
Reasoning about Coordination Costs in Resource-Bounded Multi-Agent Systems

Anita Raja
Department of Software and Information Systems

The University of North Carolina at Charlotte
Charlotte, NC 28223

anraja@uncc.edu

Victor Lesser
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003
lesser@cs.umass.edu

Abstract

Deliberative agents operating in open environments
must make complex real-time control decisions on
scheduling and coordination of domain activities. These
decisions are made in the context of limited resources
and uncertainty about the outcomes of activities. In this
paper, we show that reasoning explicitly about the cost
of control and domain actions leads to significant im-
provement in the performance of a multi-agent system.
An empirical reinforcement learning algorithm which
supports this reasoning process is presented.

Open environments are dynamic and uncertain. Delib-
erative agents operating in these environments must reason
about their local problem solving actions, coordinate with
other agents to complete tasks requiring joint effort, plana
course of action and carry it out. These deliberations may
involve computation and delays waiting for arrival of ap-
propriate information. They have to be done in the face of
limited resources, uncertainty about action outcomes and in
real-time. Furthermore, new tasks can be generated by ex-
isting or new agents at any time. These tasks have deadlines
where completing the task after the deadline could lead to
lower or no utility. This requires an agent to interleave de-
liberation with execution of its domain activities.

The agent has to choose which deliberative actions to per-
form when and whether to deliberate or to execute domain
actions that are the result of previous deliberative actions.
To do this optimally, an agent would have to know the ef-
fect of all combinations of actions ahead of time, which is
intractable for any reasonably sized problem. The ability
to sequence domain and control actions without consuming
too many resources in the process is called the meta-level
control (MLC) for a resource-bounded rational agent. Our
approach is to equip an agent with meta-level reasoning with
bounded computational overhead.

We consider three classes of deliberative actions: infor-
mation gathering actions, coordination actions and plan-
ning/scheduling actions. These actions, also called control
actions, are non-trivial requiring exponential work in the
number of domain actions.

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

The first type of deliberative actions are information gath-
ering actions which involve gathering information about the
environment which includes the state of other agents. This
information is used to determine the relevant control actions.
These actions do not use local processor time but they delay
the deliberation process.

The second type of deliberative action, coordination, is
the process by which a group of agents achieve their tasks in
a shared environment. In this work, coordination is the inter-
agent negotiation process that establishes commitments on
completion times of tasks or methods. Finally, the third
type of deliberative actions involve planning and scheduling.
Planning is the process in which the agent uses beliefs about
actions and their consequences to search for solutions to one
or more high-level tasks(goals) over the space of possible
plans. It determines which domain actions should be taken
to achieve the tasks. Scheduling is the process of deciding
when and where each of these actions should be performed.
In this work, planning is folded into the scheduling process.

The problem with most single and multi agent systems
(Boutlier 1999; Musliner 1996; Raja, Lesser, & Wagner
2000; Kuwabara 1996; Zilberstein & Mouaddib 1999) is
that they do not explicitly reason about the cost of delib-
erative computation. Hence, these systems have no way to
trade-off the resources used for deliberative actions and do-
main actions. An agent is not performing rationally if it fails
to account for the overhead of computing a solution. This
leads to actions that are without operational significance (Si-
mon 1976). We address this problem using a reinforcement
learning-based approach.

There has been a variety of work on meta-level control
(Simon 1982; Harada & Russell 1999; Stefik 1981) but in
reviewing the literature there is little that is directly related
the meta-level control problem discussed in this paper. The
difficult characteristics of our problem are the complexity
of the information that characterize system state; the variety
of responses with differing costs and parameters available
to the situation; the high degree of uncertainty caused by
the non-deterministic arrival of tasks and outcomes of primi-
tive domain actions; and finally the fact that the consequence
of decisions are often not observable immediately and may
have significant down-stream effects. The problem worked
on that is closest to the complexity of our meta-level control
decisions is the Guardian system(Hayes-Rothet al. 1994).



