
DESIGN AND CONTROL OF
PARALLEL RULE�FIRING

PRODUCTION SYSTEMS

A Dissertation Presented

by

Daniel E� Neiman

Submitted to the Graduate School of the
University of Massachusetts in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

September ����

Department of Computer and Information Science

c� Copyright by Daniel E� Neiman ����

All Rights Reserved

DESIGN AND CONTROL OF
PARALLEL RULE�FIRING
PRODUCTION SYSTEMS

A Dissertation Presented

by

Daniel E� Neiman

Approved as to style and content by�

Victor R� Lesser� Chair

Daniel D� Corkill� Member

Janice Cuny� Member

James G� Schmolze� Member

Richard Giglio� Member

Arnold L� Rosenberg 	Acting Chair
� Department Head
Department of Computer Science

The process of acquiring a Ph�D� is a lengthy one� and sadly� the years
are often measured by the passing of those we care for� I would like to
dedicate this dissertation to the memory of my father� Joseph� who I think
would have been very proud to see me complete my doctorate�

I would also like to dedicate it to my �rst cat� Lily� who I hope is still
chasing birds and mice in some feline Elysian Fields�

ACKNOWLEDGMENTS

Foremost� I would like to acknowledge the continuous support and encour�

agement I received from my advisor� Victor Lesser� At a particularly dark time

in my graduate student career� Vic let me work on a topic of my own choosing

and has provided me with continuous support and guidance during my research�

Jim Schmolze of Tufts University graciously agreed to be on my committee and

introduced me to many of the intellectual concerns underlying correctness in parallel

rule��ring production systems� Through his use of UMPOPS in his own research�

Jim also inspired me to improve the performance and features of the language

and we have had many stimulating conversations� usually in the frenzied weeks

before a AAAI deadline� Dan Corkill and Jan Cuny also served on my committee

and improved the quality of the research markedly through their comments and

criticisms� I would also like to thank my outside member� Richard Giglio� for

agreeing to serve on my committee�

This thesis would not exist were it not for the contributions of software and

ideas from others in the �eld� Kelly Murray started it all by coming into my o�ce

one day and asking if I wanted to write a parallel OPS for his parallel Common

Lisp� Without TopCl� this research would not have been possible� Thanks to Charles

Lanny Forgy who implemented OPS and then very kindly released it into the public

domain� thereby providing an invaluable tool to an entire generation of researchers

and experimenters in the �eld of production systems� The language UMPOPS that

is described in this dissertation is built entirely on top of this public domain OPS�

Toru Ishida gave permission to use and modify his Toru�Waltz benchmark� I am

v

also indebted to Salvatore Stolfo� the implementors of Alexsys� and the trustees of

Columbia University for their permission to use Alexsys in my experiments�

Many of my friends contributed either directly or indirectly to the production

of this thesis� Penni Sibun and John Martin sel�essly proofread the rough drafts

of this dissertation and any assaults made upon the English language in the �nal

draft are despite their very best e�orts� Keith Decker acted as LaTex and Postscript

guru� because of Keith�s indefatigable research into the latest innovations of desktop

publishing� the creation of this document was much less painful than it could have

been�

Because there is more to life than just thesis preparation 	although it often didn�t

seem that way
� I would like to thank those people whose presence made graduate

school an enjoyable experience� The members of the DIS lab� past and present� Bob

Whitehair� Keith Decker� Al 	Bart
 Garvey� Marty Humphrey� Dave Hildum� Zarko

Cvetanovic� and Ed Durfee� proved to be an unusually cohesive and sociable group�

The Westbrooks� Dave� Terry� Brian and Josh� served as the nucleus of many social

gatherings� camping trips� and marathon croquet matches� Scott Anderson whiled

away many a summer afternoon thrashing me on the tennis courts� Penni Sibun

taught me to play bridge� talked me into being owned by my �rst cat� and has always

been willing to listen to me complain about life in general� Claire Cardie and David

Skalak have invited me along on several skating� hiking� and bicycling expeditions

and have more than once rescued me during periods of automotive distress� John

Martin and Maureen Tracy have made me their guest many times� allowing me to

escape the stress of thesis preparation for a while�

My family� too� has been unstinting in their support during my years of grad

school and has always welcomed me when I suddenly appeared after long periods of

being incommunicado� My brother Bill� in particular� was always up for a ski trip or

vi

a leisurely �� or �� mile hike along the Appalachian Trail� occasionally in the dark�

Finally� I would like to acknowledge the contributions of my cats� Lily� Socrates� and

Kittyhawke� who not only inspired many of the examples in this document� but also

put up with my extended absences and late nights in the lab and repaid me with

a�ection� entertainment� and the occasional live bird or rodent in the living room�

It is impossible to summarize the experiences and relationships of six years of

graduate school in a few sentences� and I apologize to all of those whose names I

omitted� To all those who have lent their friendship and support during the some�

times trying years of graduate school� I o�er my sincere thanks and appreciation�

This research was conducted on a Sequent multiprocessor� which was purchased

through NSF�CER contract DCR�������� and on a TI Explorer II� purchased

through a grant from the O�ce of Naval Research under University Research

Initiative grant number N���������K������ This work was also partially funded

by NSF contract CDA������� and DARPA contract N���������J������ Despite

their kind support� these agencies require it to be known that the content of the

information does not necessarily re�ect the position or the policy of the Government�

and no o�cial endorsement should be inferred�

vii

ABSTRACT

DESIGN AND CONTROL OF

PARALLEL RULE�FIRING

PRODUCTION SYSTEMS

September ����

Daniel E� Neiman

B�S�� University of Connecticut

M�S�� University of Connecticut

Ph�D�� University of Massachusetts

Directed by� Professor Victor R� Lesser

This dissertation studies the issues raised by the parallel execution of rules in

a pattern�matching production system� There are two main areas of concern�

maintaining correctness during the course of simultaneous rule executions� and

controlling the execution of productions without introducing serial bottlenecks� It is

demonstrated that guaranteeing program correctness using a serializability criterion

introduces an unacceptable overhead and reduces the potential parallel speedup

to a single order of magnitude� Instead of attempting to automatically extract

coexecutable sets of parallel rules� the approach taken in this research is to de�ne

a minimal set of language constructs which allow correct parallel programs to be

designed� The view that the rule�based computation has an algorithmic structure

allows us to attach a semantic interpretation to rule �ring� By examining the role of

each rule in the overall computation� we can understand and begin to �nd a solution

to the problems of controlling rule �ring and ensuring correctness while maximizing

e�ective use of parallel processing resources�

viii

When rules are executed in parallel� the conventional control mechanisms

applied to rule�based systems act to limit parallel activity� Two novel rule��ring

policies are described� an asynchronous rule��ring policy that causes rules to be

executed as soon as they become enabled� and a task�based scheduler that allows

multiple indpendent tasks to run asynchronously with respect to each other while

allowing rules to execute either synchronously or asynchronously within the context

of each task� Because the asynchronous execution of rules reduces the opportunities

for performing con�ict resolution� methods for performing heuristic discrimination

at various points in the rule execution cycle are discussed�

The experimental results of this research are presented in the context of UMass

Parallel OPS� a rule�based language that incorporates parallelism at the rule�

action� and match levels� and provides language constructs for supporting the design

of parallel rule�based programs including a locking scheme for working memory

elements and operators for specifying local synchronization of rules and actions�

Results are presented for a number of programs illustrating common AI paradigms

including search� inference� and constraint satisfaction problems�

ix

TABLE OF CONTENTS

Page

acknowledgments � v

abstract � viii

list of tables � xv

list of figures � xvi

�� Introduction �

��� Distinguishing Production Systems from Related Architectures and
Languages ��

����� Data�directed Programming and Imperative Languages � � � � ��
����� Blackboard systems ��
����� Database systems ��
����� Logic programming ��

��� Contributions ��

����� Speedup Due to Rule Parallelism � � � � � � � � � � � � � � � � �
����� Correctness �
����� Control ��
����� UMass Parallel OPS � An Experimental Testbed for Parallel

Rule Firing ��

��� Organization of the Dissertation ��

�� Related Work ��

��� Overview� Rule�based Systems ��
��� The OPS Language ��

����� De�nitions ��

������� Levels of Parallelism � � � � � � � � � � � � � � � � � � ��

����� Control of OPS Programs ��
����� The Rete Net ��

��� Research in Parallel Production Systems � � � � � � � � � � � � � � � � ��

x

����� Compilation of the Rete Net �
����� Parallelism in OPS ��
����� Production Parallelism ��
����� Node and Intra�node Parallelism � � � � � � � � � � � � � � � � ��

������� Extremely Fine Grained Parallelism within the Rete
Net ��

���� Action Parallelism ��
����� Application Parallelism ��

��� Parallel Execution of Rules �

����� Achieving Serializable Behavior in a Parallel Program � � � � � �

�� Parallel Rule��ring Production Systems � � � � � � � � � � � � � � � � ��

���� The CREL System ��
���� PARULEL ��
���� Control of Rule Sequencing �

������ Parallel Rule Firing with Fuzzy Logic � � � � � � � � � �

���� A Note on Rule versus Instance Parallelism � � � � � � � � � � �
��� Architectures for Production Systems � � � � � � � � � � � � � �

����� DADO �
����� Implementation of OPS on Non�Von � � � � � � � � � �
����� CUPID and DRete �
����� Message Passing Architectures � � � � � � � � � � � � � �
���� Current Trends in Implementation Architectures � � � �

��� Conclusion� Related Work ��

�� Correctness and Design ��

��� Correctness and Serializability ��
��� A Locking Scheme for Ensuring Partial Correctness of Working Memory ��

����� Region Locks and the Make�Unique Construct � � � � � � � � � ��
����� Principal Advantages of a Working Memory Locking Scheme � ��
����� Limitations of Working Memory Locks � � � � � � � � � � � � � ��
����� A Mechanism for Detecting Interactions Due to Negative

Condition Elements ��

������� Experimental Veri�cation of Overhead Analysis � � � ��

���� Conclusions� Guaranteeing Serializability � � � � � � � � � � � � ��

��� Designing for Correct Parallel Execution � � � � � � � � � � � � � � � � �

����� Spurious Rule Interactions ��
����� Semantics of Rule Firing ��

xi

������� Contention for Resources � � � � � � � � � � � � � � � � ��
������� Control Elements ��
������� Search States ��
������� Merging Solutions ��

����� Representation of Unique Objects 	Data Parallelism
 � � � � � ��
����� Inference ��
���� Domain Facts ��
����� Summary� Semantics of Rule�based Systems � � � � � � � � � � ��

��� Functionally Accurate Computations � � � � � � � � � � � � � � � � � � ��
�� Summary� Correctness in Parallel Rule�Firing Systems � � � � � � � � ��

	� Control Issues in Parallel Rule�Firing Systems � � � � � � � � � � � � � ���

��� Rule�Firing Policies ���
��� Asynchronous Rule�Firing ��

����� Experiments with Rule�Firing Policies � � � � � � � � � � � � � ���

������� Experiment �� Explicit Synchronization � � � � � � � ���
������� Experiment �� Synchronization via Con�ict Set � � � ���
������� Experiment �� Asynchronous Production Execution � ���
������� An Experiment with Unbalanced Rule Execution

Times ���

����� Summary of Experiments with Asynchronous Rule�Firing � � � ���
����� Monotonicity in the Eligibility Set � � � � � � � � � � � � � � � � ���

��� Control Tasks ���

����� De�ning Tasks and Task Quiescence � � � � � � � � � � � � � � ���
����� The Task Implementation ���
����� Summary� Control Tasks ���

��� Sequential Control ���

����� Set Functions ���

������� Set�oriented Rules and Asynchronous Firing Policies ��
������� Acquiring Locks for Set�Rules � � � � � � � � � � � � � ���

����� A Model of Program Phases ���
����� Mixed�Mode Parallelism and Mode�changing � � � � � � � � � � ���
����� Optimistic Concurrency ���

�� Heuristic control ���

���� Dynamic Control of Rule�Firing Policies � � � � � � � � � � � � ���
���� Interactions between Consistency Maintenance and Heuristic

Control ���

��� Conclusion� Control of Parallel Production Systems � � � � � � � � � � ���

xii

� UMass Parallel OPS
 ���

�� The Rule�Firing Architecture ���

���� Rule Demons ���

�� Modi�cations to LHS Syntax in UMPOPS � � � � � � � � � � � � � � � ���

���� LHS Meta�level Notation ���
���� Annotating Mode�changing Productions � � � � � � � � � � � � ���
���� Other Uses of the Meta Notation � � � � � � � � � � � � � � � � ���

�� New Righthand Side Functions in UMPOPS � � � � � � � � � � � � � � ��

���� Invoking Action and Match�level Parallelism in the RHS � � � ��

������ Action Parallelism ��
������ Match�Level Parallelism � � � � � � � � � � � � � � � � ��

���� Make�unique ��
���� Control Task Syntax ��
���� Set Functions and Synchronization Groups � � � � � � � � � � � �

������ Syntax of the Set Notation � � � � � � � � � � � � � � � ��
������ Synchronization Groups � � � � � � � � � � � � � � � � ��

��� Map�vector ��

�� Multiple Worlds ���
� Implementation of Parallel Matching in UMPOPS � � � � � � � � � � � ���

��� The Rete Net ���

����� Rete Net Overview ���

�� Implementing Match�level Parallelism � � � � � � � � � � � � � � � � � ���
�� Synchronization of ��input Nodes ���

���� Synchronization and Sharing of Memory Nodes � � � � � � � � ���

�� Race Conditions ���

���� Avoiding Critical Regions ���

�� Implementing Action�level Parallelism � � � � � � � � � � � � � � � � � ���
��� Summary� UMPOPS ���

�� Experiments ��

��� Analyzing the Toru�Waltz Benchmark for Rule Parallelism � � � � � � ���

����� Mode Changes in Toru�Waltz � � � � � � � � � � � � � � � � � � ���

��� The Travelling Salesperson Benchmark � � � � � � � � � � � � � � � � � ���

����� Heuristic Control in TSP ���
����� Asynchronous Rule�Firing in TSP � � � � � � � � � � � � � � � � ���
����� Merging Solutions ���

xiii

����� Queue Latencies in TSP ���

��� Alexsys� Parallelization of a �Real�World� Rule�based System � � � � ���

����� The Alexsys program ���
����� Parallelizing Alexsys ��
����� Modi�cations to Alexsys ���
����� Data Management in Alexsys � � � � � � � � � � � � � � � � � � ���
���� Experimental Results with Alexsys � � � � � � � � � � � � � � � ���
����� Conclusions� Alexsys ���

��� Performance Analysis of Toru�Waltz and TSP � � � � � � � � � � � � � ���

����� Performance Measurements� Toru�Waltz � � � � � � � � � � � � ��
����� Performance Measurements� TSP � � � � � � � � � � � � � � � � ���
����� Measurements of Contention in the Rete Net � � � � � � � � � � ���

�� Summary ���

�� Conclusion ���

��� Motivation ���
��� Contributions ���

����� Control and Rule�Firing Policies � � � � � � � � � � � � � � � � � ���

������� The Asynchronous Rule�Firing Policy � � � � � � � � � ���
������� Heuristic Control in Asynchronous Rule�Firing Sys�

tems ���
������� Task�based Rule�Firing Policies � � � � � � � � � � � � ���

����� Explicit Control of Programming Sequencing � � � � � � � � � � ��

��� Correctness ���
��� UMPOPS� A System for Benchmarking Parallel Rule�based Programs ���
�� Future Work ���

Appendices

A� The Toru�Waltz Benchmark ���

B� The Travelling Salesperson Problem ��

bibliography ��

xiv

LIST OF TABLES

Table Page

��� Frequency of rule interactions compared to total number of rule
executions� ��

��� Performance of the nondeterministic UMPOPS scheduler using a
single rule�demon compared with the performance of a serial OPS
scheduler using con�ict resolution for three benchmark programs� � � ���

xv

LIST OF FIGURES

Figure Page

��� The �ideal� architecture of the parallel rule��ring system� rules �re
as soon as they become eligible� �

��� The architecture of a parallel rule��ring system with rule scheduling�
locking and control constructs� �

��� The recognize�select�act loop of conventional production system ar�
chitectures� �

��� A �complete� cognitive model of Felis Domesticus � � � � � � � � � � ��

��� An example of con�ict resolution� The �best� rule is chosen on the
basis of recency and speci�city� ��

��� The Rete net for a simple OPS program � � � � � � � � � � � � � � � � �

��� Match�level parallelism for a single working memory change in the
cat example� ��

�� Action parallelism combined with node parallelism greatly increases
the number of concurrent node activations� � � � � � � � � � � � � � � � ��

��� Rule parallelism allows all the instantiations in the con�ict set to be
executed concurrently� ��

��� If the concurrent execution of rules can produce a result which is
produced by any sequential execution� the program is said to be
serializable� ��

��� When mutually disabling rules are allowed to �re concurrently� the
result may be a working memory state which could not be produced
by any sequential rule �ring� ��

��� Execution of clashing rules in OPS can result in the assertion of
redundant working memory elements� � � � � � � � � � � � � � � � � � � �

��� The overhead for acquiring locks in the Toru�Waltz benchmark mea�
sured in terms of percentage of total rule execution time� � � � � � � � ��

xvi

�� An algorithm for asynchronously detecting rule interactions involving
negated condition elements� ��

��� The essential architecture for a parallel rule��ring system with a serial
mechanism for lock acquisition and rule�interaction detection� � � � � ��

��� The parallel speedups of two runs of the Toru�Waltz benchmark
are shown� It can be seen that the performance of the version
incorporating the lock�detection mechanism is approximately ��
slower than the version without� ��

��� The processor utilization graph for Toru�Waltz without rule�
interaction detection� During the enumeration phase� all �� proces�
sors are employed in executing rules� � � � � � � � � � � � � � � � � � � ��

��� The processor utilization for Toru�Waltz with rule�interaction detec�
tion enabled� During the enumeration phase� only an average of ��
rules execute at a given time and the remaining processors are idle� � ��

���� Rules instantiations demonstrating the possibility of two interacting
chains of inference� �

��� Processor utilization for a synchronous rule��ring policy with bottle�
neck mode�changing rules� ���

��� Processor utilization for a synchronous rule��ring policy with mode�
changing rules eliminated� The delays due to con�ict resolution are
exaggerated for illustrative purposes� � � � � � � � � � � � � � � � � � � ���

��� Processor utilization for a fully asynchronous rule��ring policy� � � � � ���

��� Processor utilization for the circuit benchmark with rules of unequal
run time� using a synchronous rule��ring policy� � � � � � � � � � � � � ���

�� Processor utilization for the circuit benchmark with rules of unequal
run time� using an asynchronous rule��ring policy� � � � � � � � � � � � ���

��� The rule��ring architecture required to implement multiple asyn�
chronous control tasks� ���

��� If data independence can be insured� then multiple scheduling pro�
cesses can be assigned to tasks� avoiding potential serial bottlenecks
in the scheduling phase� ���

��� The location of the gating element a�ects the amount of partial
matching which can take place in the match process� � � � � � � � � � ���

xvii

�� The architecture of the parallel rule��ring system� � � � � � � � � � � � ��

�� By partitioning the memories of the Rete net� a multiple world imple�
mentation suitable for parallel search can be transparently achieved�
To minimize copying� a �base� space or partition can be de�ned that
contains knowledge guaranteed to remain stable over the course of
the search� ���

�� A token arrives at an AND node� ���

�� A token arrives at the lefthand input of a NOT node� � � � � � � � � � ���

� A token arrives at the righthand input of a NOT node� � � � � � � � � ���

�� When matching tokens arrive at an AND node simultaneously� syn�
chronization errors can occur� ���

�� The synchronization process for an AND node� � � � � � � � � � � � � � ���

�� Race conditions due to intra�node parallelism� � � � � � � � � � � � � � ���

��� The time required by the initialization phase of the Toru�Waltz
program can be reduced by the use of rule and action�level parallelism����

��� The time required to execute the mode�changing production in Toru�
Waltz can be reduced by the use of match�level parallelism� � � � � � � ���

��� The propagate rule from TSP� ��

��� The init�solution rule which initializes a data�merging episode in
TSP� ���

�� The new�and�improved rule which implements a merge operation for
TSP� ���

��� The parallel speedup achieved for Alexsys� � � � � � � � � � � � � � � � ���

��� The processor utilization graph for parallel Alexsys with a maximum
of �� concurrent allocation tasks� ���

��� The solution qualities produced by the parallel Alexsys allocation
process graphed against maximum concurrent allocation tasks� � � � � ��

��� The parallel speedup graph for Toru�Waltz with �� processors� The
left axis shows run�time in seconds� The right axis shows the speedup
factor achieved� ���

xviii

���� The processor utilization graph for Toru�Waltz with �� �demon�
processors� In the initialization phase� a large number of action
demons become active while date is added to working memory� In the
enumerate phase� �� rule demons become active� During the mode
change from the enumerate phase to the reduce phase� �� match
demons are active� One rule demon must be active during this time to
perform synchronization� Finally� rule parallelism becomes dominant
during the reduce phase and tapers o� as less work becomes available����

���� The parallel speedup for Toru�Waltz in terms of rule �rings per
second� With periods of reduced parallel �ring due to initialization
and mode�changing eliminated� rule �ring rates approach �� rules
per second� ���

���� The processor utilization for the TSP benchmark with �� processors� ���

���� The parallel speedup for the TSP benchmark with �� processors�
The graph depicts the decrease in execution time as the number of
processors increases� the ratio of parallel run�time to serial run�time�
and the number of rules �red per second� � � � � � � � � � � � � � � � � ���

���� The average time required to execute certain rules in Toru�Waltz�
plotted against number of processors� � � � � � � � � � � � � � � � � � � ���

��� The average time required to execute certain rules in TSP� plotted
against number of processors� ��

xix

C H A P T E R �

Introduction

This dissertation investigates the implications of parallelism on the design and
control of rule��ring systems� Rule�based 	or production
 systems have been used
extensively to build expert systems and to experiment with cognitive models� The
advantage of such systems is their ability to encapsulate pattern�driven knowledge
in discrete packages� their major disadvantage has been the high overhead and
consequent slow speed of rule matching and execution� Even before multipro�
cessors became widely available commercially� the potential of parallel processing
for increasing the speed of production systems was being studied �Acharya and
Tambe� ����� Blelloch� ����� Forgy� ����� Forgy� ����� Gupta� ����� Hillyer and
Shaw� ����� Ishida and Stolfo� ���� Krall and McGehearty� ����� McCracken� �����
Moldovan� ����� Morgan� ����� O�azer� ����� Stolfo and Miranker� ����� Uhr� �����
Tenorio and Moldovan� ����� Initially� this research focused on increasing the
speed of matching rules against productions� largely because of Forgy�s assertion
that ��� of the work of productions takes place in the match phase �Forgy� ������
Initial forecasts of the speedup possible due to �ne�grained parallelism at the match
level were quite optimistic � in the range of three orders of magnitude� But
these expectations were not to be realized � Gupta examined the characteristics
of existing expert systems and concluded that the maximum likely speedup was a
single order of magnitude� regardless of the number of processors available �Gupta�
������ Essentially� the reasons for this limitation are the relatively small number
of rules a�ected by each working memory change� which limits the amount of work
which can be performed during the match phase� and the relatively high ratio of
overhead and scheduling to the actual work being performed at this �ne level of
granularity� That is� the amount of work being performed by each match process is
fairly small and the overhead of spawning and scheduling processes to perform that
work becomes signi�cant�

While these results serve to place some realistic limits on the expectations for
parallelism� they do not represent the �nal word on potential speedup� If the speedup
for a single working memory change or single rule �ring is limited� it is certainly
possible to perform many working memory changes in parallel 	action parallelism

or to execute many rules concurrently 	rule parallelism
� Either of these approaches

�

will increase the matching to be performed� and therefore the number of processors
that can be e�ectively employed�

Considerable research is being performed on parallel rule��ring production
systems� that is� systems in which many rules are allowed to �re at once �Ishida
and Stolfo� ���� Ishida� ����� Kuo et al�� ����� Kuo and Moldovan� �����
Moldovan� ����� Pasik and Stolfo� ����� Schmolze� ����� Stolfo et al�� ����b�
Wolfson and Ozeri� ������ There are several models of parallel rule �ring� ranging
from distributed implementations in which non�intersecting sets of rules and�or
working memory are assigned to each processor to shared�memory implementations
in which all processors have access to all of production and working memory� this
research was performed using the shared�memory model� The level of parallelism
which will be discussed in most detail is instance parallelism� the least restrictive
form of rule parallelism� in which any rules within a set� including multiple instan�
tiations of the same rule� are allowed to execute concurrently�

Measurements of the e�ciency of parallel rule �ring depend on many factors�
including the number of processors gainfully employed� the number of useful activi�
ties pursued versus redundant or unnecessary actions� the reduction in computation
time per number of processors and the amount of time that processors spend idle�
One of the primary measurements used in the experimental section of this research is
parallel speedup� the ratio of parallel execution to an equivalent serial implementa�
tion� Because the language used to generate the results is optimized with respect to
previous Lisp�based OPSs� all speedup measurements are recorded in relation to a
con�guration of the system which devotes only a single processor to executing rules�
The use of this con�guration eliminates the overhead of the conventional OPS rule
scheduling routines and provides a more accurate measurement of parallel speedup�
The e�ectiveness of a parallel implementation can also be measured by the average
number of processors which are kept active during the course of problem solving�
With this metric in mind� the ideal architecture for a parallel rule��ring system is one
in which rules �re as soon as they become eligible� thereby ensuring the maximum
usage of processing resources 	see Figure ���
� In practice� for reasons which will be
discussed shortly� it is rarely feasible to execute rules totally asynchronously for the
entire course of a computation� Thus� we end up with variations of the architecture
shown in Figure ���� eligible rules are placed in an eligibility set�� undergo processing
to insure that they do not con�ict with other eligible rules� are scheduled� and then
placed on an execution queue� In the model displayed here� a single processor is
responsible for the con�ict resolution�scheduling phase� Although more complex

�The common term for this data structure is �con�ict set�� This usage is historical and implies
that all the rules which are currently able to �re are in some way con�icting or competing for a
single processing resource and will therefore require con�ict resolution to select the appropriate
action� In this dissertation� I will use the more accurate term �eligibility set� to describe the set
of rule instances eligible to �re and reserve �con�ict set� for those situations in which the eligible

rules actually undergo con�ict resolution�

�

models with multiple scheduling processors can be devised� the evaluation of system
performance will remain essentially valid�

When modeling the behavior of this architecture in terms of maximum rule
throughput� we can assume that rules are generated as fast as they can be executed�
that there exists an in�nite number of servers or rule demons� and that rules �re
as soon as they become eligible� This is equivalent to modeling the rule��ring

architecture as an M�M�� queue �Kleinrock� ���� which assumes multiple queues
and an in�nite number of servers� If we assume an in�nite 	or very large
 number
of servers to execute rules� the limiting factor in the system will be the rate at
which rules can be placed in the execution queues� We can estimate the in�uence
of the serial portion of the computation in terms of the average time it takes to
execute a production� If we call the time of rule execution TRE and the serial
scheduling�control period TS� then the number of active processors will be limited
to TRE�TS� For example� if the scheduling and control activities take as much as
��� of the average rule execution time� then by the time the tenth rule is scheduled�
the �rst will have completed execution and the average degree of parallelism will be
limited to a factor of ���

Clearly� the higher the overhead of scheduling� control� or any other serial
activity� the lower the rate of parallel rule �ring� The implications of this analysis
are far�reaching and motivate much of the work on correctness and control described
in this thesis� Rules are designed to represent a �ne�grained unit of recognition and
reaction� Because the life span of a rule��ring is so short� prolonged deliberation
over control decisions is not possible and any delays in executions will be more
signi�cant than for coarser�grained systems� Virtually all algorithms for managing
rule�based systems contain serial processing phases and must be revised to support
parallel activity by reducing or eliminating these phases� In this dissertation� success
at parallelizing rule�based systems will be measured in terms of the reduction of
serial overhead caused by control or correctness algorithms and the number of
processors which could be kept active 	assuming an unlimited number of processors
�
Limitations on parallelism due to hardware constraints� such as bus contention on
shared memory machines� will not be explicitly addressed due to lack of capabilities
for measuring such in�uences directly�

The exploitation of parallelism due to concurrent execution of rules does
not come without a cost� Unlike match parallelism which can be implemented
transparently without changing the semantics or syntax of the language� existing
rule�based languages can not easily support rule 	or action
 parallelism� Results
of attempts to automatically extract parallelism from existing rule�based systems
have been disappointing �Ishida and Stolfo� ����� Most rule�based programs rely
on a sequential control scheme which quite e�ectively limits the number of rules
eligible to �re at any given time� Those rules which are eligible to �re in parallel
can potentially interact� causing inconsistencies and errors to appear within working

�

Rule
Instance
Queues

Rule
Demons

Working
Memory

Parallel Working Memory
Modification and
Pattern Match

Multiple Eligible
Rule Instances

Figure ���� The �ideal� architecture of the parallel rule��ring system	 rules �re as soon

as they become eligible�

Schedule
Rules

Rule
Instance
Queues

Rule
Demons

Working
Memory

Acquire
Locks

Eligible
Rule
Queue

New Rule
Instances

Parallel Working Memory
Modification and
Pattern Match

Lock and schedule processes
run asynchronously.

Figure ��
� The architecture of a parallel rule��ring system with rule scheduling� locking

and control constructs�

memory� mechanisms are therefore required to examine eligible rules to insure that
they can safely execute concurrently�

There are several possible approaches to the problem of insuring that rules do
not interact in a pathological fashion� The most thoroughly researched has been
the implementation of mechanisms to ensure that the parallel execution of rules
is serializable� that is� that there is some serial execution of rules which could
produce the same result� The principal advantage of these mechanisms is that�
like match�level parallelism� they can be applied to existing systems and the result
will be provably correct 	or at least serializable
� The de�nition of correctness as

serializability has been extended by several researchers �Kuo and Moldovan� �����
Srivastava and Wang� ����� to incorporate the concept of con�ict resolution� that
is� the parallel execution produces a result which would be produced by a serial
execution incorporating a speci�c con�ict resolution algorithm� 	In general� this
work assumes that the primary function of con�ict resolution is to control the
sequencing of rules�
 As will be discussed in this dissertation� although all these
rule interaction detection algorithms guarantee correctness� they are� as will be
demonstrated� expensive relative to the cost of executing rules� and may restrict the
level of parallelism achieved by the system�

An alternative approach is to design rule�based systems so as to produce high
levels of parallelism and correct execution� One of the theses that will be explored
in this dissertation is the contention that a combination of design techniques�
programming idioms and supporting language mechanisms will make it possible to
create highly parallel rule��ring systems by eliminating the need for a serializing
rule�interaction�detection phase� The drawback to the design approach is that
it places considerable demands on the designer of the system� design of parallel
rule��ring systems is not well understood� and the behavior and performance of
rules during the course of parallel execution frequently de�es intuition� Research on
the formal veri�cation of parallel rule��ring programs currently underway �Gamble�
������ however� veri�cation is not addressed in this thesis� Instead� the rule��ring
mechanism is instrumented so that the performance and degree of parallelism
exploited can be measured and so that the number of interacting rules is reported�
If insu�cient parallelism is achieved� or many rules are competing for resources�
then a redesign is probably in order�

Parallel rule��ring requires a re�examination of the most basic premises of
rule��ring languages� in particular� changes must be made to the basic rule��ring
algorithms� The conventional rule��ring architecture is based on a simple cycle�
match 	all applicable rules
� select 	one or more rules to execute
� and �re 	all
selected rules
 	see Figure ���
�

The process of selecting rules to �re� the con�ict resolution phase� is problematic
during parallel rule �ring� First� con�ict resolution assumes that if rules con�ict�
then only a single one should be executed� If it is possible to execute rules
concurrently� such as when performing a parallel search� the rationale underlying

�

Conflict
Resolution

Match

Act

Figure ���� The recognize�select�act loop of conventional production system architectures�

con�ict resolution should be re�evaluated� Because the process of selecting the
best rule 	or rules
 requires that all eligible rules be examined� the system must
achieve quiescence before con�ict resolution can take place� where quiescence is
de�ned as the termination of all matching activities and rule executions� But� in a
parallel system� multiple concurrent multi�rule tasks may be active simultaneously
and control activities for these tasks may be performed independently� Under such
circumstances� achieving a global quiescence may cause eligible rules to languish
within the system�s con�ict set for considerable lengths of time� Con�ict resolution
is synchronizing because it requires that all activities cease before it can commence�
Because the actual control activities carried out during con�ict resolution are
typically performed by a single processor� we observe that con�ict resolution is also
serializing� during control activities� processing resources not involved in con�ict
resolution remain inactive� The synchronizing and serializing characteristics of
the con�ict resolution process are also shared by any other activity which requires
discriminating a set of all eligible rules� In particular� most schemes for guaranteeing
serializability require a synchronizing run�time rule interaction detection algorithm�

The original purpose of con�ict resolution was to focus the attention of what
is essentially a data�directed mechanism �McDermott and Forgy� ������ In order to
reduce control costs� super�cial and easily extracted characteristics of rule instances
such as speci�city and recency were used to heuristically select rule instances to
�re� Perhaps because of the di�culty in extracting more relevant aspects of the
rule instances to use in performing control decisions� rule scheduling in production
systems remains relatively unsophisticated and con�ict resolution is used primarily
as a method for ensuring that a desired rule sequencing is achieved� Since the only
way to reduce its synchronizing and serializing bottlenecks is to remove or localize
con�ict resolution� it is desirable to investigate alternative methods of heuristically
controlling and sequencing rule �rings� In addition� when productions are executed
in a multiprocessing environment� a new control criterion becomes apparent� it is
desirable to schedule rules in such a way that processor utilization is maximized�
assuming that increased processor utilization will generate a result more rapidly�
	In uniprocessor systems� this is not an issue� as long as there are rules in the

�

con�ict set� full processor utilization can be achieved�
 Thus� there are three control
requirements for parallel rule��ring production systems� rules 	or sets of rules
 must
�re in a correct sequence� rules must be selected to �re in such a way that the quality
of the solution is maximized and the cost of achieving the solution is minimized�
and maximum processor utilization should be obtained whenever feasible�

In summary� the research areas associated with parallel rule��ring production
systems can be divided into three subproblems�
� Devising design techniques� language mechanisms� and programming idioms

which will allow the creation of rule�based systems which can exploit high
degrees of parallelism�

� Ensuring that these parallel rule�based systems execute correctly�

� Controlling the execution of the parallel rule�based systems to ensure the
correct sequencing of rule �rings� high quality�low cost solutions� and high
processor utilization�

This thesis will address each of these issues in the context of UMPOPS 	UMass
Parallel OPS
� an experimental parallel rule��ring language based on OPS� aug�
mented with a lock�based scheme for ensuring consistency and a scheduler which
provides multiple rule��ring policies and heuristic control mechanisms �Neiman�
����b��

The remainder of this introductory chapter discusses the characteristics of rule�
based systems that di�erentiate them from other parallelizable systems� outlines the
contributions of my research� and provides an overview of this dissertation�

��� Distinguishing Production Systems from Related

Architectures and Languages

Although the study of parallelism in production systems can be justi�ed simply
by the need to have these systems execute as rapidly as possible� it is worth
discussing the aspects of production systems that di�erentiate them from similar
paradigms that have been studied with respect to parallelism� The three most
distinguishing characteristics of rules are their data�driven nature� their �seman�
tic� content� and their granularity� The data�driven control �ow of rule�based
systems distinguishes them from conventional imperative programming languages
whose control �ow is predetermined at compile�time� The granularity of rule�based
computation positions it between blackboard systems 	which are comparatively
coarse�grained
 and logic programs 	which tend to be parallelized at a �ne�grained
level
� The semantic nature of rule �rings distinguishes rules� activities from
database queries which are not necessarily goal�directed�

�

����� Data�directed Programming and Imperative Languages

Parallelizing rule�based systems di�ers from parallelizing more conventional
imperative languages in part because of the data�driven nature of the production
system architectures� it can not always be determined in advance when two rules
will become eligible to �re in parallel� Unlike the assertion of variables in an
imperative language� the assertion 	or deletion
 of a working memory element has
a signi�cant duration during which inferences drawn from the contents of working
memory may not remain valid� In a working memory which is in continual �ux� as is
the case during parallel rule��ring� it is a challenge to ensure that working memory
remains consistent and the computation correct during the course of rule �ring�
This is particularly true because rules are activated by modi�cations to working
memory� inconsistencies or transient errors in memory may be re�ected in incorrect
rule��rings�

����� Blackboard systems

When discussing parallelism� it is primarily the degree of granularity that
distinguishes a production system from a blackboard system 	BBS
� Both paradigms
are data�driven from a central data structure 	either working memory or blackboard

and implementors of both types of systems must be concerned with problems of
consistency� control� and resource allocation �Fennell and Lesser� ����� Corkill� �����
Nii et al�� ����� Decker et al�� ������ The basic unit of computation in a BBS is
the knowledge source 	KS
� Knowledge sources typically operate on a time scale
������� times longer than that of rule executions� Because a KS will typically a�ect
a considerable amount of data and only a single KS may modify a data element at a
given time� the number of KS�s which can execute concurrently may be limited unless
the application contains a great deal of data parallelism� KS�s are initially stimulated
by preconditions and their eligibility is fully veri�ed at run time� Because this
veri�cation requires substantial checking of the blackboard knowledge base� control�
consistency� and scheduling deliberations will occupy a relatively less signi�cant
fraction of the run time in a blackboard system� making it more cost�e�ective to
perform sophisticated reasoning activities during these phases of the computation�

����� Database systems

In many ways� rule�based systems resemble relational databases 	rules resemble
queries in terms of their expressiveness and working memory classes resemble rela�
tions
 and e�orts have been made to create rule�triggered databases and rule�based
systems which can operate on large databases or which incorporate database�like
operators�Delcambre and Etheredge� ����� Gordin and Pasik� ����� Miranker� ����a�
Sellis et al�� ����� Stonebraker et al�� ����� Widom and Finkelstein� ������ Many of
the problems of maintaining consistency in a database during parallel queries and

�

assertions are mirrored in parallel rule��ring activities� The principal di�erence is
that in a database� queries and assertions can be expected to be completely random
	directed from the environment
� and con�icts must be resolved by forbidding one or
the other operation� In a rule�based system� modi�cations to working memory can
frequently be assigned a semantics which allows con�icts to be resolved or avoided�
Databases are expected to remain relatively �xed� in general� most modi�cations
to the database are made before queries take place� Triggering rules in a database
context is di�cult because mechanisms must be devised to identify situations in
which modi�cations to the database might activate rules� one common approach
is to use preconditions similar to those use in blackboard systems� followed by full
queries of the database� In contrast� rule�based systems are designed to be reactive�
so that the changes to memory immediately trigger rule �rings� there is a much
tighter coupling between rule executions and modi�cations to memory�

����� Logic programming

Like rule�based languages� logic�based programming languages� notably Prolog�
have been promoted for the representation of expert knowledge �Clocksin and
Mellish� ����� Feigenbaum and McCorduck� ������ There has been a considerable
amount of research into the parallelization of logic programming languages �Conery�
����� Delcher and Kasif� ����� Lin and Kumar� ����� Maruyama et al�� ����� One
would suppose that there would be considerable synergy between research into the
parallelization of logic programs and rule�based programs but this has not been
the case� Much of the research into parallelizing logic programs has concentrated
on the inference process� in particular� mapping backtracking into OR trees and
independent clauses into AND trees� These processes are similar to those employed
in rule�based programming� for example� mapping con�icting rule executions into
parallel search is essentially the same as implementing backtracking as a traversal
of an OR tree� while executing multiple clauses in an AND tree is similar to parallel
rule��ring� In both paradigms� the fundamental control mechanism is modi�ed due
to the capability for parallel execution� However� the control and consistency issues
which arise in parallel rule��ring systems and which are addressed in this thesis do
not appear to have been examined in the context of parallel logic programs� This is
apparently because the granularity of logical inferences is smaller than that of rules�
thus allowing little opportunity for deliberation between logical inferences�

��� Contributions

This section provides an overview of the major contributions of this thesis�
The main contribution is the assertion that rule parallelism o�ers the potential
for speedup of at least an order of magnitude over that predicted by Gupta for
match�level parallelism� Secondary contributions consist of descriptions of the

��

modi�cations to the control and design of rule�based systems which are required
to achieve this level of parallelism and analyses of the in�uence of control and
rule�interaction detection activities on the performance of rule��ring systems� The
�nal contribution is the implementation of a parallel production system which allows
predictions about the performance of parallel rule��ring programs to be empirically
veri�ed�

����� Speedup Due to Rule Parallelism

The primary reason for parallelizing a rule�based system 	or indeed� any system

is to increase its performance� One of the contributions of this research has been to
demonstrate near�linear speedups for some applications on a twenty�one processor
shared�memory multiprocessor� thus establishing a lower limit for potential speedup
due to rule�level parallelism� Analyses of the overhead required by locking and
scheduling mechanisms� supported by measurements of contention for resources
within the Rete net pattern matcher� control overheads� and processor utilizations
indicate that another order of magnitude speedup is possible� With the advent of the
new generation of large shared memory multiprocessors and virtual shared�memory
multiprocessors which can support parallel activity at this level� this is a signi�cant
result�

����� Correctness

This thesis contributes to the study of correctness of parallel rule��ring systems
an analysis of the overhead of guaranteeing serializability and a discussion of
alternative methods for producing correct results� It is demonstrated both through
analysis and experiment that� at the granularity of typical OPS rule executions�
current algorithms for ensuring serializability will incur a time cost of approximately
��� of a rule�s execution time� Even ignoring synchronization costs� this limits the
available speedup due to rule parallelism to a factor of ten�

This research proposes and implements an alternative scheme which uses con�
ventional database locks to ensure correctness for positively matched elements and
design techniques and language mechanisms which allow speci�c program idioms
to be implemented and proved correct� Although this approach does not provide
the same guarantees of correctness that are attached to run�time rule detection
algorithms� the locking mechanism consumes approximately �� of a rule�s run�time�
increasing the potential for parallelism by an order of magnitude�

Previous approaches to ensuring correctness in parallel rule��ring systems have
been based on purely syntactic features of rules� The design approach proposed here
is novel in that it emphasizes the semantic role of each rule in the computation�
if it is understood why rules interact� then these interactions can be avoided or
demonstrated to be harmless� An example is the concept of search� by interpreting

��

competing rules as alternative operators in a state�space search� it is possible to
structure the computation so as to avoid the possibility of rules simultaneously
modifying or asserting the same data items� Each rule is allowed to execute in an
independent partition 	either real or virtual
 of working memory� this reduces the
interactions between the competing search paths to the single point where a solution
must be selected� an interaction easily managed using locks� A language mechanism
for declaring and managing multiple worlds is implemented in order to allow parallel
search to be expressed easily 	see Section ��
�

����� Control

The main contributions of this thesis to the control subproblem are the devel�
opment of synchronous� asynchronous� and task�based rule��ring policies� and the
development of methods for implementing heuristic control without resorting to a
globally synchronizing con�ict resolution phase� I describe a scheduler architecture
which allows rules to be assigned locks and to be executed with varying degrees
of priority and I discuss how this architecture can be modi�ed to support more
sophisticated control requirements�

An asynchronous rule��ring policy allows rule instances to execute as soon as
they become enabled� Such a policy is empirically demonstrated to provide a ������
times increase in performance over a synchronous rule��ring policy� However� �ring
rules asynchronously creates a number of problems�

The �rst problem is that of heuristic control and rule sequencing� The only
method of controlling the order in which rules �re in OPS is through the con�ict
resolution mechanism� Without a synchronous con�ict resolution phase� each eligible
rule can no longer be compared with all other eligible rules in order to select the
best to �re� Thus� control must take place incrementally as rules execute� To
replace the rule sequencing mechanisms� I introduce new righthand�side mapping
and iteration operators and a set�oriented production semantics which allow single
rules to take the place of many sequential rule �rings� To replace heuristic control
mechanisms provided by con�ict resolution� I introduce several control points at
which rule instances may be rated� scheduled� or pruned� I discuss the implications
on solution quality of both incremental and sequential control�

Not all applications are amenable to asynchronous rule execution� Because situa�
tions occasionally arise in which synchronous con�ict resolution must be performed
on some subset of eligible rules� a rule��ring architecture has been developed in
which rule instantiations can be grouped into task groups� In a task group� all tasks
execute asynchronously with respect to all other tasks� within a task� the rule��ring
policy can be de�ned to be serial� parallel but synchronous with con�ict resolution�
or wholly asynchronous� User�de�ned con�ict resolution routines may be attached
to each task� thus allowing a convenient method of expressing sophisticated control
concepts at a local level� Because tasks execute asynchronously with respect to each

