
On-Line Learning of Coordination Plans

Toshiharu Sugawara and Victor Lesser

COINS Technical Report 93�27

June 1993

On-Line Learning of Coordination Plans�

Toshiharu Sugawara Victor Lesser
NTT Basic Research Laboratories Department of Computer Science

3 � 9� 11 Midori-cho, Musashino University of Massachusetts
Tokyo 180, Japan Amherst, MA 01003

sugawara@ntt-20.ntt.jp lesser@cs.umass.edu

Abstract

Coordination is an essential technique in cooperative distributed problem solv-
ing (CDPS). However, sophisticated coordination strategies are not always cost-
effective in all problem-solving situations. This paper presents a learning method
to acquire coordination plans for specific problem-solving situations so that the
appropriate type of coordination strategy is used. This learning is accomplished
by recording and analyzing traces of inferences after problem solving. The anal-
ysis results in identification of situations where inappropriate coordination strate-
gies have caused redundant activities or the lack of timely execution of important
activities, thus degrading system performance. The analysis is also used to create
situation-specific coordination plans, which use additional non-local information
about activities in the networks, that are added to the system to remedy the prob-
lem. These situation-specific plans have the effect of introducing different levels
of coordination into this system. We present this approach for coordination us-
ing two examples from a real distributed problem-solving application involving
diagnosis of a local area network.

�This research was conducted at the University of Massachusetts at Amherst. Toshiharu Sugawara’s stay at the
University of Massachusetts was supported by Nippon Telegraph and Telephone Corporation (NTT). This research
was also supported in part by a grant from Network General Corporation, ARPA contract N00014-92-J-1698 and
ONR contract N00014-92-J-1450. The content of the information does not necessarily reflect the position or the
policy of the organizations supporting this research, and no official endorsement should be inferred. This is an
extended version of a paper with the same title that will appear in the proceedings of 12th workshop on Distributed
Artificial Intelligence.

Contents

1 Introduction 1

2 LODES System 3
2.1 LODES Overview � 3
2.2 Coordination Level � 5
2.3 Models of Network and Other Agents � 6

3 An Example Problem 7

4 Learning Coordination Plans 10
4.1 Roles of Learning Coordination Plans in Distributed Problem Solving � � � � � � � � � 10
4.2 Conceptual Cooperative Learning Model � 11
4.3 Traces of Inference � 15
4.4 Learning Methods � 16
4.5 Proposed Architecture � 21

5 Analysis of the Example Problem 24
5.1 Analysis of the Unacceptable Situation � 24

5.1.1 Looking at the History of Operations � 24
5.1.2 Using a Network Model � 25

5.2 Identifying the Causal Plan to Be Eliminated or Replaced � � � � � � � � � � � � � � � � 25
5.3 When This New Control Should Be Chosen � 27

5.3.1 Creating a Partial Global View � 27
5.3.2 In Order To Choose Appropriate Control � 32

6 The Second Example Problem 34
6.1 The Second Example (Part I) � 34
6.2 Getting Explanation Between Local and Non-Local Data � � � � � � � � � � � � � � � � 35
6.3 Autonomous Processing (A-Coordination) � 35
6.4 Avoiding Wasteful and Expensive Tasks – Find a new situation where coordination is

required � 38
6.5 The Second Example (Part II) � 39
6.6 Identification of Importance of Messages � 39

7 Discussion and Future Research 42

8 Conclusion 44

References 45

A1 Appendix 1: Annotations of Nodes in Traces of Inferences 47

A2 Appendix 2: Models of Network and Other Agents 49

– i –

1 Introduction

Many real world application domains such as network control and diagnosis, cooperating robots,
and office automation require for their solution cooperative distributed problem solving (CDPS)
[15]. In these domains, agents in the network cannot solve all their own local problems without
cooperating with other agents. Additionally, we assume that agents may be solving a number
of different problems concurrently. Some of these problems are directly interrelated because
they are subproblems of a larger problem; some of these are indirectly interrelated through the
resources required in achieving their solution, and others are independent. The interrelationships
among different agent activities thus may be dynamic based on specific problems currently being
solved in the network and the specifics of the environment. For some interrelated problems,
coordination of activities among agents is key to the timely and efficient generation of their
solutions. For example, lack of effective coordination can result in:

(a) the inability to solve a problem because one agent prematurely committed a resource or
executed an inappropriate action making a solution impossible.

(b) the unnecessary expenditure of potentially overloaded or costly processing and commu-
nication resources to derive results that are either redundant, no longer needed, or of
marginal utility.

(c) the lack of timely execution of important activities. Other agents who need the results of
these activities for their problem solving are sufficiently delayed, so that the utility of their
problem solving is significantly degraded.

However, sophisticated coordination regimes that require extensive use of processing and
communication resources may not always be worthwhile. In general, coordination requires the
acquisition of non-local information about the state of activities of other agents and requires
computations to reason about this information in order to make more informed local control de-
cisions [16]. For example, coordination to avoid redundant activities may be unnecessary if pro-
cessing resources are not overloaded and if communication is neither expensive nor overloaded.
In this case, local problem solving is more efficient since there is no additional overhead for co-
ordination, and redundant computation and communication in the network does not impact the
cost/speed of local problem solving. This situation can occur in, for example, internetwork [2]
diagnosis. Multiple agents, as a part of their diagnostic process, may send a number of test pack-
ets to get the same information. This does not cause any serious side-effects if the agents are
connected via high-speed lines. However, if there are slow lines or if a tariff is associated with
each message, these test packets may cause a problem. In this case, the use of processing and
communication resources to coordinate agents is worthwhile if they can significantly reduce the
number of test packets.

We feel that in complicated and dynamic distributed applications, it is extremely difficult to
anticipate all the problem-solving situations and associated environments in which coordination

1

is worthwhile. Instead, we propose that the CDPS system learns on-line from its experiences
the appropriate coordination strategy for the specific problem-solving situation. Our intuitions
are that both explanation-based learning (EBL) [5, 20] techniques and statistical learning tech-
niques [19, 21] can be useful. For this specific work described here, EBL techniques will be used.
We feel that extensive information about the effectiveness of specific coordination rules can be
derived by analyzing a trace of problem solving; through this analysis, the system can tailor its
coordination strategy to eliminate redundant operations, communications, and job requests, and
appropriately prioritize specific processing and communication actions. We also feel that agents
can often predict the appropriate compromise results of negotiations based on past negotiations
in the same, or in a similar situation; thus, they can bypass the need for costly negotiations. Var-
ious kinds of situation-specific control rules for CDPS can be derived by the proposed learning
method. For example, coordination rules about when, to whom, and which information should
be sent (communication policy and organizational knowledge), decision rules on the priorities
of messages and actions, and explanations to quickly and accurately understand the meanings
of non-local information can be derived.

The important questions that need to be answered in order to implement learning of coordi-
nation rules are:

(1) how to identify situations in which inappropriate coordination has occurred,

(2) how to diagnose the reasons for inappropriate coordination, and

(3) how to the modify control strategy so that appropriate coordination will occur the next
time this specific situation arises.

Our approach uses a cooperative causal analysis based on local and non-local domain models
and traces of distributed problem-solving executions. By domain models, we mean knowledge
about how problems observed at one agent will be manifested at other agents, about network
topologies, about the detailed working of an agent’s local problem solving, etc. This causal anal-
ysis is triggered by a number of conditions such as problem execution failing outright, taking
too long, or using too many resources. These trigger conditions are, in our current implemen-
tation, defined by the system designers. However, we hope that in the future these conditions
(especially the exact parameter values) can also be acquired through experience. This analysis is
also invoked randomly in order to look for hidden problems that are not observed under current
conditions. Comparative analysis [12] which compares the current trace with the past traces of
similar situations is also used when the system does not have a sufficiently rich domain model
to fully explain the failure.

Our approach to learning coordination rules can be couched in the following more general
perspective that comes out of work by Decker and Lesser on generic coordination strategies [3].
Each agent makes scheduling decisions based on a subjective view of its own and other agents’
activities. In certain situations this subjective view will lead to ineffective/inappropriate problem
solving because certain local and non-local task interrelationships have not been appropriately

2

taken into account. We assume that there is some component that is monitoring the problem
solving in the system that recognizes this undesirable situation. We then try to recognize what
aspects of the actual objective task structure were not taken into account in the scheduling of
local activities that are responsible for the perceived problem. We then modify the local control
to add additional local and non-local information gathering and analysis actions to recognize
when the specific objective structure that caused the problem is occurring. In the case where
this objective structure is recognized, a new scheduling strategy is used to avoid the problem by
taking into account a more accurate view of the actual coordination relationships.

In the following section we briefly describe the continuous, CDPS application system, LODES
[25, 26], which performs internetwork diagnosis. All examples and research issues in this paper
are obtained from problems observed during the operations of this system. Section 3 describes
an example problem which is caused by the uncoordinated actions of agents. In Section 4, based
on the example developed in the previous section, our CDPS learning architecture will be elab-
orated. As a part of this discussion, we will also detail how situation-specific coordination rules
can be added to a suitably modified version of the LODES architecture. Section 5 and Section
6 present, in detail, how this learning framework is used on two example problems. Section 7
describes the related research and the future directions of our research.

2 LODES System

2.1 LODES Overview

The LODES is a continuous, cooperative distributed knowledge-based system capable of
monitoring TCP/IP-based internetwork traffic over EthernetTMand diagnosing problems that
occur during transmission of information (mainly layer-2-to-layer-4-related problems). Each
network segment has a LODES agent; these agents diagnose problems either cooperatively or
autonomously depending on the problem type. A LODES agent consists of four components
(see Fig. 1): the NOBS (Network Observer) component analyzes all packets flowing through
its network segment and calculates statistical data. Based on this analysis and knowledge about
symptoms of internetwork problems, the NOBS component can recognize the potential exis-
tence of a network problem. Additionally, NOBS can save packet data into a file in a timely
manner to be used for later analysis. The NePS (Network Packet Sender) component can build
and send test packets to any host so that the LODES agent can understand the features and the
current state of this host. The Chales (Communication Handler) component is responsible for
communicating with other agents. The LAND (Local Network Diagnostic) component is the
main part of this system that controls other components during diagnosis. During periods when
the network is functioning correctly, the NOBS and LAND components build models of the
evolving features of local network segments such as how many host nodes are attached, which
nodes are routers, what kind of services are supplied by each node, when a node is attached or
replaced, what kind of services are typically used, how each node reacts to test packets and some

3

Controller

Planner

Proposed plans and operations
Select a plan
and an operation

Results of operation

Propose plans

Current State
Messages from others

LAND component

Chales component

Messages to/from others

Signal

Selected operation

NOBS component

NePS component

Communication with
 other agents

Actions to environment
(Sending test packets)

Environmental observations

Changes of
environment

 Shared Memory
(Working Variables)

Executor

Figure 1: Conceptual Structure of LODES

undesired or unexpected packets (such as unknown protocol packets, a packet whose destina-
tion is another node), routing definitions in adjacent routers, and throughput of lines between
local and adjacent network segments. Note that each agent has the same long-term diagnostic
knowledge. However, features of network segments can be quite different, so that the diagnostic
strategies and plans used by an agent for the same problem may be different.

The LAND has three modules: Planner, Controller, and Executor. The Planner, based on
local and acquired data, proposes the possible causes of the current problems (such a cause is
called a hypothesis (HP)), together with a likelihood rating. Based on these ratings, the Con-
troller selects the most plausible HP and places this HP in a shared memory area (SMA). The
Planner builds a high-level plan to verify the correctness of this hypothesis as a valid explanation
for the problem and translates each of the plan steps into an appropriate sequence of mid-level
plans. These plans are further expanded into a sequence of operations to achieve the plan’s
objectives. These sequences of plans and operations are stored in the SMA and are retrieved
by the Controller. The Controller also looks at received data and requested jobs (which in turn
are translated into operations) from other agents in selecting an appropriate operation which,

4

from its local viewpoint, contributes most to the overall network diagnosis. Then the Executor
executes this selected operation and its results are stored in the SMA. After the initiation of the
operation, the Planner reanalyzes what the most appropriate HP and plan is to work on, based
on the newly received data and the result of the operation.

2.2 Coordination Level

Coordination of LODES diagnosis agents is classified into three levels: nearly autonomous
coordination (A-coordination), shallow coordination (S-coordination), and deep coordination
(D-coordination, see Fig. 2). The nearly autonomous coordination level implies that each agent’s
local control regime is almost exclusively computed based on data available locally. In this
mode, it is assumed that knowledge about the specifics of operations and their results at other
agents will minimally affect the decision about what operations to choose next. Furthermore,
analyzing data received from other agents will unnecessarily slow down local problem-solving
activities. In contrast, the S-coordination level involves analyzing data received from other
agents and requesting data and jobs from other agents. However, the non-local knowledge used
in making control decisions is still severely limited since information about the range of activities
of other agents and detailed features of the environments of other agents is not used. Control
of local problem solving is based on only a small number of parameters or ratings attached
to job requests from other agents [27]. Both of these coordination levels can result in some
important jobs not being executed in a timely manner, some messages not being sent at the right
time, and redundant job execution. However, it is assumed that this lack of coordination does
not result in a serious side-effect. In situations requiring S-coordination level, payoff-matrix-
based or utility-based coordination is sufficient; tighter coordination in these situations leads to
unnecessary communications and control inferences reducing local problem-solving efficiency.
When a job is requested — for example, the receiving agent uses without modification, as though
derived by itself, an attached rating number decided by the requesting agent — the receiving
agent does not analyze why it is important. The D-coordination level implies that local control
decisions involve the use of a partial global view of the goals and activities of other agents [7].
This view is achieved by agents exchanging non-local data such as their current HP, scheduled
plans, resource usages, intermediary results, and observed data of other agents. A partial global
view enables each agent to understand the problem-solving state of other agents, so that control
decisions about which local tasks to execute next are made to optimize network problem-solving
performance rather than local problem solving. D-coordination is also necessary to avoid serious
side-effect interactions among agents and environments.