However their system is knowledge intensive and the heuris-
tic rules seem very domain-dependent in comparison to the
domain-independence of our approach. Although (Hansen
& Zilberstein 1996) and (Russell & Wefald 1992) are appli-
cable to this work, the techniques used are limited to specific
problem solving situations that were much more structured
than those encountered in our domain.

The intent of this research is to show that a meta-level
reasoning component with bounded and small computation
overhead can be constructed that significantly improves the
performance of individual agents in a cooperative multi-
agent system. This paper is structured as follows: We first
describe an example scenario which motivates the meta-
level questions addressed in this work, including the need to
reason about control costs. This scenario exhibits partialob-
servability, non-stationarity and action outcome uncertainty
which are characteristic of multi-robotic systems. A formal
description of the problem is then presented; followed by
the empirical reinforcement algorithm which supports meta-
level control reasoning. Finally experimental results show-
ing the effectiveness of meta-level control are provided us-
ing a hand-generated heuristic approach as well as the rein-
forcement learning approach.

Motivating Example
In order to provide a clear picture of these five decisions
described above, consider the simple scenario consisting of
two roversFred andBarney. Rovers are unmanned vehicles
equipped with cameras and a variety of scientific sensors for
the purpose of planetary surface exploration. The discus-
sion here will specifically focus on the various meta-level
questions that will have to be addressed byFred. Figure 1
describesAnalyze Rock, also called taskT0, and Figure 2
describesExplore Terrain, also called taskT1, which are the
tasks performed byFred.

Analyze Rock
(T0) 

enables 

min 

Get to Rock
Location
(M1) 

Focus 
Spectrometer

on Rock
(M2) 

Q 100% 6
 D 100% 8 

Q 90% 10 10%12
 D 90% 10 10% 12

Figure 1: Fred’sAnalyze Rocktask

In this example, each top-level task is decomposed into
two executable primitive actions. In order to achieve the
task Analyze Rock, Fred must execute both primitive ac-
tionsGet To Rock LocationandFocus Spectrometer on Rock
in sequence. All primitive actions calledmethods, are sta-
tistically characterized in three dimensions: quality, cost
and duration. Quality is a deliberately abstract domain-

sum 

enables from
Barney's 

"Arrive at Location"
method (N5) 

Explore 
Terrain
(T1) 

Examine 
Terrain
(M3) 

Collect 
Samples
(M4) 

Q 100% 12
 D 100% 8 

Q 90% 10 10%12
 D 90% 10 10% 12

Figure 2: Fred’sExplore Terraintask

independent concept that describes the contribution of a par-
ticular action to overall problem solving. Thus, different
applications have different notions of what corresponds to
model quality. The sequence is denoted by the enables ar-
row between the two actions and the min quality attribution
factor (which denotes a conjunction operator) states that the
minimum of the qualities of the two actions will be attributed
to theAnalyze Rocktask. To achieve the taskExplore ter-
rain, Fred can execute one or both primitive actionsExam-
ine TerrainandCollect Sampleswithin the task deadline and
the quality accrued for the task will be cumulative (denoted
by thesumfunction).

Barney is equipped with a storage compartment while
Fred is not. TheCollect Samplesmethod requires Fred and
Barney to coordinate: Fred has the ability to pick up the soil
sample and put it in Barney’s storage compartment. This
relationship between the two agents is denoted by the non-
localenablesfrom Barney’sArrive at Location Method (N5)
method (Barney’stask structure is not shown) to Fred’sCol-
lect Samplesmethod. Utility and duration distributions for
each primitive action is provided.

The following are sample meta-level questions that will
be addressed by agentFred and the cost-benefit analysis for
only two of them are provided in the interest of space. The
remaining questions are reasoned about in a similar fashion.

1. Should methodCollect Samples, which is enabled byBar-
ney’smethodArrive at Location, be included in theFred’s
schedule?
Benefit: If methodCollect Samplesis included inFred’s
schedule,Fredcan increase its total utility.
Cost: This implies thatFred andBarneyhave to negoti-
ate over the completion time ofBarney’smethodArrive
at Locationand this will take time.