��

other and processors are assigned opportunistically to eligible rules independent of
task a�liation� local synchronization of tasks does not necessarily reduce processor
utilization� It is important to emphasize that the partitioning of tasks is a control
mechanism and does not necessarily guarantee that rules within one task will not
a�ect other tasks� 	The partitioning of data for tasks is discussed in Section ���

The task group construct is similar to the contexts of Kuo and Moldovan �Kuo
et al�� ������ but presents a solution to the problem of identifying local quiescence
in a multiple�task environment as well as addressing the problem of managing
multiple independent �ows of control in a parallel rule��ring system� The emphasis
on asynchronous execution of rules and tasks introduces a new and previously
unaddressed problem to rule�based programming� determining when quiescence
has occurred relative to a set of eligible rule instantiations� Quiescence is de�ned
as the state in which no rules belonging to a task are currently executing� and
no future working memory changes will a�ect the task by creating or removing
instantiations from its con�ict set� While a completely satisfying solution to the
quiescence problem probably does not exist� the approach taken in UMPOPS is to
select certain key elements asserted in the context of a task as indicative of local
quiescence� when the key elements reach quiescence� the task is assumed to be
quiescent�

����� UMass Parallel OPS� � An Experimental Testbed for
Parallel Rule Firing

UMass Parallel OPS 	UMPOPS
 was developed for purposes of experimenting
with parallelism in rule�based systems� UMPOPS supports rule�level� action�level�
and match�level parallelism and allows �mixed�mode� parallelism to be selectively
employed by the programmer� The language is heavily instrumented to provide
information about processor utilization� contention for resources� and the time
required for the various phases of rule processing� This information is not only
useful in evaluating the performance of the system� but can also be used to �tune�
applications to achieve greater processor utilization� UMPOPS is implemented in
Lisp and is therefore relatively easy to modify� this �exibility has proven valuable in
the development of such features as task�based control policies� locking mechanisms�
and multiple worlds� The dialect Lisp used to implement UMPOPS is Top Level
Common Lisp�� a version of Common Lisp that incorporates constructs for invoking
parallel activities and maintaining critical regions on a shared memory multiproces�
sor� The experiments described later in this dissertation were carried out on either
a �� or �� processor Sequent Symmetry multicomputer�

�TopCl and Top Level Common Lisp are trademarks of Top Level� Inc�

��

��� Organization of the Dissertation

The research described in this thesis covers a wide range of interrelated topics�
including the implementation of a parallel rule��ring language� the design of parallel
applications using that language� the control issues that arise in parallel rule�
based systems� and the problems of maintaining consistency during the course of
concurrent rule �ring� The problems of correctness and design are closely related
and will be discussed in Chapter � while the issues underlying control of parallel
rule �ring systems will be covered in Chapter �� The contents of these chapters
justify the design decisions underlying UMass Parallel OPS 	UMPOPS
� which is
introduced in Chapter � The �nal chapters of this thesis will describe the design
and implementation of three parallel rule��ring programs of di�erent natures� the
performance of these programs will then be analyzed in terms of their potential
and actual parallelism� Finally� the experiments performed using UMPOPS will be
discussed in terms of their implications for parallelism within production systems�
A synopsis of the chapter organization follows�

Related Work� Chapter � gives a brief overview of rule�based programming
and the OPS language and describes the previous research on parallelizing rule�
based systems� Other current work in this domain is compared with the approach
discussed in this dissertation�

Correctness� Chapter � describes the problems of producing correct results
and maintaining a consistent working memory during the course of parallel rule�
�ring� A locking mechanism is described for working memory elements that prevents
pathological behaviors due to parallel modi�cation or references to existing working
memory elements� An algorithm for guaranteeing serial behavior in systems con�
taining productions with negated condition elements is described� The performance
of this algorithm is analyzed and experiments are described that empirically verify
the analysis�

The high cost of this algorithm motivates the discussion in the latter part of
the chapter which is concerned with the design of correct parallel programs which
require only inexpensive locking mechanisms� The design philosophy is based on a
taxonomy which lists the possible roles that rules may play in a computation and
proposes schemes for resolving con�icts between rules based on the semantics of rule
interactions�

Control Issues� Chapter � describes the rule��ring policies developed for
parallel rule execution and argues that an asynchronous rule��ring policy should be
preferred whenever possible� The problem of eliminating bottlenecks due to serial
rule��ring is discussed and language modi�cations� including a set�oriented syntax
and righthand�side iterative operators� are described which allow multiple sequential
rule��rings to be compressed into a single execution whose overhead can be reduced
through the focused used of action or match�level parallelism� An architecture is
described that allows heuristic control to take place incrementally during the course

��

of asynchronous rule��ring� Techniques for maximizing processor utilization are
discussed throughout the chapter in the context of sequential and heuristic control
mechanisms�

UMass Parallel OPS� Language Overview� Chapter discusses
UMPOPS� the experimental parallel rule��ring language developed over the course
of this research� The implementation of the parallel rule��ring system is discussed�
including the modi�cations to the Rete net to support parallelism� the modi�cations
to the scheduler required to support multiple rule��ring policies and incremental
heuristic control� The architecture of the rule�execution demons and a description of
their processing of tasks at the action� match� and rule levels is described� Various
suggestions for increasing the �exibility of the rule demons are included� Some
of the di�cult problems presented by parallel rule��ring that were discussed in
previous chapters are revisited in terms of the speci�c language constructs that
they made necessary to incorporate into the parallel rule��ring system� In particular�
mechanisms for ensuring local synchronization of activities during parallel working
memory modi�cations� and for ensuring quiescence during all levels of parallel
activity are discussed� An experimental version of UMPOPS that supports search
through multiple worlds using a partitioned Rete net is described� and some of the
tradeo�s involved in this implementation are analyzed�

Experiments with UMPOPS� Chapter � discusses the design and con�
struction of two benchmark programs� Travelling Salesperson and Toru�Waltz� as
examples of programs using asynchronous rule��ring policies and heuristic control�
The performance of these programs under various rule��ring policies and levels
of parallelism are analyzed An extended design example is then presented� the
parallelization of Alexsys� a �real�world� production system developed at Columbia
University� The design principles developed throughout this dissertation are applied
to Alexsys and it is demonstrated that an essentially serial control structure can be
parallelized by a rule��ring policy that implements multiple tasks� each running
asynchronously with respect to each other� but applying synchronous con�ict reso�
lution to rules within a task� The compromises in solution quality required by the
multiple execution of tasks in Alexsys are discussed�

Conclusion� Chapter � summarizes the results of the experimental work as�
sociated with this dissertation� examines the potential for future work� and discusses
the contributions of this research and its implications on parallel rule�based systems
and other AI architectures�

Appendix A� The source code to the Toru�Waltz benchmark program�
Appendix B� The source code to the Travelling Salesperson Problem�

C H A P T E R �

Related Work

This chapter gives an overview of production systems and the OPS language
and discusses related research in the construction of parallel rule��ring production
systems�

��� Overview� Rule�based Systems

This section brie�y describes the history of production systems and their use in
the construction of knowledge�based systems� A brief synopsis of OPS is provided
for readers unfamiliar with the language�

��� The OPS� Language

The programming language OPS was written by Charles Forgy at Carnegie�
Mellon University as one in a series of production system languages �Forgy� ������� It
achieved a great deal of popularity largely because of its use in the R� project �Mc�
Dermott� ������ its general availability as a public domain program� and its ef�
�ciency due to the use of the Rete net pattern matcher 	described in Section
�����
� The following section provides a brief overview of the major concepts
associated with the OPS language� A complete tutorial is beyond the scope of
this dissertation� however� a complete syntactic description of OPS can be found
in the OPS user�s manual �Forgy� ����� and there are several texts on program�
ming OPS available� e�g� �Brownston et al�� ���� Wogrin and Cooper� �����
Sherman and Martin� ������

An OPS program consists of rules matching against a working memory� Work�
ing memory consists of a set of facts� Each fact is represented as a linear set of
attribute�value pairs associated with a class� i�e� �class �att� val �att� val

�att� val����� Working memory elements are created using the make command�
deleted using the remove command and modi�ed using the modify command� The

�OPS reportedly stands for O�cial Production System�

��

modify command simply does a remove which deletes the existing element followed
by a make which recreates the working memory element with the modi�cations
incorporated� At creation time� each working memory element is given a unique
timetag which identi�es that element� two otherwise identical working memory
elements created at di�erent times are assigned distinct timetags� Thus� working
memory in OPS is represented as a multiset in which multiple objects of the same
value may be present� A rule consists of a lefthand side 	LHS
 pattern and a
righthand side 	RHS
 set of actions� 	The terms lefthand and righthand side are
due to the fact that productions have historically been written as LHS �� RHS
�
The lefthand side consists of a series of patterns which are matched against working
memory� A rule is considered eligible to �re when there exists one or more sets of
working memory elements such that there is one working memory element in the
set for every positive pattern in the LHS� and there is no working memory element
in working memory that matches any negated pattern� LHS patterns consist of
conjunctions� the only way to program disjunctions 	IF A or B THEN ���
 is to
code them as multiple productions�

The righthand side of a production consists of actions� These actions can consist
of changes to working memory� I�O operations� or arbitrary function calls� It is
assumed in this thesis that rules being parallelized contain only working memory
operators in their righthand sides� I�O operations are intrinsically serial and will
not be considered�

An example of a small OPS rule set is shown in Figure ����

����� De	nitions

The basic data structures and concepts involved in rule�based programming are
summarized below�

Working Memory� A production system consists of a set of productions
examining a set of facts which describe the current state of the system� In OPS�
this set of facts is called working memory� Each fact is represented by a single
working memory element which consists of a class followed by a list of attributes
and values� For example� a typical working memory element might have the form

�cat �name Socrates �color orange �size large �weight heavy�

Each working memory element is assigned a timetag which describes the order in
which the working memory elements were created� and serves to uniquely identify
each element� Working memory is represented as a multiset in OPS� working
memory elements which contain identical values will be stored in separate areas of
memory and will be assigned unique timetags� Despite their name� timetags do not
usually record the actual creation time of a working memory element� but the order
in which they are created 	which is not necessarily meaningful in a parallel system
�
The primary purpose of timetags is to uniquely identify each working memory

��

�literalize cat name state action�

�literalize see cat obj�

�literalize attack attacker victim�

�If cat is hungry and cat sees food� cat will eat food�

�p hungry�cat

�cat �name �cat� �state hungry�

�see �cat �cat� �obj food�

���

�modify � �action eat��

�If cat is hungry and cat sees critter� cat will try to eat critter�

�p hunting�cat

�cat �name �cat� �state hungry�

�see �cat �cat� �obj �� pigeon duck fish �� �victim� �

��attack �attacker �cat��

���

�modify � �action pounce�

�make attack �attacker �cat� �victim �victim�� �

�If cat has nothing better to do� it will purr�

�p happy�cat

�cat �name �cat� �action �� purr �

��cat �name �cat� �state �� aggressive hungry �� �

���

�modify � �action purr��

�Cats are territorial creatures�

�p aggressive�cat

�cat �name �cat� �state �� aggressive�

�see �cat �cat� �obj cat�

���

�modify � �state aggressive �action hiss��

�Cats have no respect for expensive furniture and houseplants�

�p playful�cat

�cat �name �cat� �state playful�

�see �cat �cat� �obj �� chair string plant hallucination �� �victim� �

��attack �attacker �cat��

���

�make attack �attacker �cat� �victim �victim���

Figure
��� A �complete� cognitive model of Felis Domesticus

��

element� Because creation time is occasionally of interest to the experimenter� the
parallel rule��ring system described in this dissertation has been modi�ed to record
the actual time at which elements are created�

Productions� A production consists of a lefthand side 	LHS
 which contains
a list of patterns to be matched against working memory and a righthand side 	RHS

which contains a list of instructions to be executed in the event that the production
is �red�

The Lefthand Side� The lefthand side contains a list of condition elements�
Each condition element consists of a pattern which can match one or more elements
in working memory� There must be at least one corresponding working memory
element for every condition element in order for the rule to be instantiated 	that
is� for it to be entered into the con�ict set
� Condition elements may be negated�
in which case the rule only matches if there is no working memory element which
satis�es the negated condition element� Condition elements may contain variables�
a rule may only �re if there is a set of working memory elements which can generate
a consistent set of variable bindings�

The Righthand Side� The righthand side of a production contains the
operations to be performed if the rule is �red� This can contain any combination
of changes to working memory� input�output statements� or function calls� The
execution time of a production is equal to the amount of time required to execute all
the statements in the righthand side� In general� studies of parallelism in production
systems attempt to reduce this execution time by increasing the speed of the working
memory changes�

The Matching Process� Matching is the process by which a new or modi�ed
working memory element is compared against the lefthand side of all the productions
in the system in order to see if any of them are enabled by the latest change
to working memory� This matching process is considered to be the most time�
consuming aspect of executing a production system and considerable research has
been done to determine if match time can be signi�cantly reduced by performing

the match process in parallel �Gupta� ������
In OPS� the matching process takes place when working memory elements are

added to� or deleted from� memory� This means that the match process actually
takes place at the same time as the righthand execution phase� The implication
of this is that the match and execution phase are not actually separate as the
conventional description of the production system execution cycle indicates� When
operating in parallel� it is important to remember that working memory may still
be changing while the match process is taking place�

Con�ict Set� The con�ict set is the list of all the rules which are eligible
to �re� A con�ict set entry contains the name of the production� copies of the
working memory elements which caused the production to match� a binding list
which contains the values of variables bound in the lefthand side of the production�
and rating information which may or may not be used when performing con�ict
resolution�

��

������� Levels of Parallelism

UMPOPS currently supports rule�level� action�level� and match�level paral�
lelism� These levels of parallelism are described below�

Rule Parallelism� Rule parallelism 	variously called production parallelism
or application parallelism in the literature
 allows multiple rules to be executed
concurrently�

Match Parallelism� When match parallelism is invoked� the matching pro�
cess which determines which productions are enabled by a working memory change
is carried out in parallel� This reduces the amount of time required for a single
working memory change to take place�

Action Parallelism� If a production contains multiple actions in its righthand
side� it is possible that they may be able to be executed concurrently� thus reducing
the execution time of the production by a factor proportional to the number of
actions 	assuming all actions take approximately the same amount of time to
execute
�

����� Control of OPS� Programs

Rule�based systems are data�driven� the rules which are eligible to �re depend
entirely on the state of working memory� Because 	in a serial system
 only one rule
can execute at a time� if more than one rule is eligible to �re� the production system
must perform con�ict resolution� During con�ict resolution� all eligible rules are
examined and the one which is perceived to be most useful according to the con�ict
resolution algorithm is �red 	see Figure ���
�

As productions �re� they change working memory which in turn changes the
contents of the con�ict set� Therefore� con�ict resolution must be performed after
each production execution� Because of the lack of imperative control mechanisms�
programmers of production systems frequently exploit the con�ict resolution mech�
anism in order to obtain a speci�c sequence of rule executions�

Con�ict resolution algorithms are typically optimized to be fast and heuristic�
using only syntactic information which can be quickly accessed �McDermott and
Forgy� ������ The con�ict resolution algorithms in OPS� MEA and LEX� are typical
in this respect� they select rule instantiations based primarily on the creation
time of working memory elements and the number of condition elements in the
lefthand side of a production� These are known as the recency and speci�city
conditions� it is assumed that the most recently added elements are most relevant
to the computation and that rules with more conditions are more speci�c and
thus more likely to be appropriate to a given situation than a more general rule�
The use of more sophisticated meta�rules or scheduling algorithms �Davis� �����
Hayes�Roth� ���� is di�cult due to the inability of OPS to express meta�level
patterns� The issue of con�ict resolution and control in parallel production systems
is described in Chapter � of this dissertation�

��

Happy Cat
((CAT ^NAME MORGAINE ^STATE PLAYFUL))

Hunting Cat
((CAT ^NAME LILY ^STATE HUNGRY)
 (SEE ^CAT LILY ^OBJ PIGEON))

Playful Cat
((CAT ^NAME KITTYHAWKE ^STATE PLAYFUL)
 (SEE ^CAT KITTYHAWKE ^OBJ HOUSEPLANT))

Happy Cat
((CAT ^NAME BRUNO ^STATE PLAYFUL))

Hungry Cat
((CAT ^NAME SOCRATES ^STATE HUNGRY)
 (SEE ^CAT SOCRATES ^OBJ FOOD))

Conflict Set

Rule Interpreter

Selects

performs conflict resolution

Hungry Cat

Figure
�
� An example of conict resolution� The �best� rule is chosen on the basis of

recency and speci�city�

����� The Rete Net

In production systems� most of the processing time is spent determining which
rules are eligible to �re� In OPS� this process consists of matching the lefthand
sides of productions against working memory� When a set of working memory
elements is found such that there is a working memory element for every non�negated
condition element in the lefthand side and there exist no elements which match
negated condition elements� the rule is eligible to �re� As a principal bottleneck in
rule �ring� this matching process should be as fast as possible� The Rete net is an
e�cient implementation of a pattern matcher based on the following observations�

� Working memory changes only incrementally from cycle to cycle�

� Many productions in a rule base are frequently structurally similar and may
share one or more terms�

The �rst observation implies that it should be possible to store partial matches
and only match against those working memory elements which change� rather
than implementing the naive approach of comparing each production against all
of working memory after each set of working memory changes� This naive approach
would take O	pwn
 comparisons� where p is the number of productions� w is the
number of working memory elements� and n is the maximum number of elements in

��

a lefthand side� Sharing of tests between productions reduces the total number of
comparisons that must take place�

The matching process works by passing tokens consisting of one or more working
memory elements through the net� performing tests on them at each node� The
�top� of the Rete net is composed of alpha nodes which consist of simple tests on
the class of the working memory element and speci�c �elds� This part of the network
possesses no memory and resembles a conventional discrimination net� tokens are
passed to succeeding nodes in the network only if the tests at the current node
succeed� Alpha tests are not very time�consuming and parallelizing their execution
does not lead to large improvements in performance�

Beta tests are responsible for unifying variable values between �elds of a condi�
tion element 	intra�element tests
 or between two condition elements 	inter�element
tests
� Each of the beta nodes has two inputs and two memories� one associated
with each input� As a token arrives at a beta node� it is stored in memory and
tested against the opposite memory to see if one or more consistent bindings can be
achieved� If so� a new token is constructed from the incoming token and the stored
token� This new token is then propagated through the beta node�s out list 	a list
of successor nodes
� The memories associated with the beta nodes store partial
matches� making it unnecessary to repeat the entire computationally expensive
uni�cation process after each working memory modi�cation� The cost of executing
a beta node is proportional to the size of the memory against which the incoming
token is tested� The two main beta node types are the AND and NOT nodes�
Beta nodes present numerous opportunities for parallelism� for example� multiple
beta nodes can be executed in parallel� or� if the architecture supports su�ciently
�ne�grained processing� an incoming token can be compared to each corresponding
token in memory simultaneously�

At the bottom of the Rete net is a series of production nodes� when a token
arrives at one of these nodes� the production corresponding to the node is placed in
the con�ict set� instantiated with variable bindings from the incoming token� The
production node has no memory� thus only one production �ring ever results from
a given combination of working memory elements� Figure ��� shows the Rete net
for the simple OPS example of Figure ���� The implementation of the Rete net is
quite complex and a complete discussion is beyond the scope of this document� For

a more thorough reference see �Forgy� ������

��� Research in Parallel Production Systems

Considerable research has been done on increasing the speed of production
systems and of OPS in particular� The research divides into a number of categories�

� Increasing the e�ciency of pattern matching through compilation�

� Specialized architectures customized for rule matching and execution�

��

ATTACK
CAT SEE

MATCH

PLAYFUL
HUNGRY
AGGRESSIVE ¬PURRHUNGRY

HALLUCINATION
CURTAIN
HOUSEPLANT
STRING CAT

PIGEON
DUCK
FISHFOOD

HUNTING_CATPLAYFUL_CAT AGGRESSIVE_CATHAPPY_CAT

HUNGRY_CAT

¬AGGRESSIVE

NOT Node

AND Node

Figure
��� The Rete net for a simple OPS� program

� Parallelism at various levels of granularity�

These categories are not necessarily distinct� in particular� many of the hardware
architectures proposed for production systems have incorporated parallelism in their
design�

����� Compilation of the Rete Net

The Rete net algorithm� as originally coded� was interpreted� The tests for
a particular node were evaluated at run time and applied to incoming tokens�

In his paper on the Rete net�Forgy� ������ Forgy described an approach towards
compiling the pattern matching network directly into assembly language which he
has subsequently used in implementing the programming language OPS�� �Forgy�
������ Compilation of rules allows the production system to run substantially faster
than the interpreted version� The OPS�c compiler� a compiled version of the
TREAT algorithm was reported to provide speedups of ����� times �Miranker�
����b� over Lisp�based interpreted OPS code� CParaOPS� a Rete�based system
developed at CMU� provides roughly the same order of magnitude speedup �Gupta
et al�� ������ Both of these languages are written in the C programming language
for e�ciency purposes�

��

There are disadvantages to the compiled approach to pattern matching� typi�
cally� new productions can not be incrementally added to the system� debugging of
rules is more di�cult 	because less information about the state of the network can
be accessed
� and the compilation itself is time�consuming which can be disadvanta�
geous in a development environment in which the rule set is continually undergoing
modi�cation� While compilation can reduce the time required to match productions
against working memory substantially� there still exists an upper bound on the
rule execution speed which can be achieved using a uniprocessor simply because
the righthand side of a rule can contain an arbitrary number of actions� including
relatively slow I�O operations and calls to arbitrary Lisp code�

����� Parallelism in OPS�

One of the principal studies on parallelism in OPS has been done by Anoop
Gupta at CMU �Gupta� ������ In a very thorough analysis� he demonstrated that
the average speedup in production systems due to parallelism would be much less
than expected 	on the order of ���s rather than �����s
� There is little question that
this analysis holds for existing applications of production systems� however� it can
be argued that the analysis is based principally on these existing systems� and that
architectures 	or applications
 can be developed which provide opportunities for
much greater degrees of parallelism� The unfortunate implication of this conclusion
is that rather than gaining a speedup from a simple change in machines and
implementation language� the programmer of the production system must explicitly
think in terms of exploiting parallelism�

In his work� Gupta identi�es a number of types of parallelism which can
occur within the execution of a production system and analyzes their e�ect on
the performance of the system� These types of parallelism are�

� Application parallelism

� Production parallelism

� Action parallelism

� Node parallelism

� Intra�node parallelism

The above levels of parallelism describe a hierarchy in which each level essentially
implies all the levels above it� Each level of parallelism adds a certain degree of
speedup to an application� Thus� the system with the highest performance would
be one which employs parallelism at all levels� The following discussion brie�y
describes each type of parallelism and indicates the assumptions that Gupta makes
when estimating the e�ect of that type of parallelism on the performance of an
OPS system�

��

����� Production Parallelism

Gupta de�nes production parallelism as the assigning of a processor to each
production and the matching of all productions a�ected by a working memory
change at the same time� It does not employ parallelism at lower levels of the
implementation� According to Gupta�s analysis� the e�ect of production parallelism
on performance is very small� in fact� approximately a factor of two� The reasons
are as follows� �rst� only a small number of productions 	��� on the average� in
Gupta�s test set
 are a�ected by any one working memory change� This would seem
to indicate an average speedup of ��� however� there are further factors limiting
parallelism in the canonical rule�based architecture� Once the productions are
matched� con�ict resolution must still be performed� therefore the matching process
cannot terminate until the last production has been entered into the con�ict set�
Because the expressions which determine whether rules can �re can be arbitrarily
complex� and because matching is performed by propagating tokens through a
potentially unbalanced tree�like data structure� the time required for productions to
match is typically not uniform�� Some productions enter the con�ict set considerably
later than other instantiations enabled by the same changes to working memory�
This causes a loss of parallelism of a factor of �ve� Additional losses are incurred
because of loss of sharing in the Rete net and the overhead due to parallelism�

Several of these assumptions can be questioned� In situations which possess
action parallelism 	see below
� the number of working memory elements and thus the
number of productions a�ected might be much larger� In an asynchronous system�
it may not be necessary to examine the con�ict set before executing productions� in
fact� the con�ict set may turn out to be unnecessary 	or undesirable
 in a parallel
system� Without the con�ict set bottleneck� an additional factor of �� 	according
to Gupta
 could be obtained�

����� Node and Intra�node Parallelism

In node and intra�node parallelism� the execution of each node in the Rete net is
assigned to a separate processor� If a node in the network has multiple descendants�
all of the subsequent nodes can be evaluated concurrently 	see Figure ���
� If a
particular working memory change can a�ect many productions then the branching
factor of the associated nodes will be high and so will the speedup provided by node
parallelism�

Node parallelism assumes that no other process a�ects the data of a particular
node while it is executing� Intra�node parallelism allows the same node to be
executed by several processors simultaneously� this gain in parallelism avoids long
delays during which access to a node must be restricted� but incurs a cost in terms

�The match time can be made to be more uniform by identifying �hot spot� rules and creating

multiple constrained copies of these rules 	Pasik and Stolfo�
����

�

ATTACK
CAT SEE

MATCH

PLAYFUL
HUNGRY
AGGRESSIVE ¬PURRHUNGRY

HALLUCINATION
CURTAIN
HOUSEPLANT
STRING CAT

PIGEON
DUCK
FISHFOOD

HUNTING_CATPLAYFUL_CAT AGGRESSIVE_CATHAPPY_CAT

HUNGRY_CAT

¬AGGRESSIVE

* *

*

Playful Cat
((CAT ^NAME FRED ^STATE PLAYFUL)
 (SEE ^CAT FRED ^OBJ HOUSEPLANT))

Happy Cat
((CAT ^NAME FRED ^STATE PLAYFUL))

Add:
 (CAT ^NAME FRED ^STATE PLAYFUL)

Given:
 (SEE ^CAT FRED ^OBJ HOUSEPLANT)

* -- Denotes potential parallel node activations.

NOT Node

AND Node

Figure
��� Match�level parallelism for a single working memory change in the cat

example�

of contention for the resources of the node and problems in keeping the memory of
the node consistent during parallel memory accesses� In his analysis of node and
intra�node parallelism� Gupta assumes the fairly simple pattern matching operations
available in OPS� In OPS� the number of operations computed at a given node
is only an order of magnitude greater than the overhead required to schedule and
execute parallel processors� Very little computation occurs within a particular node�
perhaps �fty to one hundred instructions� on average� In order to be bene�cial�
parallelism must be achieved with very little overhead�

The speedup gained by node parallelism alone is therefore only marginal and ac�
quired only by optimizing the scheduling mechanism both in hardware and software�
If the complexity of computations performed at each node increases� the advantage
to be gained from node parallelism also increases� It might be possible to increase
this complexity either by enhancing our pattern matching language to allow more
sophisticated expressions or by greatly increasing the size of the memories stored
at each node� a natural consequence of applying production systems to applications
requiring very large databases�

��

������� Extremely Fine Grained Parallelism within the Rete Net

When a token enters a two input AND node� it is compared against all elements
in the opposite memory� This operation can certainly be executed in parallel�
however the tests are so simple that parallelism can only be bene�cial at the �nest
levels of parallelism� This approach is taken by Kelly and Seviora using DRete
on the CUPID architecture �Kelly and Seviora� ������ While their experiments
indicate a very high degree of speed up in the matching process� it is not clear that
a corresponding increase in speed would be achieved in a full implementation�

����� Action Parallelism

Action parallelism is the changing of multiple working memory elements simul�
taneously� In OPS� action parallelism is equivalent to executing all the elements of
the righthand side of a production in parallel� or executing the righthand sides of
multiple productions in parallel� By allowing action level parallelism� the number
of productions a�ected per matching cycle increases� as well as the number of node
activations 	see Figure ��
� With the use of action parallelism� the potential for
increasing speedup within the match process is proportional to the number of rules
executing concurrently and the average number of righthand actions in each rule�
The level of programming complexity encountered by both the OPS implementor
and the OPS programmer in systems which allow action parallelism is considerable�
At the implementation level� there are all the problems of intra�node parallelism as
well as possible consistency errors due to race conditions in the network and multiple
simultaneous writes to memory nodes� At the programming level� there are the
problems of non�serializable behavior� that is� behavior which could not have been
achieved had all the working memory changes taken place in a serial order� To
avoid implementation level errors� the system must provide mechanisms for locking
memory nodes and synchronizing con�icting actions� as a result the contention for
resources within the net can potentially degrade system performance drastically as
the number of parallel actions increases�

����
 Application Parallelism

Gupta notes that the Soar architecture appears to be capable of a type of
parallelism which he calls application parallelism in which all rules in the con�ict
set are allowed to execute concurrently 	see Figure ���
� 	Application parallelism is
equivalent to what I have been calling rule parallelism�
 Gupta speculated that the
Soar architecture might provide large degrees of production parallelism and high
degrees of parallel node activation because all instantiations which enter the con�ict
set are executed without con�ict resolution� This property of Soar has not yet been
extensively studied�

��

ATTACK
CAT SEE

MATCH

PLAYFUL
HUNGRY
AGGRESSIVE ¬PURRHUNGRY

HALLUCINATION
CURTAIN
HOUSEPLANT
STRING CAT

PIGEON
DUCK
FISHFOOD

HUNTING_CATPLAYFUL_CAT AGGRESSIVE_CATHAPPY_CAT

HUNGRY_CAT

¬AGGRESSIVE

* *

*

Playful Cat
((CAT ^NAME FRED ^STATE PLAYFUL)
 (SEE ^CAT FRED ^OBJ HOUSEPLANT))

Happy Cat
((CAT ^NAME FRED ^STATE PLAYFUL))

Add: (In parallel)
 (CAT ^NAME FRED ^STATE PLAYFUL)
 (CAT ^NAME LILY ^STATE HUNGRY)
 CAT ^NAME GREASER ^STATE HUNGRY)
 (CAT ^NAME MORGAINE ^STATE HAPPY)
 (SEE ^CAT LILY ^OBJ PIGEON)
 (SEE ^CAT FRED ^OBJ HOUSEPLANT)
 (SEE ^CAT GREASER ^OBJ FOOD)

* -- Denotes potential parallel node activations.

* *

*

*

Happy Cat
((CAT ^NAME MORGAINE ^STATE PLAYFUL)) Hunting Cat

((CAT ^NAME LILY ^STATE HUNGRY)
 (SEE ^CAT LILY ^OBJ PIGEON))

Hungry Cat
((CAT ^NAME GREASER ^STATE HUNGRY)
 (SEE ^CAT GREASER ^OBJ FOOD))

NOT Node

AND Node

Figure
��� Action parallelism combined with node parallelism greatly increases the

number of concurrent node activations�

In OPS� the righthand side of productions contain mostly modi�cations to
working memory� therefore application parallelism is similar in nature and e�ect to
action parallelism except that the concurrently executing productions need not be
referring to� or modifying the same working memory elements� Therefore� problems
of contention for resources in the Rete net are reduced and the potential speedup in
the matching process is signi�cantly increased� The speedup o�ered by application
parallelism is directly proportional to the number of productions which can perform
useful tasks while executing concurrently� This number is dependent only on the
application� a system which is executing a large number of loosely coupled tasks
may be able to maintain a very high level of rule activations�

��� Parallel Execution of Rules

Ishida and Stolfo were among the �rst to study parallel rule��ring in
depth �Ishida and Stolfo� ����� They described two major problems in executing all

��

Happy Cat
((CAT ^NAME SHIVIA ^STATE PLAYFUL))

Hunting Cat
((CAT ^NAME LILY ^STATE HUNGRY)
 (SEE ^CAT LILY ^OBJ PIGEON))

Playful Cat
((CAT ^NAME KITTYHAWKE ^STATE PLAYFUL)
 (SEE ^CAT KITTYHAWKE ^OBJ HOUSEPLANT))

Happy Cat
((CAT ^NAME BRUNO ^STATE PLAYFUL))

Hungry Cat
((CAT ^NAME SOCRATES ^STATE HUNGRY)
 (SEE ^CAT SOCRATES ^OBJ FOOD))

Conflict Set

Rule Interpreter

Selects

performs no conflict
resolution

Hunting Cat
Happy Cat(1)
Playful Cat
Happy Cat(2)
Hungry Cat

Figure
��� Rule parallelism allows all the instantiations in the conict set to be executed

concurrently�

rules in parallel� synchronizing concurrent production �rings to avoid interference
between productions� and decomposing problems to achieve maximum parallelism�
They propose algorithms for detecting interference� Tellingly� these algorithms
produced disappointing results on most benchmarks until the benchmarks were
rewritten in a less serial form� On one 	rewritten
 problem� they report an expected
speedup of �� on a �� processor system� not including possible speedups due to
node and intra�node level parallelism� The algorithms derived by Ishida and Stolfo
for detecting interactions between productions are static� and are performed on the
rule base before execution� In work which builds upon that of Ishida and Stolfo�
Schmolze has developed three algorithms which contain both static and runtime
components and more precisely determine when rules can co�execute without vio�
lating serialization constraints� thus producing larger subsets of productions which
can be co�executed �Schmolze� ������

����� Achieving Serializable Behavior in a Parallel Program

When productions run in parallel� the possibility exists that they will interfere
with each other� Schmolze identi�es two types of rule interactions� disabling
and clashes� A production disables another production when it causes a change

��

in working memory which removes the second production from the con�ict set��

Productions clash when they cause con�icting changes in working memory� For
example� when production A adds a working memory element� and production B
deletes it� the �nal state of working memory depends on the order in which the
productions �re�

If productions can interfere with each other� then the results of running them
in parallel will not necessarily be the same as running them serially� and the
answers achieved by such a system may not be deterministic� In order to guarantee
serializable results� Schmolze develops algorithms which analyze rules for potential
disabling�clashing behavior and uses this information to synchronize the con�ict
sets� A con�ict set is said to be synchronized if it possesses no instantiations which
can either clash with or disable each other� Schmolze reports on three algorithms of
varying precision for identifying rule sets which can be synchronized� Each algorithm
has a static phase which examines the rule set� and a runtime Select phase which
processes the con�ict set and produces a subset of co�executable productions� The
trade�o� between the algorithms is between speed and precision� Static analysis is
imprecise� because values have not yet been determined for many of the variables
used in the matching process making it impossible to determine all the possible
non�serializing relationships� A static analysis� therefore� must err on the side of
safety and prevent rules from co�executing which only potentially interact� An
algorithm which examines actual instantiations within the con�ict set at runtime can
be more precise� but dynamic detection of serialization violations increases the cost
of con�ict resolution and thus reduces the speedup obtained from parallel execution
of the productions�

While the dynamic analysis of the con�ict set does allow potentially co�
executable productions to be precisely identi�ed� it also limits potential parallelism
in that it requires that an instantiation be compared with all other instantiations
in the con�ict set� This implies that the system must achieve quiescence� that is�
that there be no matching taking place during the Select process� The quest for the
maximum synchronization sets of executable productions prohibits asynchronous
rule execution�

One of the major motivations behind the research described in this thesis has
been to reduce the overhead required by runtime interaction detection algorithms�
This subject is discussed further in Chapter ��

�Strictly speaking� it is an instantiation of a production rather than the production itself which
is placed in the con�ict set� but for brevity� I�ll use �production� or �rule� to mean �instantiation

of a production�rule� when it won�t cause confusion�

��

��� Parallel Rule�	ring Production Systems

A number of researchers have been developing parallel rule �ring production sys�
tems� this section will discuss these projects and compare them with the architecture
and assumptions behind UMPOPS�

����� The CREL System

CREL 	Concurrent Rule Execution Language
 �Kuo et al�� ����� Miranker et

al�� ����� is a parallel rule��ring system based on the OPS�c language� OPS�c
is semantically identical to OPS except that it is written in C and employs the
TREAT pattern matching algorithm� CREL adopts a non�deterministic rule �ring
paradigm in which rules are executed in parallel without a con�ict resolution phase�
Correctness 	where serializability is used as the correctness criterion
 is enforced
by a combination of intensive static compilation and program transformations and
by dynamic run�time checking� The static compilation partitions the rule set into
a number of data�independent rule clusters� Each cluster executes independently
and asynchronously with respect to all other clusters� Clusters communicate via
message passing� Rule parallelism is allowed within an individual cluster� however�
because rule interactions within a cluster cannot be eliminated through static
analysis� dynamic runtime checking must be performed to insure that rules will
not interact� Optimizing transformations are used to increase the discriminating
power of the static compilation� however these transformations are largely syntactic
and do not yield a great deal of parallelism� For example� the �control variable
smart� transformation partitions rules into clusters based on the �secret messaging�
or mode�changing condition elements contained in the rules� Because these secret
message elements are largely used to sequence steps in a computation� the clusters�
though independent� may never actually execute in parallel� The primary advantage
obtained through clustering in CREL is reduction of the overhead of dynamic run�
time checking during multiple rule��ring within a cluster� disappointingly� clusters
rarely execute concurrently�

The copy and constrain transformation �Pasik and Stolfo� ����� used in CREL
is more useful in extracting parallelism� this transformation assumes that the values
which can be assumed by particular variables in the LHS are enumerable� Multiple
copies of rules are created with the variables replaced by constants from the set
of possibilities� because it can be determined at compile time that these rules will
not interact� they can be assigned to separate clusters� The copy and constrain
transformation also has implications in match parallelism 	which is also supported
by CREL
 as the multiplication of rules reduces the potential for the so�called �hot
spot� rules which consume excessive amounts of match time� The problem with the
copy and constrain transformation is that it literally creates new copies of rules�
discriminated by the substitution of constants for speci�c variables� Thus� this
transformation will increase the size of production memory and create a potentially

��

large number of semantically identical rules� Copy and constrain is not employed
in the UMPOPS system� a combination of match�parallelism and memory hashing
reduces the overhead of the hot�spot rules while rules whose instances are known in
advance to match independent and discrete variables can be speci�ed as executable
without locking overhead�

The principal conceptual contributions of CREL are the elimination of con�ict
resolution in favor of a non�deterministic rule��ring policy and the notion of asyn�
chronously executing independent rule�clusters� The major de�ciency in the CREL
research is the reliance on primarily syntactic features of individual rules rather than
a high level treatment of rule semantics when determining rule clusters� All that
can be said about rules coexisting in a single cluster is that they will not disable or
clash with rules in any other cluster�

����� PARULEL

The PARULEL 	PArallel RULE Language
 system under development at

Columbia University �Stolfo et al�� ����b� Stolfo et al�� ����a� is the result of a
research program to design an inherently parallel language without the implicit
sequentialities imposed by conventional production system architectures� The
designers of PARULEL reject conventional con�ict resolution control mechanisms
in favor of a meta�rule oriented approach to control� In general� it is assumed that
all rules which enter the con�ict set are eligible to �re in parallel� However� before
execution� the state of the con�ict set is itself entered into a �meta�working memory�
where it is examined by a set of meta�rules� These meta�rules are designed by the
programmer to distinguish those rules which might interact or which should not
execute concurrently� These meta�rules redact or eliminate o�ending rules from the
con�ict set� The advantage of the meta�rules is that the de�nition of �con�ict� is
left up to the programmer and thus the detection of rule interactions can be based
on more than simple syntactic features of rules 	given that a suitable vocabulary
for expressing con�icts is provided
� In order for meta�rules to be able to reference
the state of the con�ict set� PARULEL 	which is otherwise syntactically similar to
OPS
 is augmented with a syntax for building redaction meta�rules� these rules
consist of tests for the existence of instances in the con�ict set and predicates
describing possible relationships between these instances�

Simulations of the performance of the PARULEL system on various benchmarks
indicate that the meta�redaction model provides considerable parallelism� however
this parallelism is measured only in reduction of production cycles and not actual
run time� A number of questions remain concerning the actual performance of the
PARULEL system� The �rst is a question of synchronization� The control �ow of
the PARULEL system is described as�

�� Match all rules to construct the con�ict set�

�� Redact con�ict rule instances�

��

�� Fire all rules remaining in the con�ict set�

Although control meta�rules are allowed to �re asynchronously as rules enter
the con�ict set� it appears that a system�wide quiescence must be obtained before
it can be guaranteed that no rule interactions will occur� Thus� PARULEL may
exhibit the same synchronization overhead seen in previous architectures� While
the use of meta�rules is an elegant and parsimonious solution to the problem of
rule interactions 	parsimonious because it uses the same basic rule interpreter to
perform control as well as to execute rules
� the amount of computation which must
be performed to ensure that no rules interact is still O	N�
 for N instances in the
con�ict set� Thus� it is not clear that the overhead of redaction will be any less than
that encountered in more conventional run�time interaction detection algorithms
such as �Schmolze� ������

The principal contribution of PARULEL� then� is its abandonment of the
conventional sequential paradigm imposed on rule�based system architectures� It
should be noted that the PARULEL system is just one component in a larger
project� PARADISER� which provides a complete environment for parallel execution
including mechanisms for incrementally performing nonmonotonic changes to the
database during execution �Wolfson et al�� ����� and mapping rule executions to
processors to ensure that load balancing is achieved�

����� Control of Rule Sequencing

Most investigations of parallel rule��ring have concentrated primarily on seri�
alizability as a criterion for correctness� In their research with the RUBIC 	Rule�

Based Inference Computer
 system �Moldovan� ������ Kuo and Moldovan develop

additional criteria for correctness � not only compatibility but also convergence �Kuo
and Moldovan� ������ The parallel rule �ring system is required to not only produce
the same result as some sequential �ring of rules� but it is required to produce
the same result as a controlled sequencing of rules� They de�ne the notion of
context� rules are allowed to �re in parallel in a context if they are both compatible
	produce serializable results
 and are guaranteed to reach a correct solution� In
problems which are non�convergent 	not guaranteed to reach a correct solution
�
sequential con�ict resolution is applied within that context� In the Single�Context�
Multiple�Rule 	SCMR
 model� only a single context is active at any given time�
but multiple rules may �re within a context� Dynamic rule interaction checking
	using a parallelism matrix computed at compile time
 is used to insure that rules
are compatible� In the Multiple�Context�Multiple�Rule model� multiple contexts are
allowed to be active simultaneously� Contexts execute asynchronously with respect
to each other�

The RUBIC system operates in a distributed multicomputer environment 	the
Intel iPSC�� hypercube
� Thus� results and algorithms are not directly comparable
with those produced for shared memory multiprocessors� However the MCMR model

��

proposed by Kuo and Moldovan is quite similar to the multiple asynchronous task
architecture with �control�variable�smart� transformations proposed by Miranker�
The principal di�erence is the explicit discrimination between convergent contexts
which do not need con�ict resolution and sequential contexts which require serial
con�ict resolution in order to reach a correct solution�

������� Parallel Rule Firing with Fuzzy Logic

An alternative 	and rather elegant
 approach to resolving con�icts between
executing productions has been taken by Siler� et al� in the programming language
FLOPS 	Fuzzy Logic Production System
 �Siler et al�� ������ In the FLOPS system�
all eligible productions are executed concurrently� There is no con�ict resolution and
no backtracking� Instead� a memory con�ict algorithm is employed which resolves
contradictions in memory using �weakly monotonic� fuzzy logic� Each rule generates
both values for attributes and con�dence levels� If a rule produces an attribute value
with a con�dence level greater than or equal to the existing value� then the previous
attribute value is replaced with the most recent value� Naturally� this approach
depends on the ability to generate meaningful and accurate con�dence values� In
order to ensure program correctness� parallel rule �ring with fuzzy logic still requires
that the state of working memory be independent of the order in which rules are
executed�

����� A Note on Rule versus Instance Parallelism

A number of research e�orts� particularly� but not necessarily� those involving
implementations on distributed multicomputer systems� e�g� �O�azer� ����� Tenorio
and Moldovan� ���� Kuo and Moldovan� ����� Ishida et al�� ����� Xu and Hwang�
����� allow only a single instantiation of each rule to execute at a given time� Each
rule is explicitly assigned to a given processor� and only that processor will be able
to execute that rule� I will call this �strict� rule parallelism� because only distinct
rules are allowed to �re concurrently� Such an architecture creates what is known
as the partitioning problem� rules must be assigned to processors in such a way
that rules which are capable of executing concurrently are not assigned to the same
processors� otherwise concurrency will be reduced� In general� rule parallelism of
this type will require generation of many almost identical rules in order to create
acceptable levels of concurrency�

From a conceptual point of view� strict rule parallelism 	as opposed to instance
parallelism in which many instantiations of the same rule are allowed to �re con�
currently
 seems contrary to the spirit of production systems� A rule theoretically
represents a unit of knowledge which can be applied when a subset of working
memory achieves a given con�guration� and it seems unreasonable to limit the
application of expert knowledge to one set of data at a time� Instead� it seems

