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Abstract

It is paramount for agent-based systems to adapt to the dynamics
of open environments. The agents need to adapt their processing
to available resources, deadlines, the goal criteria specified by
the clients as well their current problem solving context in order
to survive in these environments. Design-to-Criteria scheduling
is the soft real-time process of custom building a schedule to
meet real-time performance goals specified by dynamic client
goal criteria (including real-time deadlines). Problem solving
tasks are represented using a task model that lays out alternate
ways to achieve tasks and subtasks. Recent extensions to this
technology has spawned a post-scheduling contingency analysis
step that can be employed in deadline critical situations where
the added computational cost is worth the expense. This is based
on the evaluation of available schedules that can be used to re-
cover from a situation in which partially executed schedules can-
not be completed successfully. We describe how this analysis
improves the schedule evaluation from the uncertainty perspec-
tive, and provide empirical evidence to support our claims.

Keywords: Selection and Planning, Real-time perfor-
mance, Designing Agent Systems

1 Introduction

Agents need to adapt their processing to available resources,
deadlines, the goal criteria specified by the clients as well their
current problem solving context in order to survive in open en-
vironments. Design-to-Criteria (DTC) scheduling[8] is the soft
real-time process of finding an execution path through a hier-
archical task network such that the resultant schedule meets
certain design criteria, such as real-time deadlines, cost lim-
its, and quality preferences. It is the heart of agent control in
agent-based systems such as the resource-Bounded Informa-
tion Gathering agent BIG [3] and the multi-agent Intelligent
Home [2] agent environment. Casting the language into an
action-selecting-sequencing problem, the process is to select a
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subset of primitive actions from a set of candidate actions, and
sequence them, so that the end result is an end-to-end sched-
ule of an agent’s activities that meets situation specific design
criteria.

The general Design-to-Criteria scheduling process is de-
signed to cope with exponential combinatorics and to produce
results in soft real-time. However, its somewhat myopic ap-
proximation and localization methodologies do not consider
the existence of recovery options or their value to the client. In
the general case, explicit contingency analysis is not required.
In the event of a failure, the scheduler is reinvoked and it plans
a new course of action based on the current context (taking
into consideration the successes as well as the failures and the
value of results that been produced to the particular point). In
hard deadline situations, such as those in mission critical sys-
tems [5, 4] however, the scheduler may not be able to recover
and employ an alternative solution path because valuable time
has been spent traversing a solution path that cannot lead to
a final solution. Our uncertainty based contingency analysis
tools can help in this situation by pre-evaluating the likelihood
of recovery from a particular path and factoring that into the
utility associated with a particular schedule. The improved es-
timates (based on the possibility of recovery options) can result
in the selection of a different schedule, possibly one that leads
to higher quality results with greater frequency resulting in im-
proved real-time performance.

This paper is structured as follows. Section 2 discusses how
uncertainty is integrated and leveraged in the main Design-to-
Criteria scheduling process. In Section 3 we step outside of the
main scheduling process and discuss secondary contingency
analysis methodology that uses Design-to-Criteria to explore
uncertainty and the ramifications of schedule failure. Experi-
mental results illustrating the strength of contingency analysis,
relative to Design-to-Criteria’s myopic view, for certain classes
of task structures are provided in Section 4.

2 Integrating Uncertainty Into
Design-to-Criteria

The Design-to-Criteria scheduling problem is framed in terms
of a TÆMS [1] task network, which imposes structure on the
primitive actions and defines how they are related. The most
notable features of TÆMS are its domain independence, the
explicit modeling of alternative ways to perform tasks, the ex-
plicit and quantified modeling of interactions between tasks,
and the characterization of primitive actions in terms of qual-
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Figure 1: Simplified Subset of an Information Gathering Task Structure

ity, cost, and duration. The issue of task modeling and the
associated assumptions are discussed in more detail in [1, 8].
To ground further discussion consider the TÆMS task struc-
ture shown in Figure 1. The task structure is a conceptual,
simplified sub-graph of a task structure emitted by the BIG
information gathering agent; it describes a portion of the in-
formation gathering process. The top-level task is to construct
product models of retail PC systems. It has two subtasks, Get-
Basic and Gather-Reviews, both of which are decomposed into
primitive actions, called methods, that are described in terms
of their expected quality, cost, and duration. The enables arc
between Get-Basic and Gather is a non-local-effect (nle) or
task interaction; it models the fact that the review gathering
methods need the names of products in order to gather reviews
for them. Get-Basic has two methods, joined under the sum()
quality-accumulation-function (qaf), which defines how per-
forming the subtasks relate to performing the parent task. In
this case, either method or both may be employed to achieve
Get-Basic. The same is true for Gather-Reviews. The qaf for
Build-PC-Product-Objects is a seq sum() which indicates that
the two subtasks must be performed, in order, and that their
resultant qualities are summed to determine the quality of the
parent task; thus there are nine alternative ways to achieve the
top-level goal in this particular sub-structure.