2. If Freddecides to negotiate, it should also decide whether
to negotiate by means of a single step or a multi-step pro-
tocol (Lesser & Zhang 2002) that may require a number of
negotiation cycles to find an acceptable solution or even
a more expensive search for a near-optimal solution. For
example, should a single shot protocol which is quick but



has a chance of failure be used or a more complex pro-
tocol which takes more time and has a higher chance of
success.
Benefit: If Fred receives high utility as a result of com-
pleting negotiation on finish time ofArrive at Location,
then better the protocol, the higher the probability that the
negotiation will succeed.
Cost: The protocols which have a higher guarantee of
success require more resources, more cycles and more
end-to-end time in case of multi-step negotiation and
higher computation power and time in case of near-
optimal solutions. (The end-to-end time is proportional
to the delay in being able to start task executions).

3. If the negotiation betweenFred andBarneyusing a par-
ticular negotiation protocol fails, shouldFredretry the ne-
gotiation withBarneyagain?

4. ShouldFred schedule newly arriving taskTx at arrival
time or postpone scheduling to sometime in the future or
drop that particular instance of the task.

5. WhenFred’s scheduler is called, it has to decide how
much effort to invest in scheduling. Also how flexible
should the schedule produced by the detailed scheduler
be? How much slack should be inserted in the schedule?

6. When Fred’s schedule deviates from expected perfor-
mance by thresholdα, should a reschedule be invoked
automatically?

Formal Model
The meta-level controller (MLC) in making its decisions
does not directly use the information contained in the agent’s
current state. This would include detailed information re-
garding the tasks that are not yet scheduled, status of tasks
that are partially executed, and the schedule of primitive ac-
tions that are to be executed. Instead the MLC uses in it de-
cision making, a set of high-level qualitative features that are
computed from the full state information and pre-computed
information about the behavior of the tasks that the system
can handle. The advantage of this approach is that it simpli-
fies the decision making process and provides the possibility
for learning these rules (which we are currently exploring).
The following are two examples of the high-level features.
They take on qualitative values such as high, medium and
low.

F1: Utility goodness of new taskdescribes the utility of
a newly arrived task based on whether the new task is very
valuable, moderately valuable or not valuable in relation to
other tasks being performed by the agent.

F2: Deadline tightness of a new taskdescribes the tight-
ness of the deadline of a new task in relation to expected
deadlines of other tasks. It determines whether the new
task’s deadline is very close, moderately close or far in the
future.

A detailed description of eleven features representing
state is provided in (Raja 2003). The following is a decision
theoretic formulation of the meta-level control problem.

1. LetSbe the set of states of the agent andsiε S denote the
agent state at stage i,i = 0, 1, 2, 3 . . . , n

2. A is the set of possible control actions andaiε A is the
action taken by the agent in statesi.
Control actions do not directly affect the utility achieved
by the agent since they affect only the agent’s internal
state. These actions consume time and have only indirect
effects on the external world.
Control actions are followed by the execution of utility
achieving domain actions. These domain actions are di-
rectly the result of control actions in the current and pre-
ceding states. These domain actions are not explicitly rep-
resented in this model since they are encased by the con-
trol actions.

3. A policy π is a description of the behavior of the system.
A stationary meta-level control policyπ : S → A speci-
fies, for each state, a control action to be taken. The policy
is defined for a specific environment.
An environment is defined by three distributions describ-
ing task type, task arrival rate and task deadline tightness.
Meta-level control is the decision process for choosing
and sequencing control actions. In this work, there are
five event triggers which invoke the meta-level control
process. The occurrence of any of the triggers interrupts
any other activity the agent in currently engaged in and
control is shifted to the meta-level controller.

4. sj is the new state reached when the agent is interrupted
by an event requiring meta-level control reasoning while
executing control actionπ(si) followed by the execution
of corresponding domain actions that followπ(si).

5. R(si, π(si), sj) is the reward obtained in statesj as a con-
sequence taking control actionπ(si) in statesi and then
executing the domain actions that followπ(si).
The reward is the cumulative value of the tasks and do-
main actions which are completed between the state tran-
sitions. Since the values achieved by the tasks have asso-
ciated uncertainties, the reward function is represented as
a distribution.

