SYM Dur ati onLonger ThanExpected (M,)

580 SYM Resour ceOver | oaded (R;)

600 EXE M, Fini shed Execution at AgentB

Figure 19: Trace Containing Symptoms Duration Longer Than Expected and Resource Overloaded
(from Agent B execution)

29



unacceptable statistical variance

of durationat M , incorrect duration model
duration insufficient processing
longer capacity
than <
expected
aMm
incorrect model of / ‘
method resource R,
usage at M,
* incorrect model of
resource R, usage at M,
B
| |
pTore e N= § ;
: incorrect S U N . 1 S @ :
: coordination . coordinationwith S 2
"""""""""" incorrect information ;\i £ED,
L\ e - 7o
1 no coordination ; @ o :
no coordination because of h___
incorrect resource mod. at M, incorrect objective view Lo
(e.g. no resources) ; E !
H
unacceptable statistical variance unacceptable statistical model o : o) !
of resource usage of resource Rl load o]
at M,

|
| 8
50
| m—— Ty
. unacceptable statistical variance LB F
resource computation does not of resource R. load 2% !
consider resource usage at M, 1 Lo

Figure 20: Agent Causal Model

Notice that some objects are not instantiated because they cannot be found in the trace. This is the case of
facilitation to method M. By looking at the object _taems3 (the conditioned task structure assigned to agent B)
appearing in the trace, no facilitate NLE is found (the task structure is depicted in Figure 17). Notice dso that
some objects are not explicitly shown in the trace because objects in them embody others, like for instance the
assumption object, which contains information about coordination, views, modd of resource usage, and so on.
The agent causd modd for that specific symptom, containing only ancestors of symptom, is shown in Figure 20.
Having this modd, the next step is to perform the andlysis prescribed for each node, in order to test whether or
not they can explain the symptom.

30



In the example we are following, let us assume that dl datisticd modds, as wel as the duration modd are

correct, so that there remain three nodes to test: “insufficient processing capacity (_agentB)”, “incorrect mode of
resource rq usageby my”, and “incorrect model of resource _r; usagea _my”). The fact that some tasks (e.g.

T, and M3) started and finished on time in agent B reduces the likelihood that there was insufficient processing
capacity for agent B to perform its tasks.

However, the latter two explanations need further andysis. Again, let us assume that the statistica models (here
concerning resources) are correct. This leaves two possible explanations for “incorrect model of resource rq

usage by _my”, namdy “coordination with incorrect information a _agentB”, and “no coordination/incorrect
objective view at _agentB”.

The same diagnosis would be reached by following the other symptom that also gppears in the trace, namely
“resource overloaded r,” (see Figure 14), since the overloaded is an unanticipated one.

7.3.2 Diagnosing Processor Failure

The trace depicted in Figure 21 aso shows a symptom related to the duration of a method, namely “duration
longer than expected at method _m,”. The firgt step is to congtruct an agent causal modd for this Stuation, using

the genera one and that symptom. Thisis similar to the one from the section above, except that, snce method M4

does not access any resources, those nodes related to resources are not instantiated. Other objects are
ingantiated in away smilar to that depicted in Table 1.

Once the agent causd moded is congructed, the nodes in it must be analyzed to find out which explanations can
account for the symptom. In this case the only possible explanation is “insufficient processing capacity”, snce
resource and facilitation nodes are not instantiated and, as assumed, al modds (Satistical, duration) are correct.

The diagnosis process for problems number three and seven in the ligt given in Section 7.3 are very smilar to the
one discussed here.

time type description

050 MSG nsg. to task assessor to solve a problem
150 NTS taemsl

250 ASS defaul t Assunption

260 SCO static non-local commitnent

270 CTS [AgentA taens2]

285 DCOY [ Agent A, M, 50]

290 SCH [M,1,50]

301 EXE M Started Execution at AgentA

360 SYM DurationLonger ThanExpected (M)

365 M5G decommitnent nsg. from AgentA to AgentB

Figure 21: Trace Containing the Symptom Duration Longer Than Expected due to Processor Failure
(from Agent A execution)