The development of situation-specific control rules can be seen as an attempt to learn which
coordination level is appropriate for a specific problem-solving situation (see Fig. 3). We as-
sume that normally an agent reasons under S-coordination, that is, it decides the ratings of plans
and operations based on local and acquired non-local pay-off matrices or utility numbers [27].
When the D-coordination level is selected according to predefined knowledge or learned coor-
dination rules, an agent identifies the required non-local information, coordination actions, and

5

More sophisticated and more
expensive inferences are re-
quired.

�
�
�
�
�
�
�
��

Nearly Autonomous Coordination

Shallow Coordination

Deep Coordination

Figure 2: Coordination Levels

A-coordination

S-coordination

D-coordination

Process of inference

Figure 3: Changes of Coordination Levels

negotiations. Then it decides on the ratings of plans or schedules for the required actions for
coordination. Under A-coordination, references to messages from other agents are postponed
that are associated with plans operating under A-coordination, until messages associated with
plans operating under S- or D-coordination are received, or until the agent finds that no further
local problem solving can be performed without access to non-local data. When multiple prob-
lems that require different coordination levels occur simultaneously, agents can handle messages
from/to other agents on the problem-specific and situation-specific basis. That is, depending on
which problem the message is involved in, the message is analyzed under the appropriate coor-
dination level.

2.3 Models of Network and Other Agents

Each LODES agent initially has only a local view of the computer network including local rout-
ing definitions, local topological structures, the number of host nodes attached, and maximal
throughput to adjacent network segments. This model is derived as a result of analysis of packet

6

flow through the agent-specific network segment. To always maintain a complete and accurate
model of the entire network can be quite expensive and time-consuming if the size of the net-
work and the number of hosts are large, due to changing and evolving network features over
time. Instead, the LODES agents exchange local information and use the domain theory during
problem solving based on the needs of the specific diagnostic situation. This enables the agents
to incur the cost of obtaining a more encompassing, accurate model of the network only when
necessary. The universal and local network domain theory model used by a LODES agent is
described in Appendix 2.

3 An Example Problem

Fig. 4 shows the network environment for the example problem where there are network diag-
nosis (LODES) agents L1, L2, ..., L7 monitoring traffic on different segments of the network.
The example problem is as follows: HostA on Net1 sends a broadcast to Net7, but most of the
hosts in Net7 cannot understand that protocol. Upon receiving the broadcast, they simultane-
ously send back packets of ICMP (Internet Control Message Protocol [2]) ‘port unreachable’ to
HostA1. This symptom is perceived by the NOBS component in every LODES agent along the
return path to HostA. In this case, L1, ..., L7 react to this flow of ICMP packets because these
packets traverse each segment of the network. The packet data containing this symptom previ-
ously saved by the NOBS is passed to the main LAND component before the diagnostic process
is started. Note that LODES agents must react to decide whether or not the problem is tolerable
when this symptom is perceived, because it is possible that so many hosts send back the ICMP
packets; the gravity of this problem is decided based on the number of the ICMP packets and
the line throughput (and the frequency of this problem).

The high-level plan that is created in each LODES agent for this problem is as follows: The
goal of the first step is to get basic information such as who sent the original packets that were
not understood and who did not understand it, the number of the original packets, and the num-
ber of ICMP ‘port unreachable’ packets (Get-Basic-Info). The goal of the second step is to
identify both the local route that packets passed through (Find-the-Route), and the quality or
other limitation of the adjacent lines (Get-Line-Cost). The goal of the final step is to decide
the gravity of the problem based on the collected data and, if appropriate, to warn the network
managers (Decide-Gravity) (See Fig. 5). To make this high-level plan concrete, agents map
these goals into specific plans (mid-level plans) that can be directly translated to a sequence
of operations. For example, the goal Get-Line-Cost can be achieved by one of the follow-
ing mid-level plans: (1) Get-Max-Throughput, Get-Current-Traffic, and Estimate-Current-
Cost-from-Throughput sequence, (2) Kinds-of-Line, Get-Current-Traffic, and Estimate-
Current-Cost-from-Linetype sequence, or (3) Get-RTT-between-Both-Ends and Estimate-
Cost-from-RTT sequence2. In addition, the monetary cost of communication is also calcu-

1In order to report that this packet is discarded because the protocol is unknown.
2RTT stands for “Round Trip Time.”

7

L1 L4

L6

L5

L3

L2

L7

R

R

R

R

R R

R

A slow transmission line

Ln A LODES agent

Net1 Net7

R1

R2

R3

R4

R5 R6

R7

Host A

Host B

R Router

Figure 4: Network Environment for the Example problem

lated if communication occurs over a line that incurs an explicit charge for each communication
transaction. If we assume that the adjacent routers do not look at Simple Network Management
Protocol (SNMP [2]) packets, then the mid-level plan (3) is the most appropriate one for the
current network environment. In the initial diagnosis of this problem, all agents perform only
S-cooperation involving the exchange of domain data. As a part of the diagnosis, agents initially
exchange basic information about the network segments of both ends. At the end of their ini-
tial diagnosis, they all exchange their decisions about the cause of the problem and its severity.
This last exchange of information permits agents to recognize when they have come to different
conclusions.

An unexpected problem occurs during this diagnostic problem solving when most of the
routers in Fig. 4 do not look at SNMP packets and thus plan (3) is performed. The execution of
this plan by each LODES agent causes the simultaneous flow of many ICMP echo request and
reply packets. This, in turns, triggers the NOBS in each LODES to initiate a diagnostic process
to understand this flow. This side-effect problem caused by the diagnostic process is called the
secondary problem in contrast to the original problem which we call the primary problem3. Even
if the primary problem is tolerated (because the number of ICMP unreachable packets flowing in
the primary problem is low), the secondary problem is not, because an ICMP echo request packet
is sent intentionally by the LODES whereas an ICMP port unreachable packet is a domain level
error message. Thus the final decision of the secondary diagnosis is different. Especially L5
and L6 cannot tolerate the secondary problem because they know their common adjacent line is
a slow transmission one. The cause of this secondary problem is that each LODES agent sends

3The secondary problem leads to quite similar problem-solving activities as in the primary problem except that
the agents reuse the results of the Find-the-Route and Get-Line-Cost. These results can be reused because they
were computed very recently.

8

Get Max Throughput

.

Current Traffic

Current TrafficKind of Line

Get-RTT-between-Both-Ends

Money Cost (Extra Knowledge)

Notification of the problem

Get-Basic-Info Find-the-Route Get-Line-Cost Decide-Gravity

Using SNMP

Test and Observation

Analysis of Packets

or

+

+

: High-level plan

: Mid-level plan

Send a message to NePS
for sending ICMP Echo
request packets and
measuring their RTT

Predict the current line
quality based on the average
of RTT

Calculate the average
 of RTT

: operation

20 times

or

Estimate ...

Estimate ...

Estimate ...+

+

+

(1)

(2)

(3)

Figure 5: Plans and Operations for the Example problem

9

many (twenty) ICMP echo request packets and receives these replies (ICMP echo reply packets)
for measuring the round-trip-time of messages in the plan Get-RTT-between-Both-Ends. This
is redundant because the results of each LODES agent executing this plan are expected to be
identical.

The secondary problem occurred because the following inferences were not included in local
control decision-making:

� That there exists a slow line in the communication path being analyzed. This information
is expressed by the variable MaxThrput (model of non-local network features)

� That the diagnosis will generate 40 packets (model of agent’s actions)

� That other agents redundantly perform the same diagnosis (model of events in other agents)

Thus, to understand this situation and, in this case, decide that only one agent should be executing
this plan, a situation-specific D-coordination control plan based on knowledge of the domain
model and analysis of their own and other agents’ inferences is required.

Our objective in this paper is to describe how agents can analyze these primary and secondary
problems and learn coordination rules so that they can avoid recurrence of the secondary problem
in the future. Using this example, the framework of our learning method is developed in the
following section. A more detailed explanation of how the coordination rules for this situation
are derived is described in Section 5.

4 Learning Coordination Plans

4.1 Roles of Learning Coordination Plans in Distributed Problem Solving

Since, in general, CDPS agents are semi-autonomous systems and operate in different local
environments, each agent may have different perceptions of what goals or activities are most
important to work on and how to best achieve these goals. This means that quite different
decision-making may occur at different agents. The lack of information about the problem-
solving states of other agents leads to uncertainty in local decision-making which can, in some
cases, cause serious problems [16]. Since the costs for all agents exchanging all information
seem unrealistically high, it is important to understand what information in (specific) problem-
solving situations should be exchanged. Furthermore, even if an agent has the appropriate non-
local information, computation costs to explore to the fullest the implications of this information
may be impractical. Thus, what needs to be understood is not only what information should be
transmitted among agents but also what type of inferencing should be done on this information.

Learning in CDPS can improve the coordination activities by attacking these issues. The ini-
tial problem-solving process may be inefficient or fail, but by learning what sort of information

10

and reasoning is required in a specific situation, more efficient inferencing and more effective
coordination can be achieved. In addition, selecting the appropriate coordination level is also
possible by understanding what kind of information was exchanged and whether or not agents
required non-local models in a similar past situation. This learning can lead to the system doing
only the necessary control reasoning for a specific situation, thus avoiding inefficiencies due to
both over- and under-coordination.

In summary, learning coordination control in CDPS should result in an understanding from
a situation-specific perspective:

� What coordination level is appropriate;

� What situation-specific coordination is appropriate;

� What non-local information is important or redundant in a specific situation;

� When and to whom important information should be sent;

� How to decide the priority of each message and action;

� How to quickly understand the meaning of non-local information.

Note that the first four items suggest that learning in CDPS involves acquiring organizational
design-level knowledge, because they are partial solutions to the basic question which agent
does what, when [9].

4.2 Conceptual Cooperative Learning Model

In this section, a model of network coordination is described in which learning is incorporated.
There are three major issues involved in implementing a learning mechanism: when to invoke
learning, how to coordinate learning among agents, and when and how to incorporate learned
results in other agents.

In general, the learning process should be invoked when the following four cases are recog-
nized:

(a) When a problem-solving process failed; an agent must identify the reasons such as why
an important operation was not chosen, and why a negotiation during problem solving
did not reach consensus. For example, when a number of agents have scheduled actions
which have a conflict, they must learn which agent should first give up its action and select
the second best action.

(b) When a problem-solving process took much longer time than the expected time or could
not finish within a requested time. This occurs, for example, because agents that played

11

important roles in a diagnosis were idle for a long time waiting for answers from other
agents and an important operation was delayed, or because agents performed redundant
local activities or unnecessary coordination activities.

(c) When an unacceptable situation occurred in the environment during problem solving such
as an unacceptable amount of network traffic that is generated as a result of the diagnos-
tic process. For example, a LODES agent has an environmental observer which always
monitors its local network environment (see also the first example). In general, to detect
this type of situation, systems must have the environmental monitoring function and the
description of unacceptable situations.

(d) When the system diagnosed a problem not previously encountered or executed a plan
not previously chosen. In these cases, the system might efficiently diagnosed it and no
learning results may be derived. It is, however, important that the system not only learn
new coordination rules but also evaluate its own inference process for a new situation.
For example, after a system designer added a new rule, the system can understand that
this rule is really selected in a timely manner and works effectively for the diagnosis.

Additionally, the learning process should also be invoked on a periodic basis. There may be
latent problems that have not yet manifested themselves. For example, redundant messages and
activities in a problem-solving trace could alert the learning system to the need for coordination
if at some time later, the network became overloaded or more segments were added. In any case,
when the learning process is invoked we call the problem it is working on as a learning analysis
problem (LAP). The LAP is called non-local if it is caused by the lack of coordination. If the
LAP is caused by only the lack of local analysis4, the LAP is called local.

As with network diagnosis, communication and coordination among agents involved in
learning is also required when there is insufficient local information for analysis to determine
the exact cause of the problem. Agents can exchange the following information when working
on a LAP:

(1) Full or partial traces of the problem-solving process and the objectives of selected plans.

(2) Requests for analysis of traces.

(3) New coordination rules that remedy the problem.

(4) Required conditions for preventing or avoiding recurrence of the same LAP.

For example, (1) and (2) are used for identifying why (non-local) plans or operations were ex-
ecuted redundantly or not executed at the right time. When an agent has more accurate view
of the current LAP and it can also create a new coordination rule to avoid the same LAP, the

4The example problems are that (1) an important message already arrived but the agent did not read it soon and
(2) it takes a long time to understand the acquired non-local information.