6. Uπ(si) is the utility of statesi under policyπ.

7. P (sj |si, π(si)) is the probability that agent is in statesj

as a result of taking actionπ(si) which is the action pre-
scribed by policyπ in statesi.

The above model defines a finite Markov decision pro-
cess (Bertsekas & Tsitsiklis 1996).

According to decision theory, an optimal action is one
which maximizes the agent’s expected utility, given by

E[Uπ(si)] = E[

n∑

j=1

γj R(si, π(si), sj)]

γε[0, 1) is a discount-rate parameter which determines the
present value of future utility gains.

which can be computed as follows

E[Uπ(si)] =

n∑

j=1

P (sj |si, π(si))[R(si, π(si), sj)+γj E[Uπ(sj)]]



The meta-level control problem is to find a best meta-
level control policyπ∗ which maximizes the expected re-
turn for all states. This optimal policy can be found using
dynamic programming (Bertsekas & Tsitsiklis 1996) and re-
inforcement learning (Sutton & Barto 1998) methods. These
methods will implicitly determine the transition probability
model and reward function defined previously.

In this work, the complexity of the state space makes it
difficult to find the optimal policy. So an approximate meta-
level control policy is found using a abstract state represen-
tation which will capture only the information relevant to the
decision making process.

Reinforcement Learning
In the Reinforcement Learning (RL) framework, the learn-
ing agent interacts with an environment over a series of time
steps t=0,1,2,3... At each time t, the agent observes the envi-
ronment states,st, and chooses an action,at, which causes
the environment to transition to statest+1 and to emit a re-
ward, rt+1. In a Markovian system, the next state and re-
ward depend only on the preceding state and action, but they
may depend on these in a stochastic manner. The objective
of the agent is to learn to maximize the expected value of
reward received over time. It does this by learning a (possi-
bly stochastic) mapping from states to actions called apol-
icy. More precisely, the objective is to choose each actionat

so as to maximize the expected return,E(
∑

∞

i=1
γirt+i+1),

whereγ ε [0, 1) is a discount parameter. A common solution
strategy is to approximate the optimal action-value function,
or Q-function, which maps each state and action to the maxi-
mum expected return starting from the given state and action
and thereafter always taking the best actions.

We adopt the learning approach developed in (Singhet
al. 2000) for using RL in the design of a spoken dialogue
system. Their problem is similar to ours in that it is also
a sequential decision making problem and there is a bottle
neck associated with collecting training data. Each of our
simulation runs takes approximately four minutes since we
are accounting for real-time control costs.

As described earlier, the MLC in making its decisions
does not directly use the information contained in the agent’s
current state. The state of the markov-decision process is an
abstraction of the actual state of the systems and uses the
features described previously. We then specified the appro-
priate actions to take in each state. The actions are a list of
control actions. The reward function is the sum of the utili-
ties accrued by each completed task. The meta-level control
policy is a mapping from each state to an action.

We then implemented an initial meta-level control policy
which randomly chooses an action at each state and collects
a set of episodes from a sample of the environment. Each
episode is a sequence of alternating states, actions and re-
wards. As described in (Singhet al. 2000), we estimated
transition probabilities of the formP (s′|s, a), which denotes
the probability of a transition to states′, given that the sys-
tem was in states and took actiona from many such se-
quences. The transition probability estimate is the ratio of
the number of times in all the episodes, that the system was
in s and tooka and arrived ats′ to the number of times in all

the episodes, that the system was ins and tooka irrespec-
tive of the next state. The Markov decision process (MDP)
model representing system behavior for a particular environ-
ment is obtained from state set, action set, transition prob-
abilities and reward function. The efficiency of the model
depends on the extent of exploration performed in the train-
ing data with respect to the chosen states and actions. In
the final step we determine the optimal policy in the esti-
mated MDP using the Q-value version of the standard value
iteration algorithm (Sutton & Barto 1998). The expected cu-
mulative reward (or Q-value) Q(s,a) of taking actiona from
states is calculated in terms of the Q-values of successor
states via the following recursive equation (Sutton & Barto
1998):