Primitive actions are characterized statistically via discrete
probability distributions rather than expected quality values.
The quality distributions model the probability of obtaining
different quality results and the possibility of failure (indicated
by a zero quality result).

The schedules shown in Figure 2 illustrate the value of un-
certainty in this model from a scheduling perspective. Sched-
ule �� is constructed for a client who needs a high quality
solution, requires the solution in seven minutes or less, and
who is willing to pay for it. Note that the quality distribu-
tion for Schedule �� includes a 20% chance of failure. Sched-
ule O (Figure 2) is the optimal schedule for the given criteria.
Even though the PC-Connection method has a higher expected
value, the PC-Mall method has a lower probability of failure.
Since a failure in one of these methods precludes the execution
of Query-Consumers-Reports (via the task interaction), the is-
sue of failure is not local to the methods but instead impacts
the schedule as a whole. Thus, when uncertainty is modeled
and propagated during the scheduling process, Schedule O is
the optimal schedule as it has the highest net expected quality

value and it still meets the client’s deadline constraint.

3 Uncertainty-based Contingency Analysis

In the previous sections we explored uncertainty as it is inte-
grated into the standard Design-to-Criteria scheduling method-
ology. However, in situations where hard deadlines exist, a
mid-schedule failure may preclude recovery via rescheduling
because sufficient time does not remain to explore a different
solution path. In these situations, a stronger analysis that con-
siders the existence of possible recovery options may lead to a
better choice of schedules. To address such situations, we have
developed a contingency analysis methodology that functions
as an optional back-end on the Design-to-Criteria scheduler.

In this section we discuss contingency scheduling issues
and formalize four different measures of schedule robustness,
where robustness describes the quantity of recovery options
available for a given schedule. In Section 4 we then present
experiments comparing the use of the contingency algorithms
to the standard Design-to-Criteria scheduling approach.

This work in contingency analysis of schedules is closely re-
lated to recent work in conditional planning. A detailed com-
parison of our work to other planning-centric research is pro-
vided in [7]

Our contingency scheduling research differs from previous
work in the following ways:

1. The contingency analysis algorithms use the Design-to-
Criteria scheduler to explore mainly the “good” portions of
the schedule solution space – that is those schedules that
best address the client’s design criteria. This serves to con-
strain the computation and reduces the combinatorics from
their general upper bounds. More importantly, the algorithm
presented here is amenable to future research in bounding
the algorithm directly, which would enable the contingency
analysis approach to operate in interactive time, as does
the underlying Design-to-Criteria scheduler. Construction
of contingent schedules in our analysis is done in interac-
tive time even as the problem is being solved and hence we
have real duration and cost constraints in evaluating the en-
tire search space.

2. Contingency analysis takes place in the context of the multi-
dimensional goal criteria mechanism used in Design-to-
Criteria. Thus the analysis approach is fully targetable to



Schedule A′
PC-Connection Consumers-Reports

Quality distribution (sum of TGs): (0.20 0.0)(0.20 10.0)(0.60 40.0)
    Expected value:  26.00
    Probability q or greater:  0.60
Cost distribution (sum of methods costs): (1.00 2.0)
    Expected value:  2.00
    Probability c or lower:  1.00
Finish time distribution (finish time of last method): (0.45 4.0)(0.45 5.0)(0.05 6.0)(0.05 7.0)
    Expected value:  4.70
    Probability d or lower:  0.45

Schedule O - Optimal Schedule

PC-Mall Consumers-Reports

Quality distribution (sum of TGs): (0.10 0.0)(0.22 8.5)(0.67 38.5)
    Expected value:  27.90
    Probability q or greater:  0.67
Cost distribution (sum of methods costs): (1.00 2.0)
    Expected value:  2.00
    Probability c or lower:  1.00
Finish time distribution (finish time of last method): (0.09 5.0)(0.09 5.5)(0.72 6.0)
                                                                                     (0.01 7.0)(0.01 7.5)(0.08 8.0)
    Expected value:  6.05
    Probability d or lower:  0.90

Figure 2: Uncertainty Representation in Schedules

different applications, e.g., situations where quality should
be traded-off to obtain lower cost accompanied by a hard
deadline, or situations in which quality should be maximized
within a hard deadline.