31



7.3.3 Diagnosng Task Preemption

The symptom appearing in the trace shown in Figure 22 aso relates to the execution time of tasks and methods.
However, the symptom thistime are “ start of method _t; failed or is delayed” and “sart of method _m, failed or
isddayed’. For the first symptom, in the generd causal modd, the three ancestors of this symptom node are:
“previous task completion delayed”, instantiated to object _my
“ enabling task delayed”, not ingtantiated since M, has no direct enabling

“preemption of task by scheduler”, ingtantiated to the object _t;

Hence the agent causa model has only two nodes, and their andlysisis as follows. Agent B cannot know if My is
delayed, so it tells agent A to check this. The fact that task T; does not even starts can be explained by the fact

that the results from the enabling e, had not arrived. Thus, agent B does not analyses further. Agent A, initsturn,
congructs a causd modd very smilar to that of agent B, where the symptom appearing is “gart of method _my
faled or is ddayed’. Agent A then andyses its trace and finds out that method Mg (part of atask not shown in
the figure) started in place of M4, leading to the conclusion that T; got preempted.

tinme type description

050 MSG nmsg. to task assessor to solve a problem
150 NTS taensl, B

250 ASS defaul t Assunption

260 SCO static non-local conmtnent

270 CTS [AgentB,taens3]

280 DCO [ Agent B, M,, 100]

285 DCO [ Agent B, T,, 200]

290 SCH [[M, 51,100],[M, 101, 150], [ M,, 151, 200] ]

360 SYM StartFail edOr Del ayed (T,)

360 SYM Start Fail edOr Del ayed (M)

Figure 22: Trace Containing Symptom Start Failed or Delayed because Method M ; is preempted. @) M 4 startsin the place of M ;.

7.3.4 Diagnosng Multiple Faults

In some cases, a symptom is found, which cannot be explained by a sngle node of the causal modd. Performing

the andysis related to dl nodes in the moded is not enough to determine the explanation for the symptom. As an
example, consder the case in which the methods M, and M5 (Figure 17) are each delayed, but within a certain

threshold, thus within the datistical variance. The andys's associated with the node “unacceptable statistical

variance of duration” in the causl mode (Figure 13) finds nothing wrong since the variance is acceptable.
However, the combined effect of those delays explains the observed symptom of method M, being delayed

beyond an acceptable threshold.

In order to dea with such combination of events causing a phenomenon, we perform a quantitative analyss and
keep a log of those explanations which could be combined with others (i.e. those which are close to the
threshold).

Other examples of multiple fault scenarios are:

32



More than one symptom appears, each explained by asngle candidate, say E; explans S;, and E, explans
S,. However, E; and E; may not be verified individudly (e.g. because certain thresholds were not reached),
but together they may explain athird symptom (E; L E, ® S3).

Candidate (to explanations) E; and E, explan symptoms S, and S, (E; , EE® S, , S,). However, it isnot
known whether S; ® E; or not, and whether S, ® E, or not.

One candidate E; may explain two or more symptoms.

More than one candidate of explanation exist for agiven symptom.

8 Conclusion

Our main concern has been the tradeoff between the effort to sdlect an effective coordination strategy and its
results. This reinforces the need of gStuation-specific control rules, in which the benefits and the costs of
coordination for the current Situation are taken into account. Past researches (e.g. Sugawara and Lesser 1993,
1998) addressed a particular coordination scenario (diagnosis of loca area network) by alearning method which
identify which information improved coordinaion in specific problem-solving Stuations, not exploring further
range of problems though. Mativated by this limitation, we have been focusing on questions like “how much
domain dependent knowledge is needed?’, “which level of detail this knowledge must be reflected in the traces
of the agents activities?’, “how can the reasoning and the results of the diagnos's be expressed in a domain-
independent way?’. Thus, we decided to focus on a Stuation-specific control, which is based more on a long-
term understanding of the frequency of tasks occurring, the character of these tasks in terms of their resource and
coordination needs and the available resources.

Our firgt result is the conclusion that, by using domain-independent frameworks for representing agent’s gods and
methods (TAMS), and coordination mechanisms (GPGP), we are able to abstract the aspects of the domain that
affect coordination (e.g. gods, criteria for successful performance, performance characteristics and resource
requirements associated with the aternative methods for accomplishing of the gods, and both the quditative and
quantitative interdependencies among these methods and those of other agents). Within an extended, Stuation-
gpecific GPGP (Lesser et d., 1998b), an organizationa designer can focus coordination activities to reason only
about a subset of possible coordination relationships (those specified) existing among agents.