Q(s, a) = R(s, a) + γ
∑

s′

P (s′|s, a)max
a′

Q(s′, a′)

The algorithm iteratively updates the estimate ofQ(s, a)
based on the current Q-values of neighboring states and
stops when the update yields a difference that is below a
threshold. Once value iteration is completed, the optimal
meta-level control policy (according to the estimated model)
is obtained by selecting the action with the maximum Q-
value at each state. To the extent that the estimated MDP is
an accurate model of the particular environment, this opti-
mized policy should maximize the reward obtained in future
episodes. The summary of the proposed methodology is as
follows
1. Choose an appropriate reward measure for episodes and

an appropriate representation for episode states.
2. Build an initial state-based training system that creates an

exploratory data set. Despite being exploratory, this sys-
tem should provide the desired basic functionality.

3. Use these training episodes to build an empirical MDP
model on the state space.

4. Compute the optimal meta-level control policy according
to this MDP.

5. Reimplement the system using the learned meta-level
control policy

Experiments
The agents in this domain are in a cooperative environment
and have approximate models of the others agents in the
multi-agent system. The agents are willing to reveal infor-
mation to enable the multi-agent system to perform better as
a whole. The interaction between 2 agentsFred andBar-
neyis studied. The multi-agent aspect of the problem arises
when there is task requiring coordination with another agent.
The agent rewards in this domain are neither totally pos-
itively correlated(team problem) nor are they totally neg-
atively correlated(zero-sum game). Multi-agent reinforce-
ment learning has been recognized to be much more chal-
lenging than single-agent learning, since the number of pa-
rameters to be learned increases dramatically with the num-
ber of agents. In addition, since agents carry out actions in
parallel, the environment is usually non-stationary and often
non-Markovianas well (Mataric 1997). The experiments de-
scribe results on the convergence rates of the policies of the
two agents in simple scenarios.



The meta-level control decisions that are considered in
the multi-agent set up are: when to accept, delay or reject
a new task, how much effort to put into scheduling when
reasoning about a new task, whether to reschedule when ac-
tual execution performance deviates from expected perfor-
mance, whether to negotiate with another agent about a non-
local task and whether to renegotiate if a previous negoti-
ation falls through. For all the experiments, the following
costs are assumed. The meta-level control actions have an
associated cost of 1 time unit; the drop task and delay task
actions take 1 time unit also. The decision to negotiate and
whether to renegotiate also take 1 unit of time. The call to
simple scheduler costs 2 time units and the cost of compu-
tation of complex features costs 2 time units, the cost of de-
tailed scheduling tasks with less than five methods is 4 units,
with less than ten methods is 12 time units and greater than
ten methods is 18 time units.

The task environment generator in the multi-agent setup
also randomly creates task structures while varying three
critical factors:

1. complexity of tasksc ε {simple, complex, combo}

2. frequency of arrivalf ε {high, medium, low}

3. tightness of deadlinedl ε {tight, medium, loose}.

Complexity of tasks as described earlier refers to the ex-
pected utilities of tasks and the number of alternative plans
available to complete the task. A simple task, in the multi-
agent setup, has two primitive actions and its structure and
number of possible alternatives is similar to the Analyze-
Rock task (Figure 1). The utility distribution and duration
distribution of a simple task is within a 5% range of the cor-
responding distributions of AnalyzeRock. A complex task
has a structure similar to ExploreTerrain task described in
Figure 1.

We first tested the effectiveness of meta-level control us-
ing two context sensitive heuristic strategies: the Naive
Heuristic strategy (NHS) that uses myopic information to
make meta-level control action choices; and the Sophisti-
cated Heuristic strategy (SHS) that uses current state in-
formation and predictive information about the future to
make non-myopic action choices. These were compared to
base-line approaches which used a random and deterministic
strategy respectively. A detailed description of these strate-
gies is provided in (Raja 2003).