12

rule should be sent to other agents so that they can decide whether or not the proposed rule is
acceptable (see (3)). When the proposed rule is rejected or a new coordination rule cannot be
generated in the agent, the conditions for avoiding or preventing the LAP are sent to the con-
cerned agents. In this case, each agent finds its own coordination rule which does not violate
the desired conditions.

Negotiation may be required to achieve consensus on new coordination rules. For example,
when an agent cannot find an alternative plan satisfying the required conditions, it may request
permission to use the old plan to avoid unsuccessful or extremely inefficient problem solving.
Other agents, especially the agent affected by the LAP, should decide whether using the old plan
is acceptable or an alternative plan should be proposed.

We also sometimes identify ‘similar situations’ for comparative analysis and for applying
identified coordination rules. Since most LAPs are concerned with the efficiency of inference,
two similar situations of problem-solving processes in this paper are defined as situations where
(i) two problems have the same initial local data in the application domain (in internetworking
diagnosis, they have the same symptom), (ii) the same diagnostic hypothesis is selected, and (iii)
the same sequence of plans is created to confirm the selected hypothesis. We must also consider
values of (local and non-local) variables that express the intermediary results of the inference in
each situation5. However specifying all values may lead to over-specification because some of
them may be useless and redundant. To understand which variables are important for specifying
the situation, comparative analysis is an important technique if the system has no strong domain
theory. Moreover, for distinguishing a problem from others including multiple-cause cases as
well as single-cause cases, we introduce the concept of distinguishability. Two problems are
distinguishable if and only if there is at least one observable result which has a different value
in each problem. We assume that when two problems are not distinguishable they are identical.

To extend the definition of ‘similar situations,’ the concept of commutative plans is also
introduced since the execution order of plans is uncertain in a distributed environment. Let a
sequence of plans P1, ..., P� represent the executed order in the mainstream. Plans P��1 and P� are
commutative if and only if P� refers to the variables defined in or before P��2, and the execution
of P� prior to P��1 does not affect the execution of P��1. Using this concept of commutative plans,
the equivalence relation among sequences of plans can be defined. The recognition of equivalent
plans which implicitly represent similar problem-solving situations. Using this concept, (iii) in
the previous paragraph can be substituted for “the equivalent sequence of plans is created to
confirm the selected hypothesis.”6

The control incorporating learned coordination rules is implemented as follows: appropriate
HPs, high-level plans, mid-level plans, and operations are usually selected based on the ratings
which are locally or non-locally calculated from a payoff matrix or utility numbers, that is, the
inference is under the S-coordination. After learning coordination rules, HPs, plans, and op-

5In our example, agents must consider the values of MaxThrput in the agents on the route of packets.
6To be precise, an agent must distinguish between plans proposed locally and plans induced by messages from

other agents. The identification of similar situations in distributed problem solving should be discussed elsewhere
in detail.

13

Coordination-level:
Required-nonlocal-data:
Control-description:
Situation:

appropriate coordination level
names of needed non-local variables
control for coordination (using non-local variables)
situation identification (HP, sequence of plans, and variables)

Plan 1

Plan 2

Plan 3

Plan 4

Control Option

Control Option

Control Option

Control Option

Figure 6: Model of Coordination Control

erations have special coordination annotations, which are called control options in this paper
(Fig 6). A control option describes the coordination level, needed non-local information, ad-
ditional non-local control and communications based on this non-local information, and when
this coordination is required, that is, deciding whether or not the current situation is similar to
one of the past examples. This control option is referred by the Controller before executing
the corresponding plans and operations. In our example, a control option corresponding to the
plan Get-RTT-between-Both-Ends is identified by learning (see Fig. 14). This control option
describes how, before performing this plan, agents should identify the existence of a slow line,
and if it exists, additional coordination described in the “control-description” is executed.

If an agent does not have sufficient non-local information, it is possible that the agent decides
that the current problem is identical to a past problem and other agents decide that these are not
identical (and also vice versa). In such a case, this problem-solving process based on the learned
coordination rule may fail or execute inappropriate coordination. However, again invoking our
learning method, agents can understand what non-local information was important for avoid-
ing the recognized inappropriate behaviors, by analyzing the trace. They then can exchange
this information for identifying the problem. We will discuss this topic, using an example, in
Section 6.3.

14

The next issue is whether or not the learned coordination rules should be sent to other agents.
If the LAP is non-local, the concerning agents can identify their own new plans or coordination
rules. However, should these plans be sent to all other agents? Our current answer is no because
the learning results depend highly on their local knowledge, thus, such a learning result is often
not useful. Furthermore, the same LAP may not occur in other environments. For example, the
secondary problem in our example never occurs in the network where all routers look at SNMP
packets or all segments are connected via high-speed lines. However, if only universal domain
theory7 is used to identify a learned coordination rule, this rule may be useful to all agents.

4.3 Traces of Inference

This section addresses what kinds of data should be stored as a trace of problem solving. We
assume that each agent is a sequential machine, so that its activities can be described by a se-
quence of operations. Since messages from other agents can arrive at anytime, a local operation
may be suspended or canceled according to the importance of arriving messages.

First we try to express these events and actions sequentially. For example, suppose that a
message, M1, arrives during the execution of the operation A1. According to the rating of this
message, the agent takes one of the following actions: (1) suspends the current operation, reads
M1, and then either cancels or resumes the current operation, or (2) reads M1 at a later time
after the completion of some operations. In both cases, activities of this agent are expressed as
in Fig. 7. In the case (2), we assume that the message M1 arrives right after the operation A1.

Our trace of problem-solving activities is a sequence of nodes with annotations. This trace
is classified into two levels: the plan level and the operation level (see Fig. 8). The plan-level
trace is an alternate sequence of plan nodes and decision-state nodes. A decision-state node cor-
responds to a decision-making process which determines coordination level, a plan to execute,
and plans to be discarded. A plan node corresponds to an executed mid-level plan. This plan
node is expanded to the corresponding operation-level trace, which is a sequence of operation
nodes, where all operations are invoked for achieving the objective of the mid-level plan. All
nodes express the following inference activities:

Decision-State Node: Why the current coordination level, the current HP, and the current plan
were chosen. Why the current plan was suspended. The (organizational and coordination)
knowledge, local data and non-local data used for these decisions.

Plan Node: The expanded sequence of operations for the corresponding plan. Data and long-
term knowledge used in constructing the sequence of operations. Used (local and non-
local) data, requesting and requested jobs during the execution of the plan. Newly pro-
posed plans and HPs generated as the result of the execution of the plan.

7see Appendix 2.

15

M1
A1

A2

A3

A4

M1 Arrival

Read M1

A1

A2

M1 Arrival

Read M1

A1,1

A1.2
Resume/Cancel of A1

A2 or operations generated by M1

M1 is recognized as
an important message

M1 is recognized as
an unimportant message

(1)

(2)

Figure 7: Examples of Sequences of Events and Actions

Operation Node: The variables referred to, the variables that were set, knowledge used for
the execution of the corresponding operation. If this node corresponds to the analysis of
received data, knowledge used for this analysis.

An annotation describes the important pieces of information for the inference activities of the
corresponding node so that the same inference can be re-played. Annotations are described in
Appendix 1 in detail. Fig. 8 illustrates a number of example traces. (a) shows the sequence of
activities in which Plan B is selected at State 1 and the operations B1 to B4 are executed for
this plan. In (b) and (c), the message M1 with a high rating arrives during the operation A1,
which is suspended while M1 is analyzed. Then, in the new decision state, the current plan is
canceled and the new plan, Plan B, is invoked in (b), whereas the current plan is resumed in (c).
A number of actual examples are illustrated in Fig. 12, Fig. 15, and Fig. 16.

4.4 Learning Methods

Before explaining our learning method, an important concept needs to be defined, which we call
the mainstream of problem solving. Intuitively, the mainstream is a set of activities involving
agents that eventually contribute to the completion of the problem-solving process. More for-
mally, the mainstream of problem solving is defined as follows: The final plan that directly led
to the final result is in the mainstream. Plans that led to the results referred to in any plan in
the mainstream are in the mainstream. Plans that proposed or strongly supported any plan in

16

Plan A

State 2
(suspend
Plan A, choose
Plan B)

Plan B

A1,1

M1 Arrival

Read M1

A1,2
Cancel of A1

B1

Plan A

A1,1

M1 Arrival

Read M1

A1,2
Resume A1

A2

Executed operation (operation node)

Executed operation (operation node)
(a message received during this execution)

Executed plan (plan node)

Plan B

Plan C

An

B1

B2

B3

B4

State 1
(select
 Plan B)

State 2

Decision-making (decision-state node)
(decision about a subsequent plan,
or suspending the current plan)

(a)
(b)

(c)

Annotations

Figure 8: Examples of Traces

17

the mainstream are in the mainstream. Plans that sent messages that induced any plan in the
mainstream are in the mainstream. An operation is in the mainstream if the plan invoking it is
in the mainstream. The process of constructing the mainstream may involve activities of other
agents when operations requested by these agents or variable values sent by these agents were
respectively executed or referred to as parts of the mainstream problem solving. Sometimes a
problem-solving process may be prematurely aborted due to a time-out. In this case, the con-
struction of the mainstream requires the system to restart the problem-solving process at the
place it was aborted so that a final result can be generated8. If agents cannot find any result
by applying all possible plans, it implies that some plans are lacking so system managers have
to add new plans for this problem and there is no mainstream in this case. Plans or operations
which do not belong to the mainstream can be seen as eventually redundant activities in this
specific problem-solving situation.

The learning of situation-specific coordination rules follow the steps described below:

Tracing back the mainstream: The first step is to identify the mainstream of problem solving.
Agents that produced the final results construct the mainstream from the traces of their
problem solving through a backward chaining process. If they used non-local information
as part of its problem solving, this backward chaining process spreads to other agents in
order to understand their contribution to producing the final results.

Detection of LAPs: The second step involves the identification of LAPs. These LAPs are
found by analyzing the mainstream based on the following events:

(1) Variables that were never referred or used;

(2) A mainstream activity whose long delay can be tied directly to the delay of compu-
tation of other mainstream activities;

(3) Redundant activities such as operation executions, communications, and negotia-
tions that adversely affect the progress of problem solving associated with the main-
stream;

(4) Redundant activities not part of the mainstream that are extremely costly or have
interactions with the system’s users;

(5) Redundant activities in the mainstream; for example, a variable was defined twice
and known values are sent from other agents; and

(6) Understanding of non-local information using non-local domain theory if this pro-
cess exceeds a certain number of steps or a certain amount of time.

There is no mainstream when the problem-solving process reaches a dead end and no result
is produced. In this case, the LAP problem becomes a question of why some plans were
not selected, or why a negotiation process failed. If an unacceptable situation is reported

8This is necessary to understand what final result should be produced before the time-out. Then our learning
method can identify which parts of the problem solving were redundant and eliminate these parts.

18

by a component external to problem solving (like the NOBS component in LODES), each
agent must find which plan causes this situation according to the history of actions and
their effects on the environments. In our example, the NOBS component recognized the
problem that there was an unusually large flow of ICMP echo packets. The agents then
concluded, based on the history of actions, that the plan Get-RTT-between-Both-Ends
caused this LAP.

Agents cannot easily determine whether a LAP is local or non-local. Though (6) is always
local because consuming too much time for reasoning about non-local information is a local
agent problem, redundant reasonings that are induced by messages from other agents and that
are caused by the lack of appropriate non-local information cannot be directly recognized by a
single agent without reference to the activities of other agents.

LAP analysis: The third step involves identifying the reasons for a LAP occurrence, that is,
why redundant or inappropriate activities occur. As part of this step, an agent also iden-
tifies conditions for preventing or avoiding the recurrence of the LAP. A LAP is usually
caused by the lack of appropriate non-local data and/or appropriate rules for the analysis of
this non-local data. Another type of problem is that the inferencing required to understand
the meaning of non-local data is time-consuming. For example, suppose that, to recognize
the meaning of a delivered value, it is necessary to refer to another non-local value. In
this case, the LAP may occur because the agent requests the value and may be idle for
a long time waiting for the answer. Furthermore, if the agent has to apply the domain
theory in this recognition, a new explanation rule to quickly understand the meaning of
this non-local data can be derived by applying EBL. Also, comparative analysis is useful
in cases where there is not sufficient explanatory knowledge to understand why certain
activities are important or redundant. That is, by comparing two similar cases, agents can
establish when a certain activity is redundant and when it is not. Furthermore, compar-
ing agent traces is often useful in explaining why they reached different conclusions even
though their input data appeared identical. Note that the comparative analysis assumes
that the two traces must be similar; thus, if they are completely different or agents are
heterogeneous (or have different problem-solving architecture), this technique is not ap-
plicable. In our example, the plan Get-RTT-between-Both-Ends was executed in many
agents simultaneously because their adjacent router did not look at SNMP packets. This
is redundant, however, because the result of this plan is usually identical in all agents. De-
rived conditions for preventing this LAP serve (1) to reduce this redundancy of the plan
or (2) to reduce the number of ICMP echo packets.