Second, we are tackling here detection and diagnos's so to use the same modd employed to represent the
organizationa knowledge and the coordination. This knowledge plus the traces of the agents activities are used
to detect changes from an expected behavior of the problem-solving system, locate a symptom, and find an
explanation for it, given a mapping of symptom-explanations and ways to verify them, without the need of domain
gpecific knowledge.

Finaly, we successfully modeled the diagnosis problems posed by Sugawara and Lesser (1993) in a domain-
independent way, by representing them as TAAM S task structures, adding both amode of resources usage by the
methods, and assumptions on resource availability, and by applying our diagnoss reasoning.

33



Ultimately, we want to focus on sysems which can survive in changing environments. Thus, diagnosing
inappropriate behavior of the problem-solving system isacrucia step to correct the system’s domain knowledge,
the modd of the tasks arising in the environment, and consequently to alow good coordination which, in its turn,
isthe key to survivable systems.

In short, the most important aspects of our research are the exploitation of model-based, domain-independent
digributed diagnosis of inappropriate behavior, the further adaptation of agent coordination based on that
diagnogtic, and the use of a single mode for thiswhole process.

As for future developments, we see the need to extend GPGP both to increase the number of coordination
mechanisms, and to alow more organizationa control. We are aso concerned with practica issues like “how
much gtuation-specificity can be achieved when the framework ams to be very broad in problem
representation?’, “are there potentia issues of scae?’, “for which stuations is it worthwhile to make an off-line
design based on a description of the environment (likely tasks), versus an on-line learning of the organization asa
result of a series of adaptations based on experience?’.

Refer ences

K. S. Decker and V. R. Lesser 1993. Quantitative modeling of complex computational task environments. In
Proceedings of the Eleventh National Conference on Artificial Intelligence, Washington. AAAI Press.

K. S. Decker 1995. Environmental Centered Andyss and Design of Coordination Mechanisms. Ph.D. Thesis,
University of Massachusetts.

K. S. Decker and V. R. Lesser 1995. Designing a Family of Coordination Algorithms. In Proceedings of the
First International Conference on Multi-Agent Systems San Francisco, CA. AAAI Press.

K. S. Decker 1996. TAMS: A framework for analysis and design of coordination mechanisms. In G. OHare
and N. Jennings, editors, Foundations of Distributed Artificial Intelligence, chapter 16. Wiley Inter-
Science.

K. S. Decker, K. Sycara, and D. Zeng 1997. Designing a multi-agent portfolio management system. In
Proceedings of the AAAI Workshop on Internet Information Systems

K. S. Decker and J. Li, 1998. Coordinated Hospital Patient Scheduling. In: Proc. of the Third International
Conference on Multi-Agent Systems (ICMAS 98), pages 104-111, |EEE Press.

E. Hudlickaand V.R. Lesser 1987. Modding and Diagnosing Problem-Solving System Behavior. IEEE Trans.
on System, Man, and Cybernetics, 17(3), pp. 407-419.

V. R. Lesser, M. Atighetchi, B. Benyo, B. Horling, A. Rga, R. Vincent, and T. Wagner, P. Xuan, and S. XQ
Zhang 1998a A Multi-Agent System for Intelligent Environment Control. Tech. Rep. TR-98-40, Univ. of
Massachusetts. Also submitted to Agents'99.

V. R. Lesser, K. Decker, N. Carver, A. Garvey, D. Neiman, M. Nagendra-Prasad, and T. Wagner 1998b.
Evolution of the GPGP Domain-Independent Coordination Framework. Tech. Rep. TR-98-05, Univ. of
Massachusetts.



F. von Martial 1992. Coordinating Plans of Autonomous Agents. LNAI 610, Berlin, Springer Verlag.

M. V. NagendraPrasad, V. R. Lesser, and S. E. Lander 1996. Learning organizationd roles in a heterogeneous
multi-agent system. In Proceedings of the Second International Conference on Multi-Agent Systems
(ICMAS-96).