The behavior of two interacting agents is presented in Fig-
ure 3 and Table 1. Performance comparison of the various
strategies in an environment, AMM, over a number of di-
mensions are provided. AMM is characterized by a combi-
nation of tasks (A), medium frequency of arrival (M) and
medium deadline tightness(M). The results show that the
combined utilities of the two agents when using the heuristic
strategies is significantly higher than the combined utilities
when using the deterministic and random strategies. The
utility obtained from using SHS is significantly higher than
NHS and also 14% more tasks are completed using SHS
than the NHS. The improvement in utility can be explained
by the drop in control time (Row 3) since the heuristic strate-
gies choose control methods which are more appropriate for
the context and free up resources for other domain activi-

Environment
AMM

A
ve

ra
ge

 U
til

ity
 G

ai
n

0

20

40

60

80

100

120

RND DET NHS SHS

Figure 3: Average Utility Comparison between Heuristic
Strategies and Baseline Strategies in a Multi-agent environ-
ment. The error bars are one standard deviation above and
below each mean

Row# SHS NHS Deter. Rand.
1 AUG 111.44 89.84 77.56 45.56
2 σ 2.33 6.54 12.45 15.43
3 CT 9.21% 8.09% 14.28% 7.15%
4 RES 0% 14.28% 19.93% 1.49%
5 PTC 71.32% 56.34% 54.17% 57.78%
6 PTDEL 8.8% 3.98% 0% 59.96%

Table 1: Performance evaluation of four algorithms for two
agents in a environment AMM with a combination of tasks,
medium frequency of arrival and medium deadline tight-
ness. Column 1 is row number; Column 2 describes the var-
ious comparison criteria; Columns 3-6 represent each of the
four algorithms; Rows 1 and 2 show the average utility gain
(AUG) and respective standard deviations (σ) per run; row 3
shows the percentage of the total 500 units spent on control
actions(CT); row 4 is percent of tasks rescheduled (RES);
Row 5 is the percent of total tasks completed (PTC);Row 6
is percent of tasks delayed on arrival (PTDEL)

ties. These preliminary results are encouraging. Further ex-
perimental studies to establish the advantage of meta-level
control in multi-agent systems are ongoing.

Preliminary experimental results describing the behavior
of the two interacting agents is presented in Figure 4 and
Table 2. AgentFred’swas fixed to the best policy it was able
to learn in a single agent environment. AgentBarneythen
learned its meta-level control policy within these conditions.

Performance comparison of the heuristic strategies to the
RL strategy in environment AMM is provided. The results
show that the combined utilities of the two agents when us-
ing the RL strategy is as good as the SHS strategy which
uses environment characteristic information in its decision
making process. The RL strategy also learns policies which
significantly outperform the NHS strategy in this environ-
ment. Further experimental studies to establish the advan-
tage of automatically learning meta-level control policies in
multi-agent systems are ongoing.

The experimental evaluation lead to the following con-



Environment
AMM

A
ve

ra
ge

 U
til

ity
 G

ai
n

0

20

40

60

80

100

120

NHS SHS RL3K

Figure 4: Average Utility Comparison between Heuristic
Strategies and RL Strategy (300 training episodes) in a Mul-
tiagent environment. The error bars are one standard devia-
tion above and below each mean

Environment RL-3000 SHS NHS
AMM-UTIL 118.56 111.44 89.84
AMM-CT 8.86% 9.21% 8.09%

Table 2: Utility and Control Time Comparisons over four
environments; Column 1 is the environment type; Column 2
represents the performance characteristics of the RL policy
after 3000 training episodes; Column 3 and 4 represent the
performance characteristics of SHS and NHS respectively;

clusions : Meta-level control reasoning is advantageous
in resource-bounded agents in environments that exhibit
non-stationarity, action outcome uncertainty and partial-
observability; the high-level features described in the previ-
ous chapter are good indicators of the agent state and facil-
itate effective meta-level control; the heuristic strategies are
good indicators of the positive effects of meta-level control
in resource-bounded agents because they outperform deter-
ministic and random strategies; and predictive information
about future arrival tasks is useful in some environments and
not in others.