3. Our algorithm takes advantage of the structural properties
of the input problem. The TÆMS task structure represen-
tation is used to constrain the analysis process and to help
limit the exploration of the search used to locate recovery
options. This is in contrast to a simple exploration of all
primitive actions without regards for interactions or for how
the actions relate to achieving the overall goal.

3.1 Performance Measures

In this section we formalize a general theory relating to the
contingency planning concepts discussed in the previous sec-
tion. The question we strive to answer formally here is the
following: What performance measure is the most appropri-
ate estimator of the actual execution behavior of a schedule
given the possibility of failure? Our basic approach is to ana-
lyze the uncertainty in the set of candidate schedules to under-
stand whether a better schedule can be selected or an existing
schedule can be slightly modified such that its statistical per-
formance profile would be better than that normally chosen by
the Design-to-Criteria scheduler. We accomplish this analy-
sis through the use of several performance measures. Prior to
presenting the measures, a few basic definitions are needed:

1. A schedule s is defined as a sequence of methods
�����������������.

2. Each method has multiple possible outcomes, denoted ��� , where
� denotes the �’th outcome of method ��. This is part of the
TÆMS definition of methods or primitive actions. Though the ex-
amples generally present methods as having quality, cost, and du-
ration distributions, methods actually may have sets of these dis-
tributions where each set is one possible outcome. For example,
if method � may produce two classes of results, one class that
is useful by method ��, and one class that is useful by method
��, method � will have two different possible outcomes, each of
which is modeled via its own quality, cost, and duration distribu-
tions. Additionally, these different outcomes will have different
nles leading from them to the client methods, �� and �� respec-
tively.

3. Each outcome is characterized in terms of quality, cost, and dura-
tion, via a discrete probability distribution for each of these dimen-
sions and each outcome has some probability of occurrence.

4. ���
�� is a Critical Task Execution Region(CTER) when the execu-

tion of �� results in outcome � which has a value or set of values
characterized by a high likelihood that the schedule as a whole will
not meet its performance objectives. For instance, ��� is a CTER
if the probability of the quality of ��� being zero is non-zero.

5. A schedule � could have zero, one or more CTER’s in it. A general

representation of such schedule with at least one CTER would be
��� � ����������

��
�� ���

��
�� ����

��
�	����������.

6. ����� is the frequency of occurrence of ��’s , j’th outcome where
��� is a CTER.

7. ���
� is���

�� with its current distribution being redistributed and nor-
malized after the removal of its critical outcome. In other words,
the criticality of ���

�� is removed and the new distribution is called
���

� .
8. If ��� = ������ ������

��
�� ������ ��

��
�� ���

��
�	�����������, then
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� �����
�	����������� and
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The four statistical measures that aide in detailed schedule
evaluation are:

Expected Lower Bound (ELB) The expected lower bound rating,
of a schedule �, is the performance measure of a schedule exe-
cution without taking rescheduling into consideration [8]. It is an
expected rating because it is computed on a statistical basis taking
quality, cost and duration distributions into account, but ignoring
the possibility of rescheduling.

Approximate Expected Upper Bound (AEUB) The AEUB is the
statistical schedule rating after eliminating all regions where
rescheduling could occur. The assumption is that there are no fail-
ure regions and hence the schedule will proceed without any fail-
ures and hence no rescheduling will be necessary. The following is
a formal definition of AEUB:
Suppose ���

�� is a CTER in the schedule � � �������� and
it occurs with frequency ����� . Let ���� =�����������

� �����. If

���
��

�
��
���
�


���
�
� �, then ��� is a CTER, where � is a per-

centage value that determines when a region should be classified
a CTER and thus a candidate for more detailed analysis. The
value of � is contextually dependent and should be specified by a
scheduler client. For instance, if saving on computational expense
is more important to the client than high certainty, � should be
high, and thus the threshold for CTER classification is also high.
However, if certainty is paramount, then � should be low, indi-
cating that any significant change in the ELB should be explored.
When this computation is done on an entire schedule for all of its
CTER’s, we call it the Approximate Expected Upper Bound. Gen-
eralizing this formula for k CTER’s ����� �������� , �	
���� =
	���������������

��
��
�����

��
����������

��
������. The AEUB is thus

the best rating of a schedule on an expected value basis without any
rescheduling.