��

far more reasonable to be allowed to apply the same �quantum� of knowledge to
data objects at the same time�

Although this is speculation� I believe that strict implementations of rule
parallelism are an artifact of two historical factors� the limited memory available on
early distributed multiprocessors which made it infeasible to distribute the entire
knowledge base to all agents� and the initial discussion of rule parallelism by Ishida
and Stolfo which assumed that only a single instance of each rule would be allowed to
execute� Neither of these factors is a convincing reason for continuing the tradition
of strict rule parallelism� as discussed previously� recent work on guaranteeing
serializability has demonstrated that correctness can be maintained despite parallel
�ring of instances� while technological advances have made it feasible to substantially
increase the size of the memory allocated to distributed processors� 	Strict rule
parallelism has never made any sense on shared memory architectures as the entire
rule set is accessible to all processors and rules are assigned to processors on a purely
opportunistic basis�

The benchmarks that have been developed for testing parallel rule��ring systems
uniformly display very high levels of instance parallelism and low levels of strict rule
parallelism� Thus� if memory is limited� for whatever reasons� it makes more sense
to distribute the entire rule set 	or relevant subset of rules
 to all processors and
partition according to distribution of working memory elements�

����� Architectures for Production Systems

The previous section described a number of algorithms for incorporating parallel
processing into production systems� Pragmatically� the algorithm chosen depends
almost as much on the available hardware as it does on the inherent parallelism
within the problem area� A number of machine architectures have been proposed
for the rapid execution of production systems� they range from uniprocessors to
machines with thousands of processors which support extremely �ne�grained paral�
lelism� There is by no means universal agreement on the correct degree of granularity
for these architectures� the questions of how many processors� and how powerful�
are closely tied to the degree and location of maximum potential parallelism within
the production system� This section will discuss a number of proposed architectures
for executing production systems�

������� DADO

The DADO machine �Stolfo and Miranker� ����� was an attempt to develop a
parallel tree�structured architecture which would e�ciently execute expert system
programs� The prototype DADO� machine had ���� ��bit processors each producing
approximately �� MIPS� The tree architecture minimizes communication costs�
each node is responsible for transmitting to the nodes immediately below it� and
propagating results from lower nodes upwards through the tree� Each node was

�

implemented using a microprocessor with a small 	��K
 amount of memory� The
DADO architecture can operate in either a semi�SIMD mode 	in which the single
instructions are function calls rather than machine language calls
 or MIMD in which
nodes execute autonomously� The DADO architecture can apparently support most
levels of parallelism present in rule�based systems by assigning tasks to di�erent
levels of the hierarchy� To implement production parallelism� each production is
assigned to a processing element 	PE
 at a �xed level of the tree� Processing elements
below the PE assigned to production matching are assigned to speci�c working
memory elements� In the ideal case� the DADO architecture should produce matches
independent of the number of productions or working memory elements� Because
it is unlikely that there will be enough processors to map to each production and
working memory element� multiple assignments can be made� causing some decrease
in performance� The algorithms available for DADO can be tailored to the nature of
the production system program being executed� For example� some programs may
not have a signi�cant amount of production parallelism but may contain rules with
extremely large lefthand sides� in such cases� more processors might be allocated to
matching working memory �Stolfo and Miranker� ������

There has been a certain amount of controversy regarding the DADO architec�
ture� particularly whether the power of the large number of DADO processors could
be utilized given the properties of OPS programs as analyzed by Gupta �Gupta�
����� Stolfo� ������ The results of the DADO� project have been reported in �Stolfo�
������ Work is now proceeding on DADO�� an architecture which comprises �
high�speed ���bit RISC processors each running at approximately ��� MIPS�

������� Implementation of OPS� on Non�Von

The Non�Von architecture� a massively parallel multiple�SIMD machine devel�
oped at Columbia University� has also been considered as a vehicle for executing

OPS �Hillyer and Shaw� ������ The key to Non�Von�s performance is the heteroge�
nous nature of its architecture� Working memory elements are assigned to small
processing elements 	SPEs
 and operations which refer to attributes of the working
memory elements are performed associatively� Operations at a greater level of gran�
ualarity are carried out in the large processing elements 	LPEs
� The architecture
contains a large number of SPEs 	on the same order as the average number of
working memory elements in the standard production system
� and a much smaller
number of LPEs 	approximately ��
� Benchmarks based on simulations of the Rete
algorithm using data gathered from existing expert systems promise upwards of ��
production executions per second as compared to � to on a Lisp�based interpreter
running on hardware of equivalent cost� at the time of this research� this would have
been a VAX ������� Whether this performance would actually be achieved by a
working prototype is not known� as the project has been discontinued�

��

������� CUPID and DRete

Another approach to �ne�grained parallelism has been taken by Kelly and
Seviora with the distributed Rete 	DRete
 algorithm designed for the Cupid archi�

tecture �Kelly and Seviora� ������ This architecture consists of a matching processor
networked to a host� The host performs con�ict resolution� the matching processor
performs the matching actions� The CUPID architecture consists of a large number
of small processors� The underlying approach is that of very �ne granularity� Each
beta node in the Rete net has to perform a number of comparisons proportional
to the number of tokens in that node� The DRete algorithm splits each node so
that a copy exists for each token stored in that node�s memory� This allows each
comparison to be performed on each node in parallel� thus allowing each beta node
to proceed in essentially unit time� There is� however� an overhead associated with
generating new copies of nodes for new tokens as they are propagated through the
net� The e�ectiveness of the DRete algorithm increases as the number of tokens
stored in each node increases�

������� Message Passing Architectures

Multiprocessors with distributed memory are not ideally suited for executing
production systems because the communication costs required to transmit updates
to working memory largely eclipse the advantages gained by parallel processing at
the node levels� These architectures are most suited for large grained parallelism
in which each processor contains its own working memory and productions and
works on separate tasks� Communication costs are decreasing� however� and
distributed memory architectures are becoming more e�ective� These architectures
are particularly attractive because they provide more processors at less cost than
the more expensive shared memory machines� Research on executing produc�
tion systems on message passing computers is described in �Tambe et al�� �����
Acharya and Tambe� ����� Schmolze and Goel� ����� Acharya et al�� ������

������� Current Trends in Implementation Architectures

Although research into special�purpose architectures for production systems
is continuing� the availability of powerful general purpose parallel processors has
prompted a trend to move towards commercially available systems� An advantage
of this approach is that it allows production systems to be written using currently
available state�of�the�art technology without the requirement for massive hardware
development projects� Architectures such as the Connection Machine which employ
very large numbers of processors provide opportunities for performing research on
applications of �ne�grained parallelism to production system matching �Hillyer and
Shaw� ����� Morgan� ������ Because of the SIMD nature of such processors� the
mapping between the architecture and the match process is not straightforward�

��

particularly if the lefthand side employs variable binding and uni�cation� Perlin
solves the problem of variable binding by enumerating all possible values which
could be achieved by a variable during the matching process and assigning processors
accordingly �Perlin� ������

The work by Gupta predicted fairly low levels of concurrent node activation
and a relatively high overhead associated with scheduling �ne�grained parallelism�
The conclusion reached was that the preferred architecture for executing a parallel
production system 	based on studies of existing systems
 is a shared memory system
containing no more than �� high�speed processors augmented with a hardware
scheduler for allocating processors to node activations� The research presented
in this dissertation provides additional evidence that shared�memory architectures
are an appropriate choice for the implementation of parallel rule��ring production
systems� With the advent of a new generation of virtual shared�memory machines�
the limitations imposed by the limited bandwidth of the shared memory bus can be
sidestepped� although such architectures may require new compilation and processor
allocation strategies to attain full e�ciency�

��
 Conclusion� Related Work

This chapter has provided an overview of the current state of the research
in parallelizing rule�based systems� Match�level parallelism has been the most
intensively studied application of parallelism to date� and a number of special
purpose architectures have been proposed which can potentially support several
thousand working memory changes per second� But the research by Gupta has
demonstrated that match parallelism alone will not yield signi�cant performance
improvements� Current research has therefore turned to examining the potential
for increasing concurrency in production systems by executing rules in parallel� A
number of these research programs including CREL� PARULEL� and RUBIC were
discussed� The following chapters will discuss my own contributions to this area and
my approaches to controlling rule executions and maintaining correctness during the
course of parallel rule �ring�

C H A P T E R �

Correctness and Design

One of the principal problems underlying the parallel execution of rules is
maintaining the correctness of results and the consistency of working memory during
the course of concurrent and possibly interacting rule �rings� The most frequently
used criterion for correctness is serializability� that is� whether a result produced
by a parallel execution could have been produced by any serial execution� Kuo

and Moldovan �Kuo and Moldovan� ����� and Srivastava �Srivastava and Wang�
����� add a more rigorous criterion� the result produced must be equivalent to that
produced by a serial rule �ring algorithm incorporating a speci�c con�ict resolution
policy�

This chapter gives a brief overview of approaches to maintaining correctness
and consistency during the course of parallel rule �ring and describes the approach
I take in UMass Parallel OPS� a read�write locking scheme for working memory
elements� Because the approach suggested does not guarantee serializable programs�
this thesis makes the somewhat weaker claim that correct programs can be designed
using the working memory locking scheme� The design philosophy suggested is
to interpret potential rule con�icts in terms of the semantics of that interaction�
That is� if one assumes that a rule is ful�lling a role in a high�level computation�
then there must be a reason for any changes that it makes to working memory�
Con�icts between rules can be resolved by identifying and preferring the rules whose
actions are most appropriate in the context of the high�level computation� In most
programs� potential rule interactions will take place at well�de�ned points in the
computation and mechanisms to resolve con�icts can be constructed that do not
impact on unrelated rules�

The second half of this chapter is devoted to discussing this design philosophy in
terms of common usages of rules and the functions of the working memory elements
that they create� The role of rules in several high level computational models such
as search and inference are discussed� and methods are suggested for avoiding or
minimizing the cost of rule interactions�

��� Correctness and Serializability

Rules that are executed in parallel may interfere with each other� leading to a
working memory state that could not have been produced by any serial execution

��

(A 1) (B 1) (D 1)

(A 1) (B 1)
(C 1) (D 1)
No P3 match
if P1 is executed first.

(A 1) (B 1) (E 1)

P1 P3

(A 1) (B 1)
(C 1) (D 1)
 (E 1)

P1: +(A <x>), -(C <y>) -> +(C <x>), +(D <x>).
P3: +(B <x>), -(C <y>) -> -(D <x>), +(E <x>).

If P1 and P3 execute concurrently,
the result must be the same as the
one possible serial execution order.

P1 & P3

P1

Figure ���� If the concurrent execution of rules can produce a result which is produced

by any sequential execution� the program is said to be serializable�

of those same rules� Such parallel executions are said to be non�serializable 	see

Figure ���
�� Disabling� one such type of interference� occurs when two or more
rules mutually disable each other� where a rule disables another if and only if
executing it causes the other to no longer match� Given a set of rules to execute in
parallel� disabling will cause a non�serializable result i� there is a cycle of disabling
relations among the rules 	see Figure ���
� Clashing behavior occurs when two rules
perform competing modi�cations to the same working memory element� i�e� one
rule potentially deletes a working memory element that is added by another 	see
Figure ���
� Because OPS does not enforce a unique representation for working
memory elements 	working memory is a multiset� not a set
 clashing behavior
per se cannot cause non�serializable e�ects� Instead� clashing rules may create
redundant instances of working memory elements leading to spurious rule �rings
and subsequent explosive growth of working memory size�

�The diagrams dealing with serializability in this chapter are adapted from those in Schmolze�s

paper on guaranteeing serializability	Schmolze�
��
�� The diagrams have been modi�ed to
correspond somewhat more closely with the syntax of OPS��

��

P1

(A 1)
(B 2)

(A 1) (B 2)
(C 1 (D 1)
No P2 match if
P1 is executed serially.

(A 1) (B 2)
(C 2) (D 2)
No P1 match if
P2 is executed serially.

P2

(A 1) (B 2)
(C 1) (D 1)
(C 2) (D 2)

P1: +(A <x>), -(C <y>) -> +(C <x>), +(D <x>).
P2: +(B <x>), -(C <y>) -> +(C <x>), +(D <x>).

If P1 and P2 execute concurrently,
the result is an impossible working
memory state for a serial system.

P1 & P2

Initial working
memory

Figure ��
� When mutually disabling rules are allowed to �re concurrently� the result may

be a working memory state which could not be produced by any sequential rule �ring�

A number of techniques have been developed for detecting rule interac�
tions �Ishida and Stolfo� ���� Tenorio and Moldovan� ���� Miranker et al�� �����
Ishida� ����� Schmolze� ������ These algorithms usually consist of a static analysis
phase which is performed at compile time and a runtime component which dynam�
ically examines all eligible rules and selects a co�executable set� These algorithms
can di�er in the precision with which they identify potential rule interactions� For
example� Ishida and Stolfo�s original algorithm developed a complete table of rule
compatibilities at compile�time and the dynamic phase consisted simply of a table
lookup� A purely static analysis may prove unnecessarily restrictive in preventing
rules from �ring concurrently because it does not have access to the variable bindings
which are not instantiated until rule execution time� The static analysis is therefore
limited to identifying potential interactions and generating tests to be performed at
runtime to determine whether the interactions actually occur� Thus� the Ishida and
Stolfo algorithm unnecessarily prohibited the parallel execution of many independent
rules� including the parallel execution of any instantiations of the same rule�

In comparison� Schmolze�s algorithms for detecting rule interactions are very
precise� the compile�time analysis not only identi�es rules which can not execute
concurrently� but identi�es potential interactions and develops tests to be performed

��

P1: +(A <x>), +(D <y>) -> -(D <x>), +(D 1).
P2: +(B <x>), +(D <y>) -> -(D <x>), +(D 2).

(A 1) (B 1) (D 1)

(A 1) (B 1) (D 1) (A 1) (B 1) (D2)

P1 P2

(A 1) (B 1)
(D 1) (D 2)

If P1 and P3 execute concurrently,
the final result will be unpredictable.

P1 & P3
P1P2

(A 1) (B 1) (D 1)(A 1) (B 1) (D2)

(A 1) (B 1) (D2) (A 1) (B 1) (D 1)or or

Figure ���� Execution of clashing rules in OPS� can result in the assertion of redundant

working memory elements�

at run time to determine whether instantiations truly interact� These runtime
tests are able to precisely identify rule interactions due to clashing or disabling
relationships between rules� but incur a potentially high 	time
 cost� both because
of the synchronization cost of ensuring that all eligible rules have been identi�ed�
and because the actual tests required to precisely identify the rule interactions
may be expensive relative to the cost of rule execution� Thus� there is a trade�o�
between the precision of interaction detection algorithms and the overhead of the
tests� high precision leads to increased concurrency� but at a cost� These runtime
rule analysis algorithms are typically 	but not always� see �Schmolze and Neiman�

�����
 performed synchronously over the entire set of eligible rule instantiations�
the output being a set of rule instantiations partitioned so that rules within each
partition are guaranteed not to be mutually clashing or disabling� Although the
production of maximally parallel sets would be prohibitively expensive� an attempt
is usually made to insure that the set of co�executable productions is as large as
possible� Because the runtime detection of rule interactions requires a best�case
O	N�
 pairwise comparison of rule instantiations 	where N is the number of eligible
rules
� the cost of detecting pathological rule interactions rises sharply as the number
of eligible rules increases�

��

Table ���� Frequency of rule interactions compared to total number of rule executions�

Benchmark Rules Executed Rule Interactions

Circuit NA 0
Toru-Waltz 370 20
Travelling Salesperson 510 1

Parallel Alexsys 1930 1

��� A Locking Scheme for Ensuring Partial Correctness

of Working Memory

In the programs which have been developed for UMPOPS 	see Chapter �
�
rule interactions have been observed to occur only rarely� Typical statistics for
interaction frequency is given in Table ���� Rather than accept the synchronization
delays associated with a full analysis of rule interactions� it was chosen to enforce
only a subset of the correctness criteria using a scheme of read�write locks on working
memory elements� By use of a locking scheme similar to that used in database
management systems� it is possible to prohibit rule instantiations from modifying
working memory elements which are being referenced by other instantiations and
to prohibit rule instantiations from referencing working memory elements which
are currently being modi�ed� If such interactions are prohibited� cyclical disabling
relationships cannot exist� and serializable executions will result� Because lock
acquisition is inexpensive� the overhead of maintaining correctness during rule��ring
is minimized� However� a locking scheme cannot prevent rule interactions due to
interactions due to negated condition element clauses in rules� this represents a
compromise between performance and the need for careful program design� this
trade�o� is discussed in following sections�

The implementation of the locking mechanism is as follows� Each working
memory element is assigned a structure which contains a read counter and a write
�ag and a lock to ensure that modi�cations of these structures occurs in a critical
region� As each rule instantiation enters the con�ict set� each working memory
element that appears on the lefthand side and that is modi�ed in the righthand side
is placed on that instantiation�s write list� Each working memory element that is
referenced in the LHS but not modi�ed is placed on the instantiation�s read list�

Before the rule instantiation is executed� each list is examined� If any of the
working memory elements on the read list have their write �ag set� then another
rule currently executing is about to modify that working memory element� Because
the rule instantiation will eventually be disabled by the removal of the element
being modi�ed� it is removed from the eligibility set but not executed� Similarly�

��

if any of the working memory elements on the write list have their write �ag set�
the instantiation is also removed from the con�ict set� otherwise� if other rules are
referencing the working memory element� the rule instantiation is not executed� but
is placed back on the eligibility set� After rule execution all read locks in working
elements are decremented� Write locks are never reset because their associated
working memory elements will have ceased to exist after execution of the rule
instance� All read and write privileges associated with working memory elements
must be obtained before rule execution� thus the righthand side of a production
may be considered atomic� either all of the actions will be executed� or none will be�
A single scheduling process is used to assign all locks so deadlock will never occur
during the assignment of locks to a rule instantiation�

Although the creation of a working memory element is certainly a write opera�
tion� it is treated as a special case� When a rule creates a working memory element�
it actually acquires a read lock 	increments the read counter
 for that element� The
reason for the special treatment is that when asynchronous rule �ring is enabled� a
rule might be stimulated by the addition of a working memory element and become
eligible to �re even while the working memory element is still being added� If a write
lock were obtained on the working memory element� any rules stimulated by that
element would be unable to �re 	and� if fact� would be discarded from the eligibility
queue
� If a read lock were not obtained on the working memory element� then
the rule stimulated by the element could theoretically delete it� causing competing
match operations and a possible race condition within the Rete net�

����� Region Locks and the Make�Unique Construct

The concept of locking elements to prevent interactions due to concurrent
modi�cations is widely used in database systems and a similar scheme to the one

just described has been implemented in a DBMS�based production system �Sel�
lis et al�� ������ Their implementation uses region locks to prevent interac�
tions due to negative conditions� A region lock typically prohibits access to a
class of working memory elements� possibly restricted by value and� depending
on the precision with which the region can be identi�ed� may prove unduly
pessimistic in restricting access to working memory �Fennell and Lesser� �����
Corkill� ������

UMPOPS provides a mechanism similar in nature to region locking which allows
a single working memory element to be locked� even before that element has been
created� This mechanism� called make�unique� allows the programmer to de�ne
a working memory element and certain key �elds to be unique� that is� only one
attempt to create an element with the class and key values will succeed and all other
attempts will be prohibited� The make�unique operator requires less overhead than
general region�locking because only the rule instantiations attempting to create the
new element check for uniqueness� Once the element has been created� the standard

��

lock mechanism will prevent any possible clashing behaviors� The make�unique

operator requires that the programmer predict in advance that multiple instan�
tiations may attempt to create the same element� the trade�o� is that checking
for interactions can be performed very precisely without imposing an overhead on
unrelated rule �rings� As will be seen in Section ������ the make�unique mechanism
is crucial for implementing common programming idioms such as merging the results
of a parallel search�

����� Principal Advantages of a Working Memory Locking Scheme

The working memory locking scheme presents a number of advantages and
disadvantages as opposed to the serializability guarantees provided by Schmolze�s
or Ishida�s algorithms� The advantages are listed below�

Low Overhead� The overhead of the UMPOPS locking scheme is limited to
the generation of the read and write lists and the actual acquisition of the locks�
both of which incur minimal costs� Because locks are acquired independently of
other executing instantiations� the lock acquisition time is O	N
 where N is the
number of elements referenced by the instantiation� This implies that the cost of lock
acquisition for a rule instantiation does not increase as the size of the eligibility set or
degree of parallelism increases� In contrast� the overhead associated with the scheme
proposed by Schmolze is at best O	N�
 where N is the number of instantiations

in the eligibility set �Schmolze� ������� As will be seen in the following section�
guaranteeing full serializability using an expanded locking scheme may impose a
serial delay of as much as ��� of rule execution time� thus limiting the maximum
obtainable parallelism to a factor of ��� Measurements of the working memory
locking scheme described above indicate that the overhead is no more than ���� of
rule execution time� allowing even the single scheduler implementation of the lock
manager in UMPOPS to provide a potential speedup of � to ����fold� The overhead
for acquiring locks for various rules for a typical program is shown in Figure ����

Rules can execute asynchronously� When acquiring working memory
locks� it is not necessary to compare each eligible rule against all others� so
synchronization is not required and rule��ring may take place asynchronously�
Interaction detection does not necessarily imply synchronization� Schmolze has
recently developed an asynchronous version of his interaction detection algorithm in
which eligible rules are checked against only currently executing rules� This approach
to runtime interaction detection proved considerably faster than the synchronous
version but shares with all other asynchronous �ring policies the disadvantage of
prohibiting the development of 	nearly
 maximally parallel rule sets�

�To limit this overhead� Schmolze limits the number of rules scheduled for execution to be a

small multiple of the number of available processors when executing rules synchronously�

�

Lock Acquisition Times as Percentage of Rule Execution Time

Rules from Toru-Waltz benchmark

Pe
rc

en
ta

ge
 o

f
R

ul
e

E
xe

cu
tio

n
T

Im
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
O

N
SI

ST
E

N
T-

M
IN

U
S

C
O

N
SI

ST
E

N
T-

PL
U

S

E
L

IM
IN

A
T

E
-

L
IN

E
-L

A
B

E
L

S

C
O

N
SI

ST
E

N
T-

IN
-O

U
T

G
O

-T
O

-

R
E

D
U

C
E

-

C
A

N
D

ID
A

T
E

S

E
N

U
M

E
R

A
T

E
-

PO
SS

IB
L

E
-

C
A

N
D

ID
A

T
E

S

Figure ���� The overhead for acquiring locks in the Toru�Waltz benchmark measured in

terms of percentage of total rule execution time�

No compile�time analysis is required� Because all working memory ele�
ments read or written by a rule instantiation are automatically determined at run�
time� no compile�time analysis is required� This is only truly signi�cant in systems
in which the RHS syntax is complex or continually changing or in developmental
systems in which the rule�base is in constant �ux� requiring frequent compilation�

����� Limitations of Working Memory Locks

The primary disadvantage of the working memory locking scheme is that it
does not guarantee serializable programs� instead it allows serializable programs to
be designed and constructed� The burden falls upon the programmer to ensure
the correctness of the program� Interactions involving rules that contain negated
condition elements cannot be detected or prevented because it is not generally
possible to acquire a lock on an element or set of elements which does not exist
	however� it is precisely this capability that is provided for the single element
case by the make�unique construct
� A novel algorithm for guaranteeing complete
serializability and an analysis of the accompanying cost is given in the following
section�

When executing rules asynchronously� the locking scheme accepts and schedules
rules in the order in which they arrive� thus opportunities for heuristic control are

��

not available and heuristically preferable rules may be locked out by less suitable
rules which happen to be instantiated �rst� As reported elsewhere �Neiman� ������
this is compensated for by the increased throughput provided by the asynchronous
rule execution policy� A method for improving this situation is suggested in the
following chapter� A �nal disadvantage of the locking scheme is that the current
algorithm requires a central scheduler and lock acquisition takes place serially�
thus keeping lock overhead to a minimum is critical� Lock acquisition could be
performed in parallel by using a version of compile�time analysis to ensure that
potentially interacting rule instantiations are handled by the same lock manager�
The experience with UMPOPS indicates� however� that lock acquisition does not
represent a signi�cant enough bottleneck to justify the increased complexity of
multiple lock managers�

����� A Mechanism for Detecting Interactions Due to Negative
Condition Elements

The locking scheme described in the previous section can only ensure serializable
behaviors between rules that do not contain negated condition elements� Rules
that contain negated condition elements in their lefthand side can be disabled by
the addition of working memory elements or enabled by the removal of working
memory elements� Because it is not possible to acquire a lock on a working memory
element that does not exist� a simple locking scheme is not su�cient to ensure
that there are no con�icts between such rules� To illustrate this problem� consider
the following example which illustrates a common initialization idiom� If a working
memory element of the class marsupial does not previously exist� then it is created�
Because of the negated condition element� it is possible for multiple instantiations
of an initialization rule such as the one shown below to be enabled concurrently�

Rule�

P�Init�marsupial

�Is�A �type marsupial �value �m��

��marsupial�

���

�marsupial �type �m��

Working Memory�

�Is�A �type marsupial �value wombat�

�Is�A �type marsupial �value koala�

��

In a serial system� either �marsupial �type wombat� or �marsupial �type

koala� would be asserted� however if these instantiations were executed concur�
rently� both �marsupial �type wombat� and �marsupial �type koala� would be
asserted � this is a non�serializable result� The following section outlines and
presents a short cost analysis for a scheme for asynchronously insuring consistency
in programs containing rules with negated condition elements�

Previous schemes for detecting interactions between rule instantiations due to
negated elements have relied on run�time interaction detection using speci�c tests
developed during a compile�time analysis �Schmolze� ����� Kuo et al�� ������ These
tests are applied to potentially executable instantiations on a pair�wise basis with all
other eligible instantiations� 	In Schmolze�s asynchronous algorithm �Schmolze and

Neiman� ������ the eligible instantiation is compared against all currently executing
rules in order to con�rm that none of their working memory modi�cations will
disable it�
 When examined� the comparison tests which are applied to eligible rules
look very similar to those tests performed within the pattern matcher� and for a
good reason� The pattern�matcher must also detect disabled rules and eliminate
them from the con�ict set� The observation of the equivalence of tests performed by
the interaction detection algorithms and the pattern matcher inspired the following
scheme� Instead of producing the tests during a precompilation phase� they are
instead produced automatically by the traversal of tokens through the pattern
matcher� This use of the tests from the pattern matcher re�ects the intuition that
the work being done by run�time interaction detection is precisely that work that
would be done by the pattern matcher in order to retract disabled instantiations from
the con�ict set in a serial implementation�� This observation justi�es the following
experiment� Because the same tests are used to perform matching and interaction
detection� it is possible to assert that any optimization that increases the speed of
run�time interference checking could also be applied to the pattern matching phases�
thus the relative overheads of the two processes should remain the same despite any
modi�cations to either the algorithms or the implementation language��

In the Rete net �Forgy� ������ when a working memory element is positively
matched� a token representing that element is concatenated to a set of tokens
being propagated through the network� We can similarly create a pseudo�token
corresponding to a successful match of a negated element� This token represents a

�The similarity between locking and pattern�matching in rule�based systems was exploited in
the opposite direction by Stonebraker� Sellis� and Hanson in a system that used database locking

techniques to detect rules that should be triggered following database updates 	Stonebraker et al��

�����

�There are cases in which one rule will always disable another� in such cases� interaction
detection algorithms need perform no instantiation�speci�c tests� and the overhead will be very
low� Thus the equivalence between tests holds only for cases where disabling relations between
rules cannot be determined at compile�time�

��

pattern of the working memory elements that would disable this instantiation� This
pattern is simply the set of tests encountered by the working memory element as
it proceeds through the matching process� speci�cally� the inter�element alpha tests
preceding the NOT node� concatenated to the tests performed by the NOT node
and uni�ed with the positively matched tokens in the rule instantiation�

In the initialization idiom shown above� the pseudo�token generated for
P�Init�marsupial would be simply ��class 	 marsupial� � any rule instanti�
ation created an element of the class marsupial would con�ict� Consider� however�
the more complex rule instantiation shown below� stimulated by the addition of
the working memory element �A wombat�� The resulting pseudo�token would have
the form ��class 	 B� �field�
�	wombat� �field���	koala��� Any currently
executing rule which creates an element matching this pattern would disable this
instantiation of P�interaction�example� By applying the above test to all execut�
ing rules� it can be determined whether the instantiation below would be disabled
or whether it can be safely executed�

Rule�

P�interaction�example

�A �x��

��B �x� koala�

���

�B �x� koala�

WM�

�A wombat�

When a rule instantiation is created� we now have two sets of tokens� positive
tokens that describe working memory elements enabling a token� and negative
pattern tokens that describe working memory elements whose creation would disable
the instantiation� We can acquire read�write locks for the positive tokens using the
technique described in the previous section� The negative tokens are used in the
following way�

We �rst require that� for each instantiation� a list of the working memory
elements that it will assert be created before the interaction detection algorithm
is run 	and therefore� before rule execution
� To provide maximum parallelism� this
list is created when the instantiation is created by a rule demon� This modi�cation
to the rule execution algorithm does not represent an increase in overhead because
the formation of working memory elements must eventually take place� and it does
not matter whether it occurs before the rule is inserted into the con�ict set or
immediately before the rule is executed� assuming that most rules entering the

��

con�ict set eventually �re�� Before each rule instantiation is executed� it posts all
the elements it is about to positively assert on to an ADD list� This list may
be hashed according to the class of the element being referenced� but should not
be highly structured in order to minimize add and delete times� The steps of the
interaction detection algorithm then proceed as follows�

�� As each candidate instantiation arrives� ensure that locks can be acquired for
each positively referenced working memory element as described in the previous
section 	however the locks are not actually acquired until after the following
step is completed
�

�� Once it is certain that all the necessary working memory locks can be acquired�
compare the instantiation�s negated pattern elements against the list of all
working memory elements on the ADD list� If any of these elements match
against a negated pattern element� then the rule instance will be disabled by
some currently executing rule and should not �re�

�� If the rule instantiation is not disabled by a currently executing rule� acquire the
locks on the positively referenced elements� post the working memory elements
that it is about to create onto the ADD list and schedule it for execution�

�� After the rule has completed execution� remove from theADD list the elements
it has just placed in working memory�

This algorithm is depicted pictorially in Figure ���
Overhead analysis� The scheme described above for ensuring that currently

executing rules do not disable a rule with negative condition elements ensures that
the execution of the production system will be fully serializable� However� because
the lock mechanism must run serially in order to avoid deadlocks between rules
simultaneously attempting to acquire locks� we have to determine whether or not
checking the negated tokens against the ADD list is inexpensive compared to the
time necessary to execute a rule� If not� the tests on each instantiation will form a
serial bottleneck and the performance improvements due to parallel rule execution
will be lost� In order to form an estimate of the overhead associated with the above
algorithm� we note that the processing performed in matching each working memory
element being asserted against each negated pseudo�token pattern is essentially
equivalent to the time of a beta node activation within the Rete net 	for the check
against the ADD list
 and two memory node activations 	one for each addition
or deletion to the ADD list
� This approximation is reasonable because the tests
contained within the negated pseudo�tokens are derived from the NOT nodes that

�However� if one rule adds an element which enables many succeeding rules� then that rule�s
run time will be increased� Thus� mode�changing rules have been observed to be more expensive
in this version of UMPOPS

�

WME
1

WME
2

WME
3

WME
4

: : :

WME
N

: : :

Rule Instantiation
i

+WMES

-Pseudo TokensCompare

Add WMEs to list

Fire Rule
Instantiation

If tests succeed...

ADD List

Delete WMEs from ADD list

New Rule Instance arrives...

Locks on positive
elements are
acquired.

Figure ���� An algorithm for asynchronously detecting rule interactions involving negated

condition elements�

generated them� The beta nodes are the most time�consuming component of the
pattern matching process and the number of beta nodes executed can be used to
create an estimate of relative costs� Using the statistics gathered by Gupta �Gupta�
������ we note that the average rule instantiation activates approximately �� beta
node and memory operations� with the actual �gures� of course� depending on the
size and complexity of the lefthand side conditions� Assuming some unavoidable
implementation overhead in the above algorithm� we see that the runtime detection
of interactions due to negated tokens may incur costs of as much as � to ��� of the
cost of actually executing the rule for each negated condition in the rule� Because
the detection of interference must be carried out within a critical region of the
scheduler� an overhead of one negated rule per rule� on average� would limit the
potential parallelism within the system to a factor of �� to ��� exclusive of other
scheduling costs� Because the size of the ADD list increases proportionally to the
number of rules executing or scheduled to execute� the overhead of the negated
token test increases as the degree of parallelism increases� further diminishing the
concurrency of the system�

�

Rule Execution Queue

Rule Demons

RD1

RD2

RD3

RD4

RDN

Rule Interaction
Detection and
Lock Manager

Eligibility Set
New rule
instantiations

Instantiations to be executed

ADD List

Tests relating to
new instance
are placed on ADD
list.

Tests
1

Tests
2

Tests
3

Tests
N

: : :

After execution of instance,
tests are deleted from ADD list.

Develop list of
elements added by
each new rule
instance.

Figure ���� The essential architecture for a parallel rule��ring system with a serial

mechanism for lock acquisition and rule�interaction detection�

������� Experimental Veri�cation of Overhead Analysis

In order to verify this overhead analysis� an experimental version of UMPOPS
was developed that incorporated the locking mechanism described in this section�
The architecture of this system is illustrated in Figure ���� The program used
to test the performance of the locking mechanism was a version of Toru�Waltz�
an implementation of the Waltz line�labelling algorithm implemented in OPS by
Toru Ishida 	see Chapter � for a full description of this program
� Toru�Waltz
is a good benchmark for testing mechanisms for acquiring locks and identifying
rule interactions because it contains rules that are fairly small and execute rapidly�
Because the parallelism in a rule��ring architecture of the type depicted in Figure ���
is directly related to the ratio of lock acquisition time to rule execution time�� the
performance of rules with rapid execution times will emphasize serial bottlenecks�

Two versions of Toru�Waltz were tested� one version that required locking only
positive condition elements� and one version that required checking for disabling
conditions on negative condition elements� Using �� processors on a Sequent
Symmetry� the �rst version executes in ��� seconds� the second in ��� seconds 	see
Figure ���
� Using only working�memory locks� the overhead for lock generation

�For the sake of brevity� I will refer to both lock acquisition and detection of interactions due

to negatively referenced condition elements as lock acquisition�

�

Parallel speedup for Toru-Waltz locking experiment

Number of processors available

R
un

 ti
m

e
(in

 s
ec

on
ds

)

0

1

2

3

4

5

6

7

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Lock detection enabled Lock detection disabled

Figure ���� The parallel speedups of two runs of the Toru�Waltz benchmark are shown�

It can be seen that the performance of the version incorporating the lock�detection

mechanism is approximately
�� slower than the version without�

�

Processor utilization for Toru-Waltz without disabling tests

Run time (in seconds)

N
um

be
r

of
 a

ct
iv

e
pr

oc
es

so
rs

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Rule demons Action Demons Match Demons

Enumeration phase

Figure ���� The processor utilization graph for Toru�Waltz without rule�interaction

detection� During the enumeration phase� all
� processors are employed in executing

rules�

for each rule ranges from � to ��� When the mechanism which detected disabling
conditions due to negated condition elements is used� lock overheads are observed
which range from to �� of rule execution times� The e�ects of these overheads
can be seen by comparing the processor utilizations obtained by rule parallelism in
Figure ��� and Figure ���� The Toru�Waltz program consists of two main phases�
an enumeration phase in which working memory elements representing possible
line labels are created� followed by a second phase in which inconsistent labels are
deleted� During the enumeration phase� many new working memory elements are
created and corresponding tests are placed in the ADD list� requiring tests to be
performed during lock acquisition� During this phase� the ratio of lock acquisition
to rule execution times is typically � to ��� and as expected� the average parallelism
obtained during this phase averages no more than a factor of ��� During the second
phase of Toru�Waltz� there are no additions made to working memory� Because
the ADD list is empty and no tests are performed� the lock acquisition overhead is
reduced to approximately �� and there is little appreciable reduction in available
parallelism as measured by processor utilization�

�

Processor utilization for Toru-Waltz with disabling tests

Enumeration phase

Run time (in seconds)

N
um

be
r

of
 a

ct
iv

e
pr

oc
es

so
rs

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Rule Demons Action Demons Match Demons

Figure ���� The processor utilization for Toru�Waltz with rule�interaction detection

enabled� During the enumeration phase� only an average of �� rules execute at a given

time and the remaining processors are idle�

����� Conclusions� Guaranteeing Serializability

One can conclude from this experiment that one pays a fairly high price for
ensuring serializability� While the mechanisms for ensuring consistency can certainly
be optimized� because of the symmetry of testing described previously� any truly
dramatic decrease in testing time would also be re�ected in the matching phase�
It appears� therefore� that an overhead of approximately ��� is unavoidable for
ensuring serializability in a rule��ring architecture such as the one described in
Figure ���� This will limit parallelism to a single order of magnitude if rule�
interaction detection is performed��

One could potentially improve throughput by doing a compilation�time analysis
similar to Schmolze�s on the rule set and using the resulting syntactic knowledge
to partition the rules according to potential interactions such that multiple lock
acquisition processes can be used� Another possibility for decreasing the time
required to acquire locks is to apply micro�level parallelism to the checking process
such that new candidate rules are compared against executing rules in parallel�

�On the bright side� applications that require fewer than
� processors can employ run�time

interference detection without appreciable overhead�

Because the overhead �gures which I have obtained are proportional to the ratio
of lock acquisition times to rule execution times� interaction detection mechanisms
may prove to be more suitable for environments such as blackboard systems in
which the units of execution are of a higher granularity� Although this discussion
has focused on locking and detection of rule interactions� the analysis is appropriate
for any overhead such as control scheduling or heuristic pruning which occurs during
sequential processing�

��� Designing for Correct Parallel Execution

Since ensuring serializability using run�time interaction detection is expensive�
the best approach to obtaining high levels of parallelism appears to be designing
rule�based systems in which rule interactions do not arise or in which they can be
handled safely by relatively inexpensive mechanisms such as working memory locks�
Because of the semantic nature of rules in a production system� each righthand side
action can be assumed to have a de�nite purpose� Thus� situations in which rules
can potentially interact can be detected at design time and appropriate remedial
actions taken� This approach places the burden of ensuring correctness squarely on
the programmer�

The key to this approach is the question �Why are these rules interacting��
We can create a 	partial
 taxonomy of roles that working memory elements play in
computations and devise mechanisms for each that will avoid rule interactions� 	The
taxonomy is partial because I am unaware of any method for completely enumerating
the potential uses of a data item�

����� Spurious Rule Interactions

My discussion of the semantic avoidance of rule interactions implicitly assumes
that the rules in the eligibility set are in some sense non�identical� It is possible
for semantically identical rule instantiations to occur within the eligibility set if the
working memory elements that satisfy a set of condition elements can be combined
in multiple ways and no ordering relationship is speci�ed between these elements�
For example� such spurious rule instantiations will occur when a �counting� idiom
is used�

�p at�least���cats

�cat �name �x�� find a cat and bind its name to �x�

�cat �name ��� �x� �y��� another cat� �y�� not named �x�

�cat �name ��� �x� �� �y� �z��� yet another cat� �z��

not named �x� or �y�

���

����

�

Because each cat element can match any condition element� a combina�
torial number of instantiations would appear in the con�ict set� This situ�
ation can be avoided by imposing some kind of order on the condition el�
ements� for example� by sorting the elements according to lexical order by
name� or by adding a second�order predicate to the rule language 	such as
�number�of�elements �type cat �number ��
� or by adding features to the lan�
guage which make such awkward idioms unnecessary� For the purpose of this
discussion� I will assume that all spurious combinatorial instantiations of this nature
are due to the lack of expressiveness in the OPS programming language and
have been eliminated by clever programming or by the addition of new language
constructs� For a discussion of modi�cations to the Rete pattern matcher which

facilitate counting and sorting operations� see �Schor et al�� ������

����� Semantics of Rule Firing

In this thesis� I use the phrase �semantics of rule �ring� frequently� this usage is
based on the theory that each rule �ring and accompanying working memory change
is purposeful� The philosophy behind rule�based systems is that each rule captures
some unique quantum of knowledge about the domain and each rule �ring applies
that unique knowledge in a manner appropriate to the current state of the world as
mirrored in working memory� Although the knowledge captured in a rule is ideally
domain knowledge� in practice� rules are used to represent control knowledge as well�
Therefore� throughout the computation� working memory element are used for many
purposes� to represent real world �facts�� to represent states of the computation�
and to control the sequencing of rule �rings� It is possible to establish a 	by necessity�
partial
 list of the uses of working memory elements and� by implication� a list of
the semantic function	s
 of the rules creating those elements�

� Real World �Facts�� The use of working memory elements to represent facts
about a domain is common in AI programming� similar representations are
universally used in logic programs� GPS�like problem solvers� and so on�

� States of the Computation� Most AI problems can be cast in terms of search�
Any state in the search space can be represented by a unique set of working
memory elements� State elements are distinguished from domain facts in that
contradictory facts or elements are allowed to exist� as long as they exist in
disjoint states�

� Meta�knowledge about the computation itself� Working memory elements are
frequently used in a �meta� fashion to control the sequence of rule �ring� they
can also be used to represent transient control information� Typical uses of
meta�level representations include descriptions of goals� subgoals� search spaces
explored� and problems yet to be solved�

�

� Expendable Resources� Related both to search and to real world facts� working
memory elements can be used to represent resources that must be apportioned
in a unique fashion� that is� only one consumer is allowed access to each
resource�

In like manner� we can assign a semantics to rule executions� characterizing
rules as initialization rules� control rules� meta�control rules� or domain speci�c
operators in a search space� If we understand how each working memory element is
being used� then we can be prepared to understand the import of rule �rings and
possible rule interactions and design parallel rule�based programs accordingly� In
many cases� understanding the causality of rule interactions allows expensive but
general interaction detection algorithms to be replaced with inexpensive language
constructs tailored for speci�c types of rule interactions�

������� Contention for Resources

A working memory element may represent a resource� that is� some kind of
consumable quantity which can be used by only one rule� For example� in an airline
reservation system� a rule might appear as follows�

If there is a passenger who desires a seat

and there is a seat which satisfies the constraints

on smoking and windows�

and there is no passenger currently assigned that seat

then assign that seat�

�P reserve�seat

��passenger� �passenger �seat nil �window �w�flag�

�smoking �s�flag� �flight �flight��

�seat �number �seat� �window �w�flag�

�smoking �s�flag� �flight �flight��

��passenger �seat �seat� �flight �flight��

���

�modify �passenger� �seat �seat���

Two possible errors can arise if multiple instantiations of this rule execute
concurrently� The passenger could be assigned multiple seats 	clashing
� or the
seat could be assigned to multiple passengers 	disabling
� The �rst error can be
prevented trivially through the use of working memory locks� But the second error
occurs because of the negatively referenced element� an interaction which is much
more expensive to guard against� We can use our understanding of the semantics
of resources to transform this rule into one which can use only positive locks by
marking each resource as it is assigned�

�

If there is a passenger who desires a seat

and there is a seat which satisfies

 the constraints on smoking and windows�

and that seat has not yet been assigned�

then assign that seat�

�P reserve�seat

��p� �passenger �seat nil �window �w�flag�

�smoking �s�flag� �flight �flight���

��s� �seat �number �seat� �window �w�flag�

�smoking �s�flag� �flight �flight� �assigned nil�

���

�modify �p� �seat �seat��

�modify �s� �assigned t��

In this version� both sources of error are avoided by working memory locks�
because both elements are modi�ed� write locks are obtained for both resources and
no other rule instantiations are allowed to reference them while the reserve�seat

rule executes� Now� what transformation was employed� We converted a universal
quanti�er� �for all passengers� none is assigned this seat�� to an existential quanti�er�
�there exists a seat that is not assigned�� Universal quanti�ers require checking
all relevant working memory elements while an existential quanti�er only requires
�nding a single element� Because the universe of possible resources is usually
�nite and enumerable� the transformation to existential quanti�ers can take place�
reducing the set of possible rule interactions to those that can be inexpensively
prevented by working memory locks�

������� Control Elements

A common 	perhaps the most common
 source of rule interactions observed
in systems which attempt to automatically extract parallelism from existing OPS
programs is the coexistence of domain and control rules in the con�ict set� This
is an artifact of the use of con�ict resolution to impose a control �ow upon a
program� Stages of the computation are triggered by the addition of mode elements
to working memory� These mode elements trigger the relevant domain rules� In
order to change mode� a control rule is also de�ned� it matches only the modal
working memory element� Because the control rule contains only one condition
element in its lefthand side and domain rules typically have multiple condition
elements� the speci�city clause of the con�ict resolution mechanism ensures that the
control rule will only execute after all domain rules have been executed� Although
not a transparent method of implementing control �ow� this method is commonly
employed in production systems such as OPS that do not provide any explicit
methods of specifying program sequencing� In a parallel rule��ring system� one runs
the risk of �ring the mode�changing rule in parallel with the eligible domain rules�
potentially terminating the phase of the computation prematurely�

�

The solution to this type of interaction� developed independently by a number
of researchers �Ishida� ����� Kuo and Moldovan� ����� Neiman� ����a� Schmolze�
������ is to explicitly partition the rule set into domain and control rules� Control
rules are annotated as such 	e�g�� the meta�notation� mode�changer in UMPOPS
�
The scheduler 	or rule��ring engine
 is responsible for ensuring that control rules
�re if and only if all domain rules have been �red and all working memory changes
have been completed� In this way� program sequencing is achieved without the
risk of rule interaction and� incidentally� without the need for manipulating the
con�ict resolution protocol� Because imposing control �ow on a computation is one
of the primary uses of con�ict resolution in the OPS family of languages� creating a
dichotomy of control and domain rules greatly reduces the need for con�ict resolution
routines and their attendant overhead�

������� Search States

Working memory represents a state in a computation and rules alter that state�
If rules in a con�ict set are truly in con�ict� then they represent alternative valid
modi�cations to that state� As such� these rules will likely interact as they modify
the current state of working memory� In such a case� we can resolve the interactions
by casting the computation in terms of search� In a search process� it is frequently
necessary to represent distinct alternative states of a computation� By partitioning
the states in the search space 	through a number of mechanisms which will be
described shortly
� it is possible to execute con�icting rules without interactions�
The result of this is two 	or more
 discrete sets of working memory elements� each
representing a valid solution 	or path to a solution
� If partitioning the state is not
feasible 	for reasons of space or time
� then performing con�ict resolution between
competing rules will be necessary to eliminate the interaction�

Representing rules as operators in a state space search eliminates one problem
� dynamically identifying when rules interact � and replaces it with another �
identifying those rules in the con�ict set that actually con�ict� That is to say�
once a search is initiated� not all rules eligible to �re will have been stimulated by
changes to the same state in the search space� those rules operating in separate
states will� by de�nition� not interact or con�ict and therefore should be allowed to
�re asynchronously in parallel� UMPOPS provides two mechanisms� the multiple
worlds construct� and the task construct� for partitioning search and operators in the
search space� These mechanisms are discussed in Sections �� and ���� respectively�

������� Merging Solutions

Partitioning a search process merely delays the inevitable� eventually a solution
will have to be selected� at this point divergent paths in the computation must join
and interaction is unavoidable� This interaction is manageable� however� because it
occurs at a well�de�ned point in the computation and speci�c language constructs

��

can be used to ensure that the merging or selection of solutions takes place in
a correct manner� The solution�merging idiom is described in more detail in
Section ������

����� Representation of Unique Objects �Data Parallelism

When a direct one�to�one correspondence can be made between �real�world�
objects and working memory elements� then operations can usually be applied
independently to each working memory object� If objects are interconnected 	e�g��
semantic nets� graphs� or circuit representations
� then only interactions propagated
through the interconnections represent potential sources of con�ict� Because these
interactions are localized and purposeful� the propagation mechanisms can usually
be modi�ed so that positive locking mechanisms are su�cient to maintain correct�
ness� Data parallelism has proven to be one of the easiest and most pro�table forms
of concurrency to exploit�

����� Inference

Production systems are sometimes referred to as forward�chaining inference
systems� Starting with an initial set of facts� represented by the initial state of
working memory� productions representing logical inferences can �re� adding new
facts to the database� These facts in turn stimulate additional rule �rings�

Monotonic inference is trivial to implement in OPS� The one di�culty is that
OPS does not represent working memory as a set� multiple identical elements
may be present in working memory� This multiset implementation of working
memory is inappropriate for an inference system in which facts are expected to be
unique� Presence of multiple versions of facts in the database can lead to redundant
triggering of productions� in a non�monotonic system in which facts are allowed
to be deleted� not all duplicate facts in the database may be retracted� leading to
logical errors or contradictions� To avoid the multiset problem� logical inferences
in OPS must explicitly check for the prior existence of the fact which they are
about to assert� A negative condition element ensures that the fact about to be
asserted has not yet been created� As we have seen� the presence of a negative
condition element in a rule�s LHS can lead to con�icts when executing in parallel�
For example� consider the rule set and accompanying working memory state shown
in Figure �����

If both rules were to execute at the same time� two versions of the working
memory element �on �obj
 counter �obj� Kittyhawke�would be asserted� Sud�
denly� there would be two cats raising havoc in the kitchen

The above example� though whimsical� demonstrates that multiple trains of
inference might lead to the same conclusion� In a medical diagnosis domain� for
example� there may be multiple ways of concluding that a patient is su�ering from
a particular ailment� Because there is no run�time checking for negated elements in

��

Rule Set�

If a cat is hungry

 and sees food

 and the food is on the counter

 and the cat is not on the counter

then

 the cat will be on the counter�

�p bad�cat

�cat �name �cat� �state hungry�

�see �cat �cat� �obj food�

�on �obj
 counter �obj� food�

��on �obj
 counter �obj� �cat��

���

�on �obj
 counter �obj� �cat���

If there is a forbidden object

 and the cat sees the object

 and the cat is not already on the object

then

 the cat will certainly jump on the object

�p typical�cat

�cat �name �cat��

�forbidden�obj �obj �taboo��

�see �cat �cat� �obj �taboo��

��on �obj
 �taboo� �obj� �cat��

���

�on �obj
 �taboo� �obj� �cat���

Working Memory�

�cat �name Kittyhawke �state hungry�

�see �cat Kittyhawke �obj counter�

�see �cat Kittyhawke �obj food�

�forbidden�obj �obj counter�

�on �obj
 counter �obj� food�

Figure ����� Rules instantiations demonstrating the possibility of two interacting chains

of inference�

��

UMPOPS� inference rules such as those above would create redundant elements if
executed in parallel�

The problems caused by redundant elements can be eliminated by implementing
OPS memory as a set� The OPS working memory creation routines can easily
be modi�ed to check for the prior existence of elements before they are asserted�
Tokens that duplicate existing elements can simply be discarded without altering
the results of the logical inference� Because the check for prior existence would
take place during the working memory assertion� it would be performed by the rule
demon executing the instantiation and would not place an additional serial burden
on the scheduling process� Naturally� precautions would have to be taken to ensure
that two processes do not simultaneously create the same working memory element�
thus violating the set semantics�

����� Domain Facts

Many working memory elements simply represent world knowledge in the form
of domain facts that remain immutable during the course of the computation� If
the programmer is aware that these working memory elements will not be modi�ed
during the course of the computation� then rules which access these working memory
elements need need not acquire locks to ensure that they will not be modi�ed during
processing� An example of such a situation is the distance tables used in the
travelling salesperson problem� the distances between cities are constant and the
working memory elements representing the distances do not change� The presence
of constant elements is useful when designing partitions for search� constant elements
may be stored in a global partition accessible to all processes� thereby reducing the
amount of duplication necessary�

����
 Summary� Semantics of Rule�based Systems

This section has discussed a number of ways of interpreting the actions of rules
in terms of their semantic intent� A taxonomy of rule uses was described� and
methods of designing programs to ensure correct execution for each rule use were
discussed� Although the listing of rule functions is far from complete� the �avor of
the approach should be clear� if the causes of rule interactions are understood in the
context of their role in the overall computation� these rule interactions can usually
be avoided or prevented using inexpensive lock mechanisms such as positive locking
or the make�unique construct�

��� Functionally Accurate Computations

The �nal topic relating to correctness is the question of maintaining high�level
data consistency in the course of concurrent activities by independent agents or

��

tasks� Computations can depart from optimality in a number of ways� such as
pursuing an excessive number of redundant solution paths� requiring an excessive
amount of time or computation to reach a solution� or producing a solution of lesser
quality or high uncertainty� If control decisions are made without full knowledge of
the state of the system� as frequently happens during parallel rule �ring� then we
can expect the departure from optimality to increase� There is a trade�o� between
performance and communication � as we have seen� if tasks are closely coupled� they
must devote resources to preventing interactions due to operations on shared data�
while executing tasks independently may reduce the opportunities for increasing the
quality of the solution by sharing results� To compensate for the lowering of solution
quality in situations of uncertainty or lack of adequate communication between

agents� the notion of functionally accurate programming has been developed �Lesser
and Corkill� ������ The notion of reducing locking overhead through functionally
accurate means was applied to parallel AI systems as long ago as ���� �Fennell and
Lesser� ������ Fennell and Lesser surmised that the overhead of region locking could
be eliminated in parallel blackboard systems by implementing mechanisms to detect
and correct incorrect program states caused by interacting concurrent activities�

The key assumption behind the Functionally Accurate�Cooperative 	FAC

model is that the cost of identifying and repairing errors in a computation is less
than the overhead of preventing them originally� �Functionally accurate� is more
an attribute of a program rather than a speci�c algorithm� Some computations are
functionally accurate simply by their nature� It is possible to outline some of the
necessary characteristics of a program that cause it to be functionally accurate�
First� it must be possible to recognize when an incorrect program state exists�
that is� there must be some standard by which results can be judged� Second� it
must be possible to recover from this state by retracting 	or ignoring
 the incorrect
data� while restimulating the computation required to produce the correct answer�
Third� there must be a termination criterion� it must be possible to decide when to
accept a result based on the results obtained and the amount of work performed�
These characteristics represent design goals in the creation of functionally accurate
systems�

��� Summary� Correctness in Parallel Rule�Firing

Systems

This chapter has discussed the approach proposed for generating correct results
during the course of parallel rule��ring� A working memory locking mechanism was
described that prevents rules from accessing elements currently being modi�ed by
other rules and that prohibits modi�cation of elements currently being accessed
by executing rules� This locking scheme has the advantage of low overhead and
simplicity� but fails to guarantee that a computation�s behavior will be fully se�
rializable because of its inability to prevent interactions due to negated condition

��

elements� A method was described for extending the locking scheme to detect the
addition of working memory elements which are negatively referenced by executing
rules� The scheme guaranteed serializable behavior� but at a cost� the overhead
was demonstrated to be on the order of ��� for a typical rule�based computation�
Because an overhead of this magnitude would limit the number of processors that
could concurrently execute rules to ��� it was suggested that programs should be
designed to execute without full rule�interaction detection� using the positive work�
ing memory locks to resolve unavoidable con�icts� This design approach is based
on the observation that rules have speci�c semantics and that by understanding the
role that each rule plays in a computation� the reasons for clashing and disabling
behaviors can be understood and avoided� Benchmark programs developed using
these design techniques are discussed in Chapter ��

C H A P T E R �

Control Issues in Parallel

Rule�Firing Systems

This chapter is concerned with the control of rule�based systems as it relates
to parallel execution� There are many levels at which a system can be controlled
and many degrees of control sophistication� Four major areas of control will be
discussed�
� Rule�Firing Policies� One of the contributions of this thesis is the development

of two novel rule��ring policies that are necessitated by the elimination of
synchronization overheads during parallel rule��ring� An asynchronous rule�
�ring policy is introduced that allows rules to be executed as soon as they
become enabled� A task�based rule��ring policy has also been developed that
allows rules to be grouped together for purposes of determining quiescence and
con�ict�resolution protocols in a local context�

� Sequential Control� Ideally� the rule�based paradigm is completely data�driven
and reactive� in practice� it is frequently necessary or desirable to impose an
explicit sequencing on rule��ring� mimicking the control capabilities of conven�
tional programming languages� Because of the lack of constructs for expressing
trivial imperative control idioms� the OPS programmer has been reduced to
exploiting the speci�city and recency criteria of the con�ict resolution paradigm
in order to impose an order on rule �ring and generate loops of rule �rings�
This use of the recognize�select�act loop to perform low�level control activities
incurs a signi�cant overhead� while the explicit sequencing of rule instantiations
eliminates opportunities for rule�level parallelism� The approach taken in this
research is to add language constructs for explicitly specifying iteration and set
operations and to selectively employ parallelism at the action and match levels
to reduce the temporal overhead of unavoidably serial constructs�

� Heuristic Control� In most applications for which rule�based programming is
appropriate� there is no known formal algorithm for producing a provably
correct solution at reasonable cost and in reasonable time� Given a set of
rules eligible to �re� the choice of which to execute must be heuristic� Heuristic

��

control as embodied by con�ict resolution requires that all eligible rules be
examined in order to select the instantiation	s
 to execute� As discussed pre�
viously� identifying all eligible rules will result in unnecessary synchronization�
while a control algorithm that must compare each rule with all others will not
be highly parallel� The thesis that is discussed in this chapter is that� in a
heuristic problem�solving situation� performing incremental discrimination on
rules as they become eligible to �re will not seriously degrade the quality of the
solution and will enable control to be performed concurrently with rule �ring� A
rule��ring policy is described that provides opportunities for imposing heuristic
control at several points in the rule��ring cycle� thereby increasing the precision
and responsiveness of control activities�

� Resource Utilization� In any parallel system� there is a high correlation between
the number of processors that can be kept usefully employed and the degree
of speedup� Rule �rings should be scheduled so as to maintain a consistent
demand for processing resources� When the number of rules to be �red is
less than the number of available processors� processing resources should be
re�directed to lower level activities that will speed the execution of the currently
executing rules� The problem of scheduling rules to maximize resource usage
is discussed in the context of a parallel blackboard system by Decker and

colleagues �Decker et al�� ������ They propose the use of heuristic scheduling
rules to ensure that knowledge sources that initiate demand for resources or
that access resources in disparate sections of the blackboard are prioritized� this
scheme maximizes demand for processors and minimizes delays due to locked
resources� Although many of the heuristics developed for blackboard systems
are also applicable to rule�based systems� because of the lower granularity
of rule executions and their more predictable and localized results� it is less
pro�table to plan for maximum resource usage at runtime and more e�ective
to design for high resource usage� In the applications discussed in this thesis�
maximizing resource usage is primarily achieved by monitoring execution runs
and �tuning� the system by focused application of action and match�level
parallelism and by increasing the default priority of rules with high branching
factors� In this chapter� the discussion of resource maximization is incorporated
into the discussions of sequential and heuristic control�

��� Rule�Firing Policies

The conventional rule��ring policy of serial production systems is synchronous�
all rules that are eligible to �re are identi�ed and placed in a con�ict set� con�ict
resolution is carried out� and the �best� rule is executed� Even in a serial system�
such a scheme may involve excessive invocation of the con�ict resolution routine if

��

multiple independent instantiations exist in the con�ict set� The simplest modi�ca�
tion that can be made to the standard rule �ring policy is as follows�

�� Identify all eligible rules�

�� Select a set of independent �best� rules�

�� Fire multiple rules 	serially or concurrently
�

�� Go to step ��

Independent rules are those that will not be removed from the con�ict set by
the action of any other rule in the set of rules chosen to execute� If the selected
rules are executed concurrently� this algorithm is the standard rule��ring algorithm
proposed for parallel rule��ring systems�

The conventional execute�match�select cycle performs con�ict resolution after
each rule �ring� even though there may be no reason for distinguishing between
instantiations� Because the above algorithm eliminates N � � calls to the con�ict
resolution routine for N rule �rings� one could expect a small super�linear speedup
over a conventional serial rule��ring policy and this has been observed in programs
executed using the UMPOPS scheduler� The e�ect is quite small because the con�ict
resolution routine in OPS performs only super�cial processing and parallel rule�
�ring imposes small overheads of its own on performance� The true impact of
con�ict resolution is not necessarily its absolute cost� but rather its e�ect on the
timely execution of rules�

The above algorithm is synchronous� it requires that all eligible instantiations
be identi�ed before selection of rules and rule �ring can take place� Unless all
rules require the same time to execute and are initiated at exactly the same time�
this synchronization can reduce performance by imposing a potentially lengthy
synchronization delay on the system� during which eligible rules may remain in
the con�ict�eligibility set for a considerable time� To avoid this synchronization
delay� I have developed an asynchronous rule��ring policy�

��� Asynchronous Rule�Firing

An asynchronous rule��ring policy is one in which eligible rules are executed as
soon as they become instantiated� Such a policy maximizes processor utilization
because executable rules do not remain latent in the con�ict set for long periods
of time� however� additional correctness criteria must be developed to support
asynchronous execution� It is the desire to reduce synchronization overheads in rule�
�ring that motivates the attempts in this research to eliminate con�ict resolution and
interaction detection algorithms� These algorithms require comparisons of eligible
rules against all other eligible rules and necessarily imply synchronization� The need
for asynchronous rule execution was suggested by the �rst experiments conducted
with UMPOPS�

��

����� Experiments with Rule�Firing Policies

The �rst benchmark program developed for the parallel OPS was a very simple
circuit simulator� While unimpressive in terms of circuit simulation technology� this
application displayed the desirable property of task independence due to the high
degree of data parallelism represented by the discrete devices� Conceptually� a
circuit simulator is event�driven� with each device capable of being simulated in
parallel without reference to other entities in the system� For each type of device
in the system� the simulator contains a production which �knows� how to simulate
the behavior of that device� The circuit is represented by working memory elements
describing the devices� the connections� and the signal values seen on inputs and
outputs� At each time quantum 	which is equivalent to a production execution
cycle
� each device is simulated by the execution of one production� Each simulation
is followed by a propagation phase in which the outputs of each device are propagated
to the appropriate device inputs� The problem displays parallelism in that each
device can be simulated independently� but has a sequential component in that
inputs to devices must be simulated at time t before the outputs at time t�� can
be computed� A circuit simulator requires instance parallelism since there may be
many instances of the same device in a circuit which require the same knowledge
for correct simulation�

The test set consisted of �fteen devices containing a total of twenty seven inputs
and required �fteen productions to execute in the simulation phase and twenty�seven
in the propagation phase� The system was con�gured to run using only rule�level
parallelism� Because of the relative independence of the productions in this system
and their ability to execute concurrently� it was predicted that the performance of the
system would be very nearly linear� with the speed of execution being proportional
to the number of processors with some penalty due to contention for shared resources
within the Rete net�

������� Experiment �	 Explicit Synchronization

In the �rst experiment 	see Figure ���
� the two phases of the program� simula�
tion and propagation� were synchronized using a working memory element of type
mode � a conventional OPS programming technique� Two �demon� productions
detected when it was time to change the mode of the system from simulate to
propagate and vice�versa� The assumption was made that all productions in the
con�ict set could be executed concurrently and therefore no runtime checking for
potential con�icts was performed� If the con�ict set contained more instantiations
than there were processors in the system� the surplus rules were placed on a process
queue and executed as processors became available� The rule execution mechanism
was synchronous because it explicitly waited until all productions had completed
execution and the system had achieved quiescence before re�examining the con�ict
set�

��

The results of the �rst experiment were disappointing� the speedup due to paral�
lelism was only a factor of three and the utilization of processors was poor� Analysis
of the system indicated that the fault lay with the mode�changing productions are
responsible for deleting and adding the mode working memory elements� � These
productions� by necessity� did not share the con�ict set with any other productions
and could only be executed serially� Inside the Rete net� these elements act as
gates that prevent the matching process from proceeding past a given point and
adding instantiations into the con�ict set� Thus� execution of the mode�switching
productions initiates considerable matching activity� causes many productions to
be instantiated� and consumes a disproportionate amount of processing resources�
While match parallelism reduced the length of the serial bottleneck� it did not
eliminate it entirely� A second experiment was devised to increase the level of
asynchronous behavior in the program by removing the explicit working memory�
based control�

������� Experiment �	 Synchronization via Con
ict Set

In the second experiment 	Figure ���
� the con�ict set was used as an explicit
synchronization mechanism� The observation was made that the computation was
logically divided into phases� with all the rules composing one phase capable of
executing in parallel� The purpose of mode�changing is to prevent instantiations
from one phase from being prematurely inserted into the con�ict set and being
executed out of order� However� because rule parallelism allows all instantiations in
the con�ict set to execute simultaneously� the instantiations belonging to the next
phase can be safely added to the con�ict set� avoiding the necessity for explicit
mode�changing� This approach to synchronization allows a greater proportion of
the matching process for the next phase of the computation to take place during the
current phase� Because each instantiation in the eligibility set contains a separate
copy of the working memory elements that caused it to be instantiated� once a
production begins execution it cannot be disabled by changes to working memory�

In this second experiment� the speed of processing increased by an additional
factor of two� however� processor utilization remained low� Analysis of the results of
this experiment revealed that the bottleneck was the delay imposed by the necessity
for achieving quiescence before executing the next round of productions� even though
they may have been in the con�ict set for some time�

Assuming that all productions in the con�ict set can be executed simultaneously
and that no con�ict resolution need be performed� the time that a production
remains in the con�ict set is equal to the amount of time between its insertion
and the time that the system reaches quiescence and all actions a�ecting working
memory are completed� This time depends on a number of factors� the number of
productions being concurrently executed� the number and type of righthand side
actions to be performed� and the number of processors available�

��

For example� consider the case of a �� processor machine� attempting to execute
�� productions concurrently� Assume each production contains roughly the same
number of righthand side actions� and therefore takes roughly the same amount of
time� t� to execute� Assume also that each production causes one instantiation to be
placed within the eligibility set� each of which can be executed without con�icting
with any other� In the time interval ��� t�� �� rule instantiations execute� while
one remains in the eligibility set� After time t� �� instantiations are present in the
con�ict set� the ��th production is being executed� and � processors are idle from
time �t� �t�� If the righthand side of the productions contain a signi�cant number of
actions� produce output� or perform calls to the operating system� the time t could
become quite large� If the RHS actions consist solely of working memory changes�
applying the surplus processors towards low�level node parallelism can reduce t�
however� my experience has been that the degree of e�ective node parallelism in
problems that support multiple production �rings is fairly low�

������� Experiment �	 Asynchronous Production Execution

The �nal version of the experiment 	Figure ���
 was optimized for maximum
asynchronous behavior� Since any time that an eligible production spent in the
eligibility set is time wasted� a new scheduling policy called ��re when ready� was
devised� In this scheme� the eligibility set was continually monitored� whenever a
new production entered� it was immediately �red� The OPS code implementing
the simulator had to be substantially re�written in order to support this level of
parallelism� This approach to scheduling did not employ con�ict resolution� so
it was no longer possible to guarantee that rules would be executed in any given
order� Therefore� the rules had to be rewritten to be self�synchronizing� that is� to
examine the appropriate working memory elements for ordering information 	explicit
timetags
 to ensure that the simulation of devices proceeded in the correct order�

Because the computation was asynchronous� it was possible that some working
memory elements 	representing inputs
 could be modi�ed before all the devices
connected to those inputs had been simulated� To avoid this problem� separate
working memory elements representing successive inputs to a device were created�
rather than modifying the existing elements� This created a potential for explosive
memory growth and required an architecture in which working memory management
was knowledge�based and elements were only deleted when it could be guaranteed
that they would no longer be needed�

This asynchronous approach to rule �ring resulted in high levels of processor
utilization 	nearly ����
� and a system which could achieve much greater parallel
speedups 	a factor of �� with �� processors executing rules
� Considerable extra
matching and production execution took place to synchronize the computation
and to garbage collect unneeded working memory elements� unlike the previous
experiments� additional processors would have resulted in increased performance�

��

P
T2

Time
T

1
T

2 T
3

P
a3

P
b3

P
c3

P
d3

:

:

P
z3

P
a1

P
b1

P
c1

P
d1

 :

 :

 P
z1

Processor
Utilization

Production
Implication
and Duration

0%

100%

Figure ���� Processor utilization for a synchronous rule��ring policy with bottleneck

mode�changing rules�

T
1

P
a1

P
b1

P
c1

P
d1

 :

 :

 P
z1

P
a3

P
b3

P
c3

P
d3

:

:

P
z3

Time

T
2

T
3

P
a2

P
b2

P
c2

P
d2

:

:

P
z2

Processor
Utilization

Production
Implication
and Duration

100%

0%

Figure ��
� Processor utilization for a synchronous rule��ring policy with mode�changing

rules eliminated� The delays due to conict resolution are exaggerated for illustrative

purposes�

��

T
1

P
a1

P
b1

P
c1

P
d1

 :

 :

 P
z1

Processor
Utilization

T
2

T
3

P
a2

P
b2

P
c2

P
d2

P
z2

P
a3

P
b3

P
c3

P
d3

Pz3

Time

Production
Implication
and Duration

0%

100%

Figure ���� Processor utilization for a fully asynchronous rule��ring policy�

������� An Experiment with Unbalanced Rule Execution Times

The in�uence of the synchronizing e�ect of con�ict resolution is most apparent
when the execution time of rules is not uniform� causing instantiations stimulated
by faster rules to wait for the slower rules to terminate� The simulation rules in the
circuit benchmark are all homogeneous and require approximately the same amount
of time to execute� In order to emphasize the e�ect of synchronization on parallel
performance� a delay was inserted into the righthand side of a single rule� The
magnitude of the delay was approximately that of the rule�s execution time� As can
be seen in Figures ��� and ��� the processor utilizations and speedups obtained by
synchronous and asynchronous rule��ring policies vary dramatically�

����� Summary of Experiments with Asynchronous Rule�Firing

The experiments with the circuit benchmark demonstrated that performance
could be greatly increased in a production system by eliminating the con�ict resolu�
tion stage and executing productions asynchronously in parallel� This improvement
was gained at the cost of considerable extra programming e�ort� The asynchronous
version of the benchmark program was signi�cantly more di�cult to write and debug
than the conventional �lockstep� version� It was the results of these experiments and
the desire to simplify the task of programming asynchronous rule�based programs
which led to the development of the UMPOPS scheduler described in the following
chapter�

��

Circuit benchmark processor utilization

Run time (in seconds)

N
um

be
r

of
 a

ct
iv

e
pr

oc
es

so
rs

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Figure ���� Processor utilization for the circuit benchmark with rules of unequal run time�

using a synchronous rule��ring policy�

Circuit benchmark processor utilization

Run time (in seconds)

N
um

be
r

of
 a

ct
iv

e
pr

oc
es

so
rs

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Figure ���� Processor utilization for the circuit benchmark with rules of unequal run time�

using an asynchronous rule��ring policy�

��

����� Monotonicity in the Eligibility Set

Asynchronous rule execution adds a new constraint to program correctness�
Since rules are �red as soon as they become eligible� rules must enter the eligibility
set monotonically� that is� any rule which becomes eligible to �re due to a working
memory change should not be disabled by any concurrent matching activity� If
the entry of a rule instance into the eligibility set is not monotonic� the use of
an asynchronous rule��ring policy may result in the execution of transient entries
into the eligibility set� A transient entry in the eligibility set is an instantiation
that is created due to some transition state in working memory between the
deletion�assertion of one working memory element and the assertion�deletion of
another� Such transient entries are common in serial or synchronous rule��ring
versions of OPS but go unnoticed because the eligibility set is only examined after
each rule has completely executed and all match activities have terminated�

As an example of a non�monotonic insertion in the eligibility set� consider the
following rule� When the accompanying changes to working memory are made�
a transient production instantiation appears in the eligibility set� Because this
instantiation will be immediately disabled by a concurrent working memory change�
it should not be executed�

Rule�

�p example�prod

�mode�

��marsupials �field� wombat�

���

����

Working memory changes�

 ���� example�prod into eligibility set�

�remove marsupials �field
 wallaby �field� wombat�

 ���� example�prod out of eligibility set�

�make marsupials �field
 koala �field� wombat�

standard�ls
The changes in the above example are exactly those which would take place by

the execution of the OPS statement �modify �marsupials� �field
 koala�
in the righthand side of some rule�

Failing monotonicity in the eligibility set� transient rule instantiations should
be detected and prevented from �ring� Working memory locks will prevent the
execution of transient rules that would be removed from the eligibility set due to
the removal of a working memory� however� for reasons described in chapter ��

�

transients caused by the addition of elements that are referred to negatively in
the LHS of a rule will not be prevented from executing� Monotonic insertion of
rules can often be ensured simply by careful ordering of working memory changes
in the RHS and the avoidance of modify operators in favor of successive make
and remove operations� However� this requires that the programmer be aware of
potential transient instantiations and act to eliminate them� Transients may also
occur in the eligibility set during the course of concurrent working memory changes
carried out through action parallelism� because the ordering of parallel changes to
working memory is nondeterministic� race conditions may occur� To avoid such
race conditions� local synchronization operators have been added to UMass Parallel
OPS� these operators are described in detail in Chapter �

��� Control Tasks

It is likely that the programmer will occasionally wish to perform synchronous
con�ict resolution within the context of certain tasks or groups of rules� while
allowing other activities to take place asynchronously� A speci�c task may require
a synchronous rule��ring policy under circumstances in which�

� each operator in the task has a speci�c preferred order�

� applying one operator invalidates all others in that task� and

� performing search by applying operators in parallel would be prohibitively
expensive due to copying or computational costs�

An example of an application which requires such a rule��ring architecture is the
Alexsys system developed at Columbia University �Stolfo et al�� ����� Stolfo et al��

����b�� A discussion of experiments with this system appears in Section ���� The
construct that UMPOPS provides for specifying multiple independent control tasks
is discussed in this section� the syntax and invocation of control tasks is described
in Section �����

����� De	ning Tasks and Task Quiescence

A task can be de�ned informally as a named subproblem within the scope of
a larger computation� Rules executing in di�erent tasks can �re asynchronously�
however they are not guaranteed to access discrete resources� so locking of working
memory elements accessed within tasks is necessary� This possible interaction
between tasks distinguishes UMPOPS�s tasks from Miranker and Kuo�s notion
of a set of independent clusters �ring asynchronously �Miranker et al�� �����
Kuo et al�� ������ A task is a control mechanism that de�nes the context in which a
computation�s con�ict resolution routines 	if any
 and rule��ring policy are de�ned
and in which a local quiescence may be determined� Multiple rules within a task
may execute concurrently� this is dependent only on the con�ict resolution routine
assigned to that task� if the routine returns multiple instantiations� they all may

��

�re� Rule��ring within a task may be asynchronous 	in which case no con�ict
resolution routine is de�ned
 or synchronous 	in which case� a situation speci�c
con�ict resolution routine may be speci�ed� or a default may be used
�

Control activities in tasks requiring synchronous con�ict resolution can only
occur once the task has become quiescent� The quiescence of a task can be
de�ned as a state in which all current computation corresponding to that task
has been completed� Because of the data�directed� pattern�matching nature of
rule�based systems� determining the quiescence of tasks 	or even the scope of tasks

is non�trivial� Certainly if all working memory changes in the entire system have
become quiescent� then we can say that a particular task is quiescent and that all
relevant operators corresponding to that task have been determined� However� in a
system in which tasks are executing asynchronously with respect to each other� it is
unreasonable to expect system�wide quiescence to occur� Thus� we have the problem
of determining whether a working memory change which is currently occurring is
part of the current task� In general� this can only be determined by waiting to see if
that element matches against a rule that also matches against an element previously
determined to be in the task�

For example� consider the instantiation below�

Rule�

�P find�wombat

�task �name find�a�wombat�

�marsupial �type wombat �name �name��

���

����

WM�

�marsupial �type wombat �name Keith�

standard�lsIf the working memory element
�marsupial �type wombat �name Keith� is in the process of being asserted� then
the task de�ned by the element �task �name find�a�wombat� can not be said to be
quiescent� Dynamic rule con�ict detection cannot be used to detect the quiescence
of tasks� not only because of the overhead� but because new rules may continuously
be created 	or about to be created
� thus once again� only global synchronization
would allow run�time consistency checking to accurately determine whether a task
was quiescent�

We must assume that for the large part� working memory is quiescent and that
all active working memory changes can be annotated as directly a�ecting particular
tasks� This is done by starting with a quiescent working memory� Goal elements
are created in the context of a task� a goal element is simply any element that is
speci�cally annotated as belonging to a task and that stimulates further rule �rings�

��

From that point on� any rule stimulated by the goal element is considered to be
executing in the context of that task� and any working memory changes stimulated
by that rule are in the context of the task� Quiescence is achieved when all working
element changes being performed within the context of a task have terminated�

Because all rules execute in the context of the task that created their stimulated
elements� communication or sharing of data is di�cult to arrange� 	The task
mechanism is still experimental and not all of the necessary mechanisms have
been developed�
 Currently� all initial working memory elements are created in
the context of an initial task� All tasks are allowed to access these elements� If any
of these elements are modi�ed by a control task� the resulting element remains in
the context of the initial task and elements may be asserted into the context of the
initial task� This mechanism allows tasks to communicate through working memory�
but means that quiescence of tasks is only partial� quiescence of the initial database
pool cannot be guaranteed� The problems of identifying quiescence of tasks and
managing the communication of data between tasks remains a open research issues�

����� The Task Implementation

Incorporating tasks into the UMPOPS rule��ring architecture was straightfor�
ward� The rule �ring routines were modi�ed to annotate rule instances and working
memory elements according to their parent tasks so that they would be executed
and asserted into the proper context� Each task is given its own con�ict resolution
routine� which is to be applied only to rule instantiations within the context of
that task� thus� each task must be assigned its own con�ict�eligibility set� A new
eligibility set structure was devised for UMPOPS� the eligibility set is now an array
of sets� with the index of each set being uniquely assigned to a task� Various
initialization routines were modi�ed to ensure that the new data structures are
initialized and reset properly� The con�ict set reporting routines were modi�ed
so that they correctly interpret and print out the contents of the various con�ict
sets� The scheduling process was modi�ed to monitor the new con�ict set array
and perform con�ict resolution and scheduling of rule instances within a task when�
and only when� that task achieves quiescence� Because tasks do not guarantee data
independence between tasks� con�icts may arise between rules in alternate tasks
and a single scheduler�lock manager is required 	see Figure ���
� If tasks can be
de�ned in such a way as to guarantee that there will be no interactions between rules
executing in the di�erent contexts� then multiple scheduling processes may be used�
avoiding potential serial bottlenecks which could occur when multiple tasks became
quiescent simultaneously 	see Figure ���
� Locks may still need to be acquired if
multiple rules with a task context are allowed to �re concurrently�

����� Summary� Control Tasks

The control task is a �exible construct which allows a parallel rule��ring system
to pursue multiple independent activities� each of which possesses its own con�ict
resolution routine and appropriate rule��ring policy� The propagation of task

��

Rule
Execution
Queues

Conflict
Resolution

Conflict Set
Task1

Each task runs asynchronously
with respect to all other tasks.

Conflict
Resolution

Conflict Set
Task2

:
:
:
:

:
:
:
:

:
:
:
:

Conflict
Resolution

Conflict Set
TaskN

Each task which performs conflict resolution must wait until
all alternatives related to that task have been generated.

Wait for
quiescence

Wait for
quiescence

Wait for
quiescence

Asynchronous
Taski

Schedule
Rules

Acquire
Locks

If tasks are not data-independent,
lock-acquisition must take place in a
critical region.

Figure ���� The rule��ring architecture required to implement multiple asynchronous
control tasks�

Rule
Instance
Queue

Conflict
Resolution

Conflict Set
Task1

Each task runs asynchronously
with respect to all other tasks.

Schedule
Rules

Conflict
Resolution

Conflict Set
Task2

Schedule
Rules

:
:
:
:

:
:
:
:

:
:
:
:

:
:
:
:

Conflict
Resolution

Conflict Set
TaskN

Schedule
Rules

Each task which performs conflict resolution must wait
until all alternatives related to that task have been generated.

Wait for
quiescence

Wait for
quiescence

Wait for
quiescence

Asynchronous
Taski

Acquire
Locks

:
:
:
:

Acquire
Locks

Acquire
Locks

Schedule
Rules

Acquire
Locks

Figure ���� If data independence can be insured� then multiple scheduling processes can
be assigned to tasks� avoiding potential serial bottlenecks in the scheduling phase�

��

contexts through the use of working memory elements allows at least a partial
quiescence to be de�ned and determined for each task� If tasks can also be
guaranteed to be fully data�independent in a speci�c application� complete local
quiescence of a task can be determined�

��� Sequential Control

This thesis does not attempt a complete solution of the rule�sequencing problem�
that is� ensuring that rules can be coerced into �ring in the correct order at all
times� This subject has already been adequately addressed in previous research�
e�g� �George�� ����� Friedman� ����� and commercial production system lan�

guages such as OPS�� �Forgy� ����� routinely provide access to imperative control
constructs� This section is concerned with those aspects of sequential control which
are amenable to parallel treatment� in particular� language mechanisms are proposed
for compressing multiple rule �rings into a single rule execution whose runtime can
then be decreased using match or action�level parallelism�

The main objection to enforced rule sequencing is the overhead that it imposes
on the computation in terms of extra rule instantiations� matching� and� in con�
ventional production systems� con�ict resolution� In parallel�rule��ring systems�
the main objection is that forcing rules to �re sequentially removes any potential for
parallel activity and reduces processor utilization� To reduce these e�ects� UMPOPS
incorporates modi�cations to the rule syntax to allow set�oriented rule��ring as well
as RHS iteration and mapping operators� Simply allowing complex iterative oper�
ations to be performed by a single rule execution eliminates considerable overhead
because repetitive match� rule�instantiation� and scheduling operations need not be
performed between actions� In addition� it is frequently possible to further reduce
the serial overhead of such operations by employing action parallelism�

Consider the typical mapping or iteration operator that occurs in the righthand
side� Assume that the operator simply modi�es working memory and performs no
output� The iteration operator then proceeds as follows�

�� Set i ! �� Limit ! N �

�� Process data element i�

�� Assert new element 	remove�modify old element
�

�� Wait for completion of assertion�

� Increment i�

�� If not i ! N � go to ��

This iteration operation will require a time equal to N working memory modi�
�cations "N processing steps� We can assume that in most cases� the match time
will far exceed the processing time� It is frequently the case that the order in
which elements are asserted to memory is not important� thus� by performing the
modi�cations to working memory in parallel� the execution time of the rule can be

��

reduced 	roughly
 to N processing steps "N action�spawning steps "� matching
step� In the case of large databases and high matching costs� this will approach an
N times speedup� Even though only a single rule is being �red� we can come close to
our goal of achieving full processor utilization and corresponding speedup through
the application of action parallelism� Depending on the nature of the changes being
made to working memory� it may be necessary to synchronize after the execution of
this rule to ensure that all matching has been completed before additional rules are
allowed to �re�

����� Set Functions

Set�oriented constructs that use relational DBMS�like semantics to compress
many rule �rings into one have been suggested by several researchers� notably in
the Herbal language �van Biema et al�� ����� and more recently in �Widom and
Finkelstein� ����� and �Gordin and Pasik� ������

In an instance�based implementation of a rule�based system� one and only one
rule instantiation is created for each set of working memory elements that match
a lefthand side� That is� if the lefthand side of a rule has N positive condition
elements� then the resulting instantiation will refer to N working memory elements
that match those conditions� A set�based rule modi�es this scheme by allowing the
programmer to specify that certain groups of condition elements on the lefthand
side should be considered as sets� Therefore� the resulting instantiation can be
considered as a set of all the instantiations which would have normally been matched
by an instance�based system� By creating righthand side functions that operate on
these functions� many algorithms can be represented with greater e�ciency and
a reduction in rule��rings� UMPOPS has been modi�ed to support a simple set�
oriented syntax� The implications of set�oriented rules on control and rule��ring
policies are discussed in this section� while the syntax of the set mechanisms is
described in Section �����

The principal in�uence of set operations on synchronous parallel rule �ring
is the reduction of rule �rings devoted to fundamentally serial algorithms� For
example� many counting and marking algorithms can be performed by a single
set�oriented production� This simpli�es programming and eliminates the need for
many programming idioms which depend on con�ict resolution to succeed� Because
the overhead of rule instantiation and invocation is reduced for set rules� the waiting
time for any rule that must synchronize with the counting or marking task is
reduced� However� individual set�oriented rules� because they must operate on
greater amounts of data� may take longer to execute than instance�based rules�

������� Set�oriented Rules and Asynchronous Firing Policies

Implementing set�oriented rules in an asynchronous rule��ring system is some�
what more di�cult than in the synchronous case� Set construction proceeds
incrementally as one or more working memory elements that stimulate the set rule
in question propagate through the network� An asynchronous rule �ring scheme
may attempt to execute a set�oriented rule before the set has been completely

��

constructed� This could result in the execution of the set rule multiple times with
di�erent data sets� causing inconsistencies within the database� Therefore� it is
necessary to determine when the working memory changes that a�ect a particular
instantiation of a set rule are complete and to �re the instantiation only at this time�
The problem of associating working memory changes with a particular set�oriented
rule instantiation is similar to that of associating working memory elements with
particular tasks or of associating rule instances with a particular con�ict set�

In the UMPOPS system� this problem is solved by using a signalling mechanism�
It is assumed that each set operation has some trigger� that is� that the set rules
are in some sense goal�oriented� Before the triggering element 	or elements
 is 	are

added to working memory� the beginning of a synchronization group is signalled�
After the working memory modi�cations� the end of the group is signalled� If any
set rule is triggered during the period during which the synchronization group is
active� it is placed on that group�s completion list� The rule instantiation is placed
in the execution queue as soon as all the working memory changes invoked within
the task become quiescent and completion of the group is signalled� indicating that
no more working memory changes will be initiated� If it can be guaranteed that all
data relevant to the set activation has been asserted before the triggering element�
then the synchronization mechanism can be simpli�ed by checking for quiescence of
that single goal element� This concept is explored in more detail in the next section
on computational phases�

The idea of task synchronization does some damage to the pure notion of data�
directed programming embodied by rule�based systems� In order to create a task
group� it is necessary to know in advance when a working memory element being
created is likely to trigger a set�based rule� In practice� this syntax is no more
contrived than the use of con�ict resolution techniques to perform iteration� The
main advantage of the synchronization group mechanism is that it eliminates the
need for achieving global quiescence within the rule��ring system and replaces it with
a mechanism for detecting local quiescence within a set of actions� The overhead of
synchronization is therefore limited to just the set of rules a�ected by the working
memory changes within the synchronization group�

������� Acquiring Locks for Set�Rules

The working memory locking scheme must be modi�ed to accommodate set�
oriented rules� If a single instantiation within a set of instantiations if prohibited
from executing� it should not be necessary to terminate the entire set of instantia�
tions� Instead� the lock algorithm for set�oriented rules is implemented as follows�

�� Identify those working memory elements which are common to instantiations
in the set�

�� Attempt to acquire locks for all common elements� If the lock attempt fails�
terminate rule�

�� For each instantiation within the set� attempt to acquire locks for elements
matched only by that instantiation� If attempt fails� remove the instantiation
from the set�

��

�� Execute the set rule containing all the remaining instantiations�

� As each set instance terminates� release the read locks required by only that
instance�

�� After all set instances have been executed� release all locks acquired in step ��

����� A Model of Program Phases

OPS�like languages typically use mode elements to control the enabling of
rules in di�erent logical phases of a computation� Although the primary use of
mode elements has been to micro�control the execution of productions to implement
iteration operators� once these uses have been superseded by more sophisticated RHS
operators� a more meaningful de�nition of program phases becomes possible�

Consider the following problem� given a set of rules which detects and acts
upon states of working memory produced in a previous computational phase� when
should those rules be allowed to �re� In a purely asynchronous paradigm� the rules
are allowed to �re as soon as they become enabled� This �ring model is appropriate
as long as the implications represented in the rule set are of an existential nature�
i�e�� if there exists a speci�c condition� then execute� However� if negated tests are
present in the rules� then a test for non�existence of a condition is being made� It
may not be possible to determine in advance whether that condition will be asserted
by the previous phase� In fact� the only way to ever be certain that it is correct
to �re rules with negated elements under these circumstances is to explicitly state
that no further elements will be asserted� Thus� we can assign a semantic meaning
to the assertion of a mode�changing element� the rule which creates that element is
stating that no further changes will be made to the database which will a�ect the
subsequent processing phases of the computation�

����� Mixed�Mode Parallelism and Mode�changing

The division of programs into logical phases marked by the production of closed�
world bodies of data makes it di�cult to avoid the use of mode�changing productions�
These productions �ll a necessary role in determining when the matching should
occur for groups of productions� if all groups were always activated� rules would be
triggered at inappropriate times and there would be no way of focusing matching
activities on only the rules of current interest� As an unavoidable consequence of
such �switched matching� schemes� there will occur periods in the computation
when working memory elements are asserted which will stimulate large amounts of
matching activity�

Because the order of matching within the Rete net is determined by the order
of the condition elements within the rule� the traditional location of the gating
condition element as the �rst element in the rule prevents partial matching from
occurring between other elements within the rule� This causes a signi�cant amount
of matching to take place once the gating element �nally arrives 	see Figure ���A
�

��

CE1
 (gate element) CE2

CE3

CE4

CE4

P-Node

Joins can not take place
until after the gate element
has been added.