We describe a reinforcement learning approach which
equips agents to automatically learn meta-level control poli-
cies. The empirical reinforcement learning algorithm used
is a modified version of the algorithm developed by (Singh
et al. 2000) for a spoken dialog system. Both problem do-
mains have the bottle neck of collecting training data. The
algorithm optimizes the meta-level control policy based on
limited training data. The utility of this approach is demon-
strated experimentally by showing that the meta-level con-
trol policies that are automatically learned by the agent per-
form as well as the carefully hand-generated heuristic poli-
cies.

We are currently studying the effectiveness of this ap-
proach in environments with 10’s of agents. We are also
using insight gathered from the heuristic approaches and re-
inforcement learning approaches to study the effectiveness
parameters which will allow for policy generalization over
similar environments. And finally, we plan to reason about

organizational adaptation and communication as control ac-
tions to achieve our overall goal of accurately reasoning
about costs at all levels in large-scale, cooperative multi-
agent systems.

References
Bertsekas, D. P., and Tsitsiklis, J. N. 1996.Neuro-Dynamic
Programming. Belmont, MA: Athena Scientific.
Boutlier, C. 1999. Sequential Optimality and Coordination
in Multiagent Systems. InProceedings of the Sixteenth
International Joint Conference on Artificial Intelligence.
Hansen, E. A., and Zilberstein, S. 1996. Monitoring any-
time algorithms.SIGART Bulletin7(2):28–33.
Harada, D., and Russell, S. 1999. Extended abstract:
Learning search strategies. InProc. AAAI Spring Sympo-
sium on Search Techniques for Problem Solving under Un-
certainty and Incomplete Information, Stanford, CA, 1999.
Hayes-Roth, B.; Uckun, S.; Larsson, J.; Gaba, D.; Barr,
J.; and Chien, J. 1994. Guardian: A prototype intelligent
agent for intensive-care monitoring. InProceedings of the
National Conference on Artificial Intelligence, 1503–1511.
Kuwabara, K. 1996. Meta-level Control of Coordination
Protocols. InProceedings of the Third International Con-
ference on Multi-Agent Systems (ICMAS96), 104–111.
Lesser, V., and Zhang, X. 2002. Multi-linked negotiation in
multi-agent system.Proceedings of the First International
Joint Conference on Auton omous Agents And MultiAgent
Systems (AAMAS 2002)1207–1214.
Mataric, M. 1997. Reinforcement learning in the multi-
robot domain.
Musliner, D. J. 1996. Plan Execution in Mission-Critical
Domains. InWorking Notes of the AAAI Fall Symposium
on Plan Execution - Problems and Issues.
Raja, A.; Lesser, V.; and Wagner, T. 2000. Toward Ro-
bust Agent Control in Open Environments. InProceedings
of the Fourth International Conference on Autonomous
Agents, 84–91. Barcelona, Catalonia, Spain: ACM Press.
Raja, A. 2003. Meta-level control in multi-agent systems.
PhD Thesis, Computer Science Department, University of
Massachus etts at Amherst.
Russell, S., and Wefald, E. 1992.Do the right thing: stud-
ies in limited rationality. MIT press.
Simon, H. 1976. From substantive to procedural rational-
ity. 129–148.
Simon, H. A. 1982.Models of Bounded Rationality, Vol-
ume 1. Cambridge, Massachusetts: The MIT Press.
Singh, S. P.; Kearns, M. J.; Litman, D. J.; and Walker,
M. A. 2000. Empirical evaluation of a reinforcement learn-
ing spoken dialogue system. InProceedings of the Seven-
teenth National Conference on Artificial Intelligence, 645–
651.
Stefik, M. 1981. Planning and meta-planning.Artificial
Intelligence16(2):141–170.
Sutton, R., and Barto, A. 1998.Reinforcement Learning.
MIT Press.



Zilberstein, S., and Mouaddib, A.-I. 1999. Reactive control
of dynamic progressive processing. InIJCAI, 1268–1273.