Optimal Expected Bound (OEB) The OEB is the schedule rating if
rescheduling were to take place after each method execution. So
the first method is executed, a new scheduling subproblem which
includes the effects of the method completion is constructed and
the scheduler is re-invoked. The first method in this new sched-
ule is executed and the steps described above are repeated. Hence
the optimal schedule is chosen at each rescheduling region. For



complex task structures, the calculation would require a tremen-
dous amount of computational power and it is unrealistic to use it
for measuring schedule performance in a real system. In most sit-
uations, 	����� � 
	���� � �	
����� since the 
	����
is based on recovery from a failure while �	
���� assumes no
failure.

Approximate Expected Bound (AEB) It is the schedule rating with
rescheduling only at CTER’s and using expected lower bound of
the new stable schedule for methods following the CTER. This is
limited contingency analysis at CTER’s. Consider a schedule � of n
methods �=���������������. Now suppose ��� is a CTER with
a frequency of occurrence of ��� . In order to compute the AEB
of the schedule, we replace the portion of the schedule succeed-
ing ���

�� , which is ���������� ������ by ����� ������������ if there
exists a ����� ������������ such that 	���������

��
�� � ���������� �

	�����������
� �����������.

The Approximate Expected Bound for this instance is computed as
follows:
�	������� �������=	�����������

� ���������� � �� � ���� +
	��������

��
�� � ��������� � ��� . The new schedule rating thus in-

cludes the rating from the original part of the schedule as well the
ELB of the new portion of the schedule. This is basically the calcu-
lation described when the AEB was introduced in a previous sec-
tion.
Let ��������� ���������� be a schedule � of n methods with
k CTER’s named ���

����
����

����
������

����
. Let the recovery

path available at each CTER ���
�� be ���� and each ���

�� occurs
with frequency ����� . The AEB of the entire schedule is de-
scribed recursively as �	� = 	���������

��
�� � ��� ������ � �

��
�� +

�	����������
� � ����� �����������

��
�� �which can be expanded

out as follows:
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AEUB

The above computation produces an approximate measure since
we use the 	���������� � ���������. The deeper the recursion in
the analysis of CTER’s, the better the schedule performance mea-
sure and the closer it is to the actual performance measure when
rescheduling occurs. This describes the potential anytime nature
of the AEB computation. Thus, in most situations, �	���� �
	����� by definition.

Here we would like to add that all computations above are
based on heuristics and hence are approximations. We could
define AEUB’,OEB’, AEB’ and ELB’ which would involve
complete analysis of all paths by the scheduler. The result-
ing schedules would display higher performance characteris-
tics and meet goal criteria better but will also be computation-
ally infeasible to generate [6, 8].

4 Experimental Results

Using the measures described above, effective contingency
planning is a complex process. It involves taking into account a
number of factors, including task relationships, deadlines, the
availability of alternatives, and client design criteria (i.e., qual-
ity, cost, duration, and certainty trade-offs). In this section, we

evaluate the performance of the contingency analysis tools by
comparing them to the standard Design-to-Criteria scheduler.
Comparison is done by examining the ELB (standard sched-
uler metric) and the AEB (contingency analysis metric) and
comparing schedules selected on the basis of these metrics to
the actual results obtained by executing the schedules in a sim-
ulation environment.

The experiments in this section were conducted by randomly
generating task structures while varying certain characteris-
tics. Intuitions of which characteristics would lead to struc-
tures that are amenable to contingency analysis were used to
seed the search for interesting test cases. Since method failure
is a crucial factor for the contingency analysis argument, the
generation of task structures was designed to concentrate on
the variance of two factors, namely, the effects of failure loca-
tion and failure intensity (probability of failure) within a task
structure. Ten randomly generated task structure classes were
then modified to varying degrees with respect to these two fac-
tors. The design criteria in these experiments is to maximize
quality given a hard deadline on the overall schedule. This
simple design criteria setting is one that lends itself to contin-
gency analysis as the existence of a hard deadline (in contrast
to a soft preference, e.g., soft deadline) may preclude recovery
via rescheduling in certain circumstances.

The results for the experiments are shown in Figure 3. For
each task structure instance, 100 simulated executions were
performed using the schedule with the highest ELB and with
the schedule having the highest AEB. Each row in the table in-
dicates a different (failure location, failure probability) param-
eter setting for the ten task structures; each row is also an ag-
gregation of results for the ten task structure instances. Of the
two factors used to differentiate the task structures in each row,
failure location (Lo) (found in the first column of the table)
refers to the position of critical method(s) in a task structure
and hence in the schedule. Failure intensity (In) (second col-
umn) refers to the probability of a method failing. Three dif-
ferent classifications of failure location are used in the exper-
iments: early(E), medium(M), and late(La). Similarly, three
different settings for failure intensity are used in the experi-
ments, namely, low(L), medium(M) and high(H) where low is
1%-10% probability of failure, medium is 11%-40%, and high
is 41%-90%.

For each problem instance, the execution results produced
by the AEB selected schedule were compared to the results
for the ELB selected schedule via statistical significance test-
ing. The third column, N.H. valid count, identifies the number
of problem instances for which the null hypothesis of equiv-
alence could not be rejected at the .05 level via a one-tailed
t-test. In other words, N.H. valid count identifies the number
of experiments for which the results produced via AEB are not
statistically significantly different from the results produced by
the ELB. These experiments are omitted from subsequent per-
formance measures.

The fourth column indicates the number of task structures
of the ten possible whose data is compared. These are task
structures that led to schedules for the ELB case and the AEB
case that produced execution results that are statistically sig-
nificantly different, i.e., the null hypothesis of equivalence was
rejected at the .05 level. The remaining columns compare the
AEB and ELB selected schedules’ execution results for the



these task structures from an aggregate perspective.
Columns five and eight, titled Contingency A.Q and Nor-

mal A.Q. respectively, show the mean, normalized quality that
was produced by the AEB and ELB selected schedules respec-
tively. In other words, the best schedule per the AEB metric
was selected and executed in an unbiased simulation environ-
ment, when failure occurred the scheduler and contingency-
analysis tools were reinvoked and a new schedule generated
that attempted to complete the task. The resultant quality was
measured and recorded and the experiment repeated 100 times.
The same procedure was done for the ELB selected schedule,
though when rescheduling occurred, the contingency analy-
sis tools were not invoked (nor were they invoked in the pro-
duction of the initial schedule). The overall maximum qual-
ity produced by either the AEB or the ELB simulation runs
was recorded and all resultant quality then normalized over the
maximum, resulting a quality value that expresses the percent-
age of the maximum observed quality that a given trial pro-
duced. This procedure was then repeated for the other task
structure that produced statistically significantly different re-
sults, and the normalized quality values averaged. Thus, the
0.73512 A.Q. from the first row of Table 3, column four, in-
dicates that contingency analysis yielded schedules that pro-
duced approximately 74% of the maximum observed quality
on average. Column seven indicates that the standard Design-
to-Criteria scheduler produced approximately 63% of the max-
imum observed quality, on average, for the same set of task
structures. Thus, contingency analysis yielded a 14.24% per-
centage increase in resultant quality over the standard Design-
to-Criteria scheduler, as shown in column 11.

Columns six and nine show the number of times a given se-
lected schedule failed to produce any result, that is, recovery
before the deadline was not possible, for the AEB and ELB
cases respectively. It is interesting to note that the contin-
gency selected schedule failed to produce a result with some-
what greater frequency for rows two and five. This is because
both the contingency selected schedule and its recovery option
had some probability of failure, though, we do not actually
consider the failure rate in these cases to be statistically signif-
icant. The failure rate in row three illustrates the classic case in
which recovery before the deadline is often not possible for the
schedules chosen by the standard Design-to-Criteria scheduler,
whereas it is more often possible for the schedules selected by
contingency analysis.

Columns seven and ten show the number of times reschedul-
ing was necessary during execution. These results are some-
what counter intuitive as the contingency analysis selected
schedules generally resulted in more rescheduling during ex-
ecution due to failure. This is because the contingency anal-
ysis tools explore the possibility of recovery and do not seek
to avoid the failure in the first place. Relatedly, because the
contingency analysis considers the existence of recovery op-
tions, it may actually select a schedule more prone to ini-
tial failure than the standard Design-to-Criteria scheduler be-
cause the schedule has a higher potential quality. For ex-
ample, say two schedules �� and �� have the following re-
spective quality distributions: �� � ���� ������ 	�� and
�� � ���� ������ 	
�. The expected value of �� is 7.5
whereas the expected value of �� is 7. The standard sched-
uler will prefer �� over �� because it has a higher expected

quality value (assuming that the goal is to maximize quality
within a given deadline). However, the contingency analy-
sis tools might actually prefer �� over �� if there are recov-
ery options, e.g., �� for ��, because �� has the potential for a
higher quality result than ��. If �� has a quality distribution
like �� � �	��� ��, then the �� / �� recovery scenario has a
higher joint expected quality than does �� alone. Associating
a cost with rescheduling in the contingency algorithms could
modulate this opportunistic risk-taking type of behavior. If a
cost were associated with rescheduling, the utility of a recov-
ery option could be weighted to reflect such a cost.

The last column shows the mean normalized OEB of the
AEB selected schedule. This is the measure where reschedul-
ing is invoked after every method execution irrespective of the
execution outcome. It describes the optimal performance of a
schedule since the best possible path is selected every step of
the way. The quality value shown is the average of 100 ex-
ecutions of the OEB schedule, normalized by the maximum
observed quality over all the AEB selected and ELB selected
schedules’ executions. The OEB is higher than both Contin-
gency A.Q. as well as Normal A.Q. for each class of task struc-
tures. This is as it should be, as the OEB is a computationally
intensive performance measure which strives to obtain the op-
timal schedule at every point of the plan.

Irrespective of rescheduling, in general, for the task struc-
tures that lead to statistically significantly different results,
contingency analysis produced schedules that yielded higher
average quality than did the standard Design-to-Criteria sched-
uler. However, as illustrated by the large number of task struc-
tures that lead to results that were not statistically significantly
different, very few of the candidate task structures were suit-
able for contingency analysis (about 20%).

Based on the results presented here and other similar results,
it is possible to characterize the types of task structures that are
amenable to contingency analysis, i.e., those for which analy-
sis of recovery options is beneficial from a cost/benefit per-
spective. The general characteristics include:

1. Methods in task structures should have a possibility of fail-
ure in their distribution.

2. Task structures should contain alternate paths. The absence
of of possible recovery paths in the face of failure also makes
contingency analysis dispensable.

3. Task structures should contain alternate paths with some
overlapping structure(preferably in the initial stage) and
with significant performance differences.

4. Dependence of methods with good average performance on
critical methods (enables non-local effect from a critical
method to a non-critical method).

5 Conclusions and Future Work

Dealing with uncertainty as a first class object both within the
scheduling process and via the secondary analysis is beneficial.
The addition of uncertainty to the TÆMS modeling frame-
work increases the accuracy of TÆMS models. Including ex-
plicit models of uncertainty improves the scheduling process
not simply by increasing modeling power, but also by increas-
ing the representational power of all the computations in the
scheduling process.



Fail N.H valid T.S. Contingency Normal Perf. OEB
Lo In count count A.Q. F.R. R.C. A.Q. F.R. R.C Impr.
E M 8 2 0.73512 0/200 72 0.63041 0/200 0 14.24% 0.75227
M M 8 2 0.70125 2/200 64 0.63883 0/200 0 8.89% 0.71222
La M 8 2 0.79936 21/200 100 0.66246 38/200 48 17.12% 0.84531
M L 10 0 0 0 0 0 0 0 0% 0
M M 8 2 0.70125 3/200 64 0.63883 0/200 0 8.89% 0.71222
M H 10 0 0 0 0 0 0 0 0% 0

Col. # 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3: Experimental Results

The secondary contingency analysis procedures presented
in Section 3 step outside of this context to perform a more de-
tailed analysis of schedule performance based on the existence
of recovery options. Since the algorithms explore the sched-
ule recovery space using the Design-to-Criteria scheduler, they
still exhibit a satisficing, approximate, resource conservative
nature. They are more appropriate for mission-critical situa-
tions which also allow for the post-scheduling off-line contin-
gency analysis. It is interesting to note that even the coarse
analysis performed in the AEB and AEUB computations is
beneficial in certain circumstances. In [6], we compare the per-
formance of the heuristic-based contingency analysis to that of
the policy generated by an optimal controller. Future efforts in
contingency analysis will involve explicitly bounding and con-
trolling the complexity of the contingency analysis process. In-
tertwined with this research objective is the ability to classify
particular problem solving instances.

Another area of future exploration in contingency analysis
lies in the area of determining critical regions, CTERs, within
schedules. One aspect of this is determining CTER status based
on the existence and types of task interactions.

Another area to be explored involves leveraging the
uncertainty-enhanced TÆMS models in multi-agent schedul-
ing and coordination. In multi-agent systems the scheduler is
typically coupled with a multi-agent coordination module that
forms commitments to perform work with other agents; local
concerns are thus modulated by non-local problem solving.

Other, more general, future efforts in Design-to-Criteria
include using organizational knowledge to guide the sched-
uler decision process when operating in multi-agent environ-
ments and to support negotiation between the scheduler and its
clients, which may be other AI problem solvers or humans.
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