CE1 CE2

CE3

CE4

CE4
 (gate element)

P-Node

Joins can take place
before the gate
element is added.

A. B.

Figure ���� The location of the gating element a�ects the amount of partial matching
which can take place in the match process�

The delay due to the gating e�ect can be minimized by placing the gating
element as the �nal positive condition element in the rule 	see Figure ���B
� This
positioning allows more partial matching to occur before the gate element is created�
This technique is only applicable if the gating element is not used to pass parameters
to the rule� that is� no �eld in the gating element may be uni�ed with any �eld in any
other condition element of the rule� The problem with this re�ordering of terms is
that placing the gating condition as the �nal element may cause the rule to partially
match in situations in which the rule is not applicable� The overhead caused by
this unnecessary matching may exceed the advantage gained in minimizing rule
activation time by changing the placement of the gating element� The exact nature
of the trade�o� can only be determined by examining each case separately�

Parallelism can be used to minimize the delays caused by gating in two ways� Be�
cause a gating element typically a�ects many production instantiations� match�level
parallelism can be e�ective in minimizing the time consumed in such match�intensive
working memory changes� An asynchronous rule��ring policy will allow productions
enabled by the addition of the modal element to be executed incrementally during
the execution of the mode�changing rule� thus maintaining processor utilization�
These two techniques are mutually con�icting� using processors for matching pur�
poses may result in no free processors being available to execute rules� Because
match�level parallelism occurs at a much �ner level granularity than rule parallelism
and incurs a proportionately higher cost� the primary level of parallel activity should
probably revert to the rule level as soon as practical� Managing the trade�o� between
rapid matching of the elements created by a single bottle�neck rule and concurrently
executing rules stimulated by that rule remains a subject for some experimentation�
it is not clear whether all resources should be devoted to parallel matching until
the bottleneck rule has completed execution or whether some resources should be

��

diverted to rule execution� It is likely that this is situation�dependent and the
architecture should allow the ability to specify either option�

����� Optimistic Concurrency

One alternative to mode�changing that has been speculated on by Gupta is to
allow optimistic concurrency� that is� to allow enabled rules to �re before a guarantee
of quiescence of the previous processing phase is available� If new data arrives
which invalidates a rule �ring 	or an entire train of inference
� the modi�cations
to working memory made by those rule��rings and any current instantiations
stimulated by them must be retracted� This scheme results in the maximum
degree of responsiveness in a parallel system� but requires a truth�maintenance
system of some complexity in order to retract the results of rule �rings� A scheme
for performing such truth maintenance was described in �Wolfson et al�� �����
and similar techniques have been used in the parallel asynchronous simulation of
electronic circuits �Fujimoto� ������

��� Heuristic control

One of the primary observations arising from this research is that any control
mechanism that requires synchronization or examination of all eligible operators will
seriously degrade the potential parallelism in the system� Currently� heuristic control
in rule�based systems has always been performed as a separate process that takes
place after all eligible rules have been identi�ed� In the pursuit of ways of reducing
serial overhead� we can question the assumption on which this is based� is it really
necessary to identify all alternatives before making heuristic control decisions� The
thesis to be explored in this section is that heuristic control can be achieved through
an incremental process that takes place concurrently with problem�solving�

The scheduler of UMPOPS has been modi�ed to support heuristic control� that
is� rules can be either pruned or ordered according to heuristic evaluation functions�
To allow rule �rings to be prioritized� multiple execution queues are provided and
each is assigned a priority� Rules assigned to a low priority queue are executed
�rst� This is implemented by insuring that the rule �demons� which monitor the
queues �rst look for tasks to perform in the lower numbered queues� Each rule type
is assigned a static priority at compile time and each instantiation of that rule is
placed in the appropriate queue� In order to allow prioritization within rules of the
same type� individual rule queues can themselves be declared to be priority queues�
Rule instances are rated by rule�speci�c evaluation functions and inserted into the
appropriate priority queue� Much of this control information is speci�ed within the
rule using the meta construct� the exact syntax will be described in the Section �����

There are several points in the match�schedule�execute cycle in which heuristic
control can be performed� First� heuristic control can be performed de facto during
the rule matching phase� that is� rules may be heuristic in nature� Writing rules in
such a way as to eliminate unnecessary rule instantiations will minimize the number
of rules which must be scheduled and processed by the control demon� The next

�

opportunity for control is during the �pre�execution� phase� This phase needs some
explanation� After the rule is placed on the eligibility queue� it is scheduled by a
dedicated process� The heuristic scheduling functions need information in order to
rate the rule� and much of this information is carried in the variables bound by
the rule instantiation� In OPS� this information would normally not be available
without executing the righthand side� however� executing the righthand sides of some
rules is just what we are trying to avoid by the incorporation of heuristics� To acquire
rating values� UMPOPS does a �pre�evaluation� at instantiation time 	i�e� when
the rule is inserted onto the eligibility queue
 that extracts the variable bindings
for the instantiation and stores them� No righthand side actions are actually
executed during this phase and the cost is low compared to the actual righthand
side execution� If any rule�speci�c control functions 	speci�ed as meta�information

need to be executed� they take place during the pre�evaluation phase� The rule is
then placed on the eligibility queue� If the system is in an asynchronous rule��ring
mode� the rule instance is immediately scheduled by the control process and placed
in the execution queues according to its rating and queue priority� In a synchronous
system� con�ict resolution is performed on the rule set once quiescence has been
achieved�

The �nal opportunity for heuristic control occurs immediately prior to a rule�s
execution� Once a rule is placed on the execution queue� it is theoretically executed
immediately� However� given the pragmatic limitations on processing resources�
in many applications� the number of rules to be executed will temporarily exceed
the number of processors available to execute them� and rules will remain on the
execution queues for potentially extended periods of time� During this time� the
state of the system can change� causing a rule instantiation on the queue to become
redundant� Control functions can be attached to rules to determine whether the
rule is still valid given the current state of the system� The control functions must
be extremely fast and simple if they are not to decrease performance� so they are
typically designed 	in UMPOPS
 to simply check a value being asserted by the rule
against a global variable� The control function also resets the value of this global
variable if appropriate� 	It is a problem in OPS and production systems in general
that working memory cannot be easily accessed from procedural code� and data must
sometimes be stored redundantly in order to be accessible from both rule�based and
imperative code�

When a rule demon removes an instantiation from the queue� it checks to see
whether the rule has an attached control function� If so� the demon executes the
control function in the context of the rule instance�s righthand side� If the function
returns a non�nil value� the rule is executed� otherwise it is killed� Killing a rule
does not necessarily mean that no action is taken � there may be some clean up
operations associated with the state represented by that rule� The programmer has
the option of attaching �kill actions� to the rule which are executed if� and only if�
the rule is pruned by a control function�

Control functions are speci�ed as arbitrary Lisp functions� This implementation
is not so much as a statement of position on the procedural versus declarative debate
as the result of experimentation with both rule�based and function�based control�
Programming control constructs in OPS proved to be extremely cumbersome� the

��

pattern�matching syntax of OPS is not su�ciently expressive to support arbitrary
control functions� and the overhead of the matching�rule��ring cycle results in a
non�responsive system� Once again� deliberative control only appears to be suitable
for actions of a high level of granularity�

����� Dynamic Control of Rule�Firing Policies

Simply assigning static priorities to rule types and control functions to rules
that do not change during the course of a computation is insu�ciently �exible to
provide truly sophisticated control� It is possible� albeit awkward� to dynamically
modify the priorities and control functions associated with rules during execution�
For example� special control meta�rules can be devised that modify the control
characteristics of a system when a particular state occurs� Such an approach was
used in the BB� blackboard architecture which employed a single knowledge�based
paradigm for representing both control and domain knowledge �Hayes�Roth� �����

Such meta�control rules should� of course� be given the highest execution
priorities� Even so� it is likely that queue and execution latencies would render
such control rules less responsive to the state of the system than is desirable� That
is� if the meta�rules were required to undergo the same locking and scheduling
processes as domain rules� they would not execute for some time after the triggering
event which created them� A modi�cation to UMPOPS is being contemplated that
would allow true control rules to be distinguished� Because the principal activity
of such meta�control rules would be to send messages to the scheduler 	which is
very inexpensive as compared to modifying working memory
� control latency could
be minimized by sending the control messages during the pre�execution phase 	i�e�
immediately after the control rule becomes enabled
 and before the rule enters the
eligibility set� Because the new control state of the system would likely have to be
mirrored in working memory to prevent iterative �rings of the meta�control rules�
the meta�control rule would still have to be executed in a conventional fashion� An
alternative scheme is to simply bypass the scheduling mechanism and place control
meta�rules on the highest priority execution queue�

Another issue in the dynamic control of rule��ring policies is the apportionment
of rule demons to the various execution queues� The default assignment is that the
highest priority rules get executed �rst� however this is an unfair scheduling policy
and it is possible that rules on lower priorities queues could be �starved� if large
numbers of high priority rules were to arrive� UMPOPS allows the user to specify
a queue examination protocol when invoking rule demons� the demons will examine
the rule queues in the given order� If more than one protocol is given� the protocols
will be divided evenly among rule demons� It is possible� for example� to assign a
single rule demon to monitor a single queue or a range of queues� and to specify
the order in which they are visited� The programmer can also specify whether the
queue protocol is fair� that is� whether after executing a rule� a demon should begin
at the highest priority queue or whether it should visit all queues in its protocol
before restarting its traversal of the execution queues�

��

����� Interactions between Consistency Maintenance and
Heuristic Control

The heuristic control mechanisms can interact with the working memory locking
scheme described in Chapter � in potentially pathological ways� The �rst problem
occurs when a rule that has acquired the necessary working memory locks is then
pruned by a heuristic control mechanism� There will always be an interval between
lock acquisition and the pruning� During this time� it is possible that another rule
which is capable of satisfying the heuristic will become eligible to �re� Because the
�rst rule has acquired the necessary working memory locks� this competing rule will
be prevented from executing and will be removed from the eligibility set by the lock
manager� If the �rst rule is pruned� neither rule will ever execute and the result of
this sequence of events will be that the appropriate action never takes place� Simply
reversing the order in which lock acquisition and heuristic control takes place will not
solve this problem� and performing both operations simultaneously would require
delaying lock acquisition until execution time and performing lock management
within a critical region� One solution 	not yet implemented
 is to modify the lock
management routines so that rules that are locked out due to competing write
operations are not eliminated from the eligibility set until the competing rule has
successfully begun execution�

A similar problem arises when an asynchronous rule��ring policy is employed�
Because rules are scheduled on a �rst�come��rst�served basis� standard con�ict
resolution techniques in which all eligible rules are ordered and the �best� rule
is selected cannot be applied� It is possible� therefore� that a rule will be selected to
be �red and acquire all working memory locks only to have a heuristically superior
rule arrive in the eligibility queue� If execution queue latencies are short� then the
second rule will simply be disabled by the �rst rule as it changes working memory�
if the rules are designed correctly� the change to working memory will restimulate
a similar instantiation and the superior result will eventually be reasserted into
working memory at the cost of some delay� If execution queue latencies are long�
the rule that asserts an inferior answer may remain in the execution queue for a long
time� This will block the assertion of the superior result and reduce the e�ciency
of the heuristic pruning mechanisms by allowing more inferior solution paths to be
explored during the extended period in which the better solution is blocked� A
solution 	also unimplemented
 to this problem is to allow heuristic override of locks�
That is� one could record the identity of rule instances that have acquired locks to
working memory elements� If a rule attempts to acquire a lock on that element
and �nds that it is possessed by another rule� then the following algorithm could be
performed�

�� Check to see if the blocking rule is currently executing� If so� fail�

�� If the blocking rule is still in the execution queue� mark it as temporarily
non�executable�

�� Compare the blocked and blocking rule using a situation speci�c con�ict
resolution function�

��

�� If the blocked rule is superior� mark the blocking rule as �killed�� release its
locks� and schedule the new rule� If the blocking rule is superior� mark it as
executable and remove the blocked rule from the eligibility queue�

Both of the mechanisms discussed in this section for reducing the interaction
between working memory locks and heuristic pruning would require that the sched�
uler perform additional bookkeeping and would consume additional memory� in
the interests of keeping the scheduler simple and fast� neither mechanism has been
incorporated into UMPOPS�

��
 Conclusion� Control of Parallel Production Systems

This chapter has reviewed the major areas of control in parallel rule��ring
systems� rule��ring policies� sequencing of rules and processing phases� heuristic
control� and� incorporated into the discussion of the other areas� the optimization
of resource usage through the use of mixed�mode parallelism and the appropriate
assignment of rule priorities� The uses of the control constructs discussed in this
chapter are illustrated in the benchmark programs of Chapter ��

C H A P T E R �

UMass Parallel OPS�

This chapter describes UMass Parallel OPS 	UMPOPS
� a Lisp�based version of
OPS which has been modi�ed to support a number of levels of parallel activity� rule
parallelism which allows rules to be �red concurrently� matching parallelism which
allows the pattern matching to be performed in parallel� and action parallelism
which allows individual working memory changes to be made in parallel� UMPOPS
contains many changes to the basic syntax and features of OPS which were added
to support parallel activity and to allow more versatile control of rule execution and
sequencing�

��� The Rule�Firing Architecture

The architecture of OPS had to be modi�ed considerably to support parallel
rule��ring� Although simple in concept� the parallel rule��ring architecture had to
ful�ll the following requirements�

� The architecture was required to support multiple rule��ring policies including
parallel asynchronous� parallel synchronous� task�based with multiple con�ict
sets� and serial�

� It was necessary to support heuristic scheduling and pruning of rules at multiple
points in the rule��ring cycle�

� A lock management scheme had to be incorporated so that eligible rules could
be checked for interactions before execution�

� In order to satisfy the requirements of heuristic control and allow for e�cient
utilization of processing resources� it was necessary to be able to prioritize
rule executions so that more important rules would be executed �rst during
conditions of processor saturation�

� The architecture was required to be �exible so that experiments could be
performed with varying scheduling and locking policies�

��

� The rule��ring mechanism was required to be instrumented so that information
about processor usage� contention for resources� and rule execution times could
be extracted�

In accordance with these requirements� the rule��ring architecture of UMPOPS
was implemented as a priority queue�based system in which queue �demons� serve
requests generated by a central scheduler 	see Figure ��
�� One processor is
dedicated to scheduling rules and managing working memory locks� all others are
allocated to demon processes� Each demon process will execute requests at any level
of parallelism� rule� match� or action� The basic functioning of the rule execution
cycle is described below�

As each rule instantiation becomes enabled� it is placed in a queue of eligible
rules 	the eligibility set
� Prior to being placed on the queue� each rule instance
is optionally rated according to a rule�speci�c 	and possibly situation�speci�c

function de�ned by the programmer� The scheduling process takes each rule instance
o� the queue in turn and attempts to acquire locks associated with the working
memory elements positively referenced or modi�ed by the instance in accordance
with the scheme described in Chapter �� If the locks can be acquired� the rule is
scheduled using a combination of its rating or a rule�speci�c priority assigned by
the programmer at compile�time� The rule�speci�c priority is used to determine the
execution queue in which the rule should be placed� The �rule demons� examine the
execution queues in a user�speci�able order so that it is possible to de�ne certain
types of rules to be more important than others� Generally� rules placed in a
lower numbered queue will be executed with higher priority� however the user is
given the capability to modify the order in which queues are examined by the rule
demons� To allow heuristic discriminations to be performed between rules� each
individual execution queue may be declared to be a priority queue so that rules can
be prioritized according to their ratings�

The rule instances are removed from the execution queues by rule demons which
then proceed to execute the rules� If heuristic pruning is enabled� the rule demons
will �rst execute a control function attached to the rule type in order to determine
whether the rule instance should be pruned� This rule pruning is necessary to
maintain the responsiveness of the system� because the state of the system may
change dramatically between the time when a rule becomes eligible to �re and when
a processor becomes free to execute it� This is particularly true if rules are prioritized
� less important rules may remain on the execution queues for signi�cant lengths of
time� long enough to become redundant or unnecessary to the computation�

The rule�demon approach was adopted over a previous approach of forking o�
rule executions using the thread construct when it became clear that the thread
mechanism did not allow su�cient �exibility in ordering and pruning rule executions

�The queue�based server architecture was inspired in part by the method in which match�level

parallelism is implemented in CParaOPS� 	Kalp et al��
�����

��

in response to changes within the system� The rule demon system also makes it
possible to instrument and measure the behavior of the scheduling queues�

����� Rule Demons

Although the queue servers are called �rule demons�� this is actually a misnomer
dating back to previous versions of UMPOPS� The demons are responsible for
executing action and match�level parallel activities as well as rules� The control
structure of the rule demons is structured according to the model that low�level
activities should be served before higher granularity activities� This model is based
on the observation that delaying a rule execution in favor of a match activity will not
seriously degrade the performance of the rule� while delaying a match 	or action

activity in favor of a rule may incur a performance penalty of several times the
activity�s lifetime� In accordance with this model� the central loop of each demon
operates in the following steps�

�� While any match level operations are on the match queues� remove one match
operation and process it�

�� If no match level operation is enqueued� while any action level operations are
on the action queues� remove and process one action�

�� While no match or action requests are extant� monitor the rule queues� be�
ginning from the lowest numbered 	highest priority
 and scanning towards the
highest 	lowest priority
� If a rule is found� it is removed from the queue and
executed�

�� Go to step � and repeat�

The above algorithm is greedy in respect to match and action parallelism� rules
may not get su�cient resources to execute if many low�level activities are active�
There is also the slight possibility of deadlock if many rules invoke synchronous
match or action�parallelism activities simultaneously and then �spin�� waiting for
completion� The problem of deadlock is avoided by modifying the synchronizing
operators in the rules� righthand sides to check for match or action activities
that can be executed instead of wasting cycles spinning� This change increases
processor utility at the cost of potentially delaying the completion of the rules
when synchronization occurs 	because the monitoring process may be executing an
unrelated match or action�level task
� The problem of rule delay due to processor
saturation can be avoided by con�guring a proportion of the rule demons to give
higher priority to rules rather than action or match�level activities� This will allow
high priority rules to be executed more expeditiously at the cost of prolonging the
lower�level parallel activities�

The dynamic behavior of the system can be modi�ed by changing the order
in which rule queues are visited by the queue demons� UMPOPS allows this to

��

Schedule
Rules

Rule
Instance
Queues

Rule
Demons

Working
Memory

Acquire
Locks

Eligible
Rule
Queue

New Rule
Instances

Parallel Working Memory
Modification and
Pattern Match

Lock and schedule processes
run asynchronously.

Figure ���� The architecture of the parallel rule��ring system�

be speci�ed at invocation time� Because there may be increased contention for
queues at low levels of granularity� UMPOPS by default provides two queues each
for action or match level requests� this number may be increased by the user if mon�
itoring indicates that contention for the scheduling queues has become a bottleneck�
Measurement of delays in accessing rule�execution queues revealed surprisingly low
levels of contention 	even for priority queues with their increased insertion time

and only a single execution queue for each priority is usually necessary�

Experiments were performed with variations of the UMPOPS architecture�
including multiple lock managers and varying numbers of execution queues� It
appears that the limiting factor on performance is the amount of time that rules
spend in the execution queues� performance seems fairly insensitive to scheduling
times� This was in accordance with expectations� the �� processor Sequent upon
which the experiments were performed did not have enough processors to make the
scheduling process a bottleneck�

Run Time Statistics� UMPOPS was implemented to serve as an experi�
mental tool for exploring the characteristics of parallel rule�based systems and the
tradeo�s imposed by various architectural choices� The rule��ring architecture is
therefore instrumented to return timing information� both for the overall statistics
of each run and individual statistics relating to each rule �ring�

Execution Statistics The following statistics are gathered each time the
inference engine is invoked�

��

� Total run time� The total time taken to run a program�

� Individual processor times� The total time spent by each processor in executing
rules� as well as average� minimum and maximum times spent by each processor
in executing rules�

� The total number of rules scheduled� executed� locked out� or deleted by
heuristic functions�

Rule Execution Statistics� For each rule� the system keeps a record of the
number of executions and the averages� over all the rule�s instantiations� of the time
to execute the righthand side� the time to �pre�evaluate� the rule� the time spent in
the �con�ict set�� the time spent waiting in the execution queue� and the number
of attempts and the time required to acquire working memory locks� For each of
these statistics� the system records average� minimum� and maximum �gures as well
as standard deviations� Because rule instantiations are stored after execution� these
statistics can also be retrieved for speci�c rule instances�

Queue statistics� For each scheduling queue� the system records the time
at which each addition or deletion takes place� this allows the size of each of the
priority queues to be charted over the course of a run�

Critical Regions� Mechanisms are available to measure the amount of time
which is spent waiting to acquire locks on each critical region� however it was found
that the presence of these mechanisms a�ected the timing of the system� and they
are only employed when it is suspected that there is serious contention for a resource�

Working Memory Elements� For each working memory element� the sys�
tem records the time of creation and the time required to perform the match for
that element� 	A de�ciency in the recording of statistics is that there is no current
method for recording the match time required to delete a working memory element�

��� Modi	cations to LHS Syntax in UMPOPS

This section discusses the modi�cations made to the OPS language to support
parallel activities and allow the elimination of sequential programming idioms�

����� LHS Meta�level Notation

The lefthand syntax of the rules in UMass parallel OPS has been modi�ed to
allow the speci�cation of �meta�level� information� The notation has the syntax

�meta �meta�type value� �meta�type value� �����

Although the meta construct is present in the lefthand side� it does not generate
patterns or change the match in any way� it is simply used to send messages to the
rule compilation routines� Originally� the purpose of the meta notation was to allow

��

the speci�cation of control information� however� in actual use� the meta notation
has been used as a catch�all for any language modi�cation which would otherwise
require a modi�cation to the original OPS syntax� The current usages of the meta
notation are summarized below�

����� Annotating Mode�changing Productions

Rule�based programs are usually organized in phases� Each production contains

a reference to particular working memory element of a class such as mode or stage�

The production is only enabled when the mode is set to a particular value� In order

to change the mode� special rules such as the one below are used�

�p go�to�next�phase

�stage �is current�phase�

���

�modify
 �is next�phase��

In a serial OPS system� the standard con�ict resolution strategy is used

to ensure that the mode�changing production only �res after all other eligible

productions have done so� In a system which �res all eligible productions in

parallel� the mode�changing production may execute prematurely� To prevent this�

mode�changing productions should be explicitly annotated in the following way�

�p go�to�next�phase

�meta

�rtype mode�changer��

�stage �is current�phase�

���

�modify
 �is next�phase��

�Mode�changing� rules annotated in this manner are handled specially by the

scheduler� they are prevented from �ring until all other rules in the con�ict set have

�red and all working memory changes have been processed� This guarantees that

control rules will never con�ict with or disable domain rules�

�

����� Other Uses of the Meta Notation

The meta notation has been used as a general purpose mechanism to specify

information about the rules that would otherwise require changes to the existing

OPS rule syntax� These usages are summarized below�

� Priority� A number between � and N � � where N is the number of priority

queues� All rules of this type will be placed within that queue�

� Priority�queue� If this �ag is set to be non�nil� then rule instantiations of

this type are placed on priority queue indicated by the priority keyword�

� Priority�fn� A function that is executed during the pre�eval phase in order to

determine the rating of rules placed in a priority queue�

� Lock�not�required� If it is certain that a rule will never interact with other

rules 	e�g�� it works in its own space
� then locking is not required� Setting

lock�not�required to be non�nil informs the controller that locks need not

be acquired for this rule�

� Control�fn� A control function that� when executed in the environment of the

righthand side� will determine whether or not the rule should �re� Variables

bound by the rule can be accessed using the �varbind function of OPS 	i�e�

��varbind ��foo�� returns the current binding of �foo�
� Usually the

control function compares some combination of instantiation variables with

a global variable describing the current state of the solution�

��

� Control�generator� A function that allows a control value to be associated

with a keyword at instantiation time that is then stored in the rule instan�

tiation for later reference by control functions� The user speci�es a form�

i�e� ��gen�control�data indicator exp��� and the cons�cell �indicator

� exp� is placed on an association list associated with the rule instance� It

can then be accessed by various control functions using a standard assoc call�

i�e� �assoc ��tsp�distance� �rule�instance�control�data instance���

� Rhs�kill�actions� A list of righthand side actions to be taken if the rule is

killed by a control rule� These are usually �clean up� actions that delete the

current state so as to reduce the overall size of working memory�

Examples of the use of the meta construct can be seen in the programming

examples in Section � and the appendices�

��� New Righthand Side Functions in UMPOPS

This section describes the additions to the OPS righthand side instruction set

and syntax�

����� Invoking Action and Match�level Parallelism in the RHS

In a previous version of UMass parallel OPS� action and match level parallelism

were enabled by global �ags� Using this technique� it was not possible to selectively

employ these levels of parallelism in speci�c rules� Because action and match paral�

lelism are not appropriate in all situations and may cause saturation of processing

capability� it proved necessary to develop RHS language constructs to allow action or

��

match parallelism to be speci�ed at the level of individual working memory changes�

To avoid having to maintain separate versions of programs with and without

action and match level parallelism� the global switches �node�parallelism� and

�action�parallelism� are retained� If these �ags are set to nil� parallelism is

disabled and all actions and match activities will take place serially�

A disadvantage of using explicit constructs to implement low�level parallelism

is that it is not possible to simply activate these levels of parallelism to measure

the speedup achievable on existing OPS programs using only action or match�level

parallelism� the programs must be modi�ed to explicitly invoke parallelism in their

righthand sides�

Currently� UMPOPS does not support the nested use of both match and action

level parallelism constructs because any use of match parallelism tends to saturate

the available number of processors�

������� Action Parallelism

There are two constructs� in�parallel and in�parallel�sync that invoke

action parallelism� Each of these constructs takes one or more RHS working memory

modi�cations or assertions as arguments� Working memory changes carried out

within the scope of these commands are executed concurrently with all other working

memory changes� If the in�parallel construct is used� the �ow of control continues

on to the actions following the construct� if any� as soon as the working memory

changes are initiated� It is frequently necessary to ensure that all working memory

changes have completed before a rule terminates� for example� when performing an

initialization routine� In such cases� the in�parallel�sync construct is used� this

��

construct initiates all the RHS actions included within its body� then waits until

they have all been completed before any further actions are taken�

������� Match�Level Parallelism

Match�level parallelism does not normally yield great speedups because of the

small granularity of the match operations� the relatively high overhead of invoking

parallel operations at that level of granularity� and the small number of rules a�ected

by the average working memory change �Gupta� ������ There are� however� certain

cases in which a signi�cant improvement can be achieved� The most common of these

is the mode�changing production� When a working memory element that triggers

a new phase of the computation is added� unusually large amounts of matching

activity occur and many rules are triggered� Under these circumstances� match�level

parallelism can greatly reduce the rule execution time�

To invoke match�level parallelism� new righthand side actions are pro�

vided� These are make�match�parallel� modify�match�parallel� and

remove�match�parallel� The syntax of these actions is identical to their serial

counterparts� however� the matching of the working memory changes triggered by

these commands will take place in parallel� The commands do not terminate until

all the matching processes have been completed�

����� Make�unique

UMPOPS provides working memory locks to enforce consistency in working

memory during concurrent activities� But the working memory locking scheme is

not adequate to ensure correct rule �rings for rules that contain negated elements

��

on their lefthand sides as it is not possible to acquire a lock on an element that does

not yet exist� However� it is possible� through the make�unique function� to require

that a rule �ask permission� before creating an element that it 	or another rule

references through a negative condition element�

The make�unique function 	actually a compiler macro
 is used to create a

working memory element with certain values once and only once� This mechanism�

very useful when performing initializations� allows the user to specify a working

memory element of a speci�c class with given key values� Before creation� a check

is performed to see if such an element previously exists� If so� the rule is not

allowed to execute� Otherwise the rule is allowed to create that element� and all

other instantiations are prevented from doing so� This is called acquiring a �unique

lock�� An extended example of the use of the make�unique mechanism is given in

Section ������

The element that is to be created must be declared to be unique using the

unique�attribute command� This command� which must precede any rule de�ni�

tions� usually immediately follows the literalize command de�ning the working

memory element� For example� to de�ne a unique solution element for each of a

number of tasks� one could use the following syntax�

�literalize task�solution task value�

�unique�attribute task�solution task�

After this declaration� only one element with the class #task�solution� and a

given value of the task �eld can be created by a call to make�unique� thus each task

will have a unique solution element and clashing cannot occur� Uniqueness is only

���

guaranteed if the element is created using the make�unique call� UMPOPS does

not prevent the programmer from later changing the key �elds or values of a unique

element� The syntax of the make�unique call 	and� in fact� the function itself
 is

identical to that of the OPS make� The elements required to be created uniquely

are annotated at compile time and the make�unique call is retained as syntactic

sugar to highlight the elements that are intended to be created as unique elements�

Once obtained� unique locks are never released� this allows the program�

mer to implement �one�shot� rules that �re once and once only� The function

clear�unique�trees must be executed between runs of a program in order to

release all existing unique locks� 	The underlying mechanism behind the unique

locks is a discrimination tree upon whose leaf nodes the locks are hung�

The make�unique function di�ers from the more general region locks in that it

allows the user to specify a particular create operation to be singled out for special

attention� Instead of having to check all new working memory elements against all

currently de�ned regions� only elements declared to be unique are examined� this

reduces the overhead of the locking mechanism signi�cantly�

����� Control Task Syntax

A high�level mechanism for de�ning multiple independently executing tasks�

each containing its own rule��ring policies and con�ict resolution routines was

described in Section ���� The commands for de�ning and invoking tasks are

described in this section�

De�ning tasks� Tasks must be de�ned before they can be created� A task

de�nition consists of a task name� a rule �ring policy 	asynchronous or synchronous

���

and� if synchronous� a con�ict resolution routine speci�ed as a function call taking

an eligibility set�

�deftask �task�name�

�conflict�resolution�routine �CR�function�name�

�type �synchronous � asynchronous�

�

Initiating tasks� A task must be explicitly invoked with one exception� all

initial rule �rings take place within the scope of an initial default task� 	The user

may de�ne this default task to be asynchronous or synchronous�
 The control task

syntax is similar to that used in UMPOPS for specifying action�level parallelism�

�with�new�task��task�name� body��

All RHS actions contained within the body are executed within the context of

the task� Otherwise� all RHS actions within a rule are executed within the context

of the task which stimulated that rule�

Modifying or Terminating Tasks� When phases of a computation change�

the nature of the task may have to change as well� The �redefine�task

�task�type�� operator allows rules to change the rule��ring policy and con�ict

resolution routine of a task in mid�computation� The �kill�task� function allows

a rule to terminate the task context in which it is executing� This allows the resources

used by the task� speci�cally the eligibility set� to be reclaimed and assigned to other

tasks�

���

����� Set Functions and Synchronization Groups

The use of set�oriented productions as a method for eliminating sequential serial

rule �rings was discussed in Section ������ UMPOPS supports a simple implementa�

tion of set�oriented productions loosely based on that described in �Gordin and Pasik�

������ The synchronization group operators that are required to avoid premature

�rings of set rules are described in the following section as an example of primitive

functions for performing local synchronization tasks�

������� Syntax of the Set Notation

The addition of set�oriented rules to OPS required changes to both the left and

righthand side rule syntax� Set�oriented rules must have one or more set patterns

in their lefthand side� A set pattern is a condition element surrounded by square

brackets� e�g� ��block �color �x���� Any such condition element matches all

elements that satisfy the pattern� If more than one set pattern is present in the

LHS� then one instance of a set production matching the cross product of all these

elements will be produced� One can think of a set rule as simply compressing all

the rule �rings that would occur in standard OPS into a single rule �ring� The

map�set function allows the programmer to map RHS operations across the set of

rule instantiations�

�map�set

�rhs�action�

�rhs�action�

� �

�rhs�action��

���

The righthand side actions that are encased in the map�set function are mapped

across the set of instances� Any variables or condition element variables are bound

to the appropriate values in turn� Any righthand side actions that should only

be executed once can either precede or follow the map�set construct� The set

notation can also be used to count occurrences of working memory elements� when

a set�oriented rule is executed� the variable �set�count� is bound to the number of

instances contained in the set�

������� Synchronization Groups

The following righthand side actions are used to implement synchronization

groups�

Generate�sync�group� Returns a pointer to a synchronization group� If

invoked within a righthand side� all working memory elements subsequently created

by this rule will be considered as members of that synchronization group�

End�group� Terminates a synchronization group� Any rules enabled by the

working memory elements within the group will become enabled as soon as all

elements have completed matching�

Signal�quiescence�to�group� Used by the working memory match routines

to signal to a group that a working memory element has become quiescent� This

simply decrements a counter within a critical region and then� if the counter becomes

zero and the group has been terminated� allows enabled rules to �re�

Signal�wme�active�to�group� Adds a new working memory element to the

synchronization group�

���

Set�group�completion�demon� Allows a function to be attached to a group

to be executed when the group terminates and becomes quiescent�

The synchronization group mechanism is su�ciently �exible to be used for

purposes other than synchronizing set�rules� for example� it is used for avoiding

race conditions when performing modify actions in parallel�

����� Map�vector

OPS is oriented towards using rules as the basic unit of iteration� This is

particularly ine�cient because each rule �ring consumes an unavoidable amount of

overhead in terms of matching� rule instantiation� con�ict resolution 	if any
� and

variable binding� The use of rules to implement trivial loops tends to eliminate the

possibility for rule parallelism as the computation cannot proceed until the loop has

terminated� and rules �re sequentially within a loop�

The map�vector command is an example of the kind of syntactic mechanism

that can be incorporated into a rule�based language to allow iterative operations

to be performed within the scope of a single rule �ring� Much more sophisticated

structures than vectors have been incorporated into rule�based languages since OPS

was written 	for example� OPS�� allows working memory �elds to contain structured

records
 and the map�vector command should be considered signi�cant not for its

expressive power 	which is simply making up for a language de�ciency
 but for the

reduction in sequential rule �rings that it allows�

The map�vector command is used to map RHS operations over elements in a

vector� A vector is a �eld of a working memory element corresponding to a list

of values� it can be thought of as a one�dimensional array of arbitrary length� The

��

vector is not a particularly �exible mechanism and the mechanisms for manipulating

them are crude� Iterating over a vector typically involves maintaining a working

memory element with a counter and a vector and using a succession of rule �rings

to perform operations on each item of the vector in turn� Each rule �ring extracts

a value from the vector using a substr command� then deletes the element and

reasserts a modi�ed version with an incremented counter� This is far from e�cient�

even in a serial system� The map�vector command allows a single rule to map

operations over a vector� The map�vector command has the syntax�

�map�vector ��ce�variable� � �ce�index�� vector�name

��field�bindings� � nil�

body�

The �ce�variable� or �ce�index� is simply a pointer to the element con�

taining the vector� The vector�name is the name of the �eld in which the vector is

stored� The ��eld�bindings� is a list of the form 	�variable�name� key �variable�

name� key
 where key is one of prev j item j rest j index j length j vector�less�item�

Body� of course� is the set of RHS actions to be executed in the context of the

map�vector� The ��eld�bindings� need some explanation� During the execution

of the map�vector� each element of the vector is considered in turn� Local variables

are bound to the list of elements previously seen	prev
� the list of elements yet to

be seen 	rest
� the current element 	item
� the index of the current element	index
�

the length of the vector 	index
� or the entire vector except for the current item

	vector�less�item
� Because map�vectors can be nested� the programmer is given

the ability to bind these values to appropriate variable names� The ability to refer

to the previous and subsequent items in the vector allows permutations of vector

���

elements to be produced� A typical use of map�vector from a travelling salesperson

example is shown below�

�p start�city

��start� �start �start�city �sc� �length �length� � �

�initialized �value t�

���

�remove ��

�map�vector �start� city�list �item �city� vector�less�item �vli��

�bind �tag��

�in�parallel

�make connect�goal �tag �tag� �city
 �sc� �city� �city�

�length �compute �length� �
�

�city�list �vli��

�make so�far �tag �tag� �distance � �cities�seen �sc����

�

��� Multiple Worlds

One of the advantages of parallelism in complex system is the ability to explore

multiple alternatives simultaneously� If the search is partitioned appropriately� then

problems of rules interacting no longer apply� So we can trade the cost of detecting

syntactic rule interactions against the expense of creating partitioned 	and possibly

redundant
 states� Copying states can be done informally in situations in which

the entire problem�solving state can be represented as one or two working memory

elements� in these cases� the partitioned state can be created by copying the elements

in question and annotating them with a unique tag 	see the Travelling Salesperson

example in Chapter � for an example of this technique
� For larger� more complex

states� possibly consisting of linked data structures� the problem of accessing and

copying states becomes more problematic� Not only is it di�cult to explicitly

���

reference each appropriate working memory element in the lefthand side of the rule

and explicitly copy it on the right� but the use of explicit tags to denote state places

an undue strain on the pattern matcher and can lead to matching ine�ciencies�

A simple approach to partitioning is to copy each new state into a logically

separate version of the Rete net� That is� we can imagine each node of the Rete

net being sliced into an in�nite number of dimensions� Each dimension represents

a new state� and as each new state is created� the working memory elements

associated with that state are placed in the appropriate world� or dimension 	see

Figure ��
� Thus� creation of a new state consists simply of the transformation

WMEi �� WMEi " � where the arrow denotes a copying�transformation operator�

The advantage of this approach is that working memory elements in one state can

only be compared with working memory elements in the same state and therefore

identical elements can appear in multiple states� thus no re�naming or tag generation

is necessary� The principal disadvantage� and it is potentially a large one� is that the

copying operation is likely to be very expensive 	it e�ectively violates the temporal

redundancy requirement of the OPS Rete net�
 The response to this objection is

two�fold� �rst� given su�cient resources to implement action parallelism� copying

of working memory elements can be done concurrently and the creation of new

states can be reduced to O	n
 where n is the depth of the network� The second

response is that� with a su�ciently clever copying algorithm� one state can be

copied directly into another from one slice of each node of the Rete net to the

next� thus maintaining the partial match state contained in the Rete net� This

copying operation is potentially suitable for large scale SIMD parallelism and could

potentially be carried out in O	�
 time� A second disadvantage is that of space

���

usage � the copying scheme inevitably will result in redundant copies of working

memory elements which could be ine�cient to maintain and garbage collect� We

can somewhat reduce this problem by maintaining a base space� that is� a space

in which all facts not actually modi�ed during the course of the computation are

stored� The ultimate solution to the problem of space 	and to a certain extent� that

of copying overhead
 is to employ a scheme in which successor states simply inherit

the working memory elements from predecessor states via pointers augmented with

truth maintenance�style IN�OUT lists�

An experimental version of UMPOPS has been developed with a partitioned

Rete net and operators for performing parallel search in multiple worlds� This

multiple worlds implementation is described more fully in �Neiman� ����b��

��� Implementation of Parallel Matching in UMPOPS

This chapter discusses the data structures and algorithms that are used to

implement the parallel OPS matching process and the changes that were necessary

to allow parallel activity� During the reimplementation process� it was discovered

that there are several assumptions concerning the order in which activities take place

within the matcher that are no longer valid in a parallel system � the potential errors

and their solutions are also described in this section�

Many of the details of the implementation were inspired by Gupta�s study of

the issues involved in parallelizing the Rete net �Gupta� ������ Because this work

is undoubtedly familiar to the interested reader� this report concentrates primarily

���

(P fill-actor-slot
 (cd-frame ...)
 (cd-attr ^attr actor ^val nil)
 (fill-req ^slot actor ^val <val>)
 -->
 )

Match

cd-framefill-req

Space select Space select

"Base" space
(partition #0)

partitioned memories0
1

2
3

4
N

0
1

2
3

4
N

AND Node

Figure ��
� By partitioning the memories of the Rete net� a multiple world implementation

suitable for parallel search can be transparently achieved� To minimize copying� a �base�

space or partition can be de�ned that contains knowledge guaranteed to remain stable

over the course of the search�

���

on the implementation details that are unique to parallel OPS� particularly the

synchronization of two�input nodes�

����� The Rete Net

Because the following discussion hinges on an understanding of the internals of

the OPS pattern matching process� a short overview is given of the processing that

takes place within the Rete net� the principle data structure in OPS� In production

systems� most of the processing time is spent determining which rules are eligible

to �re� In OPS� this process consists of matching the lefthand sides of productions

against working memory� When a set of working memory elements is found such that

there is a working memory element for every non�negated condition element in the

lefthand side and there exist no elements that match negated condition elements�

the rule is eligible to �re� As a principal bottleneck in rule �ring� this matching

process should be as fast as possible�

������� Rete Net Overview

The Rete�net matching process works by passing tokens consisting of one or

more working memory elements through the net� performing tests on them at each

node� The �top� of the Rete net is composed of alpha nodes that consist of simple

tests on the class of the working memory element and speci�c �elds� This part

of the network possesses no memory and resembles a conventional discrimination

net� tokens are passed to succeeding nodes in the network only if the tests at the

current node succeed� Alpha tests are not very time�consuming and parallelizing

their execution does not lead to large improvements in performance�

���

Beta tests are responsible for unifying variable values between two condition

elements 	inter�element tests
� Each of the beta nodes has two inputs and two mem�

ories� one associated with each input� As a token arrives at a beta node� it is stored

in memory and tested against the opposite memory to see if one or more consistent

bindings can be achieved� If so� a new token is constructed from the incoming token

and the stored token� This new token is then propagated through the beta node�s

out list 	a list of successor nodes
� The memories associated with the beta nodes

store partial matches� making it unnecessary to repeat the entire computationally

expensive uni�cation process after each working memory modi�cation� The cost of

executing a beta node is proportional to the size of the memory against which the

incoming token is tested� The two primary beta nodes are the AND and NOT nodes�

Beta nodes present numerous opportunities for parallelism� for example� multiple

beta nodes can be executed in parallel� or� if the architecture supports su�ciently

�ne�grained processing� an incoming token can be compared to each corresponding

token in memory simultaneously� Beta nodes also present a number of obstacles

to implementing parallelism� First� they contain memory nodes that must remain

consistent despite possible parallel accesses� Secondly� each beta node refers to at

least two tokens that can change asynchronously during the match process� Finally�

new data may arrive during a match episode� synchronization constructs are needed

to ensure that the new data does not stimulate spurious matches or none at all�

At the bottom of the Rete net is a series of production nodes� when a token

arrives at one of these nodes� the production corresponding to the node is placed in

the con�ict set� instantiated with variable bindings from the incoming token� The

���

production node has no memory� thus only one production �ring ever results from

a given combination of working memory elements�

AND Nodes� The operation of an AND node is illustrated in Figure ��� In

part A of the �gure� a token is shown arriving at the memory node of the AND� The

token 	which represents a partial match
 is inserted into the memory of the AND

node and then processed 	part B
� 	In a serial system� it does not matter whether

the node is placed in memory before or after processing� although this is not the

case when node parallelism is allowed�
 Part C of the �gure shows the processing

of the AND node� The incoming token is compared to each token in the opposite

memory according to the list of tests contained within the node� A typical test

might compare the value of the third slot of the second element of the incoming

token to the �fth slot of the �rst element of the memory token�

Pairs of tokens that satisfy the tests are concatenated into a new token and

passed to the succeeding nodes in the network� Because an AND node is basically

symmetrical� this description covers the case of tokens arriving from both the left

and right sides� In the case of a negated token 	that is� a token resulting from

a remove working memory command
� the AND node functions in the same way

except that the token is removed from the memory node and� if the token satis�es the

tests� a new negated token is passed to succeeding nodes so that partial matches will

be deleted from memory nodes lower down in the network� If the succeeding node

is a production node� then the negated token is used to remove the corresponding

instantiation from the con�ict set��

�A negated token should not be confused with a negated condition element� A negated token is
simply a token tagged for removal while a negated condition element speci�es a working memory

element that must not exist if a rule containing it is to �re�

���

New Right Token

AND
NODE

Tests

Left Token 1
Left Token 2
Left Token 3
Left Token 4
 : : :
Left Token N

Tests

Left Memory

Left Memory Right Memory

New
Right
Token

Left
Tokeni

(Left Tokeni + New Right Token)

AND
NODE

Tests

New
Right Token
Right Token 1
Right Token 2
 : : :
Right Token N

Left Token 1
Left Token 2
Left Token 3
Left Token 4
 : : :
Left Token N

Left Memory Right Memory

New Right Token

A. B.

C.