T. Sugawaraand V.R. Lesser 1993. On-Line Learning of Coordination Plans. COINS Tech. Rep. 93-27,
Computer Science Dep., University of Massachusetts.

T. Sugawaraand V.R. Lesser 1998. Learning to Improve Coordinated Actions in Cooperative Distributed
Problem-Solving Environments. Machine Learning, Kluwer Academic Publishers (to appesar, 1998).

T. Wagner, A. Garvey, and V. R. Lesser 1997. Complex God Criteriaand Its Application in Design-to-
Criteria Scheduling. In Proceedings of the Fourteenth National Conference on Artificial Intelligence.

35



Apendix I The diagnostic actions associated with the causal model

The causad model described in section 6.3 (Figures 13, 14 and 15) gives the conceptua graph representation for
identifying the possible causes. Each node in the causal mode corresponds to either a symptom/fact to be verified
or ahypothesis for the cause of the symptom/fact.

The agent performs diagnogtic activities by congructing and expanding a graph that represents the causa relations
of the activitieslevents happened during the course of the problem solving activities. When congructing and
expanding the graph, the agent will need to utilize the causd mode by verifying the symptoms and checking the
hypotheses associated with the actud problem solving. These actions are domain independent diagnostic actions
implemented by the diagnostic module. The outcomes of the actions decide how the graph should be expanded;
in other words, these actions specify the rules to be taken by the diagnostic module. In the following text we
Specify the actions associated with each node in the causal modd!.

1 completion-time-delayed(task) --- Thisis asmple check by comparing the expected completion time of the
task asindicated in the schedule and the actua completion time as seen by the execution module.

2 dart-delayed(task) --- Thisis also a smple check by comparing the expected gart time (indicated in the
schedule) and the actud gtart time as seen by the execution module.

3 previous-task-completion-delayed(task) --- This is to check if the task preceding this one (task) in the
schedule has a delayed completion. This leads to completion-time-del ayed(preceding task).

4 enabling-task-delayed(task) --- Also a smple check to verift: (1) if task is enabled by some other task
(thereis an enables rdlations imposed on task, and if so, (2) does that enabling task has completion-time-
delayed(enabling task)?

5 preemption-of-task (task) --- Thisisto seeif the task has been interrupted (suspended) during its execution.
A sample check of the execution modules log will reved if thisistrue.

6 duration-longer-than-expected(task) --- Thisisto compare the actua task(method) duration (the difference
between completion timeand doat time) and the duration specified in the TAMS task
gructure. Normaly, TAAMS specifies a duraion digribution, therefore the comparisonis based on
probabilistic messures.

7 insufficient-processing-capacity (agent) --- This relates to the organizationd role of the agent. If tasks often
take longer time to complete because the agent has more tasks (load) than the amount the designer
has expected. To detect this the agent needs to be monitored for along time so that the average load and
the frequency of deadline misses can be calculated.

8 unacceptabl e-stati stica -variance-of -duration (task) --- The duration in TAAMS dlow some variances, thus a
sngle case of duration-longer-than-expected may smply be because of an unexpected variance. In this
case nothing is wrong, just that the statistics is againgt the expectation. However, high frequency of such
variance may indicate an incorrect duration digtribution. Therefore, if necessary, the agent should start
monitoring the task duration ditribution.

9 incorrect-duration-modd (task) --- Thisisdirectly related to the previous hypothess. Here as aresult of the
monitoring process (note the monitoring process is aso the learning process), the agent now has a more
accurate organizational view of the task duration ditribution.

10 incorrect-model-of-method-resource-usage (uses) --- A task may take longer duration because the task
needs more resource than previoudy thought. Note the resource usage is typicaly specified as a uses
NLE for the method requesting that resource, and usually has a digtribution associated with it. This mode
of digributiom is specified by the organizationa designer, but may be incorrect. To verify this hypothess

36



we need to turn on the resource monitor (at the resource side) and dart learning the actud resource
usage distribution of that method.

11 incorrect-resource-modd (agent) --- Thisrefer to the case that the resource characterigticsis different than
the agent previoulsy thought, for example, the network is of lower bandwidth or more error-prone, etc.
To detect this we need to compare the agent's view (assumption) of the resource againgt the objective
resource mode. However, in some cases an objective model cannot be obtained. In this case,
datistica monitoring and reasoning are needed in order to deduct the objective modd.

12 unacceptabl e-statisti cal-variance-of -task-resource-usage (uses) --- The amount of resource used by the
task is il within the variance of the uses rdation, but of lower confidence level. Again this could be just
acase of gatistical variance. If necessary, turn the resource monitor on.

13 resource-computation-does-not-consider-resource-usage (task) --- the duration didtribution of a task
does not take into account the resource usage (this depends on the resource characterisitics), i.e, initid
duration computation assumes normal network traffic, thus does no include network delay. There is no
way to check this directly, but the idea is to look at the Limits NLE and to see if the Limits NLE
takes effect in an unexpected way, e.g., the Limitsisignored (assumed to be not effective).

14 no-coordination (agent) --- This refers to the case that the organizationd design believes (explicitly) that
the agent needs not coordinate with other agents over this resource. The designer made this decision
based on some assumption of the resource, but that assumption is not valid and some coordination is
needed.

15 incorrect-coordination (agent) --- In this case, the diagnosis module finds out that the agent did attempted
to coordinate over this resource, but the coordiation is incomplete because of the the agent does not

have or explore important information about correlated usage, such as overlapping, redundancy. Some
relaionship ismissing in the agent's view on which the coordination activities are based.

16 incorrect-mode-of-resource-usage (agent) --- The model of overal resource usage of a resource is not
correct, because of agent lied or unawareness of their actua usage (eg., a software bug). The agent
mantains aloca model of the resource, and has some assumption about the resource usage patterns, but
the mode iswrong because of wrong information.

17 unacceptable-resource-load-model (resource) --- To verify this, resource monitoring is needed in order to
obtain the actua resource load statistics, and then compare it with the assumed load modd.

18 no-coordination-because-of-incorrect-objective-view(agent) --- The agent does not have the correct
uses relationship(s) when coordinating with other agents. This can be detected by checking if the agent's
objective view contains the uses NLE(s) or not.

19 coordination-with-incorrect-information (agent) --- The designer possesses incorrect information when
deciding the type of coordination. To check this, the diagnoss module needs to verify the desgner's
assumptions about the objective view.

20 enough-resource-capacity (resource) --- The assumption is that resources are enough, but there is an
overload of resource.

21 default-view (agent) --- the organization assumes a default view for the use of the resource, because the
overhead of finding out the actua view. In order to be able to verify this, it is assumed that the agent
explicitly specifies that a default objective view is used.

22 normd-task-frequency (agent) --- the agent assumes that the tasks arrive at their norma frequency (as
specified by the designer) in order to decide the resource load. This information is assumed to be
explicitly represented in the agent reasoning process. The verification process would then become a
sample comparison between the actud frequency and the normd frequency.

23 incorrect-modd-of-facilitation-power (facilitates) --- This is toverify that the facilitation power is
datidicaly lower than what is specified in the TAEMS task strucuture by the designer. The actionwould
be to sat monitoring the facilitates relaion and to compare the actud facilitation power with the
Specification.

24 incorrect-model -of -facilitation-quality (facilitates) --- This refers to the Stuation that the qudity threshold
associated with the fadilitates NLE is wrong, therefore results in the fallure of the expected facilitation.

37



The action would be to compare the quality outcome of the facilitating task and the quality threshold of
the facilitates NLE.

25 unacceptable-dtatistical-variance-of -facilitation-qudity (facilitates) --- This refers to the case that the
fecilitation power dlow some variances based on the qudity of the facilitating task. However, the actua
facilitation power is of lower confidence level. Note in this case it may be the case that no fault is present,
but the task is unlucky.

26 resource-overloaded (resource) --- A resource overload can be reported ether by the resource manager
(or the agent managing this resource), or by the agent that receives a Limits NLE that indicating a
resource overload situation.

27 anticipated-overload (agent) --- Here the organizationa designer has anticipated the resource overload
gtuation. For example, the designer estimates that the network overload happens about once every two
hours, or something like 1% chance of overload a any given time. There can dso be a detailed mode
about the degree of the overload, or even based on the task invovlied. These overload are treated as
norma. Only when the overload is happening more frequently and/or more intensely than specified (by
way of resource monitoring), this estimation is chalenged.

28 unanticipated-overload (agent) --- Thisis the opposite of the previous hypothesis. Note that more detailed
resource model the agent has, the easier to identify whether an overload is unanticipated.

29 qudlity-lower-than-expected (task) --- This is to check whether the qudity of the task is lower than
expected in the commitment. Note that a commitment specifies an expected quality (Somewha smilar
to the expected stated in the schedule about the expected duration of atask.)

30 facilitating-task-quality-too-low (task) --- Thisisto check that if the facilitating task's qudity is lower than
the threshold vaue of the facilitates NLE. If so, the diagnosis module would start diagnos's the symptom
quaity-lower-than-expected(facilitating task).

31 incorrect-quality-modd (task) --- smilar to incorrect-duation-model (task), but looking at quaity instead of
duration.

32 low-expected-quality (task) --- This refers to the case that the actud qudity is lower than the agent
announced (i.e. agent lying about the quadity of task). It is unclear what information is needed to
veify this hypothess right now.

33 task-finished-with-no-quaity (task) --- This is easy to check. No quaity means qudlity is zero (or
negative). Or, since quality is aso time-dependent, missing the deadline can aso mean the task failed.

34 unacceptable-statistica-variance-of-quality (task) --- This is another case of having sheer bad luck. In
TAMS qudity specification can dlow a variance thus we can decide the confidence leve of the qudity
outcome.

35 no-enabling-task (enables) --- This refers to the case that an expected enables NLE does not arrive in
time. To verify this, first check if there are such NLE(S) expected, and whether and when they arrived.
Based on the diagnosis result, it could be that the Enables has a wrong modd, or the enabling task has
lower quality than expected, or completion of the enabling task is delayed.

5 Apendix I1: Classes Defined in the Implementation

It follows a definition of the classes implemented in Java, organized in ? main groups , namely TAMS objects,

agent related definitions, the problem (example) being solved, the trace, the causd model, and the diagnosis.
Agent
cl ass Agent {
public static int count = O;
public static Agent list[] = new Agent[32];
public int id;
public Trace trace;
public TaskStructure ts;
public java.util.Vector resources;

38



Trace

class Trace extends java.util.Vector {

private int agentld;
cl ass TraceEvent {
public static int count =
public int evtine;
public int eventType;
private int id;
public int trig;
public Object content;

1000;
/1l event tine
/1l event type
// id, different fromindex
/1 what triggered this event
/'l content

cl ass Assunption inplenents TraceTypes {

public int type; }
class Commitnment {

l=deadline 2=earliest_start _tine

public int id;

public Object |abel

public int type; //0=do
public Object agent;

public int task;

publ i c doubl e negotiability;
public double utility;

publ i c doubl e inportance;
publ i c doubl e m ni mumQuality;
public int earliestStartTine;
public int deadline;

public

int satisfied; //0=t 1=f 2=unknown

cl ass CoordMode inplements TraceTypes {

public int type

cl ass Synptom i npl ements TraceTypes {

int tinme;
public int type

public java.util.Vector verifiedExpAct;
cl ass ExecTi neSynpt om ext ends Synptom {

public static java.util.Vector |istExp

public Method method;

new java. util.Vector();

cl ass ResourceSynpt om ext ends Synptom {

public static java.util.Vector |istExp

publi c Resource resource
public int resourceld
cl ass Execution inplenents

public int type;
public i nt nethodl d;
public i nt agentld;
public int startTine;
public int quality;
public i nt status;

new java. util.Vector();

TraceTypes {

class MSG inplenents TraceTypes {

public static MSG list][]
public static int count =
private int id;

public int _from

public int _to;

new MSG [ 32];
0;

public int _type; // the content of the nsg

cl ass NonLocal Commi t nent {

public int id;

public Object |abel

public int task;

public int fromAgent;

public int toAgent;

public double qualityDistr[];

39



public double tinmeDistr[];
Pl an i nmpl ements TraceTypes {
Schedul e extends java.util.Vector inplenents TraceTypes {
ResLog extends java.util.Vector {
resld;
Resour ceCheckabl e extends Checkabl e {
public Resource rsc;
cl ass ResourceEvent {
int evtime; // the time stanp
int task; // calling task id (node id)
int act;

cl ass
cl ass
cl ass

i nt
cl ass

TAEMS

cl ass Node {
protected i nt nodeType;
cl ass Task extends Node inplenents Defines {
public static int count = O;
public static Task list[] = new Task [64];
cl ass TaskG oup extends Node inplenents Defines {
public static int count = O;
public static TaskGroup list[] = new TaskGroup [32];
cl ass TaskStructure extends Node inplenents Defines {
ic static int count = O;
ic static TaskStructure list[] = new TaskStructure [10];
ic int deadline;
ic java.util.Vector relations;
Met hod ext ends Node inplenents Defines {

publ
publ
publ
publ
cl ass
publ
publ
publ
publ
publ
publ
publ
publ

O 00000 O0O0

static int count = O;

static Method list[] = new Method [64];
int duration;

int startTine;

int finishTine;

i nt accruedTi ne;

i nt status;

java.util.Vector resource;

interface Rel ationship {
Enabl es inpl enents Relationship {

cl ass
publ
publ
publ
publ
publ
publ
cl ass
publ
publ
publ
publ
publ
publ
publ
publ
publ
cl ass
publ
publ
publ
publ
publ

c

OO0 o000

int id;

String | abel

i nt agentld;

int from [/ fromtask
int to; /'l to-task

i nt del ay;

Facilitates inplenents Relationship {

O 00000 0O0

c

int id;

String | abel

i nt agentld;

int from

int to;

doubl e qualityPowerDistr[];
doubl e durati onPowerDi str[];
doubl e costPowerDistr[];

i nt del ay;

Resource extends Node inplenents Defines {

c
c
c
c
c

static int count = O;

static Resource list[] = new Resource [64];
int type;

doubl e capacity;

ResLog | og;



cl ass
publ
publ
publ
publ
publ
publ
publ
cl ass
publ
publ
publ
publ
publ
publ

Causa

cl ass
publ
publ
publ
cl ass
cl ass
cl ass
cl ass
publ
publ
publ
publ

ResourceLim ts inplenments Rel ationship {

c

O 0000

c

i nt et hodl d;

int resourceld
doubl e saturation
doubl e percent;

int est; /'l ear
int duration;

doubl e quality;

liest-start-tine

Resour ceUses i npl enents Rel ationship {

O 0000

c

i nt et hodl d;

int resourceld
doubl e anount;

int est; /'l ear
int duration;

doubl e quality;

Mbde
cl ass Causal Mbdel {
private Vertex[] v;
private Edge[] e;
Edge {
ic Vertex from
ic Vertex to;
ic String name;
NLEVert ex extends Vertex
ResourceVertex extends Vertex {
TaskVertex extends Vertex {

Vertex {

ic String name;

ic String coment;

ic int nAncestor;

ic Vertex[] ancestor;

Di agnosi s
cl ass Di aghbdul e i npl enents TraceTypes {
public

publ i
publ i
publ i
publ i
publ i

Cc
Cc
Cc
Cc

c

Agent agent;

Causal Model nodel; /
Probl em probl em
Trace trace;

int tine; /1
Di agWeb result; /1

cl ass Di ag\Web {

private java.util.Vector
private java.util.Vector

cl ass CheckEdge {
publ i c Checkable from
publ i ¢ Checkabl e to;
cl ass Checkabl e inmpl enments TraceTypes {
/1 internal data strucuture
public int tine;
public Vertex v;
public int val ue;
cl ass NLECheckabl e extends Checkabl e {
public Relationship nle;
cl ass TaskCheckabl e extends Checkabl e {
public Node task; // Task

Probl em bei ng Sol ved

liest-start-tine

| -- the nodel to be

-- current tine;
diag results

checkabl es;
edges;

/1 the time (range)
/1 what synptomto check

// the val ue of

Met hod, TG TS

it

used

i nvol ved

41



public abstract class Problem inplenents TraceTypes,
public int numAgent;
public int nunRes;
public Trace traces[]; // for use in new TraceAnal yzer
public ResLog reslog[];
public class Warrenl inplenments TraceTypes {
cl ass WarrenProbl em extends Probl em {
/1 extra things fromWarrenlTrace
public int linedelay[]; // line cost
public TaskStructure ts[];
public java.util.Random rand

Defi nes

42