Coordination Plan Modification: The next step involves following the conditions in the pre-
vious step and modifying the agent control structures to incorporate these conditions:
(M1) substituting another mid-level plan that is expected to produce the same result, (M2)
postponing an action until relevant values are obtained or the appropriate state has been
achieved, (M3) changing the order of messages, or (M4) using results obtained from an-
other agent instead of generating them locally. The modifications of local control struc-

19

tures of an agent may have to be done in conjunction with changes to other agents’ con-
trol structures in order to have the original modifications achieve the desired effect. In
this case, the affected agents need to agree to make the associated changes to their local
control structures.

In the example developed previously, the agent requests of its partner agent that both val-
ues are sent simultaneously to remedy the LAP since they are only meaningful as a pair.
If the partner agent agrees with this proposal, it modifies its local control so that both val-
ues are transmitted together. Another example of cooperative modification occurs when
an agent can establish that a specific variable value is key to distinguishing whether an
activity is important or not. The agent can modify its local control or request the modifi-
cation of the non-local control from another agent so that this value would be computed
or obtained prior to this action, and this action would be done only if this job is really
important.

An alternative approach to avoiding the recurrence of a LAP when it involves multiple
agents is to have one agent act in a centralized manner rather than instituting a distributed
control solution. In this case, one agent, as a representative of this agent network con-
structs an appropriate non-local coordination plan (and this coordination activity may be
performed in a centralized manner controlled by this representative agent). This repre-
sentative agent is chosen so that it can understand the reason for the LAP and can identify
conditions for avoiding the LAP that should be followed by other agents. Proposing the
non-local coordination plan by this agent as well as identifying the conditions is appro-
priate, if it is possible. This centralized learning of coordination plans can also introduce
new synchronized activities if the LAP is caused by simultaneous actions of different
agents. If it is impossible or if the proposal is rejected by other agents, the identified
conditions are distributed into the agent network and each agent builds and modifies its
own coordination plan. The situation where the centralized approach is required occurs
in the previously described example. In this case, there are only two agents that are seri-
ously affected by other agents and they can understand why they are affected. Thus, one of
these two agents proposes a coordination rule in which one of the agents performs the plan
Get-RTT-between-Both-Ends and others wait for the result by applying the modification
(M4). The derived coordination rule is also performed in a centralized manner.

Negotiation: When either proposed coordination plans or proposed conditions for avoiding the
LAP cannot be accepted, negotiation among agents is necessary to reach a compromise
which is not best but better than ending in a rupture. By exchanging the parts of the con-
ditions that cannot be satisfied, they can decide whether or not it is acceptable. Depending
on the compromise results, some agents may select the second best plan. If no agree-
ment is reached, this is an unsolvable problem and reported to system designers. In our
example, the derived new coordination plan may be refused by the end nodes L1 and L7
if the primary problem is serious; their activities are much busier than others since they
are in the networks where hosts causing and affected by the primary problem are attached.
They may understand that the proposed coordination rule will cause a long delay. The al-
ternative proposal is for L1 and L7 to perform the original plan by ignoring coordination

20

or choosing another plan by which the same result can be expected. Since we assume that
the primary problem is not so serious, L1 and L7 can accept the proposed coordination
plan.

Situation Identification: An agent also identifies when the learned coordination rules should
be applied. In our learning framework, the learned rules are usually applied to similar sit-
uations defined in Section 4.2. There are, however, some cases where it is not appropriate
to rely on the defined similarity because it is based on local information and non-local
information acquired so far; the LAP may occur because of lack of non-local informa-
tion. In such a case, this required non-local information should be taken into account to
accurately identity when new coordination rules should be applied. In our example, not
only the proposed HP and plan sequence but also the values of the variable MaxThrput
in other agents are required to identify whether or not there is a slow line. The result
of ‘LAP analysis’ is useful to understand this missing information. Analysis based on
explanatory knowledge and comparative analysis is also performed if further analysis is
required. In our example, by comparing the traces of L5 and L6 which made the same
decision on the secondary problem and also by comparing the trace of L5 and L4 which
made different decisions, the required variable to identify the situation where the proposed
coordination is necessary is MaxThrput. If agents have strong domain theory and they
can explain that only L5 and L6 complained of the secondary problem because of the value
of MaxThrput, comparative analysis may not be necessary. The detailed explanation of
our example is shown in the following section.

The derived coordination control rule is described as a control option which corresponds to an
HP, a plan, or an operation. The coordination rule enables the system to decide whether the
new plan or the original plan should be selected according to the non-local information that was
missing in the previous problem solving.

During the learning process, an appropriate coordination level is also determined. For ex-
ample, if an HP and the plan sequence to verify this HP is selected, and if no non-local data is
referred during this plan sequence, then agents can choose A-coordination when this HP is rated
higher than a certain number. Conversely, when agents require additional non-local information
and its analysis before a plan is executed, D-coordination should be selected while this plan is
executed.

4.5 Proposed Architecture

This subsection describes a new LODES architecture which can incorporate learned, situation-
specific coordination rules.

The major changes to this architecture are in the Controller; this module is divided into
three submodules: Scheduler, Coordinator, and Organizer. The Organizer determines relatively
long-term decisions such as the current coordination level (A-, S-, or D-coordination) and with

21

O
rg

an
iz

er

C
oo

rd
in

at
or

Sc
he

du
le

r

C
on

tr
ol

le
r

P
la

nn
er

 (
ba

se
d

on
 t

he
 lo

ca
l v

ie
w

)

Sh
ar

ed
 M

em
or

y
(S

M
) E

xe
cu

to
r

C
ha

le
s

(c
om

m
un

ic
at

io
n

ch
an

ne
l)

 N
eP

S
(a

ct
io

n
to

 e
nv

ir
on

m
en

ts
)

N

O
B

S
(E

nv
ir

on
m

en
ta

l o
bs

er
va

ti
on

s)

M
et

a-
le

ve
l C

on
tr

ol
le

r

D
om

ai
n

T
he

or
y

(e
xp

la
na

to
ry

 k
no

w
le

dg
e)

C
on

tr
ol

 K
no

w
le

dg
e

D
ia

gn
os

ti
c

K
no

w
le

dg
e

C
oo

rd
in

at
io

n
K

no
w

le
dg

e

fr
om

 lo
ca

l p
er

sp
ec

tiv
e

fr
om

 n
on

-l
oc

al
pe

rs
pe

ct
iv

e

C
R

IT
IC

L
ea

rn
in

g
N

eg
ot

ia
to

r

L
ea

rn
in

g
D

at
a

R
et

ri
ev

er
C

oo
rd

in
at

io
n

P
la

n
M

od
if

ie
r

L
ea

rn
in

g
K

no
w

le
dg

e

L
A

P
 K

no
w

le
dg

e

L
ea

rn
in

g
M

od
ul

e

T
ra

ce
D

at
a

T
ra

ce
 D

at
a

E
B

L
 M

od
ul

e

Figure 9: New Architecture of LODES

22

whom this agent should coordinate. The Coordinator selects appropriate coordinating actions.
The Scheduler chooses an appropriate operation out of those proposed by the Coordinator and
the Planner. When a plan or an operation is selected by the Scheduler, the Organizer and the
Coordinator look at the corresponding control option (as well as the predefined coordination
knowledge). According to the control option, the Organizer selects an appropriate coordination
level. When there is not a control option specified, the system is under the default coordina-
tion level that is S-coordination. The Coordinator performs appropriate actions according to
the selected coordination level. For example, when D-coordination is selected, the Coordinator
identifies which non-local information is required and how to coordinate with other agents based
on the control option. It requests this information or appropriate jobs of other agents, analyzes
the acquired non-local results, and proposes appropriate activities to the Scheduler (before the
corresponding plan or operation is executed). Other activities of the Coordinator are, for exam-
ple, sending local information (D/S), understanding non-local data using domain theory (D/S),
rating and re-rating requested jobs (D/S), acquiring from other agents their candidate control
plans (D), getting current resource usages (D), getting coordination level in other agents (D),
informing other agents of the coordination activities in the current specific situation(D), and
rating data and jobs being sent (D/S). If A-coordination is selected, the Coordinator postpones
processing of received messages from other agents.

For this architectural modification, knowledge is also re-organized; in the previous archi-
tecture, knowledge for control and coordination was intertwined with diagnostic knowledge.
Diagnostic knowledge includes the set of rules for troubleshooting and a domain theory that
describes network behaviors and network features so as to predict local and non-local internet-
work activities and states. In the modified architecture, diagnostic knowledge is clearly sepa-
rable from control knowledge and coordination knowledge that is referred to by the Organizer
and the Coordinator, respectively.

Furthermore a Meta-level Controller component is added to LODES so that an agent can not
only automatically start a diagnostic process according to a signal from the environmental ob-
server (NOBS) and end the current diagnosis, but can also understand whether or not a learning
process should be invoked. For example, a LAP caused by the occurrence of a serious side-
effect as a result of LODES agents’ activities can trigger learning. According to the Meta-level
Controller’s decision, traces of problem solving are kept and are analyzed for the subsequent
use by the learning process.

The learning module, which achieves the functions described in the previous subsection,
consists of five submodules as shown in Fig. 9. The Critic submodule is in charge of ‘trac-
ing back the mainstream,’ ‘detection of LAP,’ ‘LAP analysis’ and ‘situation identification’ in
the learning steps. The Critic invokes the EBL-module to derive important pieces of explana-
tions for quickly understanding non-local information. The Learning Data Retriever stores and
retrieves past trace data by indexing based on the definition of ‘similar situations.’ The Co-
ordination Plan Modifier modifies the coordination rules according to the conditions identified
by the Critics in the LAP analysis step. The Learning Negotiator negotiates about new coor-
dination rules. Knowledge for learning is also added into LODES. LAP knowledge is used to

23

categorize which of the six cases the LAP falls under as described in Section 4.4. Learning
knowledge specifies how to modify or replace current plans according to the type of LAP and
given conditions for avoiding the LAP.

A learned coordination rule is stored in the following knowledge bases:

� if it is an explanation for quickly understanding non-local information then it is stored in
Domain Theory

� if it is a rule to obtain and analyze non-local information then it is stored in Coordination
Knowledge (as a control option).

� if it is a rule to decide a coordination level then it is stored in Control Knowledge (as a
control option).

These derived pieces of knowledge override previously defined knowledge.

5 Analysis of the Example Problem

In this section, we discuss in detail how coordination rules can be learned from our sample
example.

5.1 Analysis of the Unacceptable Situation

5.1.1 Looking at the History of Operations

Because of the secondary problem involving excessive communication over a slow-speed line
caused by the operations of LODES agents, the Meta-level Controller decides that learning
is necessary after the current problem solving is completed. This decision is broadcast to all
concerned agents, L1, ..., L7 to keep the trace of the diagnosis, to start the learning process, and
to stand by for the coordination activities for learning.

The first step of learning is for the Critic module of each agent to find the mainstream (Tracing
back the mainstream) and then the reason why this unacceptable situation has occurred (Detec-
tion of LAPs).

In our example, the NOBS component reports the problem called “ICMP Echo Storm.” By
analyzing the collected packet data, the Critic in L5 and L6 realizes that some LODES agents
have sent many ICMP echo request packets, and then received the replies to their packets. Fur-
thermore, these Critics understand that only LODES agents L5 and L6 complained of the sec-
ondary problem (we choose L5’s Critic as a representative, which we call the R-Critic) though

24

.
(21) Measure-RTT called in Get-RTT-between-Both-Ends
(22) Measure-RTT called in Get-RTT-between-Both-Ends

.
(40) Measure-RTT called in Get-RTT-between-Both-Ends
(41) <Calculate-average> called in Get-RTT-between-Both-Ends
(42) Measure-RTT called in Get-RTT-between-Both-Ends

.

Figure 10: History of executed operations

other agents were also involved. The R-Critic sends this data to the Critics in other agents and
asks them to analyze why they sent these packets in the previous diagnostic attempt. Each Critic
finds the operation Measure-RTT in which NePS sent twenty ICMP echo request packets and
the replies to them (Fig. 10). This operation was invoked in the plan Get-RTT-between-Both-
Ends.

5.1.2 Using a Network Model

In the second learning step, the causal relation between actions invoked by diagnosis of the
primary problem solving and the observed symptom of the secondary problem must be analyzed.
For this purpose, agents use the domain model of the internetwork. From collected actions
external to the environment and from the domain model, the R-Critic understands that 40 of
ICMP echo request packets and their replies flowed in Net5 during the previous problem solving
from/to each agent.

5.2 Identifying the Causal Plan to Be Eliminated or Replaced

The Critic must identify why this plan is selected by all agents and find the conditions for
avoiding recurrence of the secondary problem (LAP analysis). The Coordination Plan Mod-
ifier (CPM) investigates whether it is possible for the plans or operations to be eliminated due to
their redundancy, or to be substituted for other plans or operations which are expected to have the
same result without causing the secondary problem (Coordination Plan Modification). For the
sake of this investigation, the Critic analyzes the objectives of the operations, mid-level plans,
and high-level plans causing the secondary problem according to the results of the previous step.

Looking at the objective of the mid-level plan Get-RTT-between-Both-Ends in Fig. 11,
this plan was executed in order to compute the RTT between both ends. Basically, this result
does not depend on the observational point, but it depends on the locations of the end nodes9.

9This knowledge is expressed in the definition of Get-RTT-between-Both-Ends since its objective “average-

25

���������	
�� ���
�����		

�	��� ����������� ���������������

���������� ������ ���		�!��" #$��%������

�������������!��"

����

��&���	����'��	 �
����
�$� #$��%���� (
��� ��"� �)����(�

���*�
�$� #$��%���� (
��� ��"� �+$,(� ����

�

�������� ���
�����		�-
	. �/�

����) �� ����
 ��� ��� ��$ (+��� �� 0�(/���

11 �� !�$$ 2� 3 �� / �� �"� $���$ 4���
5

��� ������� ���

�+��" �� #'%�		�4

	�

�
4��

�����$�� 6����		�2��!����7��"�����

��28����*� ��*� �����		 #'%���������� #'%���������7��

��28����*��'� ��2$�� #'%�		�2��!���������

������ ��9

����) #'%�		�4

	 ��$�

���� ��� :3

�#�+%����� ���		 #'%������������

�!"�� �; �$����" #'%�		�4

	� 3�

�+ �+����"��"�$�*�$�*��! #.'%4�������$� � 93��

11 93 555 �� ���$, + �+����

�!"�� �<; �$����" #'%�		�4

	� 9=�

����) #$��%�*�9 �#�+%	�>���*� ��� #'%�		�4

	���

�!"�� �<; 9? �$����" #'%�		�4

	� 9�

�+ �+����"��"�$�*�$�*��! #.'%4����7������������ @��

11 @ 555 + �+���� ��*� ����

����) #'%�		�4

	 ��$�

���� ��� :3

�#�+%����� ���		 #'%���������7��

5 5 5 5 5 5 5 5 5 5

��

Figure 11: Example Expressions of Operations, Procedures, and Mid-Level Plan

26

Therefore, performing this plan in a number of agents is redundant. This result is sent to the
CPM and the modification (M4) in Section 4.4 is first applied.

At this stage, the CPM in L5 can build a coordination plan in which one of the agents per-
forms the plan and others will wait for the result. This coordination plan is proposed to other
concerned agents because it will be performed in cooperation with other agents. This proposal
is accepted in this example since it can generate an answer as accurate as the original one and
there is no alternative plan.

5.3 When This New Control Should Be Chosen

The next step is to identify when the new control for coordination is applicable and appropri-
ate. Only L5 and L6 concluded that the secondary problem was intolerable. The R-Critic must
identify information that led to this result. Note that the learned coordination rule is not more
appropriate than the original one in all situations. In a (normal) environment where all networks
are connected via fast lines, excessive communication is tolerable, and the overhead introduced
by agent’s synchronizing activities for coordination is more costly than excessive communica-
tion that results from lack of coordination.

5.3.1 Creating a Partial Global View

To decide whether or not the new control is appropriate, agents must get some additional (non-
local) information from other agents (Situation Identification). We describe how to identify this
information by comparative analysis in this section. To understand what kind of information
is incomplete, two analyses of data are essential: why L5 and L6 made the same decision, and
why different decisions are made by others. In our example, L5 can understand that L6 and L4
also observed the same symptom using the network model. The R-Critic must identify which
data lead L5 and L6 to the same decision and why L4 can ignore the secondary problem. This
data is the non-local information that L5 and L6 have (or do not have) but others do not have
(have). By comparing two traces of different but similar reasonings, the R-Critic finds why they
reached the same result or the different results.

Before applying the comparative analysis to our example, some variables are eliminated
using the network hierarchical model (see Appendix 2). The variable Echo-Senders (whose
values are names or IP addresses of hosts and are used for identifying the logical locations of
the hosts) has multiple values and they belong to different subnetworks; therefore, the result of
this diagnosis did not depend on this variable (see Fig. 12).10 The variable Echo-Destinations
can also be eliminated in the same way.

RTT” is the function of both ends.
10Because, based on the model of “structure of network” described in the Appendix 2, the values of Echo-Sender

belong to more than two subnetworks.

27

(Refer: packet data collected by NOBS)
 End-Nodes: (L1, L7)
 Echo-Sender: L1, L2, L3, and L7
 Echo-Destination: L1 and L7
 Src-MAC: xx:xx:xx:f:2a:3b
 Dst-MAC: xx:xx:xx:f:2a:3a
 Number-of-Observed-Echos: 68
 Type-of-Storm: ICMP-Echos

(Refer: Echo-Destination, Echo-Sender,
 Src-MAC, and Dst-MAC)
 Adjacent-Networks: (Net4, Net6)
 Adjacent-routers: (R4, R5)

(Refer: Adjacent-routers, Echo-Destination)
 MaxThrput to adjacent networks: 10Mb and 64Kb
 Current-traffic: low (less than 50 pkts/second).

1: Plan: Get-basic-info-from-symptom (Echo storm)

2: Plan: Find-the-local-route-of-causing-packet

3: Plan: Get-local-line-cost

4: Plan: Decide-gravity-of-passing-storm (Echo storm)
(Refer: Number-of-Observed-Echos, Type-of-Storm,
 Min-of-MaxThrput to adjacent networks, current-traffic)
 This is the final decision of the gravity of this problem

Executed Plan

Plan (not selected)

Reaching Decision State

Diagnostic State (not Reach)

Figure 12: The Trace of the Secondary Problem in L5
The diagnostic trace is expressed by a tree of plan and decision states which alternately
appear. After a plan is executed, the process reaches a decision state, and at this state,
another plan is selected and executed. This cycle is iterated until the goal is reached.

28

Table 1: Variable Comparison (L5 and L6)

Variables values in L5 values in L6

Adjacent networks Net4, Net6 Net5 and Net7 eliminated
Adjacent routers R4, R5 R6, R7 eliminated

End-nodes (L1, L7) (L1, L7)
Src-MAC xx:xx:xx:f:2a:3b xx:xx:xx:0:12:8c eliminated
Dst-MAC xx:xx:xx:f:2a:3a xx:xx:xx:0:2f:7e eliminated

Type-of-Storm ICMP-Echoes ICMP-Echoes
MaxThrput1 10,000,000 64,000 eliminated
MaxThrput2 64,000 10,000,000 eliminated

Min-of-MaxThrput
(Quantitative Measure)

64,000 64,000
64,000

(max of L5 and L6’s
values)

Observed-Number-of-
Echoes

(Quantitative Measure)
68 61

61
(min of L5 and L6’s

values)
Current-Traffic low low

Let us compare the traces of the secondary problem in L5 and L6. We assume that they
had the identical diagnostic traces as shown in Fig. 12. L5 can understand, using the domain
models, that L6 also observed the same symptom. The R-Critic gets the diagnostic trace of the
secondary problem from L6 and compares them to understand why they reached the same result
even though some local variables have different values (see Table 1).

By this comparison, the R-Critic finds that the variables having different values (except vari-
ables of quantitative measures) do not cause the deviation of the two diagnostic processes so they
can be eliminated. Quantitative measures are, in general, difficult to eliminate by comparative
analysis. However, by taking the weaker condition, in this case, we can decide the new values
of these measures.

Let us compare the traces which led to the different results. R-Critic in L5 can understand
that the same symptom was observed in L4 but L4 decided that it was not a serious problem. In
this diagnosis, L4 had almost the same diagnostic trace (as shown in Fig. 13). L4 also referred to
almost the same variables and the differences of their values are very important for deciding the
gravity of the secondary problem. As shown in Fig. 13, the final plan deduced different results.
This plan referred to the variables, Observed-Number-of-Echoes, Min-of-MaxThrput, Type-
of-Storm, and Current-Traffic. Thus we can predict that the specific values for some of these
variables are important and this fact is also consistent with the results of the previous compara-
tive analysis. By comparing the values of the variables (see Table 2), the Min-of-MaxThrput

29

Diagnostic trace of L5 Diagnostic trace of L4

1:

2:

3:

4:

1:

2:

3:

4:

Figure 13: The Trace of the Secondary Problem in L4 and L5
The trace of L5 is identical to Fig. 12 although the plan names and calculated variable values
are omitted. The numbers attached to the plan nodes correspond to the plans in Fig. 12. The
trace of L6 is also identical to the L5’s except the result of the 4th (final) plan.

30

Table 2: Variable Comparison (L4 and L5)

Variables values in L4 values from the previous CA

End-nodes (L1, L7) (L1, L7) eliminated
Type-of-Storm ICMP-Echoes ICMP-Echoes eliminated

Min-of-MaxThrput
(Quantitative Measure)

10,000,000 64,000

Observed-Number-of-
Echoes

(Quantitative Measure)
68 61

eliminated
(almost identical)

Current-Traffic low low eliminated

appears to be the most important variable in understanding the non-local situation for preventing
the problematic situation derived by the primary diagnostic process. This variable describes the
minimum value of the maximum throughput capacities of the links.

According to the analysis described above, an agent can now learn that when it chooses the
plan Get-RTT-between-Both-Ends, the values of Min-of-MaxThrput in other agents, that is,
the existence of the slow transmission line, is quite important non-local information. Then an
agent will be able to acquire the values of this variable in other agents before it performs the
learned coordination action. This coordination rule is stored with coordination knowledge as a
control option described in Fig. 14. This means that before performing this plan, an agent collect
the values of the variable MaxThrput from agents along the paths to L1 and L7 and, if there is
a slow transmission line, one of the agents should perform this plan and others should wait for
this answer. Allocate is a primitive coordination function which can allocate this plan task to
an appropriate agent, and the function Wait-for-the-result-of waits for this answer if the local
agent is not allocated this plan task.

It is significant that D-coordination was selected here. This is because, to decide who should
do this plan, non-local meta-level information such as resource usage, scheduled plans, the net-
work structure and features11, and whether another agent has already done this plan task in a
different context must be understood. This function is implemented in Allocation under D-
coordination. When some agents do not have this coordination rule, the agent that knows this
rule has to acquaint these agents with this rule so they will not perform the plan themselves.
These coordination activities are implemented by the Coordinator under D-coordination12

11For example, an agent which is located in the left side of the slow line in Fig. 4 should perform this in order to
reduce the number of packets through the slow line.

12Although this is an important issue, this paper does not cover it. We need further discussion on this situation.
Note that Section 4.2 describes how no learned results are sent to other agents in general. However, in this case,
these participating agents actually face the similar problem-solving situation where the learned rule may be useful.

31

Note that if L4 or L6 does not observe the secondary problem, this comparative analysis
will be incomplete and the derived incomplete result may cause redundant communication and
excessive coordination because of less generalization. For example, if L4 missed this problem13,
L5 could not eliminate the variables in Table 2 by comparative analysis, so that agents would
need to exchange and analyze five variables described in Table 2. This is not only redundant
and over-coordinating but also misses some situations where the learned coordination rule is
required. Thus agents must wait for another occurrence of a similar problem to prevent this
problem. Also note that if the system has a strong domain theory and can explain why L5 and
L6 complained but others did not, this comparative analysis is not necessary; the EBL algorithm
can be directly applied.

5.3.2 In Order To Choose Appropriate Control

In general, appropriate plans and operations should be decided by their communication cost14,
CPU cost, and accuracy (and the network manager’s policy). In the preceding discussion, a co-
ordination rule is derived. However, if the system can understand its own control information
about plans and operations such as necessary time for execution, number of packets transmit-
ted, accuracy of their results, and required CPU resources, the Coordination Plan Modifier can
gracefully determine another appropriate plan. For example, when an agent node is requested
to execute the plan Get-RTT-between-Both-Ends and it knows of the existence of a slow line,
the number of packets required in the coordination activity is important. Thus, the number of
the requesting agents should be taken into consideration in deciding the priority of the plan.
According to the comparison of the two controls (see Table 3), the requests of more than three
agents makes the priority of the derived coordination activity higher.

Even if an agent proposes the plan Get-RTT-between-Both-Ends to another node, this node
may have a different viewpoint and find other plans and tasks that it decides are more impor-
tant than the proposed plan in a similar problem. In such a situation, a network control regime
similar to generic partial global planning (GPGP) [3] is required. Even if the local priority of
a plan is low, if other agents request the plan and its result facilitates their reasoning, it should
be performed. How to decide plan priorities, especially for plans requested by other agents, is
one of the difficult issues for real-world systems. An agent must take into account quantitative
evaluations of non-local requested actions as well as their logical causalities. These quantita-
tive evaluations, for example, include how many agents request the action, importance of the
expected result, and the action’s resource usages (CPU and I/O). The learned result can be re-
flected back into the GPGP algorithm by understanding which non-local data are important for
deciding priorities of plans and, thus, how to coordinate among agents.

13For example, NOBS in L4 might drop some packets because of the flow control or the limitation of CPU power.
14Communication cost is determined by max throughput, current traffic, and line tariff cost. Thus, communica-

tion cost is determined by non-local data.

32

Get Max Throughput Current Traffic

Current TrafficKind of Line

Get-RTT-between-Both-Ends

Money Cost (Extra Knowledge)

Get-Line-Cost

+

+

Send a message to NePS
for sending ICMP Echo
request and measuring
the RTT.

Predict the current line
quality based on the average
value of the RTT.

Calculate the average
value of the RTT.

20 times

or

Estimate ...

Estimate ...

Estimate ...+

+

+

(1)

(2)

(3)

Get-RTT-between-Both-Ends

Propose: Get-RTT-between-Both-Ends + Wait

+

Coordination controls after learning

Coordination-level: D [deep coordination]
Required-nonlocal-data: MaxThrput from agents along the path

Situation (pre-condition: (min-of MaxThrput < low)
HP: Decide-gravity-of-ICMP-unreachable-storm
high-level-seq: (Get-Basic-Info Find-the-route Get-line-cost

Decide-gravity)
high-level-plan: Get-line-Cost
mid-level-seq: (Get-RTT-between-Both-Ends Estimate-Cost-from-RTT)
mid-level-plan: Get-RTT-between-Both-Ends)

Control-description: (Allocate Get-RTT-between-Both-Ends)
(Wait-for-the-result-of Get-RTT-between-Both-Ends)

Figure 14: The Learned Coordination Rule to Prevent Redundant Work

33

Table 3: Comparison of Two Control Methods
Original Control Learned Coordination Control

of packets
20 packets per agent
(simultaneous flow)

20 packets by an end agent
+

a number of packets for
coordination

Communication
between agents

none request, wait, and answer

CPU Low CPU resource
High CPU resource for

coordination and scheduling

Idle time
relatively small

(1 to 3 seconds expected)
Varies (100ms to infinity)

Others independent actions Synchronized actions

6 The Second Example Problem

This section addresses, using another example, how the proposed learning method identifies
new explanations so as to quickly understand non-local data and also identifies the priorities of
actions and messages in cooperative problem solving.

6.1 The Second Example (Part I)

We assume the same network environment as Fig. 4. The problem symptom is that, from HostA
in Net1, telnet to HostB does not work (the error message “Timeout” is displayed in the HostA’s
display). Suppose that the cause of this problem is that the network interface in HostB has
a hardware problem. In this case, the ‘user’ reports the symptom to L115 and the diagnostic
process of L1 is started. In the first stage of the diagnosis, L1 determines that the problem is not
local and coordination with L7 is necessary, so L1 activates L7 by reporting this problem. Fig. 15
and Fig. 16 show the traces of the diagnosis by L1 and L7. For example, in L7, first the plan
Understand-Current-Problem is selected to get a more detailed identification of the problem
that L1 reported to L7, then based on the acquired data in this plan, some possible causes are
proposed as the HP. Next, the highest rated HP Interface-broken-or-poweroff is selected (state
A2), and a high-level plan is created to verify this HP. The Controller in L7 selects the mid-level
plans and operations based on this high-level plan while this HP is still under consideration. We
assume that L1 and L7 diagnose this problem under S-coordination. In the following sections,

15The ‘user’ means the user of HostA or the network manager. This problem is reported to L1 because the user
using HostA is near L1.

34

we describe only the learned coordination rules and omit the detailed description of the learning
process. In this discussion, we use the notion (� = �,L) to express that a variable � has a value
� in an agent L.

6.2 Getting Explanation Between Local and Non-Local Data

During the plan Check-ARP-reply16 in L7, the value of the variable ping-remote17 in L1, which
is NIL, arrived with a high rating, and was thus analyzed. Since this data is explainable from
the local observed value ping-local in L7 and the network domain model, and is consistent
with the current HP, it does not offer any important information. Furthermore, this analysis is
computationally expensive because it must use a non-local domain model in the calculation. If
explanation-based learning is applied to this situation, L7 can directly conclude that

ping-local = NIL in the local-end �� ping-remote = NIL in the remote-end.18

(or If (ping-local = NIL, local-end) then (ping-remote = NIL, remote-end))

Then, the agent can quickly understand whether or not this received message is worth analyzing.
This is not a coordination rule but is useful for efficient coordination; thus, it is kept as an
explanation in domain theory. Moreover, this value can be deduced only from the universal
domain theory (see Appendix 2), and thus is useful in all LODES agents.

6.3 Autonomous Processing (A-Coordination)

Although the meaning of (ping-remote(HostB) = NIL, L1) can be quickly understood after the
explanation rule is learned as discussed in the previous subsection, it is still true that L7 is dis-
tracted by this message. Looking at the trace of L7, the verification of the HP Interface-broken-
or-Poweroff was strongly supported by the value of ping-local(HostB) = NIL in L7, and it was
unnecessary to refer to non-local information to verify this HP. Applying our proposed learning
method to this case, the coordination rule (we assume that “no coordination is necessary” is also
one of the coordination rules) derived here is that, if the HP Interface-broken-or-Poweroff is
strongly supported and selected, and if the plan sequence to verify this HP is identical to this
example problem, then a reference to any message from other agents is not necessary to process
immediately. That is, A-coordination should be selected in this case.

16ARP stands for Address Resolution Protocol. This plan verifies that the host responds to the ARP request
packet.

17The variable ping-remote expresses whether the remote host (HostA if the observer is L7, and HostB if the
observer is L1) can reply to an ICMP echo request packet. The variable ping-local expresses whether the local host
can reply to an ICMP echo request packet. For clarification, these variables are often expressed with the observed
host. For example, (ping-remote(HostA) = T, L7) means that L7 sent a ICMP echo request packet and could
observe the response from HostA.

18L1 and L7 are substituted for “remote-end” and “local-end” respectively.

35

Executed Plan

Plan (not selected)

Reaching Decision State

Plan: Obtain-Current-Symptom-from-User

Plan: Observe-ping-local

L1 chooses the HP "interface-broken-or-power-off" because the
priority of this HP becomes highest based on likelihood of problem.

Called-for: Interface-broken-or-power-off
Results:
 Propose-HP: none
 Referred-variables:
 (local-host)
 Results-variables:
 ping-local: T (this value is sent, but not
 important)

Called-because-of: Activated-by-user
Results:
 Propose-HP:
 (hardware-problem, remote-hardware-problem,
 Request-only, Multiple-IP-Assign, No-Service,
 remote-IP-problem, Broken-packets,
 No-or-wrong-Routing)
 Referred-variables: none
 Result-variables:
 (Symptom, Local-host, Remote-host,
 Remote-netmask,)

The messages (ARP-reply = NIL, L7) and
(local-MAC = nil, L7) arrive.
These messages can increase the priority of
the HP "remote-hardware-problem."

The message (ping-local (HostB) = NIL, L7)
arrives. This is not so important, but this can
increase the priority of "remote-IP-problem."

During this plan, L1 asks a number of questions
in order to understand what the current symptoms are.
L1 sends a message to activate L7.

(give-up: "interface-broken-or-power-off"
 because ping-local = T denies this HP.
L1 chooses the HP "remote-ip-problem")

Plan: Observe-ping-remote

(L1 suspends the HP "remote-IP-problem" because L1 cannot further
investigate the non-local network and the priority of this plan
decreases. L1 chooses the new HP "multiple-IP-assign")

Called-for: remote-ip-problem
Results:
 Referred-variable:
 (remote-host)
 Results-variables:
 ping-remote: NIL (this value is sent)

Plan: Send-ARP-Request-and-Observe

Plan: ASK-service-type

Plan: ASK-for-reproducing-problem

.

.

A1

B1

C1

Figure 15: Trace of L1 (the second example — part I)

36

Executed Plan

Plan (not selected)

Reaching Decision State

Plan: Obtain-Current-Symptom-Data

Plan: Observe-ping-local

Plan: Check-ARP-reply

Plan: Compare-Host-Model

Result: Interface-broken-
or-Poweroff

L7 chooses the HP "interface-broken-or-poweroff."

Called-for: Interface-broken-or-poweroff
Results:
 Propose-HP: none
 Referred-variables:
 (local-host)
 Results-variables:
 ping-local (HostB): NIL (this value is sent)

Called-because-of:
 Activated-by-another-agent
Results:
 Propose-HP:
 (Interface-broken-or-power-off, Request-only,
 Multiple-IP-Assign, No-Service,
 Broken-packets, No-or-wrong-Routing)
 Referred-variables:
 (Activated-by) ;; This is "L1"
 Result-variables:
 (Symptom, Local-host, Remote-host,
 Remote-netmask,)

Called-for: Interface-broken-or-poweroff
Results:
 Propose-HP: none
 Referred-variables:
 (local-host)
 Results-variables:
 ARP-reply: NIL (this value is sent)
 local-mac: NIL (this value is sent)

The message (ping-remote (HostB) = NIL, L1)
arrives. This is analyzed but there is no change
in the rating of "Interface-broken-or-poweroff"
because this value is explainable from
ping-local (HostB) = NIL and the domain model,
and has no conflict with the current HP.

Called-for: Interface-broken-or-poweroff
Results
 Propose-HP: none
 Referred-variables:
 (local-host, local-mac, local-ping, ARP-reply)
 Results-variables:
 local-ping-in-db: T
 ARP-reply-in-db: T

The message (ping-local (HostA) = T, L1)
arrives. This is not read immediately, because
this is not considered important.

During this plan, a number of data requests are sent to L1
in order to understand what the current problem is.

A2

B2

C2

D2

ping-local (HostB) = NIL in the previous plan increases
the rating of "interface-broken-or-poweroff."

This diagnostic process is activated by L1

Figure 16: Trace of L7 (the second example — part I)

37

We must discuss here the differing perspectives among agents. For example, L7 selects A-
coordination in a different problem according to the learned rule because of the lack of non-local
information available to identify the difference between the problems. However, by applying our
learning method again after this failure, agents can understand which non-local information is
necessary before agents shift to A-coordination. We must also consider the cost of coordination
here. If much information is necessary to select A-coordination, it may be better to give up
shifting to A-coordination and to infer under S-coordination. More precise reasoning about
their own controls is necessary as discussed in Section 5.3.2.

6.4 Avoiding Wasteful and Expensive Tasks – Find a new situation where
coordination is required

If a selected operation in an agent is expensive in terms of CPU resources used or time require-
ment, or has interactions with users, the agent should take into account the possibility that other
agents can diagnose this problem without resorting to this expensive operation. Let us focus
on L1’s trace. Eventually L1 could not efficiently diagnose the problem and was also not re-
quested to do any job for L7 during its diagnosis. Thus, L1 selected one HP after another until
the message indicating that L7 had found the cause arrived. During this process, L1 may select
a plan that includes a resource- and/or time-consuming operation or a special operation inter-
acting with the user such as Ask-Service-Type (ask the user what kind of protocol was used
when the problem occurred) and Ask-for-Reproducing-problem (ask the user to reproduce the
problem). If neither agents can find any highly-rated HP, these tasks may be helpful, but obvi-
ously these are wasteful in this example because the problem can be diagnosed without asking
the user. This kind of expensive operation should be postponed while one of the other agents
chooses a highly rated HP. In such situations, an agent should look at other agents’ plans. That
is, before executing an expensive operation, an agent should take into consideration states of
other agents’ inferences. This action may be done under S-coordination where the agent sends
a message asking whether or not other agents have an HP that is rated more than a predefined
threshold. However, D-coordination is sometimes required to understand proposed HPs, plans
to verify them, their ratings, and logical connections between these plans and local actions. For
example, a highly rated plan in another agent has to refer to the result of this local, expensive
operation. As another case, the in-progress execution of highly rated plan in other agents makes
this local plan impossible. In these cases, through positive and negative experience, an agent
can understand the necessity of D-coordination by the proposed learning method.

To understand whether or not an operation is expensive, there are two methods: First, by
syntactically analyzing an operation, its time requirements are estimated from the predefined
primitive functions of which the operation consists. However, it is not easy to completely un-
derstand how much CPU resource is needed and how much time can be consumed by sophis-
ticated operations under this method. The second method is to estimate the resource and time
requirements from the history of executions. In LODES, the second method is applied because
it is applicable to and appropriate for continuous systems like LODES.

38

6.5 The Second Example (Part II)

It is not true that the message (ping-remote(HostB) = NIL, L1) is unimportant in every situ-
ation. To clarify how to evaluate the importance of this message, a slightly different example
is introduced. In this new example, the network environment and the symptom of the problem
are the same, but the cause of the new example is that HostB has no routing definition to Net1.
From the viewpoint of L1, both examples look like the same problem. However, from L7’s per-
spective, HostB is working correctly because L7’s interaction with HostB does not force HostB
to communicate to Net1. Fig. 17 and Fig. 18 show the diagnostic traces of L1 and L7 for this
problem.

6.6 Identification of Importance of Messages

In part I of the second example, a message (ping-remote(HostB) = nil, L1) is not important but
in part II, it is. Differences between these cases are the value of ping-local(HostA) in L7; in
part II these observational values conflict, but in part I they do not. Understanding this conflict
is an expensive task as described in Section 6.2, but the conflict is explainable from the network
model. Thus, by applying the EBL algorithm, the explanation to quickly identify this conflict
can be derived and thereafter the inference becomes more efficient in this situation as described
in Section 6.2.

Even under S-coordination, deciding appropriate ratings of messages and job requests is
quite important. Discussion in the previous paragraph suggests that ratings of messages and job
requests are not static because the ratings may vary according to values of other variables. In
this example, L1 could understand how important this message is if it had looked at the message
(ping-local(HostB) = T, L7). L1 did not immediately analyze this message because of the low
rating set by L7; from L7’s perspective, this message suggests the correct behavior rather than
a problem so its rating is set low by L7.

Before sending the value of ping-remote, L1 should check whether or not the value of ping-
local(HostB) in L7 has arrived in order to understand the importance of this message. This is
possible because, after identifying the derived explanation to detect the conflict, L1 can quickly
understand the importance of this message depending on the value of local-ping(HostB) in L7.
Of course, L1 should not wait for this message indefinitely. If L1 realizes that the value of ping-
remote(HostB) in L1 is not important, and if L7 is currently overloaded or communication cost
is high, L1 can just not send the message since L7 probably does not need this result to arrive at
the correct conclusion.

39

Plan: Obtain-Current-Symptom-from-User

Plan: Observe-ping-local

L1 chooses the HP "interface-broken-or-power-off."

Called-for: Interface-broken-or-power-off
Results:
 Propose-HP: none
 Referred-variables:
 (local-host)
 Results-variables:
 ping-local: T (this value is sent not
 important)

Called-because-of: Activated-by-user
 (Completely identical to the annotation of
the second example part I)

The message (ping-local(HostB) = T, L7)
arrives. This is not so important, but this can
slightly decrease the rate of the HP
 "remote-ip-problem."

During this plan, L1 asks a number of questions
in order to understand what the current problem is.

Give-up: "interface-broken-or-power-off"
 because ping-local(HostA) = T denies this HP.
L1chooses the HP "remote-ip-problem."

Plan: Observe-ping-remote

L1 suspends the HP "remote-ip-problem" because L1 cannot further
investigate the non-local network. Thus L1 chooses the HP
"multiple-IP-assign" and then chooses the plan "Send-ARP-request-
and-observe" for this HP.

Called-for: remote-ip-problem
Results:
 Referred-variable:
 (remote-host)
 Results-variables:
 ping-remote: NIL (this value is sent)

Plan: Send-ARP-request-and-observe

A3

B3

C3

The message (ping-remote(HostA) = T, L7) arrives.
This data is also explainable from the local
observational result ping-local(HostA) = T .

Receive a job-request: "confirm
(ping-remote(HostB) = NIL)" with a high rating.
The current plan is suspended.

L1 selects the operation "confirm-remote-ping"
then is back to the plan: "send-ARP-request-and-observe"
if the result is not in conflict with the previous one.

Plan: Send-ARP-Request-and-Observe

L1 gives up the HP "multiple-IP-assign," and chooses the HP
 "no-service-protocol." The first plan to verify this is "Ask-service-type,"
which questions the user, who reports this problem, about what kind of service the user used.

Receive a job-request:
 send-icmp-echo-to-remote-host
 with high rating

Perform the operation corresponding to
the requested job.

F3

D3

E3

Figure 17: Trace of L1 (the second example — part II)

40

Plan: Obtain-Current-Symptom-Data

Plan: Observe-ping-local

L7 chooses the HP "interface-broken-or-power-off."
Called-for: Interface-broken-or-poweroff
Results:
 Propose-HP: none
 Referred-variables:
 (local-host)
 Results-variables:
 ping-local(HostB): T
 (this value is sent, but not important)

Called-because-of:
 Activated-by-another-agent
 (Completely identical to the annotation of
 the second example part I)

 The message (ping-remote(HostB) = NIL, L1)
arrives. This is analyzed and the rating of the HP
"no-or-wrong-routing" is increased considerably.
As a result, the current plan is suspended.

The message (ping-local(HostA) = T, L1) arrives.
This is not read immediately, because this is not
so important.

A4

B4
ping-local(HostB) = T in the previous plan denies
the HP "interface-broken-or-poweroff."
A new HP "remote-ip-problem" is chosen.

Called-for: remote-ip-problem
Result:
 Propose-HP: none
 Referred-variable:
 (remote-host)
 Results-variables:
 ping-remote(HostA) = T
 (this value is sent, but not important)

Plan: Observe-ping-remote

The rating of the HP "remote-ip-problem"
becomes considerably lower because of
ping-remote(HostA) = T. The new HP
"multiple-ip-assign" is chosen.

Plan: Send-ARP-request-and-observe

The HP "multiple-IP-assign" is suspended,
and the new HP "no-or-wrong-routing"
 is selected.

Plan: Request-reconfirm-ping-remote

Plan: ICMP-cutting-filter (echo)

Plan: Reproduce-the-ping-behavior

Job-request to L1: "confirm (ping-remote(HostB) = NIL, L1)"
since the previous ping packet may be lost or there
may be a long delay between Net1 and Net7.

One of the intermediary routers between Net1 and Net7
may filter out ICMP echo packets.

Job-request to L1: "Send an ICMP echo request to HostB."
L7 observes this packet and HostB’s reply to this packet.

Result: no-or-wrong-routing (of the local host)

C4

D4

E4

F4

G4

ping-local(HostB) = T may slightly increase the
rating of the "no-or-wrong-routing," but
it rather strongly suggests that there is no
problem in the local host.

Figure 18: Trace of L7 (the second example — part II)

41

7 Discussion and Future Research

Coordination is certainly essential in distributed problem solving but it is not always necessary;
excessive coordination leads to inefficiency and redundant communications. Thus, it is impor-
tant to identify how and when to coordinate and this is the motivation of our research. We believe
that our proposed learning is important for all CDPS systems, especially continuous, systems
because it can identify situation-specific coordination rules which are adaptive for their own
domain problems and environment. Other research has addressed this topic through dynamic
organizational design [8, 13] and partial global planning [6, 7] where dynamic meta-level infor-
mation is used to achieve an appropriate level of coordination. These coordination algorithms
are always applied to all situations and usually involve extensive communications and inferences
by agents. Our research is also related to the previous work on the development of a diagnosis
module (DM) [12] that reasons about the behavior of a single-agent problem-solving system.
The DM compares an actual behavior with a model of problem-solving behavior through a tech-
nique called comparative analysis. This permits the DM to identify correct and incorrect behav-
ior when there is a weak domain theory. [14] also discusses what to learn from a failure posed
on which component of their chess-playing program has failed. In [24], cooperative learning is
proposed in which there is an interaction board where all agents can interact and enumerate pos-
itive/negative examples and intermediary results of a rule being learned. However, this research
assumes consistency of data in all agents and identifying coordination rules is not discussed.
Shoham and Tennenholtz discuss another interesting approach to learning cooperation rules in
multiple agent systems [22, 23]. In this work, agents adapt themselves to their current work and
environment on a game theoretical basis. A simple rule for deciding strategy called ‘cumulative
best response’ is introduced. They demonstrate that, using this rule, all agents can reach a com-
mon cooperation strategy after many trials. They also experimentally illustrate how efficiently
agents reach the common strategy under various configurations of system parameters such as
memory size and communication restrictions.

In the future, we see our research being extended in the following directions. If there is no
strong domain theory, case-based learning for planning and meta-level control [10, 28] is useful
and also applicable to learning coordination rules; the past positive control for the similar situa-
tion is modified and employed to guide the coordination controls for the current problem solving.
Another direction is to understand appropriate coordination actions by statistical analysis [4].
From a number of examples and analysis of problem-solving activities, agents statistically es-
timate when a specific type of coordination is useful. We feel that both of these directions can
be merged into the EBL and comparative analysis methods proposed in this paper, depending
on the kinds of problems and kinds of situations. We also feel that our proposed method can
be extended to the development of coordination strategies that deal with more indirect interac-
tions among agents due to resource requirements of independent problems. For example, when
multiple agents handle different problems, a number of their actions can be merged or cannot
be performed simultaneously because they use the same resources [17]. In the event of multi-
ple problems occurring simultaneously, we have to investigate the possibility that the multiple
problems may arise from a single cause and agents may observe it at different points — an issue

42

especially important for internetwork diagnosis. Agents must identify the relations among these
problems using local data, acquired data and the domain theory, but this is an expensive task.
We hope that the learning method proposed here can be extended to derive rules for quickly and
accurately understanding these relations.

There are also a number of other issues that need to be investigated. Explicit reasoning about
the timing of operations is not currently used in LODES. If LODES agents can reason about time,
they can, in the first example, find another coordination rule in which each agent performs the
action of ‘sending test packets’ sequentially. Furthermore, the perception of activities of hosts
in the network, including other LODES agents, has some delays; these delays may lead agents
to inappropriate activities. More generally, we believe that the proposed learning is applicable
to identifying the appropriate activity based on time-constraints in distributed real-time systems.
Asynchronism also occurs in distributed systems. The order of actions and messages is often
different in the same problem, and sometimes these are not commutative. Comparative analysis
may identify the important order of these actions and messages from positive and negative ex-
amples of problem solving, but if agents can simulate other possible problem-solving scenarios
by changing the order of actions, a critical order of actions can gracefully be predicted. When
learned coordination rules can be shared and with whom is also another issue. In the proposed
method, rules learned only from universal domain theory or troubleshooting knowledge, which
are identical in every agent, can be shared; otherwise, knowledge in agents may have conflicts.
However, there may be some coordination rules which are not shared according to our definition
but are still useful for another agent in a specific group or in a similar environment. “Problem
decompositions and allocations” are also an important issue. We conjecture that how to decom-
pose a problem and who should solve these decomposed subproblems are predictable from past
examples, even though it is not discussed in this paper.

Creating a more formal model for analyzing distributed problem-solving behaviors is another
important topic. For example, we define some notions such as “commutative plans,” and “simi-
lar situations.” We must discuss these notations using a formal model so that they can be applied
in more general distributed problem solving. Additionally, in our learning, an agent identifies
some inefficient activities and then creates control and coordination rules such as postponing
unimportant messages, changing the order of actions that may be requested by other agents,
and obtaining needed non-local information. It is necessary to discuss, in a more general man-
ner, what kind of control (adding/eliminating/re-arranging plans, operations, and messages) can
scale the solution up.

A number of LODES agents are currently working at NTT Laboratories and at the Depart-
ment of Computer Science, University of Massachusetts at Amherst. They can detect and diag-
nose many network problems, though LODES is still under development. We find that LODES
is actually useful for network managers and computer network users. The learning method dis-
cussed here is currently being implemented. The LAP detection and LAP analysis steps have
already been implemented. The learning method will be evaluated in the near future.

43

8 Conclusion

This paper presents an approach to learning coordination plans. Many AI applications require
cooperative distributed problem solving where coordination is an essential technique. An agent
must choose globally coherent activities based on local and acquired non-local information.
Furthermore, understanding when and which non-local information should be exchanged is im-
portant for efficient coordination inferences since understanding everything about other agents
is impractical.

This paper discusses the introduction of a learning component into a CDPS system that can
identify, in a situation-specific manner, what type of coordination is required, what priorities to
associate with messages and actions, and what non-local information is necessary. Our proposed
learning method is invoked when the system finds a problem in its own diagnosis or a problem
that is caused by the agent’s activities is reported by other agents or external components. To
find these problems (LAPs), the system must be able to monitor itself. LAPs occur, for example,
when: (1) diagnosis fails; (2) diagnosis cannot finish within a requested time; (3) the execution
of a plan takes much longer than the expected time; and (4) an unexpected side-effect occurs.
Our learning method keeps traces of inferences and analyzes them after problem solving. It then
uses the EBL technique and comparative analysis (if there is no strong domain theory) in order to
identify important and redundant activities, missing information, and situations that occurred as
the result of agents’ activities. Using the information, our learning component derives the coor-
dination control rules for deciding: what information should be sent immediately; the priorities
of messages; and the local or non-local action that should be taken next in order to promote
global coherency. These can be seen as organizational rules in the sense that they decide which
agent does what and when.

We also propose three coordination levels: nearly autonomous, shallow, and deep coordi-
nation. Agents must choose the appropriate coordination level depending on features of the
problem, situation, and environment in order to achieve efficient inferences. The learned coor-
dination rule is stored with organizational and coordination knowledge as a control option that
corresponds to a hypothesis, a plan, or an operation. A hypothesis, plan, or operation is chosen
based on the local plan, requested jobs, and acquired non-local data. Before it is executed, the
Coordinator and the Organizer refer to these learned rules to decide the appropriate coordination
level and coordination actions.

Two example problems are used to describe how our proposed learning method works in
actual situations. The first example problem involves the transmission of redundant test pack-
ets through a slow communication link because of a lack of coordination among agents that
are simultaneously diagnosing the same problem. Our method can determine what non-local
information is necessary and when agents should initiate the derived coordination activity for
preventing similar problems from occurring in the future. The second example problem illus-
trates inefficient diagnosis. Our method can identify (1) the explanations that allow the system to
quickly and accurately understand non-local data, (2) the appropriate coordination level, and (3)
the priorities of messages for efficient reasoning. Finally, related research and further research

44

issues are discussed.

References

[1] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A Simple Network Management Protocol
(SNMP),” RFC1157, 1990.

[2] D. Comer, Internetworking with TCP/IP, Volume I; Principles, Protocols, and Architecture
(Second Edition), Prentice Hall, Englewood Cliffs, NJ, 1991.

[3] K. S. Decker and V. R. Lesser, “Generalizing the Partial Global Planning Algorithm,” Int.
Jour. of Intelligent Cooperative Information Systems, Vol. 1, No. 2, pp. 319-346, 1992.

[4] K. S. Decker and V. R. Lesser, “Analyzing the Need for Meta-level Communication,” to
appear in Proc. of AAAI-93.

[5] G. Dejong, “Generalizations Based on Explanations,” Proc. of 7th IJCAI, pp. 67-69, 1981.

[6] E. Durfee and V. R. Lesser, “Using Partial Global Plans to Coordinate Distributed Problem
Solvers,” Proc. of 10th IJCAI, pp. 875-883, 1987.

[7] E. Durfee and V. R. Lesser, “Partial Global Planning: A Coordination Framework for Dis-
tributed Hypothesis Formulation,” IEEE Trans. on System, Man, and Cybernetics, Vol. 21,
No. 5, pp. 1167-1183, 1991.

[8] E. Durfee and T. Montgomery, “Coordination as Distributed Search in a Hierarchical
Space,” IEEE Trans. on System, Man, and Cybernetics, Vol. 21, No. 6, pp. 1347-1362,
1991.

[9] L. Gasser, “Social Conceptions of Knowledge and Action,” Artificial Intelligence, Vol. 47,
pp. 107-138, 1991.

[10] K. J. Hammond, Case-Based Planning — Viewing Planning as a Memory Task, Academic
Press, 1989.

[11] E. Hudlická, V. R. Lesser, J. Pavlin, and A. Rewari, “Design of a Distributed Diagnosis
System,” COINS Tech Report 86-63, Univ. of Massachusetts, 1986.

[12] E. Hudlická and V. R. Lesser, “Modeling and Diagnosing Problem-Solving System Be-
havior,” IEEE Trans. on System, Man, and Cybernetics, Vol. 17, No. 3, pp. 407-419, 1987.

[13] T. Ishida, M. Yokoo, and L. Gasser, “An Organizational Approach to Adaptive Production
Systems,” Proc. of AAAI, 1990.

[14] B. Krulwich, “Determining What to Learn in a Multi-Component Planning System,” Proc.
of the Cognitive Science Conf., 1991.

45

[15] V. R. Lesser and D. D. Corkill, “The Distributed Vehicle Monitoring Testbed: A Tool for
Investigating Distributed Problem Solving Networks,” AI Magazine, Vol. 4, Fall, pp. 15-
33, 1983.

[16] V. R. Lesser, “A Retrospective View of FA/C Distributed Problem Solving,” IEEE Trans.
on System, Man, and Cybernetics, Vol. 21, No. 6, pp. 1347-1362, 1991.

[17] F. von Martial, Coordinating Plans of Autonomous Agents, Lecture Notes in AI 610,
Springer-Verlag, Berlin, 1992.

[18] K. McCloghrie and M. Rose, “Management Information Base for Network Management
of TCP/IP-based internets: MIB-II,” RFC1213, 1991.

[19] R. Michalski and R. Stepp, “Learning from Observation: Conceptual Clustering,” in Ma-
chine Learning — An Artificial Intelligence Approach, R. S. Michalski, J. G. Carbonell,
and T. M. Mitchell (Eds.), Tioga Publishing Company, 1983.

[20] T. M. Mitchell, R. M. Keller, and S. T. Kedar-Cabelli, “Explanation-Based Generalizations:
A Unifying View,” Machine Learning, Vol. 1, pp. 47-80, 1986.

[21] J. R. Quinlan, “Learning Efficient Classification Procedures and their Application to Chess
End Games,” in Machine Learning — An Artificial Intelligence Approach, R. S. Michalski,
J. G. Carbonell, and T. M. Mitchell (Eds.), Tioga Publishing Company, pp. 463-482, 1983.

[22] Y. Shoham and M. Tennenholtz, “Emergent Conventions in Multi-Agent Systems: Initial
Experimental Results and Observations,” Proc. of KR-92, Boston, 1992.

[23] Y. Shoham and M. Tennenholtz, “Co-learning and the Evolution of Coordinated Multi-
Agent Activity,” in preparation, 1993.

[24] S. S. Sian, “Adaption Based on Cooperative Learning in Multi-Agent Systems,” Decen-
tralized A. I. 2, Y. Demazeau and J.-P. Müller (Eds.), Elsevier Science Publishers, pp.
257-272, 1991.

[25] T. Sugawara, “A Cooperative LAN Diagnostic and Observation Expert System,” Proc. of
IEEE Phoenix Conf. on Comp. and Comm., pp. 667-674, 1990.

[26] T. Sugawara and K. Murakami, “A Multiagent Diagnostic System for Internetwork Prob-
lems,” Proc. of INET’92, Kobe, Japan, 1992.

[27] T. Sugawara, “Using Action Benefits and Plan Certainties in Multiagent Problem Solving,”
Proc. of IEEE Conference on Artificial Intelligence Applications, pp. 407-413, 1993.

[28] M. M. Veloso and J. G. Carbonell, “Derivational Analogy in �������: Automating Case
Acquisition, Storage, and Utilization,” Machine Learning, 1992.

46

Appendix 1: Annotations of Nodes in Traces of Inferences

Decision-State Node:
Coordination-level: The current coordination level
Why-current-coordination-level: Why is the current coordination level chosen

(Pointer to corresponding organization knowledge)
List-of-coordinating-agents: All agents participating in the current problem solving
Current-HP: The selected HP
Proposed-HP-and-ratings: All proposed HPs and their ratings
Why-current-HP: Why is the current HP selected (the list of variables,

their values and pointers to the referred knowledge)
Current-high-level-plan-sequence: The sequence of the current high-level plan to verify

the current HP.
Supporting-variables: The facts supporting the current high-level-plan

sequence
Higher-level-plan: The current high-level plan
Current-plan: The selected (mid-level) plan.
Proposed-plan-and-ratings: All proposed plans and their ratings
Why-current-plan: Why is the current plan selected (the list of variables,

their values, and pointers to the referred knowledge)
Request-jobs: The requesting jobs for this decision-making and

pointers to referred coordination knowledge which
causes these requests.

Request-data: The requesting non-local data for this decision-
making and pointers to coordination knowledge which
causes these requests

Referred-domain-theory: Pointers to referred domain theory

47

Plan Node:
Name: The name of the corresponding mid-level plan to this

node
Operator-sequence: The current operator sequence
Possible-operator-sequences: Other possible operator sequences
Supporting-local-variables: Why this operator sequence is selected
Higher-level-plan: The high-level plan proposing this mid-level plan
Proposed-plans-and-ratings: The name of plans which are proposed during the execu-

tion of this plan.
Why-plan-proposed: Why are these plans proposed.
Proposed-HP-and-ratings: The name of HPs which are proposed during the execu-

tion of this plan.
Why-HP-proposed: Why are these HPs proposed.
Referred-knowledge The pointers to the referred knowledge during this plan
Referred-data: The referred local data during this plan
Referred-nonlocal-data: The referred non-local data during this plan
Calculated-data: The calculated data during this plan
Sent-data: The sent data during this plan
Received-data: The received data during this plan

Operator Node:

Type-of-operations: a local operation, cancellation or resuming of the se-
lected operation, an analysis of the received data

Proposed-by: The plan or the message that causes this operation
Referred-variables: The referred variables to execute this operation
Defined-variables: The defined variables as the results of this operation
Referred-coordination-knowledge: Referred coordination knowledge for executing this

operation
Referred-domain-theory: Pointers to referred domain theory
Referred-troubleshooting-knowledge: Pointers to referred troubleshooting knowledge
Communication-activities: Communication history during this operation

48

Appendix 2: Models of Network and Other Agents

The following describes the universal and local network domain theory model used by a LODES
agent. Note that the model that describes the “structure of network,” the “basic behaviors of
packets,” the “connection non-local actions and local observations,” and the “model of behaviors
of network nodes based on the protocol knowledge” are identical in any agent. Other models
are different depending on the local network environments and the problems. Thus, the former
models are called universal domain theory and the latter are called local domain theory.

Basic definitions: These are defined for simple descriptions.

� Functions for a packet �d

– The source of �d (Src(�d)), the destination of �d (Dst(�d)), and the protocol
type of �d (Type(�d)) are defined in �Lodes if Observable(�d,�Lodes), where
�Lodes is an LODES agent.

– The network address portion of a host (NetAddr(�Host)) is always defined if
�Host is bounded, where *Host is a host node in the network.

� Logical definitions

SrcDst(�Host1,�Host2,�d) �Src(�d) = �Host1 � Src(�d) = �Host2

BelongTo(�Host1,�Net) �NetAddr(�Host1) = �Net, where �Net is a network
address

Recv(�Host1,�Host2,�d) �Send(�Host2,�Host1,�d)

Send(�Host1,�Host2,�d) �

Manage(NetAddr(�Host1),�Lodes)�Observable(�d,�Lodes)� SrcDst(�Host1,�Host2,�d),

where Manage(�Net,*Lodes) is true if *Lodes manages the network �Net.

Structure of network: This is the model of a hierarchical network structure described in Fig. 19,
which means that any network consists of a number of host nodes, a set of subnetworks
is also a network, and any network is a subnetwork.

Local network model: This is the model of the local network including the network that the lo-
cal agent should manage, physical connections of networks, the maximum throughput, the
maximum transfer unit size, the number of local hosts, the addresses of the local routers,
the addresses of adjacent networks, and routing definitions in the local routers.

For example, if Self = L5 in Fig. 4

� Managing network

BelongTo(Self,�Net)� Manage(�Net,Self)

(Manage(�Net,Self) Optional)

49

host host host

subnetwork

subnetwork

. . . .

. . . .

subnetwork

network = subnetwork

Figure 19: Hierarchical Structure of Networks

� Netmasks

NetMask(�Net,�Mask) (which means that �Mask is the netmask of the network
�Net)

(Example: NetMask(129.60.41.0, 255.255.255.0))

� Adjacent networks (long-term refresh cycle)

Adjacent(Net4,Self), Adjacent(Net6,Self),

which means that Net4 and Net6 are physically connected with the local network
segment.

� Local routing definitions (short-term refresh cycle)

Route(�DestNet,�AdjacentNet,Self)

(For example, Route(Net1,Net4,L5) means that if a packet whose destination is
Net1 is found by L5, then the packet will be forwarded to Net4)

This model is automatically created by observing flowing packets and communicating
with the local routers (most of these data must be given by network managers if the local
router does not look at SNMP (Simple Network Management Protocol [1, 18]), since
these are essential for network management). Note that “Adjacent Networks” expresses
the physical connectivity so this data is refreshed in a long time cycle, although “Local
Routing Definitions” is refreshed in a short time cycle because it is logical and frequently
varies.

Basic behaviors of packets: This knowledge expresses the routing of packets. Depending on
their destination address, they will pass to an appropriate adjacent router and network
according to the local routing definitions. These expressions also mean that all of the
passed packets are observable by one of the adjacent LODES agents.

Observable(�d,Self) � SrcDst(�Anyhost,�Host,�d)

50

� BelongTo(�Host,�DestNet) � Manage(Self,�DestNet)

� Reach(�Host,�d)

Observable(�d,Self) � SrcDst(�Anyhost,�Host,�d)

� BelongTo(�Host,�DestNet) � Route(�DestNet,�AdjacentNet,Self)

� PassTo(�d,�AdjacentNet,Self)

PassTo(�d,�AdjacentNet,Self),� Manage(�Adjacent,�Lodes)

� Observable(�d,�Lodes)

Connection of non-local actions and local observations: This formula describes that if a packet
is observed, all other packets whose source and destination address are identical to it are
also observable. Note that “IsObserved” is valid only for a very short time, because this
knowledge assumes no changes of routing definitions in routers. Since a dynamic routing
method is used in actual network, the result of this formula may not be correct after a
certain time.

IsObserved(�d1,Self)

� ��d [Src(�d1) = Src(�d) � Dst(�d1) = Dst(�d)� Observable(�d,Self)]

Participating agent network model: This model expresses the agents participating in the cur-
rent problem solving. When a problematic packet is detected, agents in its source and des-
tination network become “end nodes” (End). According to the destination of this packet,
adjacent agents of the route of this packet (CAdjacent) are identified.

(0) Who participates in the current problem solving
L1, L2,, L7

(1) Each agent knows Both Ends of the causing packets thus
End(L1), End(L7)

(2) Each agent knows both neighbors of the current agent network
CAdjacent(L4,Self), CAdjacent(L6,Self)

;;Assuming Self = L5

Model of other participating agents: Each agent has the partial model of other agents includ-
ing current plans and requested jobs of the local agent. If necessary, agents can get current
operations executed and values of any variables to make more global views.

Currentplan(�PlanName,�agent)

Requested(�Job,�agent)

(this means that �agent requested �Job of the local agent.)

Model of observed local network: During problem solving, an agent makes a model of the
local network. This model expresses the current state of the local network although the
local network model expresses the normal state. This model is more detailed than the
local network model.

51

Model of other networks: During problem solving, agents can indirectly observe other net-
works by sending test packets. For example,

NoResponse(�Host,ICMPecho)

means that there is no response to ICMP (Internet Control Message Protocol) echo request
packet [2] from non-local host �Host.

Model of behaviors of network nodes based on the protocol knowledge: This model describes
that protocol-related behaviors of network nodes. For example, when a host receives an
ICMP echo request packet, it must reply to it, and when a host receives an unknown pro-
tocol packet, it must send back an ICMP port unreachable packet to the source of the
packet.

��d [Type(�d)= “ICMP Echo Request” � Send(�Host1,�Host2,�d)

�Observable(�d’,Self)� Send(�Host2,�Host1,�d’)�Type(�d’)=“ICMP echo reply”

Observed(�d’,Self)� Send(�Host1,�Host2,�d’)�Type(�d’)= “ICMP port unreach”

�	�d [�d = Orig-packet(�d’)� Send(�Host2,�Host1,�d)� unknownproto(�Host1,Proto(�d))]

52