Right Memory

New
Right Token
Right Token 1
Right Token 2
 : : :
Right Token N

Figure ���� A token arrives at an AND node�

���

NOT Nodes� A NOT node is used to implement negated clauses in a pro�

duction lefthand side� The NOT nodes are structurally similar to AND nodes� but

the processing is quite di�erent� A NOT node must ensure that for a given negated

clause� there is no working memory element that matches that clause in such a

way that there are consistent variable bindings with the working memory elements

matching the preceding LHS clauses� Like the AND node� the NOT node has two

memories� One memory is devoted to working memory elements that potentially

match the negated clause� The other memory contains a list of tokens corresponding

to the non�negated condition elements of the LHS and� associated with each token� a

count of the number of matches that occur in the opposite memory� The processing

of tokens arriving at a NOT node di�ers according to whether the token arrives

from the left or righthand side�

A token arriving from the left 	the choice of sides is arbitrary
 represents a list

of elements that match the lefthand side condition elements of the production� this

token will be propagated through the net only if no token is present in the opposite

memory that satis�es the tests of the NOT node� The arriving token is placed in the

lefthand memory of the NOT node and assigned a counter value of zero 	Figure ���

parts A and B
� For each element in the right memory� the test is performed� if

successful� the counter is incremented� If the count is zero after the entire righthand

memory has been examined� the token is propagated�

A token arriving from the right 	Figure �� parts A and B
 is placed in the

righthand memory� Then� for every token in the lefthand memory� if the tests are

satis�ed� then the corresponding counter is incremented� If the counter was formerly

�� then the new token has disabled the production� in this case� the lefthand token is

��

New Left Token

NOT
NODE

Tests

Tests

Left Memory

Left Memory Right Memory

Right
Tokeni

New
Left
Token

NOT
NODE

Tests

Right Memory

A. B.

C.

Left Memory

Right Token 1
Right Token 2
Right Token 3
 : : :
Right Token N

New Left Token
 (0)
Left Token 1
 (# matches)
Left Token 2
 (# matches)
 : : :
Left Token N
 (# matches)

 test succeeds

#matches

If #matches = 0
(i.e. no matches were found)
then propagate token through
remainder of network.

Left Tokeni

Right Token 1
Right Token 2
Right Token 3
 : : :
Right Token N

New Left Token

Righthand side memory
represents possible match to
negated condition element in
production LHS.

New Left Token
 (0)
Left Token 1
 (# matches)
Left Token 2
 (# matches)
 : : :
Left Token N
 (# matches)

Right Memory

Figure ���� A token arrives at the lefthand input of a NOT node�

���

negated and propagated to remove it from memory nodes further down the net� For

negated 	deleted
 tokens arriving at the NOT node� the process is the same except

that the token is removed from the memory and the counters are decremented� If

any counter becomes �� then the lefthand token is propagated�

��
 Implementing Match�level Parallelism

Any degree of parallelism in a system that uses a Rete net pattern matcher

implies the presence of 	or at least the capability for
 node and intra�node paral�

lelism� Technically� the node level of parallelism allows more than one test node

in the network to be active at the same time while intra�node parallelism allows

multiple activations of a single node� The �rst attribute increases the speed of a

single match episode because multiple paths of the network can be traversed in

parallel� The second attribute allows multiple match episodes to take place at once�

a situation that arises when multiple actions in a RHS are executed concurrently�

or when the righthand sides of multiple productions are executed concurrently�

Match�level parallelism occurs when node parallelism is used to increase the

matching speed of a single working memory element change� Implementing match

parallelism is relatively simple� Each node possesses an out�list� that is� a list of the

nodes that succeed it in the network� In a serial system� this out�list is traversed

in a depth��rst fashion� to parallelize the net traversal� each item in the out�list is

traversed in parallel� This approach to match parallelism spawns one new process

for each node in the net traversed by a given token� Depending on the structure

of the Rete net� the branching factor� the amount of computation performed at

���

Tests

Left Memory Right Memory

New
Right
Token

Left
Tokeni

NOT
NODE

Tests

New Right Token
Right Token 1
Right Token 2
 : : :
Right Token N

Right Memory

New Right Token

A. B.

C.

Left Token 1
 (# matches)
Left Token 2
 (# matches)
Left Token 3
 (# matches)
 : : :
Left Token N
 (# matches)

Left Memory

New Right Token
Right Token 1
Right Token 2
 : : :
Right Token N

Left Token 1
 (# matches)
Left Token 2
 (# matches)
Left Token 3
 (# matches)
 : : :
Left Token N
 (# matches)

 test succeeds

#matches + 1

If #matches = 1
 (i.e. was previously 0)
new token has negated clause and
left token should be deleted from network
below.

-Left Tokeni

New Right Token

NOT
NODE

Tests

Left Memory Right Memory

Figure ���� A token arrives at the righthand input of a NOT node�

���

each node� and the overhead of invoking parallel processes� this might involve more

overhead than is gained by the parallelism� Variations on the scheme involve only

invoking node parallelism when the out�list is large� not invoking node parallelism

for the simple alpha nodes� only creating parallel processes at the �rst level of beta

nodes� or creating less than N processes for an N �element out�list� with each process

then traversing part of the out�list in a depth��rst fashion�

When node parallelism is employed� there is a chance that multiple production

nodes may be simultaneously active� causing multiple instantiations to be entered

into the con�ict set at the same time� For this reason� the con�ict set 	or� if

the implementation does not require con�ict resolution� the eligibility set
 must

be considered a critical resource� and the add and delete functions must take place

within a critical region�

Intra�node parallelism� in which multiple tokens can be processed by multiple

activations of the same node at the same time� is required for action� or rule�level

parallelism� The major di�culty is maintaining the consistency of the associated

memory 	for beta nodes
 during simultaneous accesses� If two tokens are added to

memory at the same time� then the memory list could end in an inconsistent state�

To avoid this problem� each memory node is assigned a unique lock that allows

token insertion and deletion to be performed within a critical region� For AND

nodes� the memories do not have to be locked during the actual token processing as

the synchronization mechanism described in the following section ensures that the

state of the network remains consistent�

���

��� Synchronization of ��input Nodes

The Rete net makes the implicit assumption that only one token is processed

by a two input node at one time� When the system supports action or production

parallelism� this assumption is no longer true� multiple tokens might arrive at a

two�input node at any time� and at either input �Forgy� ������ It is inevitable that

eventually a token will arrive at either the left or right input while a matching token

is still being processed on the opposite side� This can cause serious synchronization

problems�

There are two possible failure modes� depending on when the token is added to

the node�s memory� Figure �� depicts the case in which the implementation adds

tokens to the memory before passing the token to the AND node� When tokens

arrive simultaneously� it is possible that the left token will match against the right

token� and the right token will match against the left token� This will result in two

identical tokens being propagated through the network� The inevitable result is that

the con�ict set will eventually contain multiple identical instantiations� multiple

copies of tokens will proliferate in memory� and the state of the network will be

corrupted�

If the tokens are added to the node�s memory after the matching process takes

place� then it is possible that neither token will match� The righthand matching

process will examine the lefthand memory and not �nd a matching token and the

lefthand process will examine the righthand memory and not �nd a matching token�

Then both tokens will be added to memory on their respective sides� This would

���

AND
NODE

Tests

New Left Token
Left Token 1
Left Token 2
Left Token 3
Left Token 4
 : : :
Left Token N

Left Memory Right Memory

New Right Token

A. B.

C.

New Right Token
Right Token 1
Right Token 2
Right Token 3
Right Token 4
 : : :
Right Token N

New Left Token

New Left Token
Left Token 1
Left Token 2
Left Token 3
Left Token 4
 : : :
Left Token N

Tests

Left Memory Right Memory

New
Right
Token

New
Left
Token

(New Left Token + New Right Token)

New Right Token
Right Token 1
Right Token 2
Right Token 3
Right Token 4
 : : :
Right Token N

New Left Token
Left Token 1
Left Token 2
Left Token 3
Left Token 4
 : : :
Left Token N

Tests

Left Memory Right Memory

New
Right
Token

New
Left
Token

(New Left Token + New Right Token)

New Right Token
Right Token 1
Right Token 2
Right Token 3
Right Token 4
 : : :
Right Token N

New Right Token New Left Token

AND
NODE

Tests

Left Memory Right Memory

New Right TokenNew Left Token

Figure ���� When matching tokens arrive at an AND node simultaneously� synchronization

errors can occur�

���

result in a situation in which the node�s memories contain two tokens satisfying all

tests but which have not been passed further down the net�

One possible solution to this problem� which was adopted by Gupta� is to lock

one side of a node when a token arrives from the opposite side so that the problem

of simultaneous arrival never occurs� This is unduly restrictive� however� for the

occurrence of a simultaneous arrival of matching tokens is very rare� Non�matching

tokens arriving at the opposite inputs can be processed without di�culty and a

locking approach would unduly reduce throughput through the node� UMPOPS

adopts the following solution in lieu of locking memory nodes�

In UMPOPS� tokens are added to memory before they are passed to the AND

node� so the case in which two identical tokens are propagated must be detected�

The solution taken to this synchronization problem was to add a completion �ag and

a match list �eld to each token being passed through the network� As each token

enters a two�input node� the �ag is set to false� It is not set to true until all tests

have been completed on that token and it has been added to memory� obviously� if

a node�s match �ag is set� then its matching process is complete and it is not going

to generate any more matches unless a matching token arrives on the opposite side�

When a test in the two�input node succeeds� the matching token is checked to see

if its completion �ag is set� If the �ag is set� then the token is propagated as usual�

If not� then that token is currently being processed and a case of simultaneous

activation exists� The matching token is stored on the incoming token�s match

list� After the incoming token has been compared against the entire opposite

memory� both it and its match list are passed to a synchronization process� The

synchronization process iterates over the match list examining the completion �ags

���

of each item� If the �ag becomes set� then the two tokens are concatenated and

propagated� If the matched token�s �ag is not set� then its match list is examined to

see if it contains the current token� If so� then the two nodes are mutually matching

and a synchronization error exists� In this case� the result of one match is suppressed

by removing it from the token�s match list 	The choice of which side the token is

removed from is arbitrary
� Once the matching token is removed� the match list for

the incoming token becomes empty and its completion �ag is set� This allows the

opposite synchronization process to propagate the concatenated token further down

the net�

The overhead for this synchronization check is not high because it is rare for

two tokens to arrive at a node simultaneously� therefore the usual overhead is the

creation of the token data structure� and the checking and setting of the completion

�ags� Figure �� demonstrates the synchronization process�

To prove that this mechanism correctly solves the simultaneous token problem�

consider the following cases�

Case A� The left token	TL
 arrives and completes matching before the right

token TR arrives� This is the same as the serial case� The left token does not �nd a

righthand match and is not propagated� but sets its completion �ag� The righthand

token then arrives� successfully matches against the lefthand token� and� because

the completion �ag for TL is set� the result is propagated�

Case B� TL does not complete matching before TR arrives� but� because TR is

concatenated to the front of the memory list� TL does not match against TR� In this

case� the completion �ag for TL is not yet set� so TL is placed on TR�s match list� The

synchronization mechanism ensures that TR cannot complete until the match list is

���

Left Token 1
Completion Flag : Nil

Match List :
 Right Token 1
 Right Token 2
 Right Token 3

Right Token 1
Completion Flag : T

Match List : Nil

Right Token 2
Completion Flag : Nil

Match List :
 Left Token 2

Right Token 3
Completion Flag : Nil

Match List :
 Nil

Time 1

Left Token 1
Completion Flag : Nil

Match List :
 Right Token 2
 Right Token 3

Right Token 2
Completion Flag : T

Match List : Nil

Right Token 3
Completion Flag : Nil

Match List :
 Nil

Time 2

Left Token 1
Completion Flag : Nil

Match List :
 Right Token 3

Right Token 3
Completion Flag : Nil

Match List :
 Left Token 1

Time 3

Left Token 1
Completion Flag : Nil

Match List :
 Right Token 1

Time 4

Propagate
 (Left Token 1 +
Right Token 1)

Propagate
 (Left Token 1 +
Right Token 2)

Propagate
 (Left Token 1 +
Right Token 3)

and terminate.

Right Token 3
Completion Flag : T

Match List : Nil

Righthand synchronization
process removes Left Token 1
from Match List and, because
list is now empty, terminates.

Left Token 1
Completion Flag : T

Match List : Nil

Time 5

Figure ���� The synchronization process for an AND node�

���

empty� The token TL� however� has an empty match list and completes� setting its

completion �ag� TR can then propagate the result of concatenating TL and TR�

Case C� TL and TR arrive at the two input node simultaneously� Both

are entered in to memory� and each successfully matches against the other� Left

uncorrected� two identical tokens 	TL " TR
 would be propagated through the

network� This is the pathological case which the synchronization mechanism was

designed to avoid� The completion �ag can not be set on either token because in

order to do so� the opposing token would have to have its �ag set� Therefore� the

matching token is placed on each incoming token�s match list� that is� TR stores

TL and TL stores TR on its list� Each token is then passed to the synchronization

routine� The synchronization routine observes that the token TR has TL on its match

list which in turn has TR on its match list� It arbitrarily deletes TR from TL�s match

list� TL then has a null match list and the match process terminates� setting the

completion �ag for TL� Once the �ag is set� the synchronization process monitoring

TR can then propagate TL"TR and remove TL from TR�s match list� allowing its

match process to terminate� Only one copy of the outgoing token is propagated�

Because of the symmetry of the two�input AND node� the tokens TL and TR can

be reversed in the above discussion� There are no other cases� It remains only to

consider the case of deadlock� Is it possible for a token to never set its completion

�ag� thus resulting in a synchronization process that never terminates� The answer�

brie�y� is no� for the only way for a token to never complete is for it to match a

token whose completion �ag is never set� But the only way for this to happen is for

the two tokens to be mutually matching� and this deadlock is arbitrarily broken by

the synchronization routine�

��

The synchronization problem may also appear in NOT nodes� however this

was solved by another mechanism� Because the NOT node modi�es its memory

nodes during processing 	by incrementing counters
� it proved easier to simply lock

both memories while the node was being executed� Therefore� the simultaneous

synchronization problem does not arise in this implementation� However� locking

the memory nodes dramatically reduces throughput� and a less restrictive algorithm

should eventually be developed�

����� Synchronization and Sharing of Memory Nodes

The approach taken to synchronization e�ectively prevents the sharing of mem�

ory nodes in UMPOPS� If a memory node has an out�list of more than one beta node�

then a token�s synchronization �ag might be set in any of these nodes� This could

cause synchronization of any of the other sibling nodes to take place improperly�

Because the proliferation of memory nodes is ine�cient in terms of space usage and

increases the number of critical regions that must be acquired during processing�

this restriction should be removed� Methods such as arrays of synchronization �ags

in which the arity of the array is the same as the arity of the out�list should be

applicable� but have not yet been implemented�

��� Race Conditions

There is one additional hazard due to intra�node parallelism that must be

guarded against� Consider the case in which a token T� enters a two input node and

matches with a token contained on the opposite side T�� A new token consisting

of the two tokens concatenated together� 	T� " T�
 is propagated through the tree�

���

Now suppose that a remove working memory element episode takes place� that

causes T� to be removed from the node memory� This causes the token �	T� " T�

to be propagated� where the minus sign represents a �ag specifying deletion� For

any number of reasons� it is possible that this negated token could arrive at a beta

node or production node before the original token� If this happens� the deletion

will fail� and the positive token will remain in memory despite the fact that one of

its supporting working memory elements has vanished 	Figure ��
� Currently� race

conditions are avoided by using the task synchronization mechanisms provided by

UMPOPS� no action stimulated by an embedded add or delete operation in a modify

command is allowed to execute until the opposing match operation has completed�

����� Avoiding Critical Regions

When running in parallel� it is necessary to reduce the time that processes spend

in critical regions as this tends to serialize performance� The most notable critical

regions in UMPOPS are the eligibility 	con�ict
 set and the node memories� Con�ict

for the node memories is greatly reduced by hashing� Inserting instantiations into

the eligibility set is inexpensive� however deletion is costly because the traversal of

the list and the actual deletion must take place within a lock� To avoid this delay�

instantiations that are deleted from the eligibility set are simply marked as �killed��

but are not actually removed from the list� As the scheduling process removes

instantiations from the list� it checks to see if the instantiations have been killed� if

so� they are simply discarded� A variation of this scheme could be used to reduce

the overhead of deleting tokens from node memories� however this would require a

���

AND
NODE

Right Token 1
Right Token 2
 : : :
Right Token N

Left Token 1
Left Token 2
Left Token 3
Left Token 4
 : : :
Left Token N

New Right Token

T0

AND
NODE

New Right Token
Right Token 1
Right Token 2
 : : :
Right Token N

Left Token 1
Left Token 2
Left Token 3
Left Token 4
 : : :
Left Token N

-Left Token 1

T0

-T0

A. B.

AND
NODE

Left Token 2
Left Token 3
Left Token 4
 : : :
Left Token N

- (Left Token 1 + New Right Token)

AND
NODE

Right Token 1
Right Token 2
 : : :
Right Token N

Left Token 1
Left Token 2
Left Token 3
Left Token 4
 : : :
Left Token N

AND
NODE

Right Token 1
Right Token 2
 : : :
Right Token N

T0
Left Token 2
Left Token 3
Left Token 4
 : : :
Left Token N

T0

-T0

-T0

T0
Shows arrival order
of tokens

Shows final state of
memory nodes.

Note that the
final state of the
memory node is
inconsistent because
it contains T0 which
includes a nonexistent
working memory element.

C.

New Right Token
Right Token 1
Right Token 2
 : : :
Right Token N

(Left Token 1 + New Right Token)

Figure ���� Race conditions due to intra�node parallelism�

���

garbage collection process to periodically examine the node memories and remove

unneeded tokens�

�� Implementing Action�level Parallelism

Action�level parallelism occurs when multiple working memory changes stim�

ulated by a single rule take place concurrently� From a matching standpoint�

once the working memory changes are asserted� they are handled no di�erently

than changes invoked by separate rule instances� The challenge of implementing

action parallelism comes from the implementation of OPS that de�nes or compiles

the righthand side into monolithic code in which the individual actions are not

accessible to be invoked concurrently� In order to access the individual actions� the

in�parallel and in�parallel�sync constructs were devised� These constructs�

actually compile�time macros� examine their arguments 	which consist of make�

modify� or remove functions
 and modify them so that they spawn o� individual

match processes�

In e�ect� each working memory operation is expanded into a function that pushes

a change operation and arguments onto an action queue where it is then executed

by a rule�action demon� If the �action�parallelism� �ag is not set� the action�

queue�push operation executes the operations instead of pushing them onto the

action queue�

The initial naive implementation of action�level parallelism allowed the right�

hand side of the rule to compute the token to be added to 	or deleted from
 memory�

This token was then placed on the action queue with a �ag indicating whether it was

an add or delete operation� It turned out� however� that the process of constructing

���

the token to be matched against working memory is fairly expensive relative to the

matching process� Thus� the righthand side of the rule was only able to push about

four actions onto the queue before the �rst had �nished executing� and the bene�t

due to action parallelism was thus limited to four�fold� This rather contradicts

the widely quoted statistic that matching consumes at least ��� of the work of

executing a rule� One reason for this may be that action parallelism is most useful

during initialization routines in which there is not a lot of matching performed

against the elements being asserted�

To increase the potential speedup due to action parallelism� the righthand

side was modi�ed so that instead of creating the token to be matched� it simply

placed the appropriate make� modify or remove function� its arguments� and the

necessary environment variables onto the action queue� The action demons now were

responsible for both constructing the tokens and matching them against working

memory� Although this increased the time that the individual action demons were

active� the rule instances were able to push actions onto the queue much more

quickly and the speedup due to action parallelism increased to at least eight�fold�

The 	obvious
 lesson to be learned from this is that when spawning o� processes

sequentially 	especially at a low level of granularity
� the launch time must be

minimized� Therefore� all initialization and processing work that can be passed

on to the parallel processes should be�

���� Summary� UMPOPS

UMass Parallel OPS has proven to be a �exible tool for the study of parallel

rule��ring systems� However� many improvements could be made to the syntax and

���

capabilities of the language and the implementation� A number of these changes

are being contemplated and may be incorporated in later versions of UMPOPS�

Of these� the most crucial are optimizations to the Rete net which will reduce

the contention for locks within the Rete net caused by the complete locking of

$NOT nodes� As will be seen in the following chapter� this contention can limit the

throughput of tokens in the pattern matcher� A related problem is the loss of node�

sharing necessitated by the synchronization mechanism described in Section ���

the sharing of patterns between rules is one of the virtues of the Rete net algorithm

which should be reinstated in UMPOPS� At the level of pattern�matching constructs�

UMPOPS should support a richer lefthand syntax� including support for sorting and

counting operators and user�de�ned predicates� The facilities that UMPOPS for

parallel programming support such as synchronization groups and the make�unique

construct are very low�level� As our experience in parallel rule��ring grows� we

can expect to be able to add more sophisticated constructs and support facilities

including automated analysis programs which can examine rule bases and identify

potential sources of rule interactions or ine�cient parallel constructs�

C H A P T E R �

Experiments

This chapter discusses the main experimental results of my research� The

�rst section is devoted to describing the construction of three parallel rule�based

programs in terms of their potential for rule� action� and match�level parallelism

and their potential for asynchronous rule execution� The design of these programs

demonstrates the techniques discussed in Chapter � for avoiding or resolving rule

interactions by taking advantage of the semantics of the computation�

The �rst benchmark� a rule�based implementation of the Waltz line �ltering

algorithm �Waltz� ����� was originally written by Toru Ishida� I have substantially

modi�ed this program to increase the clarity of the rules and to incorporate

UMPOPS constructs� however it remains functionally identical to the original�

This benchmark will be referred to as Toru�Waltz� Toru�Waltz exhibits both data

parallelism and parallel inference� and contains examples of both initialization and

mode�changing rules� The second program 	TSP
 is an implementation of the trav�

elling salesperson problem� it illustrates the issues underlying the implementation of

heuristic control in a parallel asynchronous rule�based program�� The �nal program�

Alexsys� a combinatorial optimization program in the domain of high �nance

�The text of these benchmarks is included in Appendices A and B�

���

which was developed at Columbia University� demonstrates the parallelization of a

process which consists of multiple independent tasks� each of which can be executed

asynchronously with respect to each other� while �ring rules sequentially within each

task�

The second half of this chapter discusses the performance of these benchmarks

in terms the overall speedup obtained� the contributions of action and match level

parallelism� and the processor utilization achieved� The e�ects of possible limiting

factors such as contention for queues and resources within the pattern matcher as

well as scheduling and lock times are measured� Finally� the implications of the

results for parallel rule��ring systems are discussed�

�� Analyzing the Toru�Waltz Benchmark for Rule

Parallelism

The Toru�Waltz program is amenable to parallel rule execution for a fundamen�

tal reason � during the course of the program� con�ict resolution is never� used

for the purpose of distinguishing between two valid rules� In most cases� if a rule

appears in the con�ict set� it is either executable� super�uous� or transient� The

principal problems in adapting this program to parallelism are removing extraneous

rules from the con�ict set and �ring the eligible rules at the earliest possible time

without accidentally executing a transient instantiation�

The Toru�Waltz benchmark is divided into four stages� each of which supports

a considerable degree of concurrent rule �ring or matching activities�

� Initialize� Creates a database of the legal junction labels�

�Well���hardly ever�

���

� Make�data� Loads the scene to be analyzed into working memory�

� Enumerate�Possible�Candidates� Lists all the labellings for all the junctions�

� Reduce�Candidates� Eliminates all illegal line labellings�

Both the initialize and make�data phases of the computation simply consist

of adding data to working memory� Rule parallelism can be employed by executing

both phases concurrently� To further reduce the initialization overhead� action

parallelism can be used to assert the initial working memory elements concurrently�

In Toru�Waltz� initialization time was reduced by approximately a factor of eight

by combining rule and action parallelism 	see Figure ���
�

In the enumerate�possible�candidates phase of the computation� each junc�

tion is assigned all possible legal labellings de�ned by the database created by

the initialization rules� Because each junction can be labelled independent of all

others� this phase is ideal for asynchronous rule�level parallelism� Each instantiation

corresponds to a unique junction and labelling� so rules never con�ict� Each

instantiation is monotonically enabled by the creation of a junction in the make�data

phase of the computation� which allows asynchronous rule��ring� The righthand

side of the make�data and enumerate rules perform no modify commands� so no

transient instantiations appear in the con�ict set�

A brief digression is in order here� In the discussion of the rationale underlying

the selection of the locking mechanism in Chapter �� it was asserted that attempts to

automatically ensure serializable behavior require both a compile�time and run�time

component� Then why should we feel that it is possible to design a parallel

rule�set which executes correctly when design� of course� precedes run�time� The

answer is given above� because the designer is granted a certain knowledge of the

���

Number of Processors Available

In
iti

al
iz

at
io

n
T

im
e

(i
n

se
co

nd
s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9

Rule parallelism disabled.

10 11 12 13 14 15

Action parallelism becomes

ineffective with only one available

processor.

Reduction in Initialization Time Due to Action and Rule Parallelism

Figure ���� The time required by the initialization phase of the Toru�Waltz program can

be reduced by the use of rule and action�level parallelism�

nature of the data that is input to the program� it is possible to make deductions

about the uniqueness of each rule instantiation� For example� in Toru�Waltz�

we know that each junction is assigned a unique label� and therefore there will

only be one rule instantiation for each junction�possible�junction�label combination�

Thus� while an automated interaction detection mechanism must rely on run�time

analysis of rules with instantiated variables to conclude that each instance of the

enumerate�possible�line�label rule can be run in parallel� the designer� by

means of a certain omniscience� can conclude the rules will not interact� This�

of course� raises the potential of including syntactic methods of conveying this

information to compile�time analysis methods� but given the philosophy of designing

��

for parallel activity� the principal virtue of such a mechanism would be to verify the

correctness of the programmer�s design�

Because the enumeration rules are added to the eligibility set monotonically

	that is� once added� a rule instance will never be removed from the con�ict set by

another rule �ring
� it is possible to combine the initialization and enumeration

phases so that the enumerate rules can �re asynchronously as soon as they are

enabled� Because the scheduler� which manages the mode�changing mechanism�

continuously monitors the rule demons for quiescence and the eligibility set for

contents� there is no possibility that the system will move on to the next phase of

processing before the initialization and enumeration phases have terminated�

The reduce�candidates phase consists of rules that detect junctions whose

labels are not consistent with any possible labelling of adjacent vertices� these

junctions are then deleted� Deleting elements that represent junctions is the

only action that takes place during the reduce�candidates phase of processing�

Because it is possible for rules to mutually disable each other by deleting existing

possible�line�label elements� it takes a certain amount of inspection to conclude

that the rules in this phase can actually execute concurrently� The operation that

is taking place during this phase of the program is constraint propagation� The

rules that perform this task can be interpreted as performing logical inference

operations� from the discussion in Chapter �� we know that the problem with a

monotonic inference is the possibility of redundant working memory elements� In

Toru�Waltz� the result of the inference is to conclude that a junction labelling is

incorrect and to remove it� By examination� it can be seen that the rule interaction

in the reduction phase is harmless� the e�ect of executing both rule instantiations

concurrently is to execute a redundant remove operation� such operations are

���

semantically valid in OPS� Although the execution of redundant reduction rules

will not a�ect the outcome of the computation� because the labelling�candidate

element is referenced via a positive condition element� the working memory locking

mechanism of UMPOPS automatically detects the interacting rule instances and

prevents one of them from �ring�

���� Mode Changes in Toru�Waltz

One serializing feature in Toru�Waltz 	and most other rule�based programs
 is

the use of the modal or gating type of working memory element� Modes are typically

used to distinguish between the major stages of a computation� In cases where

there is no signi�cant parallelism between the stages� the use of mode elements

serve a useful purpose in denoting an explicit partitioning among rules� Speci�c

semantics can be assigned to each mode change� for example� in the Toru�Waltz

program� the reduce�candidates mode declares that no new junctions will be

created� therefore the relaxation phase can begin� If stages of the computation can

overlap or be pipelined� the use of mode elements can cause unnecessary serialization

of the computation� in these cases� the rules in the overlapping stages should be

placed in the same partition so that they may �re asynchronously�

The use of modal working memory elements can seriously slow down a compu�

tation because otherwise eligible productions can not enter the con�ict set until

the mode of the element is changed� Typically� many productions are enabled

by a modi�cation to a modal element and creation of instantiations is relatively

expensive� so the overhead of a mode�changing rule may be very high� To give an

idea of the magnitude of the problem posed by mode�changing rules� the single rule

go�to�reduce�candidates can consume anywhere from ��� to �� of the run�time

���

of Toru�Waltz 	out of a total of ��� rule �rings
 depending on whether match�

level parallelism and asynchronous rule��ring are enabled� The time consumed

by the go�to�reduce�candidates mode�changing rule is reduced by a factor of

�ve by using match�level parallelism 	see Figure ���
� It turns out� however� that

even match�level parallelism is not su�ciently �ne�grained to e�ciently reduce the

overhead of matching gating elements� The problem is that the modal element

must be matched against all working memory elements that can potentially match

the second condition element in the rule�s lefthand side� The match process that

is assigned this task must create a potentially large number of tokens and place

them on the execution queue so they can be propagated by other match processes�

Parallelizing the match at a slightly �ner level so that multiple match processes could

share the overhead of joining the mode element with elements matching the second

condition would further reduce the serial bottleneck represented by mode�changing

rules�

�� The Travelling Salesperson Benchmark

The Toru�Waltz program was simple to parallelize because it presented oppor�

tunities for data parallelism in which individual rule instances could �re on unique

data items� No control mechanisms were required because one instance �red for

each potential junction labelling� The travelling salesperson 	TSP
 benchmark is a

more complex example because the search process has to be managed so that there

is no interaction between working memory elements in di�erent search states� and

rules must be heuristically pruned in order to reduce execution time to a reasonable

���

Mode-changing rule execution time

Number of processors

R
un

 ti
m

e
in

 s
ec

on
ds

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure ��
� The time required to execute the mode�changing production in Toru�Waltz

can be reduced by the use of match�level parallelism�

number of rule �rings� Finally� solutions from di�erent paths must be compared and

the best solution selected�

Search spaces are managed in TSP by assigning all elements in the same state a

unique identi�er� In the example shown below� a new state is created by generating

a new tag value using the ngenatom command� 	The ngenatom function generates

a unique integer rather than a symbol in order to avoid the overhead of interning

a variable� which is quite high in a shared�memory system
� The tag is used to

annotate the working memory elements that comprise a state in the search space�

i�e� the so�far and connect�goal elements� The so�far element records the

distance travelled and the cities seen� while the connect�goal element records the

���

next city to be visited� Because each combination of elements in a state are unique

and there is only one operator in TSP� there will be only one rule instance �ring

per state� This allows the use of the �meta �lock�not�required t�� notation�

because of the partitioning� no rules can con�ict during the propagation phase and

the overhead of locking working memory elements is not necessary� As will be seen

shortly� this is not the case when asserting solutions�

The map�vector command� which allows iteration across vectors to be per�

formed in the righthand side� is used in TSP propagation rules to avoid having to

use multiple rule �rings to spawn all the descendants of the node in the search tree

represented by each rule instantiation� Because the nature of the search process in

Travelling Salesperson is that few rules are initially active� the propagate�cities

rules were divided into two types� The initial start�cities rule and rule instances

matching states with more than �ve cities� left to visit have action parallelism

without synchronization invoked in their righthand sides so that matching need

not be completed before the next state is constructed and visited� As more

states are created deeper in the search space more rules become active and action

parallelism is no longer used� With fewer successor nodes� the righthand sides do

not take as long to execute and� with more active states� all available processors are

already usefully employed in performing search� The rules propagate�city�� and

propagate�city�lt�� are identical from a knowledge�engineering point of view and

are distinguished only by the invocation of action parallelism in their righthand sides�

This use of duplicate rules to maximize processor utilization is quite unaesthetic and

�The benchmark program discussed in this chapter solves a six�city problem which is large

enough to be interesting and small enough not to require garbage collection while processing�

���

is another artifact of the lack of expressiveness in the OPS syntax that does not

allow conditionals in the righthand side�

The meta�information in the rule shown in Figure ��� states that its ba�

sic priority is � 	and all instances of this rule will be placed in queue number

�
� that this is a priority queue� the function that computes the priority is

propagate�city�priority�fn� the heuristic control function associated with this

rule is compare�with�solution� and if the rule is pruned by the heuristic control

function� it should remove the working memory elements indicated by the condition

elements �sofar� and �cg�� Both the priority function and the heuristic control

function are encoded in Lisp� but are executed within the context of the rule�s

righthand side and can therefore access not only global Lisp variables� but can also

reference any OPS variable bound in the rule�s lefthand side through use of the

OPS �varbind function�

���� Heuristic Control in TSP

The TSP problem is NP�hard� and if all possible solutions were examined� the

search space would grow unmanageably for even small values of N� There are a

number of well�known admissible heuristics for ordering the traversal of the search

space in TSP� the one chosen for this example is the minimum spanning tree

	MST
 �Pearl� ������ Rules are placed in the execution priority queue according

to the value returned by the MST heuristic� A record is kept of the best 	lowest

distance
 solution developed so far� and if the value of the heuristic exceeds this

value for any search space� the corresponding rule instance is not executed� instead�

���

�p propagate�city��

�meta �priority
� �control�fn compare�with�solution�

�priority�queue t�

�lock�not�required t�

�priority�fn propagate�city�priority�fn�

�rhs�kill�actions ��oremove �sofar��

�oremove �cg����

�

�sofar� �so�far �tag �tag� �distance �d�so�far�

�home�city �home� �

�cg� �connect�goal �tag �tag�

�city
 �city
� �city� �city��

�length �	 � �l� �

�distance �city
 �city
� �city� �city�� �distance �d��

���

�bind �cities�seen� �litval cities�seen��

�oremove �sofar��

�oremove �cg��

�map�vector �cg� city�list

�item �new�city� vector�less�item �vli��

�bind �newtag� �ngenatom��

�in�parallel

�make connect�goal �tag �newtag� �city
 �city��

�city� �new�city�

�length �compute �l� �
�

�city�list �vli� �

�make so�far �tag �newtag� �home�city �home�

�distance �compute �d�so�far� � �d��

�cities�seen

�substr �sofar� �cities�seen� inf�

�city�� � and the new city

���

Figure ���� The propagate rule from TSP�

���

the rule�s kill�actions are executed to remove the corresponding working memory

elements and reduce the size of memory�

The heuristic functions are implemented procedurally in Lisp and are speci�ed

using the LHS meta notation� An early version of this program attempted to com�

pute the MST heuristic using rule �rings� however� this resulted in more rule �rings

to compute the heuristic than to perform the search� For the same reason� rules are

pruned using procedural functions in the rule demons� at the level of granularity of

search operations in TSP 	one rule per state
� meta�rule implementations of control

methods are not e�cient�

���� Asynchronous Rule�Firing in TSP

An asynchronous rule��ring policy is used in the travelling salesperson program�

Because rules are scheduled and executed as soon as they enter the eligibility queue�

there is never a time when the system is quiescent and it is therefore impossible to

select the �best� of all possible solution paths as indicated by the heuristic evaluation

function� It is reasonable to ask whether this causes any degradation in the quality

of the solution process as measured by the number of nodes expanded in the search

space� In fact� the number of nodes expanded by the TSP program is approximately

the same whether the program is executed serially or asynchronously in parallel�

There are a number of reasons why this is the case� First� solutions tend to be

placed in the execution queues faster than they can be handled by the rule demons�

Because the propagation rules are placed on a priority queue� the lower quality

rules tend not to be executed until after a solution has been found� they can then

be pruned without being executed� The second and most important reason why

asynchronous rule �ring produces acceptable results is that the heuristics used for

���

TSP are only reasonably precise� Each invalid solution path must be developed to a

certain depth before the estimate of the quality of the developing solution becomes

good enough that the path can be pruned� Even a strictly best��rst algorithm for

solving TSP using the minimum spanning tree heuristic must develop a minimum

number of nodes in order to ensure that the current solution is indeed the minimum

distance� Executing rules asynchronously just means that a certain amount of this

work takes place before the solution is found� An analysis of this aspect of the

parallel nature of the travelling salesperson problem can be found in �Kumar et al��

������

���� Merging Solutions

The Travelling Salesperson problem was developed primarily to illustrate two

points about parallel rule��ring� the elimination of the need for rule interference

detection by partitioning the problem into independent states 	this idea is developed

further in �Neiman� ����b�
 and the idiom for merging results from parallel search

processes� Eventually� each parallel search path that has not been pruned terminates

and posts a possible solution� Only one solution is acceptable and when competing

rules post solutions there is a chance for con�ict� either the posting of multiple

solutions or the posting of an inferior solution�

Consider the �rst case� in order to create a solution element� one needs a

rule of the form shown in Figure ���� If rules were executed instantaneously� then

there would be no di�culties with this rule� However� there is an unavoidable delay

between the instantiation of a rule and its �ring� This leads to the following possible

scenario� An instantiation of the init�solution rule arrives with a goal to create

���

a solution of say� ������� It is scheduled to �re� once in the execution queue� the

rule cannot be disabled� even if a better solution goal arrives� Suppose then� a

better solution 	produced by some parallel search process
 does arrive while the

�rst instantiation is still in the execution queue� It is also scheduled and placed on

the execution queue� The result of this scenario is that two solution elements are

posted in working memory and a possibly erroneous result is produced�

�If there is a goal to create a solution	
and there is no goal to create a better solution
and there is no current solution
Then
create a solution element�

�p init�solution

�meta �priority ���

�new� �solution�goal �distance �dist� �tag �tag� �

��solution�goal �distance � �dist��

��solution�

���

�bind �cities�seen� �litval cities�seen��

�make�unique solution �tag �tag� �distance �dist�

�cities�seen �substr �new� �cities�seen� inf���

Figure ���� The init�solution rule which initializes a data�merging episode in TSP�

How can this be prevented� The locking scheme cannot prevent this situation

because the element to be locked� the solution element� does not exist until after

the execution of the initialization rule� Instead� we provide a mechanism for creating

a unique working memory element� A unique element is de�ned as a class of working

memory element with one or more optional key �elds� Only one element with a given

combination of working memory class and key �eld values is allowed to exist� In

��

�If there is a goal to create a solution	
and there is no goal to create a better solution
and the current solution is inferior
Then
assert a new solution element�

�p new�and�improved

�meta �priority ���

�new� �solution�goal �distance �dist� �tag �tag� �

��solution�goal �distance � �dist��

�old� �solution �distance � �dist��

���

�bind �cities�seen� �litval cities�seen��

�make solution �tag �tag� �distance �dist�

�cities�seen �substr �new� �cities�seen� inf��

�remove �old���

Figure ���� The new�and�improved rule which implements a merge operation for TSP�

the above scenario� if the solution class is declared to be unique� the second rule

instantiation will not be allowed to �re� because an instance of the solution element

is already being created� Thus� the rule instance will be disabled and the assertion

of the solution element will trigger an instantiation of the new�and�improved

rule� causing the correct solution to eventually be asserted� A similar possibility

for interactions occurs with the new�and�improved rule 	Figure ��
� two solutions

may compete to modify the existing solution� Once again� multiple copies of the

solution element could potentially be created� In this case� however� an existing

element is being replaced and the rule instantiation replacing it must �rst acquire a

write lock on that element� Thus� only one instance of the new�and�improved rule

is ever scheduled to �re at a given time�

���

There are a number of points of interest in the solution merging rules� First� the

correctness of the solution merging is guaranteed� If a superior solution is ever locked

out� the assertion of the new solution element will re�trigger the instantiation� thus�

the data�directed nature of the rule�based system serves to automatically correct

temporary errors� Although the correct solution will always eventually be asserted�

it is important that the solution�merging rules perform a check to ensure that the

solution being asserted is from the best known solution goal� Otherwise� if many

solution�goals were present� each time the solution was modi�ed� it would take many

cycles of rule �rings before it was ensured that the correct solution was achieved�

and many rules would be locked out during each of these cycles�

Finally� note the order in which the actions take place in the new�and�improved

rule� The new solution is asserted and then the previous solution is removed

from memory� This is to avoid the creation of transient instantiations of the

init�solution rule� Although the unique�lock mechanism would prevent the

init�solution rule instantiations from �ring� avoiding the overhead of creating

the instantiations is a good idea�

���� Queue Latencies in TSP

TSP was chosen as a benchmark because even small problems generate large

enough search spaces to provide opportunities for rule�level parallelism and the

necessity for heuristic pruning� Each node in the search space 	except for the leaf

and penultimate nodes
 generates multiple successor states and thus the rate of rule

generation will exceed the execution rate for any reasonable number of processors�

The scheduled but unexecuted rules 	that represent the open list
 remain on the

���

execution queues until processors become available to execute them� This queue

latency time can greatly exceed the actual time of rule execution� It is interesting

to brie�y examine the e�ects of queue latency on the performance of the benchmark�

Because the solution element is used for performing heuristic pruning� it is

necessary to assert new solutions as rapidly as possible� If there were only one

execution queue� new solutions would remain in the execution queue for extended

periods of time� Propagation and solution rules would compete for resources and

inferior search paths would be traversed during the interval between the scheduling

of a solution rule and its execution� For this reason� rules that assert solutions are

given a higher priority than propagation rules� ensuring that the information used

for heuristic pruning is as current as possible�

Once an initial solution has been found 	not necessarily the �nal solution
�

heuristic pruning can take place� At this point� it would appear possible that

the node that would generate the �nal solution could potentially languish in the

execution queue for a long time while lesser solutions were developed� and this

could adversely a�ect the performance of the benchmark� In fact� the combination

of the use of priority queues and a reasonable heuristic cause the solution to be

developed rather expeditiously� Because the search problem then has to develop

many additional nodes in order to eliminate the possibility of a better solution� it

turns out that queue latency is not a major problem in a heuristic program that

requires a �best� solution� In fact� the contents of the execution queues can be

divided up into rules representing nodes that must be �opened� and nodes that will

eventually be pruned� it is only if a signi�cant number of the latter are executed

while waiting for the former that queue 	and scheduling
 latency becomes a problem�

���

�� Alexsys� Parallelization of a �Real�World�

Rule�based System

This section investigates the issues involved in parallelizing Alexsys� a rule�based

system developed at Columbia University in conjunction with Citicorp to handle

the problem of ful�lling contracts to trade pools of mortgages in such a way as to

maximize pro�t �Stolfo et al�� ������ Alexsys represents an expert system which has

been developed for use in the �real� world with actual data and di�ers markedly

from the small benchmark programs discussed previously in this work in terms of

the complexity of the rules and the size of the working memory database� However�

it can be shown that the computations performed by Alexsys can be analyzed

in terms of rule parallelism and programmed using the mechanisms provided by

UMPOPS� augmented with the control task construct described in Section ���� Time

constraints have prevented a similar analysis of Alexsys for match and action level

parallelism�

���� The Alexsys program

Alexsys allocates pools of mortgages to contracts in such a way as to maximize

pro�t and minimize loss� Each contract is assigned a �tail� which indicates whether

money will be made or lost on that contract� Because PSA 	Public Securities Admin�

istration
 rules allow contracts to be �lled plus�or�minus a �xed percentage� pro�t

can be maximized by assigning the maximum allowed value of pools to contracts

which are pro�table and and the minimum allowed value of pools to unpro�table

contracts� In part� the program can be evaluated in terms of how near it comes

to achieving the theoretical maximum pro�t while allocating pools to contracts�

���

	Pool allocation is an NP�hard combinatorial optimization problem� so a heuristic

approach is justi�ed�
 In order to �ll a contract� entire pools can be assigned to

contracts� if no single pool satis�es the requirements� pools may be combined or

split under certain guidelines� There are a number of heuristic rules obtained from

experts which describe the order in which splitting and combining should take place�

these heuristics are intended to result in legal allocations 	according to PSA rules

while maximizing pro�t and minimizing the number of surplus unallocatable pools

and unassigned contracts� There are many subtle aspects of the allocation process

which are not germane to the discussion at hand� for a more complete description

of the Alexsys system and its potential for parallel speedup� see �Stolfo et al�� �����

Stolfo et al�� ����a��

In Alexsys� the control structure of the process by which pools are assigned

to contracts is divided into three major parts� initialization� pool allocation� and

report generation� During the initialization phase� the most pro�table unallocated

contract is selected and assigned the appropriate working memory data structures�

During the pool allocation phase� pools are selected according to heuristic rules

and assigned to a contract� The serial Alexsys� of course� will allocate pools to

only a single contract at a time� The approach taken to parallelizing Alexsys was

to execute multiple contract allocation tasks simultaneously� When the contract is

fully allocated or no more pools are available to be assigned� the control moves to

the report phase�

During the report generation phase� the system reports the details of the pool

con�guration chosen for a particular contract� In the original Alexsys program� this

output was generated in a form suitable for a subsequent processing module� output

��

was also sent to a control terminal� The version of Alexsys discussed here writes

all output to a list�based data structure� I�O operations are avoided in order to

provide consistency when gathering timing information� Like the allocation phase�

the report phase can also support parallel activity� multiple reporting rules may �re

concurrently as long as the data structure used for recording results is protected

against multiple concurrent writes to the same substructures�

The control structure of Alexsys is predicated partly on the nature of the

pool allocation problem and partly on the limitations of the OPS language� The

heuristics developed to satisfy the PSA restrictions and the requirements of the

allocation process impose certain preferences on rule selection and ordering� thus

requiring a synchronous con�ict resolution policy to be applied for each contract

allocation task� Because of the inadequacies of the OPS con�ict resolution routine

which cannot specify preferences between speci�c rule types� the original Alexsys

cycled progressively through sets of possible con�guration rules of declining utility�

using mode�changing rules to investigate each possibility in turn� A true con�ict

resolution mechanism in which the user was able to state preferences between rules

would eliminate much of the need to perform these computationally expensive mode�

changing operations� Stolfo and colleagues have investigated the use of the meta�rule

constructs of the PARULEL system 	see Section ����
 to eliminate the need for

mode�changing operations� their results are reported in �Stolfo et al�� ����b�� In the

version of Alexsys described in this section� specially designed con�ict resolution

routines are assigned to control tasks to accomplish the same function�

��

���� Parallelizing Alexsys

There are two major sequential in�uences in Alexsys� contracts are allocated

most pro�table �rst� one at a time� and only one allocation rule is applied to

a contract per cycle� This last sequentiality� as was pointed out by Stolfo and

colleagues� is caused by the need to sequentially update working memory elements

acting as state variables to record the progress of the solution� in particular� the

amount of �millions� allocated to a contract� and the amount still required� Thus�

within a speci�c contract allocation task� rules execute sequentially� and there

is no easily available parallelism 	although a divide�and�conquer scheme may be

appropriate for allocating pools to very large contracts
� For this reason� I have

chosen to parallelize Alexsys by allocating multiple contracts in parallel�

The multiple concurrent allocation of contracts raises a number of issues�

ensuring that heuristic constraints are not violated� managing resource allocation

for multiple tasks� avoiding resource con�icts� avoiding deadlock due to contention

for resources� and determining that good solutions can be obtained�

If contracts are allocated in parallel� there are several ways in which the

heuristics governing the problem will be violated� If the available pool of mortgages

is exhausted during the allocation process and multiple contracts are vying for the

last pool in a greedy fashion� then it may not be the most pro�table contract which

is assigned the pool� Similarly� if a pool satis�es the constraints of two contract

allocation tasks� it may not be the most pro�table contract which acquires access

to it� If multiple allocations are carried out in parallel� then one task may execute

a rule which allocates a pool according to a heuristic of lower priority than one

enabled by another competing task which references the same rule� For example�

��

a pool might be eligible to be assigned to a two�pool�combo in one allocation and

to a three�pool�combo in another� where the three�pool�combo is heuristically

preferred� Because the actual usage of the pool depends on the order in which

the two rules become instantiated 	assuming an asynchronous �ring policy between

tasks
� it can not be guaranteed that the heuristics will be obeyed�

One of the purposes of the experiments with the Alexsys system was to determine

just how pathological the execution of rules in less than ideal heuristic order would

be� The intuition is that the results would be acceptable � the Alexsys program is

known to be satis�cing rather than optimal because of the NP�hard nature of the

combinatorial optimization task � violating the heuristics might degrade the solution

quality somewhat� but perhaps not dramatically� There are justi�cations for this

belief� The original serial rule��ring Alexsys was extremely slow and the Alexsys

research group experimented with methods of increasing the speed of processing�

One of the techniques they employed was to partition the pools of mortgages into

blocks� The assignment of pools to blocks was performed in a random round�robin

fashion� and blocks were then assigned to contracts sequentially� Thus� pools in block

N " � would be processed only after all pools in block N � even though there might

be pools in block N " � which would satisfy a more highly rated heuristic than any

of those in block N � Thus� there is precedent for violating the heuristics� the results

that were achieved using the blocking scheme were considered acceptable by the

Alexsys evaluators based on the number and size of remaining pools� the number of

un�lled contracts� and the percentage of the theoretically achievable pro�t actually

obtained�

The problem of potentially �lling a less pro�table contract while a more prof�

itable contract goes un�lled remains is not attacked in parallel Alexsys� Stolfo

��

and colleagues suggest a post�processing phase which tweaks the �nal solution

by swapping �good millions� 	units allocated by Alexsys
 between contracts to

maximize pro�t�

���� Modi	cations to Alexsys

Parallel Alexsys runs in an experimental version of UMPOPS which has been

modi�ed to support Alexsys� use of user�de�ned predicates in the lefthand side� The

�rst step in the conversion of Alexsys to parallel operation was the removal of the

separate processing phases required in the serial version to implement the rule�choice

heuristics� Each fill and report rule was given a mode element which served to

bind the value of the contract currently being assigned� the instantiations of all rules

which could potentially �ll a contract were therefore coexistent in the con�ict set� A

con�ict resolution function was written 	in Lisp
 for each of the two main categories

of rules in the fill phase� high and low contracts� and another for the report phase�

Because certain report rules could co�execute 	because I�O was directed to a data

structure rather than a terminal
� the con�ict resolution routine for the report

phase was modi�ed to return multiple rules for execution if possible� Because of the

inherent sequentiality of the allocation task� only one rule was ever returned by the

fill con�ict resolution routines� The fill con�ict resolution routines discriminated

only on rule type � no attempt was made to select the most pro�table instantiation

for each type� although this would undoubtably have increased the performance of

the program� The UMPOPS task construct was used to de�ne a context for each

contract allocation� each task was speci�ed to be synchronous and was assigned the

appropriate con�ict resolution function� The addition of common gating elements

��

to all fill rules meant that if a contract could be �lled� then there would be an

instantiation in the task�s con�ict set after quiescence had been reached� A possible

disadvantage was that it was possible that rules would become instantiated at a

variable rate and that there would be a synchronization delay while the task waited

for quiescence� even though a heuristic rule of the highest rating was available�

Because tasks are allowed to execute asynchronously� this synchronization delay is

not necessarily signi�cant� if su�cient tasks are executing� then all the processing

resources would be engaged in useful activity regardless�

���� Data Management in Alexsys

The Alexsys program has two main data types� contracts and pools� In the data

set supplied with the Alexsys distribution� there are ��� contracts to be �lled and

�� pools divided into ��� blocks� Managing this amount of data e�ciently required

a certain amount of experimentation� The pool allocation process expects contracts

to be executed in a speci�c order� from most pro�table to least� The initial approach

was to store all contracts in working memory and allocate them as requested using

a sorting rule�

If there are fewer active tasks than
the maximum allowed

and there is a contract more pro�table
than any others

then
allocate pools for that contract���

�p allocate�contract

�max�tasks �max �num��

�active�tasks �num � �num��

�contract �tail �val��

��contract �tail � �val��

���

�

Create task and add contract to task�

����

Because OPS does not perform sorting operations e�ciently 	the memories
of the Rete net nodes are not sorted
� rules which order elements do not execute
quickly� Therefore� the sorting rule proved to act as a serial bottleneck� slowing down
the allocation of contracts to tasks� Allowing multiple tasks to attempt to acquire
contracts also proved futile � each task would attempt to grab the most pro�table
contract and would acquire a write lock on that element� All other instantiations
accessing that element would be locked out� and the time required to generate them
would have been wasted� The problem was that� functionally� a working memory
element was being used as a semaphore variable for controlling access to a critical
region� But the latency involved in modifying a working memory element and
performing the associated pattern�matching caused unacceptable delays� Finally�
it was decided to simply sort the contracts o��line and to de�ne an external
function to allocate each contract in sequence� Because a single variable could
now be used to implement the critical region� the serial bottleneck associated
with contract allocation was reduced to insigni�cance� There is a lesson to be
learned here � the use of working memory elements to represent frequently accessed
shared variables between concurrent tasks should be avoided because the latencies
inherent in working memory modi�cation and pattern matching will result in serious
performance degradation�

A similar problem was encountered when allocating blocks of pools to each task�
The �rst design simply asserted pools into working memory and allowed contract
allocation tasks to compete for acceptable pools� This resulted in a large number
of ��ll� rules competing for the same pool and many �ll rules were locked out�
resulting in a low ratio of instantiation generation to instantiation generation� The
parallel rules for Alexsys were redesigned to incorporate data parallelism � each task
was assigned a discrete block of pools� Each pool was explicitly assigned to a task
using a tagging scheme for partitioning working memory�� All other types working
memory elements operating within the context of a task were also annotated so that
they matched only other elements in the same task� If pools were left over after a
contract was allocated� they were matched by a set rule and returned to the free
pool list� As was the case with contracts� because of matching overheads� it proved
cumbersome and slow to perform data management of pools using working memory
techniques and external functions were de�ned to import and export pools�

The use of external functions also simpli�ed the task of deadlock detection
and avoidance and detecting when no pools remained to satisfy tasks� When no

�The multiple worlds construct described in Section ��� would have been ideal for partitioning
working memory according to contract allocation tasks� however� the version of UMPOPS which

incorporated multiple worlds could not support the user�de�ned predicates required by Alexsys�

��

pools remain� contracts are annotated as partially speci�ed and sent to the report
generation phase � these contracts are said to have failed� With multiple tasks
vying for pools� there existed the possibility that each task would request a certain
number of pools which could not be satis�ed unless other tasks released pools they
had already reserved for an allocation task� The pool allocation routines maintained
a list of tasks waiting for pools and a counter of active tasks � if the number of tasks
waiting equaled the number of active tasks� one task was arbitrarily terminated
and its pools returned to the free pool list� Pools already allocated to the contract
are not returned� although this would have been fairly simply to arrange� So it
is possible that multiple contract allocation tasks might fail although there were
initially enough pools to satisfy some of them� This problem was partially avoided
by reserving a su�cient block of pools for each contract during the �rst request for
pools�

���� Experimental Results with Alexsys

The results achieved with the UMPOPS version of Alexsys are not directly
comparable with the original OPS version due to the extensive modi�cations to
the architecture and rule��ring policy of the program� For the record� the version of
Alexsys reported on in �Stolfo et al�� ����� which used the same data set reported
on here executed in ��� minutes� achieving a pro�t of ���� of the theoretical
maximum� This performance was achieved on a Sun ���� workstation running
at ��� MIPS using a version of the program which produced I�O and garbage
collected as it ran� The version of parallel Alexsys discussed here did not generate
any I�O or garbage collect and executed in ��� minutes using a single processor on
a Sequent which provides approximately � MIPS�processor� The pro�t achieved
was ����� of the theoretical maximum� The parallel speedup obtained using the
multiple contract allocation scheme is demonstrated in Figure ���� The maximum
speedup obtained was approximately ��fold using �� processors to execute rules and
allocating a maximum of �� contracts simultaneously� The limited speedup is due
to the tremendous variance 	two orders of magnitude
 in the size of contracts in the
data set used� Some contracts are quite small and can be satis�ed with a single rule
�ring while others require the allocation of many �good millions� and require many
repetitive �ring of fill rules before the allocation is complete� Because fill rules
implicitly perform a combinatorial search to generate possible instantiations� they
match slowly� and long series of fill instantiations are time�consuming� The use
of action and match level parallelism to reduce the overhead of fill rule execution
could pro�tably be examined� as could the use of conquer�and�divide algorithms for
partitioning large contracts into multiple smaller allocation tasks� The overhead
due to large contract allocation tasks can be seen in Figure ��� which displays the
processor utilization for a parallel Alexsys run in which a maximum of �� contracts
are simultaneously allocated� All contract allocation tasks are initiated by time ���
and processor utilization remains very high up to that point� during the remaining

��

�� seconds� processor utilization gradually drops o� as allocation tasks terminate
	the spikes in the processor utilization graph indicate the places where an allocation
task terminates and multiple report rules �re
�

The most surprising aspect of the parallel Alexsys experiments is that the quality
of the solution as measured by percentage of maximum pro�t obtained actually
increases steadily as more contracts are allocated in parallel 	see Figure ���
� In all
cases� all contracts were �lled and only one or two pools remained unallocated� This
is contrary to expectations� it was thought that allocating less pro�table contracts
in parallel with more parallel contracts would lead to reduced pro�tability� It would
be interesting to determine whether this trend persisted for other data sets than the
one provided with the Alexsys distribution�

Parallel Speedup for Alexsys

Concurrently executed allocation tasks

R
un

 ti
m

e
(in

 s
ec

on
ds

)

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 8 10 12 13 15 16 17 18

0

1

2

3

4

5

6

7

8

9

P
ar

al
le

l s
pe

ed
up

 fa
ct

or

Run time (in seconds) Speedup factor

Figure ���� The parallel speedup achieved for Alexsys�

���
 Conclusions� Alexsys

The motivation for the experiments with Alexsys were to demonstrate the use
of rule�level parallelism for a large� complex� �real�world� program and the use of
control tasks to allow multiple sequential tasks to execute asynchronously in parallel�
The results of these experiments were quite promising � the parallel speedup of

��

Processor Utilization for Parallel Alexsys

Run time (in seconds)

N
um

be
r

of
 a

ct
iv

e
pr

oc
es

so
rs

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35 40 45 50

Figure ���� The processor utilization graph for parallel Alexsys with a maximum of ��

concurrent allocation tasks�

Alexsys was quite good� considering the unbalanced nature of the contracts to be
allocated� and there exists a potential for further parallel speedups due to action and
match level parallelism and partitioning of large contracts� The use of control tasks
allowed a high level of processor utilization for much of the allocation process despite
the fact that each individual allocation task was required to achieve quiescence before
a rule could be selected to �re� The primary di�culty in developing parallel Alexsys
was in managing large amounts of data and allocating this data in a fair manner
to competing processes� perhaps the current research in integrating production and
database systems 	e�g� �Miranker� ����a�
 will ease this problem in future rule�based
systems�

�� Performance Analysis of Toru�Waltz and TSP

The rationale behind parallelizing a rule�based system is to increase the per�
formance of the system� Ideally� the nature of the speedup should be linear or
near�linear to the number of available processors� In practice� there are a number of
e�ects that limit the performance of UMPOPS and they are discussed in this section
in the context of the results obtained with the benchmark programs discussed in
the previous section�

��

Evaluation of Pool Allocation Task

Number of concurrently fulfilled contracts

P
er

ce
nt

ag
e

of
 th

eo
re

tic
al

pr
of

it

0.905

0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

1 2 3 4 5 8 10 12 13 15 16 17 18

Figure ���� The solution qualities produced by the parallel Alexsys allocation process

graphed against maximum concurrent allocation tasks�

���� Performance Measurements� Toru�Waltz

The speedup due to all levels of parallelism in Toru�Waltz is roughly a factor of
eight or nine� independent of the number of processors available beyond that number
	see Figure ���
� This ceiling is due to a number of factors� the presence of the
mode�changing rule that represents a serial bottleneck and limits rule parallelism�
the �tapering�o�� e�ect which is observed as the program grows close to a solution
and requires fewer processing resources� and contention for resources within the
pattern matcher itself�

The performance of Toru�Waltz is measured relative to the speed of the bench�
mark using a single rule demon� The speedup is more dramatic 	���fold
 when
measured against the serial version of the program that employs con�ict resolution�
because con�ict resolution is not necessary in Toru�Waltz� the speedup observed
during asynchronous rule��ring is due partly to its elimination and not to parallel
activity� In general� this holds true for all benchmarks which have been explored
using UMPOPS 	see table ���
� For this reason� all speedups reported in this
dissertation are reported relative to the single rule�demon case using the UMPOPS
scheduler�

Because both action and match parallelism are employed in Toru�Waltz to
reduce the overhead due to initialization and mode�changing� the overall speedup

���

Table ���� Performance of the nondeterministic UMPOPS scheduler using a single

rule�demon compared with the performance of a serial OPS� scheduler using conict

resolution for three benchmark programs�

Benchmark
Serial run time
(UMPOPS scheduler)

Serial run time
(OPS5 conflict resolution)

Circuit 54.55 61.1
Toru-Waltz 10.6 11.6
Travelling Salesperson 31.50 31.9

(3000 cycles)

is not expected to be linear� As a general rule� each successively lower level of
granularity of parallelism� rule� action� and match� generates less of an overall
speedup due to the proportionate overhead required in generating the parallel action�
Not only is the overhead of smaller granularity operations greater relative to the
cost of the operation� but� because there are typically many more small granularity
operations� the absolute cost of the overhead becomes signi�cant�

The speedup for action parallelism in a single rule is approximately ��fold in
UMPOPS� Match�level parallelism yields a speedup factor of �ve in the single mode�
changing rule in which it is employed�� For an insight into the performance of
Toru�Waltz� we can examine the processor utilization graph for this benchmark 	see
Figure �����
�

During the initialization phase� Toru�Waltz makes use of rule and action
parallelism� Two rules �re simultaneously to add data to the system and each
rule employs action parallelism to reduce run time� Because all actions must be
completed before moving to the next phase� two processors must be reserved to
perform synchronization and the maximum level of action parallelism is N � �
where N is the total number of processors devoted to processing demons� During
the mode�change from the enumerate phase to the reduce candidates phase�
only a single rule can �re and match parallelism is employed to reduce the serial
bottleneck� Finally� as the algorithm approaches completion� the amount of work to
be performed 	and the demand for processors
 falls o� signi�cantly� This is due to
the nature of the constraint propagation algorithm� each junction is connected to at
most three other junctions and thus� each rule �ring can initiate at most three rule
�rings� Because the Toru�Waltz benchmark is fairly small� the signi�cance of these
three limiting phases is relatively large� and the potential speedup is limited�

The principal bottleneck in Toru�Waltz is the overhead due to the go�to�reduce
mode�changing production� If this rule is included� the maximum rule execution

�There is no reason to think that this speedup is an absolute limit� but optimization of match�

level parallelism is not a high�priority in this research project�

���

Parallel Speedup for Toru-Waltz

Number of rule demons

R
un

 T
im

e
(in

 s
ec

on
ds

)

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

1

2

3

4

5

6

7

8

9

10

S
pe

ed
up

 fa
ct

or

Run time (in seconds) Speedup factor

Figure ���� The parallel speedup graph for Toru�Waltz with
� processors� The left axis

shows run�time in seconds� The right axis shows the speedup factor achieved�

rate for Toru�Waltz is about ��� �rings per second� while if this rule is disregarded�
the average rule execution speed approaches �� �rings�second 	see Figure ����
�
Clearly� the optimization of match parallelism would further decrease the overhead
of mode�changing rules�

���� Performance Measurements� TSP

The processor utilization for the Travelling Salesperson benchmark is shown in
Figure ����� As can be seen in this graph� the level of rule parallelism is very high
in this benchmark after the initialization phase has been completed� Theoretically�
the speedup due to rule parallelism in the Travelling Salesperson Problem should
be linear and Figure ���� demonstrates that this is approximately the case� The

���

Processor Utilization for Toru-Waltz

Run time (in seconds)

N
um

be
r

of
 a

ct
iv

e
pr

oc
es

so
rs

0

2

4

6

8

10

12

14

16

18

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Rule demons Action demons Match demons

Figure ����� The processor utilization graph for Toru�Waltz with �� �demon� processors�

In the initialization phase� a large number of action demons become active while date is

added to working memory� In the enumerate phase� �� rule demons become active� During

the mode change from the enumerate phase to the reduce phase� �� match demons are

active� One rule demon must be active during this time to perform synchronization�

Finally� rule parallelism becomes dominant during the reduce phase and tapers o� as less

work becomes available�

���

Toru-Waltz Performance

Number of rule demons

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

2

4

6

8

10

12

R
un

 ti
m

e
(in

 s
ec

on
ds

)

Rules per second

(excluding init

and mode-change

rules)

Rules per second

(entire benchmark)

Run time (in

seconds)

R
ul

es
 fi

rin
gs

 p
er

se
co

nd

Figure ����� The parallel speedup for Toru�Waltz in terms of rule �rings per second� With

periods of reduced parallel �ring due to initialization and mode�changing eliminated� rule

�ring rates approach ��� rules per second�

���

observed speedup is approximately ��� using �� processors�� The observed speedup
departs slightly from the linear for reasons discussed in the following section�

Processor Utilization for TSP

Run-time (in seconds)

N
um

be
r

of
 p

ro
ce

ss
or

s
ac

tiv
e

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Rule demons Action demons

Figure ���
� The processor utilization for the TSP benchmark with
� processors�

���� Measurements of Contention in the Rete Net

In the experiments with TSP and Toru�Waltz� we have seen a steady decrease
in run time and increase in performance as more processors are applied to the
problem� however� the increase departs from the linear as the number of processors
increase� In particular� the speedup for the Toru�Waltz program is disappointing�
The departure from linear performance was acceptable when experiments were run
using � processors to execute rules� but when� late in the research program� another
 processors were added� the e�ect became more pronounced and it became necessary
to examine the sources of slowdown more carefully� There are a number of possible
explanations for the departure from linear performance� including the character of
the Sequent�s scheduler which causes processors to be time�shared on a random basis�

�In UMPOPS� one processor is always reserved for the scheduler and therefore� the maximum
number of rule demons is �� on a �
 processor machine� To provide consistency in benchmarking�

one processor is usually reserved for system functions leaving
� rule demons available�

��

Parallel Speedup for TSP

Number of processors executing rules

R
un

-t
im

e
(in

 s
ec

on
ds

)/
S

pe
ed

up
F

ac
to

r

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

50

100

150

200

250

300

R
ul

es
 e

xe
cu

te
d/

se
co

nd
Run-time (in seconds) Speedup factor Rules per second

Figure ����� The parallel speedup for the TSP benchmark with
� processors� The graph

depicts the decrease in execution time as the number of processors increases� the ratio of

parallel run�time to serial run�time� and the number of rules �red per second�

���

cache faults within the shared memory architecture� and contention for resources
within the Rete net�� Because the Sequent provides no support for measuring the
�rst two� this section will concentrate on the latter�

Although the contention of the various queue demons for the rule� match� and
action queues would appear to be a potential bottleneck� measurements of processor
utilization indicate that the processors spend very little time idle waiting for access
to queues� Because the rule demons are active virtually all the time� but parallel
speedup is non�linear� the conclusion is that the average time required to actually
execute a rule must increase as the number of processors increases� The average
execution times for various rules have been measured for the Toru�Waltz and TSP
benchmarks and are presented in Figures ���� and ��� respectively�

Rule Execution Times in Toru-Waltz

Number of rule demons

A
ve

ra
ge

 r
ul

e
ex

ec
ut

io
n

tim
e

(in
 s

ec
on

ds
)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Consistent-minus Eliminate-line-labels Enumerate-possible-candidates

Figure ����� The average time required to execute certain rules in Toru�Waltz� plotted

against number of processors�

Examining these graphs� we can see that the Travelling Salesperson benchmark�
which displays very good parallel speedups� demonstrates only a very small increase
in average rule execution times 	� �
 as the number of processors increases�
Toru�Waltz� on the other hand� shows a more marked increase in rule execution
times� with one rule� eliminate�line�labels� increasing by ��� when �� rule�
demons are active� Examination of the rule sets reveals the source of the di�erent
behaviors� TSP contains few rules with negated condition elements� while all the
rules in the reduce phase of Toru�Waltz contain negated elements� As was noted in
Section ��� it is necessary to lock both memories of $NOT nodes during processing
in order to eliminate synchronization problems� $AND nodes only require that

���

Rule Execution Times in TSP

Number of rule demons

A
ve

ra
ge

 r
ul

e
ex

ec
ut

io
n

tim
e

(in
 s

ec
on

ds
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Propagate-city-lt-5 Propagate-city-gt-5 Finish-trip

Figure ����� The average time required to execute certain rules in TSP� plotted against

number of processors�

locks be obtained during the actual insertion of tokens into their associated memory
nodes� Thus� the potential for contention for locks is much greater for $NOT nodes�
Although UMPOPS incorporates hashed memories which reduces the competition
for locks substantially� as the throughput of tokens through the network increases�
contention for memory locks also rises� To give an example of the magnitude of the
problem� the rate at which tokens must be processed by nodes of the Rete net in
Toru�Waltz rises from approximately �� per second for the single processor case to
approximately �� per second with greater than �� processors� Because it requires
an average of �������s of a second to process a single node of the Rete net 	according
to data gathered by monitoring the match demons
� saturation occurs at this point
and the addition of further processors yields only slight gains in performance�

Contention for resources can rise considerably if the number of processors
being employed approaches the number available on the machine� At this point�
background or system tasks will begin to compete for processing resources because
the Sequent performs symmetric multiprocessing and assigns processors equally to
all processes� Under these load conditions� it becomes increasingly probable that a
processor will be swapped out while it has acquired control over a critical region�
the swapping delay is then multiplied by the number of processes waiting to get
access to that critical region� Observe that in Figure ����� the rule execution times
increase signi�cantly as the number of processors approaches ��� the maximum for
the con�guration of the Sequent on which this experiment was run�

���

Given the results obtained here� particularly those of the Toru�Waltz benchmark�
contention for memory locks within the Rete net would seem to limit the potential
performance of parallel rule��ring systems to only a single order of magnitude�
But the performance of the Toru�Waltz benchmark is probably due to a number
of factors which are not typical of larger rule�based systems� Toru�Waltz is a
very homogeneous system with a small number of rules which employs instance
parallelism to obtain much of its concurrency� This results in a concentration of
matching in a very small area of the Rete net� The rules are also quite small�
frequently performing only a single RHS operation� thus� the possible degree of rule
parallelism is contingent upon the speed at which that element can be processed�
With larger rulebases performing more complex tasks� the match operations can be
expected to be spread more di�usely throughout the Rete net� resulting in fewer
collisions�

It may also prove possible to increase the rate at which nodes can process
data either through optimization of the beta node code� or by applying low�level
parallelism to speed the matching process� Contention for memory nodes can be
decreased through the use of compilation techniques� for example� the �copy and

constrain� algorithm devised by Pasik �Pasik and Stolfo� ����� could be used to split
bottleneck nodes into two or more equivalent nodes� Further research is required
both to identify the e�ects of contention on larger and more sophisticated rule bases�
and to study methods of reducing or eliminating the sources of that contention�

�� Summary

This chapter has examined three programs modi�ed to take advantage of parallel
rule execution� Toru�Waltz� Travelling Salesperson� and Alexsys� These programs
illustrate three situations in which parallelism is e�ective� data parallelism� in which
operations can be applied to many di�erent objects in parallel� parallel search� in
which many search paths can be explored concurrently� and task parallelism� in
which multiple independent tasks can be pursued� Some of the issues underlying
parallel rule�based programming have been discussed� including e�ective use of
lock mechanisms� avoiding transient instantiations� merging solutions� and making
e�ective use of action� and match�level parallelism during initialization and mode�
changing rules� In Toru�Waltz and TSP� an asynchronous rule��ring control policy
was used and� in TSP� it was shown how heuristic control mechanisms could be
incorporated into a rule�based program without resorting to synchronizing con�ict
resolution schemes� Alexsys demonstrated the use of control tasks to allow multiple
tasks� each consisting of a series of synchronous� sequential rule �rings� to execute
asynchronously in parallel� The performance characteristics of each program were
analyzed and it was shown how multiple levels of parallelism could be used to
optimize performance� The experimental results of this chapter� particularly the
near�linear performance of the TSP benchmark� indicate that the performance of

���

rule��ring production systems need not be limited to a single order of magnitude� al�
though the limited number of processors available makes it impossible to empirically
identify the upper limits of performance� An equally valuable result has been the
identi�cation of those aspects of programs which limit the speedup due to parallel
rule��ring� Further research would be pro�table to identify methods for reducing
contention within the Rete net� for subdividing tasks to allow load�balancing when
co�executing synchronous tasks must be developed� and for reducing the serial
overhead associated with mode�changing rules� One �nal observation resulting from
these experiments is that the development of parallel rule��ring programs is still far
from an exact science� each of these programs underwent a cycle of development�
testing to identify bottlenecks and unexpected rule interactions� followed by redesign
to eliminate ine�cient constructs�

C H A P T E R �

Conclusion

The chapter presents an overview of the main points of this dissertation�
summarizes the conclusions� and describes the future work which remains in the
area of designing and controlling parallel rule��ring production systems�

��� Motivation

The motivation behind any research in parallelism is to increase the performance
of the system being parallelized� Because of the disappointing speedups observed
by Gupta �Gupta� ����� in parallelizing expert systems at the match level� it is of
considerable practical interest to determine whether there are also intrinsic limits
on the degree of parallelism which can be exploited at the rule level in production
systems� More generally� by demonstrating high degrees of potential parallelism in
rule�based systems� it may be possible to generalize the results to other A�I� systems
which employ the same general paradigms�

The primary conclusion to report from this research� then� is that there do not
appear to be any intrinsic limits on the amount of parallelism available in parallel
rule��ring systems due to scheduling or control issues� what limits there may be
can be found in the applications for which� and the architectures upon which� the
system is implemented� This conclusion is based on a number of assumptions� �rst�
that serial con�ict resolution or rule�interaction detection algorithms are avoided�
that an asynchronous rule��ring policy is employed� and that� for large applications�
multiple lock managers will be employed to evade the �� overhead due working
memory locking� As reported in the previous chapter� a potential bottleneck exists
due to contention for resources within the pattern matcher� but can be largely
avoided through use of low�level parallelism� redesign of the pattern�matcher� and
restructuring of the rulebase�

��� Contributions

The contributions of this research stem from a simple observation� any serial
delay between the instantiation of rules and their execution would seriously reduce
the number of rules which can be executed concurrently� This hypothesis was

���

supported by the experiments described in Chapters � and �� These experiments
veri�ed that serial con�ict resolution or rule�interaction detection could limit parallel
activity to a single order of magnitude� the limit was based on an analysis of the
ratio rule��ring times to the necessary serial overhead of control and correctness
activities� The level of granularity of rule executions simply makes any activity which
relies on pairwise comparison between rules 	and the attendant synchronization
 an
unacceptable bottleneck� The major problem attacked in this thesis is how to reduce
or eliminate the serial overhead of control and rule�interaction detection� the two
main sequential activities which are carried out in a processing phase distinct from
rule execution and matching activity� Because the emphasis of this research is on
increasing the parallel activity available in a rule��ring system� consideration has
also been given to reducing the serial bottlenecks associated with imposing sequential
control activities on rules� this is achieved by providing enhanced RHS mapping and
iteration operators� incorporating a set�oriented syntax into OPS� and by allowing
precise application of match and action�level parallelism to reduce the overhead of
single�rule bottlenecks�

In the pursuit of the elimination of serial bottlenecks in parallel rule��ring
systems� this research has made contributions in three interrelated areas� the
correctness of parallel rule��ring systems� the control of rule �ring� and the design of
systems to exploit parallelism� both at the rule level and at lower levels of granularity�
These areas are interrelated in that one can design rule�based systems to minimize
the runtime overhead of correctness checking and the presence of serializing control
constructs� while the mechanisms for controlling rule �ring and ensuring correctness
in�uence and constrain the design of the system�

����� Control and Rule�Firing Policies

This thesis proposes two novel rule��ring policies for parallel production systems�
an asynchronous rule��ring policy which allows rules to execute as soon as they
become enabled� and a task�based control system in which tasks can execute asyn�
chronously with respect to each other while executing rules either asynchronously or
synchronously within the context of an individual task� Previous implementations
of parallel rule��ring systems have retained the synchronizing con�ict resolution
phase of processing which requires that all eligible rules be detected before con�ict
resolution can take place� The synchronization cost of con�ict resolution is high
because the arrival time of rules in the con�ict set cannot be expected to be
simultaneous� rule execution times are not necessarily uniform and multiple rules
stimulated by the same working memory change necessarily will be instantiated in
a staggered fashion� Due to this serialization delay� eligible rules may remain in the
con�ict set for a considerable length of time while processing resources remain idle�
After con�ict resolution occurs� multiple rules must be launched simultaneously�

���

causing potential contention for shared resources in the scheduler and pattern
matcher�

������� The Asynchronous Rule�Firing Policy

An asynchronous rule��ring policy was developed which eliminated the synchro�
nizing con�ict resolution phase by allowing rules to execute as soon as they became
instantiated� To avoid race conditions� the criteria for rule��ring correctness were
extended to describe the conditions under which rules may be �red asynchronously�
Speci�cally� the concept of monotonic entrance into the con�ict set was introduced
and local synchronizing constructs were added to the RHS syntax of UMPOPS
to avoid transient instantiations caused by parallel assertion of working memory
elements�

In an experiment using a highly parallel benchmark 	Section �����
� the overhead
of synchronous con�ict resolution under the most favorable circumstances� rules of
roughly equal execution time and no actual processing during the con�ict resolution
phase� produced a degradation of performance of approximately ��� compared to
an asynchronous rule execution policy with an equal number of processors�

The results of this experiment led to the question� �Is synchronous con�ict
resolution avoidable��� This thesis argues that� for most applications� serial con�ict
resolution can� in fact� be eliminated� Observation of the use of the con�ict
resolution in many benchmark programs reveals that con�ict resolution is used
almost exclusively for program sequencing purposes�When these program sequencing
constructs are replaced by imperative RHS code and�or annotated control rules
which are coordinated by the scheduler rather than the matching process� the
resulting rules sets can� in most cases� be executed non�deterministically� that is�
without requiring any decisions about rule �ring order�

������� Heuristic Control in Asynchronous Rule�Firing Systems

Not all rule�based programs can support completely non�deterministic rule�
�ring� The canonical example of an application which requires order and pruning
decisions to be made is heuristic search� Although conventional rule�based systems
cannot represent search easily� performing search by mapping a computation into an
AND�OR tree is one way to exploit concurrency in a parallel rule��ring system� The
fact that rules coexisting in the con�ict set represent alternate search paths does
not automatically imply that all rules can or should be executed simultaneously
in a search for the best possible solution� Although this may be true in cases in
which there are only a few alternate solution paths and the paths are fairly short�
in many cases� there may be many alternate solutions� each representing a sizable
investment in resources to investigate� It is inevitable in such cases that examining
all possible alternatives would saturate the available processing resources� Thus�

���

rules representing alternative operators must be sorted according to importance
and pruned as they become redundant or unnecessary�

For those applications which require distinctions to be made between eligible
rules� it was necessary to demonstrate that the heuristic control could take place
incrementally with little or no degradation of solution quality� The Travelling
Salesperson problem was chosen as a heuristic search task which is characteristic
of a wide class of A�I� problem�solving activities� A control architecture which
allows heuristic pruning and ordering to be applied at several points in the rule��ring
cycle� match� instantiation� scheduling and execution time was described� Using this
architecture and the Travelling Salesperson benchmark� experiments demonstrated
that the number of rule executions required during asynchronous rule��ring with
incremental control activities was virtually identical to the number of rules �red
using a serial best��rst rule��ring policy� The explanation for this result� which in
turn justi�es asynchronous incremental control� is that in a system which attempts
to derive an optimal solution� the use of admissible 	underestimating
 heuristics
requires that even after the solution has been found� considerable additional search
must be performed to ensure that no better solution exists� Informally� we can divide
the set of rules which become eligible during the course of the search process into
two groups� rules which� once the solution has been identi�ed� can be pruned using
the heuristic� and rules which must be executed regardless� Parallel asynchronous
execution becomes ine�cient only if signi�cant numbers of the former group get
executed� This happens only if a reasonably good approximation of the solution
is not developed quickly� or if the available number of processors is so large that
even low priority rules get executed� Thus� we can conclude that minor deviations
in rule�ordering from a strictly best��rst search due to asynchronous rule��ring do
not result in extraneous or redundant rule �rings� Because the heuristic used is
admissible and rules are pruned only if they exceed cost of the lowest cost solution
developed� we can also be sure that the correct answer will be developed�

������� Task�based Rule�Firing Policies

Occasional applications will require strict adherence to best��rst execution�
for example� the Alexsys program described in Section ��� requires that rules
be evaluated in a speci�c order in order to reduce database fragmentation� A
task�based architecture was described in Section ��� which allows multiple tasks
to execute asynchronously with respect to each other while executing rules either
asynchronously or synchronously and with user�de�ned con�ict resolution schemes
within the scope of a single task� When con�ict resolution schemes are de�ned
within the context of a task� all rules which execute in the context of that task must
be synchronized and all match operations in the context of that task must become
quiescent before the task�s next rule 	or set of rules
 can be executed� Tasks are
a control mechanism and do not guarantee data independence� when tasks which

���

access the same pool of working memory are allowed to execute asynchronously with
respect to each other� the question of determining quiescence becomes quite di�cult�
This thesis suggests partitioning the rule set into multiple sets of working memory�
those which are required to be quiescent before a task can execute and those elements
for which quiescence is desirable� but not necessary� Currently� determining local
quiescence in a multiple task system remains a research problem�

����� Explicit Control of Programming Sequencing

The control of program sequencing in production systems takes two forms� phase
transitions and trivial iterative operations�

The di�culty of phase transitions lies in ensuring that sets of rules which share
a producer�consumer relationship execute in the correct order� A method was
described in Section ���� for annotating rules whose purpose is to sequence or
control a computation� By allowing the scheduler to �re these rules only when
quiescence has been achieved among domain rules� interactions which could result
in the non��ring of domain rules are avoided� An additional bene�t of explicit
annotation of control rules is that the use of the speci�city condition of con�ict
resolution for control purposes is no longer necessary� this language feature alone
made the standard MEA and LEX con�ict resolution routines virtually unnecessary in
applications written in UMPOPS�

Iterative operations are composed of repetitive operations performed over sets
of working memory elements� In OPS� such operations are carried out by multiple
sequential rule invocations� This is ine�cient because the overhead of con�ict res�
olution and matching is encountered during each iteration� UMPOPS provides two
mechanisms for composing multiple rule executions into one� mapping operations
and a set�oriented syntax� The set�oriented syntax allows a single rule�instantiation
to match a set of patterns� the righthand side of the rule is then mapped over
members of that set� A similar mapping operation is available to reduce the overhead
in manipulating working memory elements containing vectors�

��� Correctness

Based on the cost analysis and experiments described in Chapter �� this research
argues in favor of replacing techniques for guaranteeing full serializability with a
working memory locking scheme which does not guarantee correctness but which
provides su�cient expressive power to allow correct programs to be designed� based
on a semantic analysis of the role of each rule in a computation� Comparison of
the overhead imposed by the working memory locks with a full run�time analysis
of rule interactions indicates that at least a full order of magnitude improvement in
performance can be expected by designing programs so that run�time rule interaction
detection is not required�

��

The design viewpoint espoused in this thesis is a departure from the classical
view of production systems in which rules are assumed to be completely data�driven
and �re independently of each other� instead� it accepts 	and exploits
 the de facto
state of a�airs which is that well�understood AI paradigms such as heuristic search�
planning� and goal�directed problem�solving are routinely imposed upon rule�based
computations� The view that the rule�based computation has an algorithmic
structure allows us to attach a semantics to rule �ring� By examining the role of
each rule in the overall computation� we can understand and begin to �nd a solution
to the problems of controlling rule �ring and ensuring correctness while maximizing
e�ective use of parallel processing resources� Chapter � described a partial taxonomy
of the semantic roles of productions in a computation and discussed methods and
language idioms for implementing each usage using only a positive locking scheme
with low overhead�

Common idioms explored in this chapter can be summarized as follows�

� Search� Con�icting rules can frequently be interpreted as competing operators
in a search space� By mapping the execution of each rule into a discrete state
space� the execution of such rules can take place without the necessity for
interference detection mechanisms or even locking schemes� These savings may
be o�set by the need for copying of working memory states� Two methods
of implementing discrete state spaces for search are described� one which
simply annotates working memory 	and thus imposes a partitioning cost on
the pattern�matcher
 and one which actually partitions the memory of the Rete
net into discrete pools� thus allowing more complex states to be represented
more easily� A programming idiom for merging the results of parallel search
was developed� although such idioms must test for the prior non�existence of
a working memory element� the use of the make�unique operator allows the
merge idiom to be implemented without recourse to either region locks or full
run�time interaction detection mechanisms�

� Resource Allocation� The use of working memory elements to represent re�
sources in con�guration problems was discussed and a transformation was
described for converting rules which contained tests for the non�existence of
a condition to positive tests for speci�c enumerable resources which could be
guaranteed to be correct using standard database locking techniques�

� Mode�changing or sequencing rules� Mode�changing rules are those which
modify working memory elements in order to activate or deactivate sets of rules
corresponding to computational phases� These rules will always disable rules
within the phase in which they terminate� Because these rules are typically
coexistent in the con�ict set with the domain rules� any rule interaction
detection algorithm must be avoid allowing the mode�changing rule to �re
in lieu of eligible domain rules� thus prematurely terminating a computational

���

phase� The annotation scheme described previously avoids this problem by
allowing the scheduler to perform the arbitration� rather than the pattern
matcher�

� Data Parallelism� When a direct one�to�one correspondence can be made
between �real�world� objects and working memory elements� then operations
can usually be applied independently to each working memory object� If objects
are interconnected 	e�g�� semantic nets� graphs� or circuit representations
� then
only interactions propagated through the interconnections represent potential
sources of con�ict� Because these interactions are localized and purposeful�
the propagation mechanisms can usually be modi�ed so that positive locking
mechanisms are su�cient to maintain correctness�

��� UMPOPS� A System for Benchmarking Parallel

Rule�based Programs

The assertions made about the overhead of control activities and the de�
tection of rule interactions have been empirically veri�ed using UMass Parallel
OPS 	UMPOPS
� a Lisp�based version of OPS which supports parallelism at
the rule 	instance
� action� and match levels and is extensively instrumented to
record critical timing data about the execution of rules in parallel� The ability to
experiment with parallel rule��ring schemes using a working system distinguishes
this research from much previous research in this area� Although systems which
provided match parallelism have been available for some time �Kalp et al�� �����
Tambe et al�� ������ most results on rule parallelism have been simulated 	there are

recent exceptions� for example �Kuo et al�� ����� Boulanger� ����� Harvey et al��
�����
�

Early use of the UMPOPS system to explore rule parallelism led to the �rst
empirical observations of the serializing nature of con�ict resolution when executing
rules in parallel and motivated the development of the the parallel asynchronous
rule��ring model� The experience with con�ict resolution led to the hypothesis
that run�time rule�checking would also exhibit the tendency to limit parallelism by
imposing a synchronizing delay upon the system� These observations combined led
to the twin threads which run through this research� �rst� the design paradigm
underlying rule�based systems must be modi�ed to incorporate parallelism into the
design phase� and second� control activities must occur contemporaneously with rule
execution in order to provide adequate performance� In the process of developing
systems to test using UMPOPS� many modi�cations were made to the syntax and
capabilities of the language� including�

� A scheduler which supports synchronous� asynchronous� serial� and task�based
rule��ring policies�

���

� A �meta�syntax� which allows instructions to the scheduler to be attached
to rules which determine rule priority� locking requirements� and associated
heuristic functions� The meta�syntax also allows the programmer to explicitly
annotate control rules which are not to be executed until quiescence has been
reached for all domain rules�

� RHS constructs for the support of parallel activity� including explicit invocation
of match and action�level parallelism� local synchronization mechanisms� and
the make�unique operator which allows working memory elements to be created
uniquely�

� An optional set�oriented syntax and RHS mapping functions for eliminating
unnecessary sequential invocation of rules�

Largely because of its Lisp implementation� UMPOPS is highly �exible� allowing
experimentation with several variations of the scheduler and rule�demon processes�
Multiple experimental versions of UMPOPS have been devised including one which
employs a partitioned Rete net to support parallel search using a multiple�worlds
paradigm 	see Section ��
 and a version which guarantees serializable results using a
full locking scheme including checks for disabling conditions due to negated condition
elements 	see Section �����
� Although not as fast as versions of OPS employing
compiled versions of the Rete net� UMPOPS running serially is signi�cantly faster
than the public domain version of OPS due to its use of hashed memories and
multiple optimizations� When executing rules in parallel� execution speeds of greater
than ��� rules�second have been measured in UMPOPS for very simple programs�
and rule execution rates of greater than ��� rules�second are not uncommon�

One surprising observation about UMPOPS is the parsimony of the language
constructs required to support the design of correct parallel programs which require
only positive working memory locks� The only novel constructs required to support
the design of the benchmarks described in this thesis were themake�unique� task� and
group synchronization operators� It remains to be seen whether additional language
constructs will be required to support more complex real�world applications�

��� Future Work

This thesis has laid the foundation for the design and control of parallel rule�
�ring systems� but much research remains to be done� A formal theory needs to be
developed which describes the range of problems which can be solved using only a
simple locking scheme� While I claim that positive locking is su�cient for resolving
most of the rule interactions encountered in common algorithms superimposed upon
the rule�based paradigm� the limits of this approach are not yet known� The
discussion of design techniques in Chapter � is largely anecdotal� It would be
desirable to characterized the completeness and representational adequacy of the

���

UMPOPS language� speci�cally enumerating the kinds of algorithms that can be
handled using the language constructs provided� Since a complete enumeration of
rule uses is lacking� many more parallel rule��ring programs will have to be developed
before any kind of theory of software engineering for parallel rule��ring systems can
be developed�

This dissertation has not discussed the limitations which shared memory archi�
tectures might impose upon parallel rule��ring� If bus contention or cache failures
become a problem� then very low�level programming techniques may be required to
provide adequate performance� For example� the memories of nodes in the Rete net
could be designed so that hash buckets fall on distinct pages of memory� so multiple
processes could access the same node without causing memory cache failures and
excessive bus tra�c�

The questions of scaling up the size of applications� working memory� and
rules have not been completely addressed� Alexsys is the one benchmark program
discussed which supports both complex rules and large databases� The argument
for avoiding full run�time rule interaction detection and serial con�ict resolution
has been based on measurements of the ratio of these activities to rule execution
times� Whether these observations would remain valid for applications with large
and complex lefthand sides or very large working memories remains to be seen�

The control idioms devised for UMPOPS are limited� if one assumes that the
tradition of imposing complex algorithms on the rule�based paradigm will continue�
then the language must be extended to support these algorithms� Although there
is support for search and single level task activations� more complex problems
will require language constructs for managing hierarchies of goals and subgoals so
that redundant goals can be eliminated while important subgoals are prioritized�
UMPOPS does not provide any mechanisms for supporting truth maintenance�
thus� some loss of concurrency is inevitable due to local and global synchronization�
Constructs for supporting optimistic concurrency and asynchronous retraction of
rule��rings such as those proposed by Wolfson�Wolfson et al�� ����� should be studied
to determine whether they can be implemented in a cost�e�ective manner�

At the implementation level� there are a number of enhancements which could
be made to the UMPOPS language� Compilation of the Rete net would increase
the speed of the system considerably� A number of modi�cations would allow more
e�cient match�level parallelism� Currently� match�level parallelism is ine�cient
because nodes which require very little computation are parallelized� saturating of
the processing demons� �Gating� nodes which match single modal elements against
large numbers of working memory elements in the opposing memory cannot be
parallelized e�ciently because UMPOPS does not support �ne�grained intra�node
parallelism� This research has revealed a number of de�ciencies within the Rete
matching algorithm itself� including the inability to e�ciently support a number of
common idioms� including counting and sorting elements� A frustrating de�ciency
of UMPOPS from an AI point of view is the inability of the Rete pattern matcher

���

to improve its performance for a given rule set over a number of trials� A promising
research area is the devising of mechanisms to allow the Rete net to learn charac�
teristics of a rule set and modify itself to more e�ciently match incoming working
memory elements�

A P P E N D I X A

The Toru�Waltz Benchmark

	

	 INITIAL OPS
 VERSION OF WALTZ�S ALGORITHM by Toru Ishida

	

	 Modified by Dan Neiman

	 COINS Dept�

	 University of Massachusetts

	 ������� Added possible�line�label element� One element is added

	 for each possible labelling of each end of each line� This allows

	 easy testing for consistent line labelling without proliferation of rules�

																																																																															

																																																																															

	 	

	 Data � Knowledge Structure for Waltz�s Algorithm 	

	 	

																																																																															

																																																																															

�literalize possible�junction�label junction�type line�� line�� line���

�literalize junction junction�type junction�ID line�ID�� line�ID�� line�ID���

�literalize labelling�candidate junction�ID line�� line�� line�� l�c�ID�

�literalize possible�line�label line candidate junction label�

																																														

	 Knowledge of Possible Junction Labeling 	

																																														

	�literalize possible�junction�label junction�type line�� line�� line���

	 �

	 Junction type � L � � �

	 V

���

�p initialize

�meta �no�lock�required t��

�stage initialize� ��� 	�remove �� �make stage make�data�

�in�parallel�sync

�make possible�junction�label �junction�type L

�line�� out �line�� in �line�� nil�

�make possible�junction�label �junction�type L

�line�� in �line�� out �line�� nil�

�make possible�junction�label �junction�type L

�line�� � �line�� out �line�� nil�

�make possible�junction�label �junction�type L

�line�� in �line�� � �line�� nil�

�make possible�junction�label �junction�type L

�line�� � �line�� in �line�� nil�

�make possible�junction�label �junction�type L

�line�� out �line�� � �line�� nil�

	 � � �

	 Junction type� FORK V

	 � l

�make possible�junction�label �junction�type FORK

�line�� � �line�� � �line�� � �

�make possible�junction�label �junction�type FORK

�line�� � �line�� � �line�� � �

�make possible�junction�label �junction�type FORK

�line�� in �line�� � �line�� out�

�make possible�junction�label �junction�type FORK

�line�� � �line�� out �line�� in �

�make possible�junction�label �junction�type FORK

�line�� out �line�� in �line�� � �

	 � ����� �

	 Junction type� T l

	 l�

�make possible�junction�label �junction�type T

�line�� out �line�� � �line�� in�

�make possible�junction�label �junction�type T

�line�� out �line�� � �line�� in�

���

�make possible�junction�label �junction�type T

�line�� out �line�� in �line�� in�

�make possible�junction�label �junction�type T

�line�� out �line�� out �line�� in�

	 l�

	 Junction type� ARROW � l � �

	 l� �

�make possible�junction�label �junction�type ARROW

�line�� in �line�� � �line�� out�

�make possible�junction�label �junction�type ARROW

�line�� � �line�� � �line�� � �

�make possible�junction�label �junction�type ARROW

�line�� � �line�� � �line�� � ���

																										

	 Scene to be Analyzed 	

																										

	�literalize junction junction�type junction�ID line�ID�� line�ID�� line�ID���

	

	 �������������

	

	

	 A B

	 � �

	 � � � � � �

	 C � D �

	
l�� � l� �

	 E ���l � � l � �

	 l�� l � � � �l �� �

	 l l F l� � � l � �

	 l l�� l�� �� G � l� � �

	 ��l l� l � l � �

	 l l l L� M l �� �

	 l l��K� l � ���� O

	 H l l� ��
 l�� �� ��� N��l

	 � ��l P �� l� � Q �� l l l

	 l ��J l� � l l� � ��l l�� l

	 l �� l � � l l � � �l l l

	 l �� l � � l l � � l l l

	 l R l ��� �l l ��� � l l V

	 l��� � ��l �� T � ��l �� � l l

	 l �� �l � �
 �l � W�l l

	 l �S l U � l V � � l

���

	 ��l l l l l l�� l

	 l ��l X� ��l� Y� �l l

	 l l� � l � ��l l

	 l l � l � l l

	 Z � l �� � l � l DD

	 � l �
� l �� ��� l ��

	 ��� l � l � l

	 �l �l �l

	 AA BB CC

	

	 ����������

�p make�data

�meta �no�lock�required t��

�stage initialize�

���

	�remove ��

	�make stage enumerate�possible�candidates�

�in�parallel�sync

�make junction �junction�type L �junction�ID A

�line�ID�� � �line�ID�� � �line�ID�� NIL�

�make junction �junction�type L �junction�ID B

�line�ID�� � �line�ID�� � �line�ID�� NIL�

�make junction �junction�type ARROW �junction�ID C

�line�ID��
 �line�ID�� �� �line�ID�� ��

�make junction �junction�type ARROW �junction�ID D

�line�ID�� � �line�ID�� � �line�ID�� ��

�make junction �junction�type ARROW �junction�ID E

�line�ID�� �� �line�ID�� �� �line�ID�� ��

�make junction �junction�type FORK �junction�ID F

�line�ID�� �� �line�ID�� �� �line�ID��
�

�make junction �junction�type L �junction�ID G

�line�ID�� � �line�ID�� � �line�ID�� NIL�

�make junction �junction�type FORK �junction�ID H

�line�ID�� �� �line�ID�� �� �line�ID�� ���

�make junction �junction�type ARROW �junction�ID J

�line�ID�� �� �line�ID�� �� �line�ID�� ���

�make junction �junction�type FORK �junction�ID K

�line�ID�� �� �line�ID�� �� �line�ID�� �
�

���

�make junction �junction�type FORK �junction�ID L

�line�ID�� � �line�ID�� �� �line�ID�� ��

�make junction �junction�type FORK �junction�ID M

�line�ID�� � �line�ID�� �� �line�ID�� ���

�make junction �junction�type FORK �junction�ID N

�line�ID�� � �line�ID�� �� �line�ID�� ���

�make junction �junction�type ARROW �junction�ID O

�line�ID�� � �line�ID�� �� �line�ID�� ���

�make junction �junction�type ARROW �junction�ID P

�line�ID�� �� �line�ID�� �� �line�ID�� ���

�make junction �junction�type ARROW �junction�ID Q

�line�ID�� �
 �line�ID�� �� �line�ID�� ���

�make junction �junction�type ARROW �junction�ID R

�line�ID�� �� �line�ID�� �� �line�ID�� ���

�make junction �junction�type FORK �junction�ID S

�line�ID�� �� �line�ID�� �� �line�ID�� ���

�make junction �junction�type ARROW �junction�ID T

�line�ID�� �� �line�ID�� �� �line�ID�� �
�

�make junction �junction�type FORK �junction�ID U

�line�ID�� �� �line�ID�� �� �line�ID�� �
�

�make junction �junction�type FORK �junction�ID V

�line�ID�� �� �line�ID�� �� �line�ID�� ���

�make junction �junction�type ARROW �junction�ID W

�line�ID�� �� �line�ID�� �� �line�ID�� ���

�make junction �junction�type FORK �junction�ID X

�line�ID�� �� �line�ID�� �� �line�ID�� �
�

�make junction �junction�type FORK �junction�ID Y

�line�ID�� �� �line�ID�� �� �line�ID�� ���

�make junction �junction�type L �junction�ID Z

�line�ID�� �� �line�ID�� �� �line�ID�� NIL�

�make junction �junction�type ARROW �junction�ID AA

�line�ID�� �� �line�ID�� �� �line�ID�� ���

�make junction �junction�type ARROW �junction�ID BB

�line�ID�� �� �line�ID�� �� �line�ID�� �
�

��

�make junction �junction�type ARROW �junction�ID CC

�line�ID�� �� �line�ID�� �� �line�ID�� ���

�make junction �junction�type L �junction�ID DD

�line�ID�� �� �line�ID�� �� �line�ID�� NIL���

																																	

	 Temporal Labelling Candidates 	

																																	

	�literalize labelling�candidate junction�ID line�� line�� line���

																																																																													

																																																																													

	 	

	 Production Rules for Waltz�s Algorithm 	

	 	

																																																																													

																																																																													

									

	 Start 	

									

�p start�Waltz

�meta �no�lock�required t��

�start�

���

�remove ��

�make stage initialize��

																																	

	 Enumerate Possible Candidates 	

																																	

�p enumerate�possible�candidates

�meta �no�lock�required t��

�stage initialize�

�junction �junction�type �j�type� �junction�ID �j�ID�

�line�ID�� �l�� �line�ID�� �l�� �line�ID�� �l���

�possible�junction�label �junction�type �j�type�

�line�� �line��� �line�� �line��� �line�� �line����

��labelling�candidate �junction�ID �j�ID�

�line�� �line��� �line�� �line��� �line�� �line����

���

�bind �l�c�ID� �ngenatom��

�make labelling�candidate �junction�ID �j�ID� �l�c�ID �l�c�ID�

�line�� �line��� �line�� �line��� �line�� �line����

���

�make possible�line�label �line �l�� �label �line��� �candidate �l�c�ID�

�junction �j�ID��

�make possible�line�label �line �l�� �label �line��� �candidate �l�c�ID�

�junction �j�ID��

�make possible�line�label �line �l�� �label �line��� �candidate �l�c�ID�

�junction �j�ID���

�p go�to�reduce�candidates

�meta �rtype mode�changer�

�no�lock�required t��

�stage initialize�

���

�remove�match�parallel ��

�make�match�parallel stage reduce�candidates��

																					

	 Reduce Candidates 	

																					

	If a line is labelled ��� on one end� than it must be labelled ��� on the

	other end�

�P consistent�plus

�stage reduce�candidates�

��line��possible�line�label �line �line� �junction �junction�

�label � �candidate �c�� �

��l�c� �labelling�candidate �l�c�ID �c�� � 	find candidate which label belongs to�

��possible�line�label �line �line� �junction �� �junction� �label ��

���

�remove �line��

�remove �l�c���

	If a line is labelled ��� on one end� than it must be labelled ��� on the

	other end�

�P consistent�minus

�stage reduce�candidates�

��line��possible�line�label �line �line� �junction �junction�

�label � �candidate �c�� �

��l�c� �labelling�candidate �l�c�ID �c�� � 	find candidate which label belongs to�

��possible�line�label �line �line� �junction �� �junction� �label ��

���

�remove �line��

�remove �l�c���

	If a line is labelled �in� on one end� than it must be labelled �out� on the

	other end�

�P consistent�in�out

�stage reduce�candidates�

��line� �possible�line�label �line �line� �junction �junction�

���

�label in �candidate �c�� �

��l�c� �labelling�candidate �l�c�ID �c�� � 	find candidate which label belongs to�

��possible�line�label �line �line� �junction �� �junction� �label out�

���

�remove �line��

�remove �l�c���

	If a line is labelled �out� on one end� than it must be labelled �in� on the

	other end�

�P consistent�out�in

�stage reduce�candidates�

��line� �possible�line�label �line �line� �junction �junction�

�label out �candidate �c�� �

��l�c� �labelling�candidate �l�c�ID �c�� � 	find candidate which label belongs to�

��possible�line�label �line �line� �junction �� �junction� �label in�

���

�remove �line��

�remove �l�c���

	When a labelling�candidate is deleted� we want to also delete all possible line

	labels associated with that labelling�candidate�

�P eliminate�line�labels

�stage reduce�candidates�

��old� �possible�line�label �candidate �c�� �

��labelling�candidate �l�c�ID �c��

���

�remove �old���

A P P E N D I X B

The Travelling Salesperson Problem

�TSP

	Travelling salesperson problem modified to incorporate the minimum

	spanning tree heuristic�

�literalize go �

�literalize home�city name�

�literalize start tag start�city length city�list�

�vector�attribute city�list�

�literalize connect�goal tag est�cost city� city� length city�list�

�literalize so�far tag distance cities�seen�

�vector�attribute cities�seen�

�literalize solution distance tag cities�seen�

	Note the use of the UNIQUE�ATTRIBUTE for the solution element�

�unique�attribute solution�

�literalize solution�goal distance tag cities�seen�

�literalize distance city� city� distance�

	Working memory element declarations for minimum spanning tree calculation

�literalize mst�city tag name flag�

�literalize goal�compute�mst cost�so�far seed�city tag unseen�cities�

�vector�attribute unseen�cities�

�literalize mst�data cost�so�far tag�

�vector�attribute city�list�

�literalize initialized value�

	����� Modified start�city to use new map�vector rhs�macro� This will

	cut down on instantiations of start�city and create new nodes to �open�

	in quick succession�

�p start�city

�meta �priority ���

��start� �start �start�city �sc� �length �length� � �

�initialized �value t�

���

�oremove ��

�map�vector �start� city�list �item �city� vector�less�item �vli��

�bind �tag� �ngenatom��

���

�in�parallel

�make connect�goal �tag �tag� �city� �sc� �city� �city�

�length �compute �length� � ��

�city�list �vli��

�make so�far �tag �tag� �distance � �cities�seen �sc����

�

�p finish�trip

�meta �priority �� �control�fn compare�new�solution�with�solution�

�control�generator

��gen�control�data �tsp�distance�

�ari ��d�so�far� � �d� � �d��������

��sofar� �so�far �tag �tag� �distance �d�so�far� �cities�seen �start�city� � �

��cg� �connect�goal �tag �tag� �city� �city�� �city� �city�� �length � � �

�distance �city� �city�� �city� �city�� �distance �d��

�distance �city� �city�� �city� �start�city� �distance �d�� �

���

�bind �cities�seen� �litval cities�seen��

�make solution�goal �distance �compute �d�so�far� � �d� � �d�� �

�cities�seen �substr �sofar� �cities�seen� inf� �city�� �start�city���

	Use action parallelism to reduce the run time of rules which do a

	lot of processing in their righthand sides�

�p propagate�city�

�meta �priority �� �control�fn compare�with�solution�

�priority�queue t�

�lock�not�required t�

�priority�fn propagate�city�priority�fn�

�

��sofar� �so�far �tag �tag� �distance �d�so�far� � �

��cg� �connect�goal �tag �tag� 	�est�cost ��� nil �e�cost��

�city� �city�� �city� �city�� �length � �
 �l� � � �

�home�city �name �home��

�distance �city� �city�� �city� �city�� �distance �d��

���

�bind �cities�seen� �litval cities�seen��

�map�vector �cg� city�list � item �new�city� vector�less�item �vli��

�bind �newtag� �ngenatom��

�in�parallel

�make connect�goal �tag �newtag� �city� �city�� �city� �new�city�

�length �compute �l� � ��

�city�list �vli� �

�make so�far �tag �newtag� �distance �compute �d�so�far� � �d��

�cities�seen �substr �sofar� �cities�seen� inf� 	previously visited

�city�� � 	and the new city

���

	No action parallelism in righthand sides as by the time these rules are

	invoked� full rule parallelism will be in use�

�p propagate�city�lt�

�meta �priority �� �control�fn compare�with�solution�

���

�priority�queue t�

�lock�not�required t�

�priority�fn propagate�city�priority�fn�

	make control generator an externally compiled function���

�

��sofar� �so�far �tag �tag� �distance �d�so�far� � �

��cg� �connect�goal �tag �tag� 	�est�cost ��� nil �e�cost��

�city� �city�� �city� �city�� �length � � � �
 �l� � � �

�home�city �name �home��

�distance �city� �city�� �city� �city�� �distance �d��

���

�bind �cities�seen� �litval cities�seen��

�map�vector �cg� city�list � item �new�city� vector�less�item �vli��

�bind �newtag� �ngenatom��

�make connect�goal �tag �newtag� �city� �city�� �city� �new�city�

�length �compute �l� � ��

�city�list �vli� �

�make so�far �tag �newtag� �distance �compute �d�so�far� � �d��

�cities�seen �substr �sofar� �cities�seen� inf� 	previously visited

�city�� � 	and the new city

��

�p init�distance�table

�start�

 �distance �city� �c�� �city� �c�� �distance �d��!

���

�map�set

�add�to�distance�table �"varbind ��c��� �"varbind ��c���

�"varbind ��d����

�make initialized �value t��

�p start

�go�

���

�in�parallel�sync

�make start �start�city NY �length �

�city�list SEATTLE HTFD SF CHI PHOENIX BOSTON�

�make home�city �name NY�

�make distance �city� NY �city� SF �distance �����

�make distance �city� NY �city� HTFD �distance �� �

�make distance �city� NY �city� SEATTLE �distance �
���

�make distance �city� NY �city� CHI �distance �
���

�make distance �city� NY �city� PHOENIX �distance �����

�make distance �city� NY �city� BOSTON �distance ����

�make distance �city� SF �city� HTFD �distance �����

�make distance �city� SF �city� SEATTLE �distance �
��

�make distance �city� SF �city� CHI �distance �����

���

�make distance �city� SF �city� NY �distance �����

�make distance �city� SF �city� PHOENIX �distance ��
��

�make distance �city� SF �city� BOSTON �distance �����

�make distance �city� SEATTLE �city� SF �distance �
��

�make distance �city� SEATTLE �city� HTFD �distance �����

�make distance �city� SEATTLE �city� NY �distance �
���

�make distance �city� SEATTLE �city� CHI �distance �����

�make distance �city� SEATTLE �city� PHOENIX �distance �����

�make distance �city� SEATTLE �city� BOSTON �distance �����

�make distance �city� CHI �city� NY �distance �
���

�make distance �city� CHI �city� SF �distance �����

�make distance �city� CHI �city� HTFD �distance ��
��

�make distance �city� CHI �city� SEATTLE �distance �����

�make distance �city� CHI �city� PHOENIX �distance �����

�make distance �city� CHI �city� BOSTON �distance �����

�make distance �city� HTFD �city� NY �distance ���

�make distance �city� HTFD �city� SF �distance �����

�make distance �city� HTFD �city� SEATTLE �distance �����

�make distance �city� HTFD �city� CHI �distance ��
��

�make distance �city� HTFD �city� PHOENIX �distance ��
��

�make distance �city� HTFD �city� BOSTON �distance ����

�make distance �city� PHOENIX �city� NY �distance ��
��

�make distance �city� PHOENIX �city� HTFD �distance �����

�make distance �city� PHOENIX �city� SF �distance �����

�make distance �city� PHOENIX �city� SEATTLE �distance �����

�make distance �city� PHOENIX �city� CHI �distance �����

�make distance �city� PHOENIX �city� BOSTON �distance �����

�make distance �city� BOSTON �city� NY �distance ����

�make distance �city� BOSTON �city� SF �distance �����

�make distance �city� BOSTON �city� SEATTLE �distance �����

�make distance �city� BOSTON �city� CHI �distance �����

�make distance �city� BOSTON �city� HTFD �distance ����

�make distance �city� BOSTON �city� PHOENIX �distance ��
��

�

�init�distance�table
�

�

	If better solution found� propagate it�

	Note� Without locking mechanism� this rule has two error modes�

	depending on when remove is performed� If the remove comes

	second� then there will be two solutions for a brief period�

���

	Another rule might fire on the old solution value� and create

	a superfluous solution �or� in some systems� might overwrite the

	new� better solution�� If the remove comes first� then there

	will be a brief period in which no solution exists� in which

	case an init production referencing ��solution� might fire�

�p init�solution

�meta �priority ���

��new� �solution�goal �distance �dist� �tag �tag� � �

��solution�goal �distance � �dist��

��solution�

���

�bind �cities�seen� �litval cities�seen��

�make�unique solution �tag �tag� �distance �dist�

�cities�seen �substr �new� �cities�seen� inf���

	Now here�s an application for functionally accurate programming�

	Note that this rule may fire� even though� while it�s firing�

	a solution�goal whose distance is � �dist� may appear� in

	effect disabling this rule� But� because solution is locked�

	competing rule won�t fire until new solution is postulated� so

	no harm is done� and correct solution eventually becomes asserted�

�p new�and�improved

�meta �priority ���

��new� �solution�goal �distance �dist� �tag �tag� � �

��solution�goal �distance � �dist��

��old� �solution �distance � �dist� �tag �oldtag�� �

���

�bind �cities�seen� �litval cities�seen��

�make solution �tag �tag� �distance �dist�

�cities�seen �substr �new� �cities�seen� inf��

�remove �old��

�

���

	SALES�CONTROL�LISP

	These are the lisp functions used to implement heuristic control

	in the travelling salesperson program�

�defvar �solution�so�far� nil �The solution generated so far��

	A list of variables to be reset before each run�

�defvar �control�variables� ���solution�so�far���

	A pruning function which determines if a new solution is better than

	the current solution� If so� records the new value and returns t�

�defun compare�new�solution�with�solution�instance�

�declare �optimize �speed �� �safety �� �space ����

�Compare�with�solution�control�data�� Control�data is an a�list derived from

the rule�instance�control�data slot� If the control function returns a

non�nil value� the rule should be executed� otherwise it should be pruned��

�let ��new�solution �cdr �assoc ��tsp�distance�

�rule�instance�control�data instance�����

�cond ��not �solution�so�far��

�setf �solution�so�far� new�solution��

��� new�solution �solution�so�far��

�setf �solution�so�far� new�solution��

�t

nil 	indicating bad rule �� don�t execute

����

	This function is used to compare a developing solution with a complete solution�

	If the developing solution ever exceeds the current best� then return nil�

	If no current best solution� return t�

�defun compare�with�solution�instance�

�declare �optimize �speed �� �safety �� �space ����

�Compare�with�solution�control�data�� Control�data is an a�list derived from

the rule�instance�control�data slot� If the control function returns a

non�nil value� the rule should be executed� otherwise it should be pruned��

�if �solution�so�far�

�� �rule�instance�rating instance� 	distance travelled � best�solution

�solution�so�far��

t��

	Priority computation for propagate city� Extracts relevant data from

	vector representation�

�defun propagate�city�priority�fn��

�� �"varbind ��d�so�far��

�compute�mst �list �"varbind ��city����

�cons �"varbind ��home��

�substr�to�list ��cg� �city�list �inf�����

	Minimum Spanning Tree Computation�

���

�defvar �distance�table� nil�

�defun init�distance�table�n�cities�

�setf �distance�table�

�new�dhash�table n�cities���

�defun add�to�distance�table�city� city� distance�

�let ��tmp �get�dhash city� �distance�table����

�set�dhash city�

�push �cons city� distance�

tmp�

�distance�table����

�defun do�mst�fn�city�list�

�compute�mst �list �car city�list��

�cdr city�list���

�defun compute�mst�seen�cities not�seen�cities�

�let ��min�so�far ��

�min�city nil�

�dist ���

�while not�seen�cities

�setf min�city �car not�seen�cities��

�setf min�so�far �apply #�min

�mapcar #��lambda�city��

�city�distance city� min�city��

seen�cities���

�mapc #��lambda�seen�

�mapc #��lambda�not�seen�

�setf dist �city�distance seen not�seen��

�cond ��� dist min�so�far�

�setf min�so�far dist�

�setf min�city not�seen����

�cdr not�seen�cities���

seen�cities�

�push min�city seen�cities�

�setf not�seen�cities �delete min�city not�seen�cities���

min�so�far��

�defun city�distance�city� city��

�cdr �assoc city�

�get�dhash city� �distance�table��

�test #�eq���

B I B L I O G R A P H Y

�Acharya and Tambe� ����� Acharya� Anurag and Tambe� Milind� Production sys�
tems on message passing computers� Simulation results and analysis� In ����
International Conference on Parallel Processing� pages II ������� August
�����

�Acharya et al�� ����� Acharya� Anurag� Tambe� Milind� and Gupta� Anoop� Im�
plementations of production systems on message passing computers� ����� To
appear in IEEE Transactions on Parallel and Distributed Computing�

�Blelloch� ����� Blelloch� G� E� CIS� A massively concurrent rule�based system� In
Proceedings of the Fifth National Conference on Arti�cial Intelligence� pages
������� August �����

�Boulanger� ����� Boulanger� Albert� The modi�cation of a rule�based diagnostic
system for routinized parallelism on the butter�yTechnical Report ����� BBN
Laboratories� Inc�� February �����

�Brownston et al�� ���� Brownston� Lee� Farrell� Robert� Kant� Elaine� and Martin�
Nancy� Programming Expert Systems in OPS � An Introduction to Rule�based
Programming� Addison�Wesley Publishing Company� ����

�Clocksin and Mellish� ����� Clocksin� W� F� and Mellish� C� S� Programming in
Prolog� Springer�Verlag� Berlin� New York� �����

�Conery� ����� Conery� John S� Parallel Execution of Logic Programs� Kluwer
Academic Publishers� Norwell� MA� �����

�Corkill� ����� Corkill� Daniel D� Design alternatives for parallel and distributed
blackboard systems� In Jagannathan� V�� Dodhiawala� Rajendra� and Baum�
Lawrence S�� editors� Blackboard Architectures and Applications� pages �������
Academic Press� �����

�Davis� ����� Davis� Randall� Meta�rules� Reasoning about control� Arti�cial
Intelligence� ���������� �����

�Decker et al�� ����� Decker� Keith S�� Garvey� Alan J�� Humphrey� Marty A�� and
Lesser� Victor R� E�ects of parallelism on blackboard system scheduling�
In Proceedings of the Twelfth International Joint Conference on Arti�cial
Intelligence� Sydney� Australia� August �����

���

�Delcambre and Etheredge� ����� Delcambre� Lois M� L� and Etheredge� James N�
A self�controlling interpreter for the relational production language� In SIG�
MOD� International Conference on Management of Data� pages �������� June
�����

�Delcher and Kasif� ����� Delcher� Arthur and Kasif� Simon� Some results on the
complexity of exploiting data dependency in parallel logic programs� The
Journal of Logic Programming� �	�
� May �����

�Feigenbaum and McCorduck� ����� Feigenbaum� Edward A� and McCorduck�
Pamela� The Fifth Generation � arti�cial intelligence and Japan�s computer
challenge to the world� Addison�Wesley� Reading� Mass� �����

�Fennell and Lesser� ����� Fennell� R� D� and Lesser� V� R� Parallelism in AI prob�
lem solving� A case study of Hearsay�II� IEEE Transactions on Computers�
C���	�
��������� February �����

�Forgy� ����� Forgy� C� L� On the E�cient Implementation of Production Systems�
PhD thesis� Carnegie�Mellon University� �����

�Forgy� ����� Forgy� C� L� Note on production systems and Illiac�IV� Technical
Report CMU�CS�������� CMU Computer Science Department� July �����

�Forgy� ����� Forgy� C� L� OPS user�s manual� Technical Report CMU�CS�������
CMU Computer Science Department� July �����

�Forgy� ����� Forgy� C� L� Rete� A fast algorithm for the many pattern�many object
pattern match problem� Arti�cial Intelligence� ��	�
������� �����

�Forgy� ����� Forgy� C� L� The OPS�� report� Technical Report CMU�CS��������
CMU Computer Science Department� May �����

�Friedman� ���� Friedman� Leonard� Controlling production �ring� The FCL
language� In Proceedings of the Ninth International Joint Conference on
Arti�cial Intelligence� pages ������� ����

�Fujimoto� ����� Fujimoto� Richard� Parallel discrete event simulation� Communi�
cations of the ACM� ��	��
������ �����

�Gamble� ����� Gamble� Roseanne Fulcomer� A methodology for developing correct
rule�based programs for parallel implementation� Thesis proposal� Washington
University� Sever Institute of Technology� �����

�George�� ����� George�� M� P� Procedural control in production systems� Arti��
cial Intelligence� ���������� �����

�Gordin and Pasik� ����� Gordin� Douglas N� and Pasik� Alexander J� Set�oriented
constructs� From Rete rule bases to database systems� In Proceedings ��th
ACM Symposium on PODS� pages ������ �����

���

�Gupta et al�� ����� Gupta� A�� Tambe� M�� Kalp� D�� Forgy� C�� and Newell� A�
Parallel implementation of OPS on the encore multiprocessor� Results and
analysis� International Journal of Parallel Programming� ��	�
� �����

�Gupta� ����� Gupta� Anoop� Implementing OPS production systems on DADO�
Technical Report CMU�CS������� CMU Computer Science Department�
�����

�Gupta� ����� Gupta� Anoop� Parallelism in Production Systems� Morgan Kauf�
mann Publishers� Los Altos� CA� �����

�Harvey et al�� ����� Harvey� Wilson� Kalp� Dirk� Tambe� Milind� McKeown� David�
and Newell� Allen� The e�ectiveness of task�level parallelism for production
systems� Journal of Parallel and Distributed Computing� ��	�
�������� De�
cember �����

�Hayes�Roth� ���� Hayes�Roth� Barbara� A blackboard architecture for control�
Arti�cial Intelligence� ���������� ����

�Hillyer and Shaw� ����� Hillyer� B� K� and Shaw� D� E� Execution of OPS
production systems on a massively parallel machine� Journal of Parallel and
Distributed Processing� August �����

�Ishida and Stolfo� ���� Ishida� T� and Stolfo� S� Towards the parallel execution of
rules in production system programs� In Proceedings of the IEEE International
Conference on Parallel Processing� pages ����� ����

�Ishida et al�� ����� Ishida� Toru� Yokoo� Makoto� and Gasser� Les� An organiza�
tional approach to adaptive production systems� In Proceedings of the Eighth
National Conference on Arti�cial Intelligence� pages ���� �����

�Ishida� ����� Ishida� Toru� Methods and e�ectiveness of parallel rule �ring� In
Sixth IEEE Conference on Arti�cial Intelligence Applications� March �����

�Ishida� ����� Ishida� Toru� Parallel rule �ring in production systems� IEEE
Transactions on Knowledge and Data Engineering� March �����

�Kalp et al�� ����� Kalp� Dirk� Tambe� Milind� Gupta� Anoop� Forgy� Charles�
Newell� Allen� Acharya� Anurag� Milnes� Brian� and Swedlow� Kathy� Parallel
OPS user�s manual� Technical Report CMU�CS�������� CMU Computer
Science Department� November �����

�Kelly and Seviora� ����� Kelly� Michael and Seviora� Rudolph� An evaluation
of DRete on CUPID for OPS matching� In Proceedings of the Eleventh
International Joint Conference on Arti�cial Intelligence� pages ������ �����

�Kleinrock� ���� Kleinrock� Leonard� Queueing Systems	 Volume I� Thoery� John
Wiley and Sons� ����

���

�Krall and McGehearty� ����� Krall� Edward J� and McGehearty� Patrick F� A case
study of parallel execution of a rule�based system� International Journal of
Parallel Processing� �	�
����� �����

�Kumar et al�� ����� Kumar� Vipin� Ramesh� K�� and Rao� V� Nageshwara� Parallel
best��rst search of state�space graphs� A summary of results� In Proceedings
of the Seventh National Conference on Arti�cial Intelligence� pages ��������
�����

�Kuo and Moldovan� ����� Kuo� Steve and Moldovan� Dan� Implementation of
multiple rule �ring production systems on hypercube� In Proceedings of the
Ninth National Conference on Arti�cial Intelligence� pages ������� �����

�Kuo et al�� ����� Kuo� Chin�Ming� Miranker� Daniel� and Browne� James C� On
the performance of the CREL system� Journal of Parallel and Distributed
Computing� ��	�
��������� December �����

�Lesser and Corkill� ����� Lesser� Victor R� and Corkill� Daniel D� Functionally
accurate� cooperative distributed systems� IEEE Transactions on Systems	
Man	 and Cybernetics� SMC���	�
������� January �����

�Lin and Kumar� ����� Lin� Yow�Jian and Kumar� Vipin� And�parallel execution
of logic programs on a shared�memory multiprocessor� The Journal of Logic
Programming� �����

�Maruyama et al�� ���� Maruyama� T�� Hirata� K�� Tanaka� H�� and Moto�oka� T�
A note on the elementary execution unit in a parallel inference machine� In
Logic Programming �� � Proceedings of the �th Conference� pages ����� July
����

�McCracken� ����� McCracken� Donald L� A Production System Version of the
Hearsay�II Speech Understanding System� UMI Research Press� Ann Arbor�
Michigan� �����

�McDermott and Forgy� ����� McDermott� J� and Forgy� C� Production system
con�ict resolution strategies� In Waterman� D� A� and Hayes�Roth� Frederick�
editors� Pattern�Directed Inference Systems� pages �������� Academic Press�
New York� New York� �����

�McDermott� ����� McDermott� J� R�� A rule�based con�gurer of computer sys�
tems� Technical Report CMU�CS�������� CMU Computer Science Depart�
ment� �����

�Miranker et al�� ����� Miranker� Daniel� Kuo� Chin�Ming� and Browne� James C�
Parallelizing transformations for a concurrent rule execution language� Tech�
nical Report TR������� Department of Computer Science� University of Texas
at Austin� October �����

���

�Miranker� ����a� Miranker� Daniel P� An algorithmic basis for integrating produc�
tion systems and large databases� In Proceedings of the Sixth International
Conference on Data Engineering� Los Angeles� CA� February �����

�Miranker� ����b� Miranker� Daniel P� TREAT� A New and E�cient Match Algo�
rithm for AI Production Systems� Morgan Kaufmann Publishers� Inc�� San
Mateo� California� �����

�Moldovan� ����� Moldovan� Dan I� A model for parallel processing of production
systems� In IEEE International Conference on Systems	 Man and Cybernetics�
pages ������ �����

�Moldovan� ����� Moldovan� D� I� Rubic� a multiprocessor for rule�based sys�
tems� IEEE Transactions on Systems	 Man	 and Cybernetics� ��	�
���������
July�August �����

�Morgan� ����� Morgan� K� BLITZ� A rule�based system for massively parallel
architectures� In Proceedings ���� ACM Conference for Lisp and Functional
Programming	 Snowbird	 Utah� �����

�Neiman� ����� Neiman� Daniel� Control issues in parallel rule��ring production
systems� In Proceedings of the Ninth National Conference on Arti�cial Intel�
ligence� pages �������� �����

�Neiman� ����a� Neiman� Daniel� Parallel OPS user�s manual and technical re�
port� COINS Technical Report ����� 	Supersedes TR ����
� Computer and
Information Sciences Dept�� University of Massachusetts� April �����

�Neiman� ����b� Neiman� Daniel E� A multiple worlds implementation for parallel
rule��ring production systems� August ����� Technical Report in preparation�

�Nii et al�� ����� Nii� H� Penny� Nelleke� Aiello� and Rice� James� Experiments
on cage and poligon� Measuring the performance of parallel blackboard
systems� In Gasser� Les and Huhns� Michael N�� editors� Distributed Arti�cial
Intelligence	 Vol� II� pages �������� Morgan Kaufmann Publishers� Inc�� �����

�O�azer� ����� O�azer� Kemal� Partitioning in parallel processing of production
systems� In Proceedings of the IEEE International Conference on Parallel
Processing� �����

�Pasik and Stolfo� ����� Pasik� A� and Stolfo� S� Improving production system
performance on parallel architectures by creating constrained copies of rules�
Technical report� Computer Science Dept�� Columbia University� �����

�Pearl� ����� Pearl� Judea� Heuristics� Intelligent Search Strategies for Computer
Problem Solving� Addison�Wesley� Reading� Massachusetts� �����

�Perlin� ����� Perlin� Mark W� The match box algorithm for parallel production
system match� Technical Report CMU�CS�������� Computer Science Dept��
Carnegie�Mellon University� May �����

���

�Schmolze and Goel� ����� Schmolze� James G� and Goel� S� A parallel asyn�
chronous distributed production system� In Proceedings of the Eighth National
Conference on Arti�cial Intelligence� pages ����� �����

�Schmolze and Neiman� ����� Schmolze� James G� and Neiman� Daniel E� Com�
parison of three algorithms for ensuring serializability in parallel production
systems� In Proceedings of the National Conference on Arti�cial Intelligence
�AAAI���
� July �����

�Schmolze� ����� Schmolze� James G� Guaranteeing serializable results in syn�
chronous parallel production systems� Technical Report ���� Department
of Computer Science� Tufts University� October �����

�Schmolze� ����� Schmolze� James G� Guaranteeing serializable results in syn�
chronous parallel production systems� Journal of Parallel and Distributed
Computing� ��	�
� December �����

�Schor et al�� ����� Schor� Marshall I�� Daly� Timothy P�� Lee� Ho Soo� and Tibbits�
Beth R� Advances in Rete pattern matching� In Proceedings of the Fifth
National Conference on Arti�cial Intelligence� pages �������� �����

�Sellis et al�� ����� Sellis� Timos� Lin� Chih�Chen� and Raschid� Louiqa� Implement�
ing large production systems in a dbms environment� Concepts and algo�
rithms� Technical Report CS�TR������ Dept� of Computer Science� University
of Maryland at College Park� �����

�Sherman and Martin� ����� Sherman� Porter D� and Martin� John C� An OPS
Primer� Introduction to Rule�based Expert Systems� Prentice Hall� Eaglewood
Cli�s� New Jersey� �����

�Siler et al�� ����� Siler� William� Tucker� Douglas� and Buckley� James� A parallel
rule �ring fuzzy production system with resolution of memory con�icts by
weak fuzzy monotonicity� applied to the classi�cation of multiple objects
characterized by multiple uncertain features� International Journal of Man�
Machine Studies� ����������� �����

�Srivastava and Wang� ����� Srivastava� J� and Wang� J��H� A transaction model
for parallel production systems� Technical Report AHPCRC TR ������
University of Minnesota� �����

�Stolfo and Miranker� ����� Stolfo� Salvatore and Miranker� Daniel� Dado� A par�
allel processor for expert systems� In Proceedings of the ���� International
Conference on Parallel Processing� pages ������ �����

�Stolfo et al�� ����� Stolfo� Salvatore J�� Woodbury� Leland� Glazier� Jason� and
Chan� Philip� The ALEXSYS mortgage pool allocation expert system� A case
study of speeding up rule�based programs� In AI and Business Workshop	
AAAI���� �����

���

�Stolfo et al�� ����a� Stolfo� Salvatore J�� Dewan� Hasanat M�� and Wolfson� Ouri�
The PARULEL parallel rule language� In ���� International Conference on
Parallel Processing� pages II������ �����

�Stolfo et al�� ����b� Stolfo� Salvatore J�� Wolfson� Ouri� Chan� Philip K�� Dewan�
Hasanat M�� Woodbury� Leland� Glazier� Jason S�� and Ohsie� David A�
PARULEL� Parallel rule processing using meta�rules for redaction� Journal of
Parallel and Distributed Computing� ��	�
��������� December �����

�Stolfo� ����� Stolfo� Salvatore� Five parallel algorithms for production system exe�
cution on the dado machine� In Proceedings of the Third National Conference
on Arti�cial Intelligence� pages �������� �����

�Stolfo� ����� Stolfo� Salvatore J� Initial performance of the DADO� prototype�
Computer� pages ����� January �����

�Stonebraker et al�� ����� Stonebraker� M�� Sellis� T�� and Hanson� E� An analysis of
rule indexing implementations in data base systems� In Kershberg� L�� editor�
Expert Database Systems� Proceedings of the First International Workshop�
pages ������� Benjamin�Cummings Publishing Company� Menlo Park� CA�
�����

�Tambe et al�� ����� Tambe� M�� Kalp� D�� Gupta� A�� Forgy� C�� Milnes� B��
and Newell� A� Soar�PSM�E� Investigating match parallelism in a learning
production system� In Proceedings of Parallel Programming Environments	
Application Languages	 and Systems�PPEALS
� July �����

�Tambe et al�� ����� Tambe� Milind� Acharya� Anurag� and Gupta� Anoop� Imple�
mentation of production systems on message passing computers� Techniques�
simulation results� and analysis� Technical Report CMU�CS�������� School of
Computer Science� Carnegie�Mellon University� �����

�Tenorio and Moldovan� ���� Tenorio� M� and Moldovan� D� Mapping production
systems into multiprocessors� In Proceedings of the IEEE International Con�
ference on Parallel Processing� pages ����� ����

�Uhr� ����� Uhr� Leonard M� Parallel�serial production systems� In Proceedings
of the Sixth International Joint Conference on Arti�cial Intelligence� pages
�������� �����

�van Biema et al�� ����� Biema� M�van� Miranker� D� P�� and Stolfo� S� J� The
do�loop considered harmful in production system programming� In First
International Conference on Expert Database Systems� pages ������ �����

�Waltz� ���� Waltz� David� Understanding line drawings of scenes with shadows�
In Winston� Patrick H�� editor� The Psychology of Computer Vision� McGraw�
Hill Book Company� New York� ����

���

�Widom and Finkelstein� ����� Widom� J� and Finkelstein� S�J� Set�oriented pro�
duction rules in relational database systems� In ACM�SIGMOD International
Conference on the Management of Data� pages ������� �����

�Wogrin and Cooper� ����� Wogrin� Nancy and Cooper� Thomas� Rule�based Pro�
gramming in OPS� Morgan Kaufmann Publishers� San Mateo� CA� �����

�Wolfson and Ozeri� ����� Wolfson� Ouri and Ozeri� Aya� A new paradigm for
parallel and distributed rule�processing� In Proceedings of the ACM�SIGMOD
���� International Conference on Management of Data� pages �������� May
�����

�Wolfson et al�� ����� Wolfson� Ouri� Dewan� Hasanat� Stolfo� Salvatore� and Yem�
ini� Yechiam� Incremental evaluation of rules and its relationship to paral�
lelism� Technical Report CUCS������� Department of Computer Science�
Columbia University� New York� New York� �����

�Xu and Hwang� ����� Xu� Jian and Hwang� Kai� Mapping rule�based systems onto
multicomputers using simulated annealing� Journal of Parallel and Distributed
Computing� ��	�
������� December �����

