Control Issues
in Parallel Rule-Firing Production Systems *

Daniel E. Neiman
Department of Computer and Information Sciences
University of Massachusetts
Ambherst, MA 01003
DANN@CS.UMASS.EDU

Abstract

When rules are executed in a parallel production sys-
tem, the goal of control is to ensure both that a high-
quality solution is achieved and that processing re-
sources are used effectively. We argue that the con-
ventional conflict resolution algorithm is not suitable
as a control mechanism for parallel rule-firing systems.
The necessity for examining all eligible rules within
a system imposes a synchronization delay which lim-
its processor utilization. Rather than perform conflict
resolution, we propose that rules should be executed
asynchronously as soon as they become enabled, how-
ever, this approach leaves the problem of controlling
the computation unsolved. We have identified three
distinct types of control, program sequencing, heuris-
tic control, and dynamic scheduling, which are required
for efficient and correct parallel execution of rules. We
discuss the issues involved in implementing each type
of control without undue overhead within the context
of our system, a parallel rule-firing system with an aug-
mented agenda manager.

Introduction

The rule-based system is a fundamental paradigm
in Al research which allows domain specific knowl-
edge to be captured in rules and applied to situ-
ations in a data-directed manner. In order to in-
crease the performance of such systems, recent re-
search has explored the benefits of rule-level paral-
lelism in which many rules are allowed to fire si-
multaneously [Ishida and Stolfo 1985, Schmolze 1989,
Miranker, Kuo and Browne 1989]. Much of this re-
search has been directed towards the problems of ex-
tracting parallelism from existing rule sets or ensuring
that the parallel execution of rules produces a serial-
izable result. Owur research has focussed instead on
the problem of controlling a parallel rule-firing system.
We have found that within the context of such a sys-
tem, the conventional conflict resolution control mech-

*This work was partly supported by the Office of
Naval Research under a University Research Initiative
grant, number NO00014-86-K-0764, NSF-CER contract
DCR-8500332, and DARPA contract N00014-89-J-1877.

anism unnecessarily synchronizes rule-based computa-
tions, encourages the use of serializing control idioms,
and cannot express strategies for ensuring efficient use
of processing resources. In order to eliminate the syn-
chronization delay imposed by conflict resolution and
increase the average level of activity within our system,
we employ a rule-firing policy called “fire-when-ready”
which executes rules asynchronously. We discuss the
effects of such a policy on the control of a rule-firing
system and identify three distinct types of control ac-
tivity which must occur during the parallel execution of
rules: dynamic scheduling, heuristic discrimination be-
tween alternative activities, and algorithmic sequenc-
ing of computational phases:

e Dynamic Scheduling: Dynamic scheduling de-
scribes the process of scheduling rule activations so
as to make effective use of limited processing re-
sources while ensuring that the computation pro-
ceeds in a timely manner. We describe a set of
heuristic rules derived from our research in parallel
blackboard systems which can be applied to schedul-
ing parallel rule firings.

e Heuristic Control: Heuristic control consists of
the process of determining which of a set of alterna-
tive actions should be executed when more than one
are appropriate to a given situation. The method
of achieving heuristic control via conflict resolution
is inherently serializing and we discuss methods of
avoiding or reducing this overhead in asynchronous
rule-firing systems.

e Algorithmic control: We define algorithmic con-
trol as the process by which common programming
idioms such as iteration and program sequencing
are implemented within a rule-based system. We
present a solution to the program sequencing prob-
lem which is non-serializing and does not depend on
either the matching process nor a conflict resolution
proctocol.

In this paper, we describe methods of achieving each
type of control within the context of our experimental
vehicle, a parallel rule-firing production system with
an augmented agenda manager. Finally, because the



asynchronous execution of rules prohibits a dynamic
analysis of rule interactions, we present a method of
partially enforcing database consistency which is suf-
ficient to allow our control idioms to be implemented
without imposing undue overhead upon the system.
In order to place our research in context, we present
a brief survey of previous work on parallel rule-firing
systems in the following section.

Related Work

In describing his research on the sources of par-
allelism within production systems, Gupta noted
that performance could be greatly increased by
executing rules in parallel and cited the SOAR
system[Laird, Newell, and Rosenbloom 1987] as one
which was potentially capable of executing all mem-
bers of its conflict set in parallel [Gupta 1987]. Ishida
and Stolfo first discussed the problem of main-
taining consistency within a parallel rule-based sys-
tem [Ishida and Stolfo 1985]. Their solution, which
involved detecting references by rules to particular
classes of working memory elements significantly re-
stricted parallelism; effectively only one instance of
each rule could fire simultaneously. More recently,
Schmolze has devised an algorithm which uses both
static analysis and a run time unification scheme
to detect more precisely the rules within the con-
flict set which potentially interact [Schmolze 1989];
Schmolze’s scheme allows multiple instantiations of
rules to be executed in parallel. Both Schmolze and
Ishida have proposed distributed parallel rule-firing
systems. Ishida’s system dynamically organizes it-
self to meet demand by copying rules to other pro-
cessors [Ishida, Yokoo, and Gasser 1990]. Schmolze’s
system, PARS, assigns distinct rules to each processor
and distributes working memory elements to each rel-
evant rule; the rules fire asynchronously, using a com-
munication protocol between the processors to ensure
that consistency of working memory is maintained.

Recent work by Ishida has discussed design princi-
ples for parallel rule-based systems, dividing the prob-
lem into three components: interference analysis; the
parallel firing algorithm which determines how rules
should be distributed; and the parallel programming
environment which provides language facilities for par-
allel rule execution [Ishida 1990]. Ishida’s paper is one
of the first to discuss control issues; he proposes di-
viding rules into separate rule groups and defining sep-
arate conflict resolution policies for each group, and
dividing rules into two classes, control and heuristics;
these two ideas also appear in our own work. Miranker
has proposed allowing independent rules sets to exe-
cute asynchronously in parallel and has developed op-
timizing transformations for partitioning rules into mu-
tual ezclusion sets [Miranker, Kuo and Browne 1989,
but has not addressed the problem of control in parallel
asynchronous programs.

In our previous work in cooperative distributed

problem solvers, we have performed considerable re-
search in the control of parallel and distributed black-
board systems and have noted many similarities be-
tween the issues faced in distributed blackboard sys-
tems and those of rule-based systems|[Corkill 1989,
Decker et al. 1991]. Both types of systems consist of
knowledge sources or productions acting upon a central
data structure. Eligible knowledge sources are stored
upon an agenda, and agenda management must be
performed to ensure that the appropriate knowledge
sources are executed in a timely fashion. It is natural
to investigate whether it is possible to apply some of
the techniques appropriate to large-grained blackboard
systems in which the operators are relatively long-lived
to the finer grained rule-based systems.

The Parallel Rule Firing System

At the University of Massachusetts, we have developed
a parallel language based on the rule programming lan-
guage OPS5 which supports both matching and rule-
level parallelism [Neiman 1991a]. The system is im-
plemented in TopCL?, a parallel Common Lisp which
supports futures and lightweight tasks called threads.
Using this system and a set of benchmarks which dis-
play high levels of potential rule parallelism, we have
observed speedups of 8 to 10 times over the serial case
on a Sequent Symmetry shared memory multiprocessor
with 16 processors.

Our initial use of this system was to experi-
ment with a number of different rule firing poli-
cies and collect data on their relative perfor-
mance. One of our first observations (also reported
in [Miranker, Kuo and Browne 1989]) was that rule-
firing in a parallel system should proceed, whenever
possible, in an asynchronous manner, using what we
call the “fire-when-ready” policy.

Previous rule-firing schemes have employed a syn-
chronous rule-firing policy which performs conflict res-
olution, detects potential rule interactions, and creates
a maximal set of executable rule instantiations which
are then fired; the system must then wait for comple-
tion of all working memory changes. This synchro-
nization delay can cause eligible rule instantiations to
remain idle in the conflict set for significant lengths
of time due to discrepancies in matching and execu-
tion time between rules. In our experiments, the asyn-
chronous rule firing policy reduced conflict set latency
time significantly, resulting in performance improve-
ments of between a factor of 1.5 and an order of mag-
nitude, depending on the benchmark under consider-
ation. The speedup becomes more pronounced as the
variance in production execution times in the bench-
mark increases. There is a trade-off between perfor-
mance and control; the requirement of the “fire-when-
ready” strategy that rules execute as soon as they be-
come enabled eliminates the role of the conflict set in

! TopCL is a trademark of Top Level, Inc.



determining the control policy of the system and de-
tecting potential rule interactions [Neiman 1991b].

In order to contend with the control issues we have
encountered, we are developing an agenda manager
which is responsible for dynamically scheduling pro-
ductions, interpreting meta-level specifications of pro-
gram sequencing, and ensuring that pathological inter-
actions do not exist between executing rules.

Control Issues

In this section, we discuss the three control areas we
have identified, dynamic scheduling, heuristic, and al-
gorithmic control and briefly outline the issues asso-
ciated with achieving each type of control within the
context of an asynchronous rule-firing system.

Dynamic Scheduling

In a production system in which many rules are eligible
to fire at a given time, there is substantial competition
for processing and matching resources. For example,
in a modified version of the Toru-Waltz benchmark?
we have seen as many as 124 rule instantiations eligi-
ble to fire concurrently on a 16 processor machine. In
any implementation of a parallel OPS-like language,
there will also be unavoidable contention for critical
regions within the Rete net, the principal data struc-
ture used in the match process [Forgy 1979]. We have
observed the following phenomena: first, when a stan-
dard conflict resolution scheme is used, many rules
must be activated within a short span of time, caus-
ing massive contention for processors and shared re-
sources as evidenced by increased latency periods on
processor queues and increased wait time for locks in
critical regions such as timetag allocation routines3.
Second, when many instantiations of the same type of
rule are active, they initiate similar working memory
changes which must compete for access to matching re-
sources, as evidenced by increased contention for locks
on the memory nodes within the Rete net. Finally,
rules which produce results necessary to the computa-
tion may not execute promptly due to contention for
processors with less critical rules.

The problem of contention for resources is reduced,
but not eliminated, by the use of the “fire-when-ready”
policy. If rules are allowed to fire whenever they are
eligible, the demand for processors and resources is
spread out over a larger time period. Because the
time spent in critical regions is very short, stagger-
ing the demand for resources eliminates much of the

2The Toru-Waltz program, written by Toru Ishida,
demonstrates considerable rule parallelism and has been
widely used as a benchmark in the literature on parallel
rule-firing systems. For a description of the benchmark and
analysis of the sources of parallelism, see [Neiman 1991a].

3In order to ensure that working memory elements are
assigned unique timetags, the allocation of timetags and
other necessary bookkeeping must be performed in a criti-
cal region.

contention. To solve the remaining problems, we pro-
pose using a heuristic scheduling scheme which uses
simple knowledge about the relative priorities of rules
and their resource utilization: this scheme has been
successfully applied by members of our research group
to the scheduling of low-level blackboard activities
[Decker et al. 1991]; it remains to be seen whether it
will be effective for the finer-grained rule scheduling.
Note that dynamic scheduling is only appropriate when
the number of rules eligible to be executed exceeds the
number of available processors; the heuristic rules can
be then applied while waiting for resources to become
free.

The following set of heuristic scheduling rules illus-
trate some of the goals of dynamic scheduling: in-
creasing processor utilization, reducing contention for
shared resources, and meeting deadlines:

e Develop triggering data first: Production systems
are data-driven, thus, rules which produce data nec-
essary for the activation of many rules should be ex-
ecuted as soon as possible. For example, in a circuit
simulation program, this policy would schedule rule
instantiations simulating earlier clock times first. In
such cases, the recency criteria of conventional con-
flict resolution could result in starvation, preventing
the necessary data from being asserted.

e Schedule goal-related rules first: The structure of
parallel rule-based programs makes it necessary to
divide computations into rules which perform goal-
related tasks, and rules which perform bookkeeping
functions, such as deleting obsolete working mem-
ory elements. While these latter increase the ef-
ficiency of the matching process by reducing node
memory sizes, they do not further the computation
and should be scheduled with a lower priority.

e Execute dissimilar rules: We have observed that the
simultaneous execution of many instantiations of the
same rule may lead to contention for system re-
sources. When the level of activity exceeds a thresh-
old, the matching process becomes effectively serial.
While we have reduced this overhead using hash-
ing techniques, contention should also be reduced
by scheduling rules which have disparate righthand
sides.

e Delete redundant rule instantiations: In a parallel
asynchronous system, it is necessary to disable ac-
tivities once they have become redundant or unnec-
essary in order to conserve processing resources. For
example, in a goal-directed system consisting of an
AND/OR hierarchy, unless the scheduler explicitly
halts their execution, tasks related to a high-level
goal may continue to execute indefinitely after that
goal has been achieved, or has been shown to be
unachievable.



Heuristic Control in Parallel Rule-firing
Systems

We distinguish heuristic control from scheduling in
that control is concerned not with the efficient use of
resources, but rather with optimizing the quality of
the eventual solution by selecting the best alternative
among a set of applicable rules. The problem of heuris-
tic control is complicated by the relatively short exe-
cution time of rules and the requirement that rules be
executed asynchronously whenever possible. Because
the ‘fire-when-ready’ policy executes productions be-
fore sufficient information is available to generate com-
pletely accurate control decisions, a computation must
either generate only the correct productions to exe-
cute or be able to recover from the occasional spurious
production execution. Space limits our discussion of
heuristic control to the three following cases:

e Classes of problems in which conflict resolution need
not be performed either because the nature of the
problem ensures a one-to-one mapping between rules
and subproblems or because the necessary focussing
heuristics are already contained within the rules
themselves.

e Algorithms in which executing conflicting rules can
be viewed as a parallel search process whose cost is
less than that of heuristic control and synchroniza-
tion.

e Problems in which the number of conflicting rules
grows exponentially and heuristic conflict resolution
is unavoidable.

Execution of Independent Subtasks There is a
large class of problems presenting significant oppor-
tunities for rule-level parallelism which do not require
heuristic control. These problems possess the property
that any rule which becomes enabled is both necessary
to the computation and is not subsumed by any other
rule instantiation. We have observed that problems
which display object or data parallelism usually possess
this property and are particularly well-suited for asyn-
chronous rule execution. An example of a problem in
this domain is the Toru-Waltz benchmark; our analysis
of this program indicates that rule instantiations enter
the conflict set monotonically, with each rule instan-
tiation corresponding to a single labelling constraint.
Each constraint is a unique entity which may be pro-
cessed in a data-directed manner. Because the enabled
rule instantiations do not conflict, but rather co-exist
within the conflict set, no heuristic decisions are nec-
essary, and the rules may be fired asynchronously.

Parallel Exploration of Alternatives The poten-
tial of parallel program to explore many alternatives
concurrently is one of the most potent arguments for
reducing the dependence on conflict resolution. Be-
cause rules are typically inexpensive to execute, the
overhead of occasionally executing an inferior rule may
well be less than the combined cost of waiting for quies-

cence within the conflict set and performing a heuristic
evaluation function. Instead of viewing rules attend-
ing to the same subproblem as mutually exclusive and
requiring conflict resolution, they can be viewed as op-
erators generating the set of successor nodes to a node
in a state space search. Executing all productions will
lead to an exploration of all relevant search paths.

Unless an enumeration of all possible solutions to
a subproblem is desired, parallel execution of rules
which produce competing solutions requires a mech-
anism for ensuring that a unique solution is even-
tually produced. The principal reason for this is
the avoidance of combinatorial growth of rules within
the conflict set. If multiple potential solutions en-
ter working memory, they may each enable succes-
sive rules, eventually causing saturation of the sys-
tem. One possible solution is to implement a form
of what Siler, et al. have labeled memory conflict
resolution [Siler, Tucker, and Buckley 1987] in which
working memory elements may be modified only if the
changes monotonically converge towards a solution.
We can produce a similar result in an asynchronous
system by using a heuristic rule to propagate solutions
of increasing quality in a data-directed fashion:

1. Create a working memory element of the type
(current-solution “subproblem subproblem-id
“value nil) to hold the final value.

2. For each rule firing which develops a potential

solution, asynchronously assert a working mem-
ory element of the form: (potential-solution
“subproblem subproblem-id “value value).

3. Create a heuristic join rule which compares the
value of each potential-solution to the value of
current-solutionand updates current-solution
as necessary, while deleting the tentative solution®.

4. Delete any rule instantiations and working memory

elements created by the assertion of the previous so-
lution.

This algorithm is particularly appropriate for real
time systems in that it possesses the desirable fea-
ture of producing incrementally better results as time
passes. Computations of this sort which converge
on solutions despite incomplete or inconsistent mem-
ory states have been termed functionally accurate by
Lesser and Corkill [Lesser and Corkill 1981].

Partitioning the Conflict Set for Heuristic De-
cisions The approach of performing a parallel search
of alternatives by executing all eligible rules and merg-
ing the results depends on the set of eligible rules being
manageably small. In cases in which the search space

*In an asynchronous system, multiple instantiations of
this join rule may become eligible to fire simultaneously,
causing a potential clashing situation. Our approach to
the problem of enforcing consistency is discussed in a later
section.



grows exponentially, rules must be collected within a
conflict set so that heuristic pruning may be performed.
In order to reduce the synchronization overhead asso-
ciated with conflict resolution, we propose partitioning
the conflict set and only performing conflict resolution
between rule instantiations which are attending to the
same subproblem.

The partitioning process presents two problems
which are not explicitly present within the standard
production system paradigm. Rules instantiations
must be identified as being relevant to a particular
subproblem so that they can be assigned to partitions,
and it must be determined when all rules bearing on
a subproblem have become enabled so that heuristic
discrimination can begin.

Attaching rule instantiations to subproblems:
Individual working memory elements may be matched
by rules in different subproblems, and individual
rules may operate on different sets of data; there-
fore rule instantiations cannot be easily partitioned
on the basis of either the type of rule or the data
matched [McDermott and Forgy 1978]. Except for
problems displaying object parallelism in which the
correlation between rule and object is easily distin-
guished, we take the approach of explicitly annotating
rule instantiations.

We make the observation that any goal-directed ac-
tivity is effectively traversing a state space. For any
rule activation, a subset of the working memory ele-
ments referenced by the lefthand side of the rule denote
an individual state within the state space, while the re-
maining elements represent global facts which remain
static over the course of the computation.

In order to partition elements into a particular state,
we assign each element a unique state identifier. In
order to ensure that each rule instantiation accesses
only working memory elements from either the current
space or global data, we define a goal element which
defines the type of the subproblem and which is aug-
mented with a unique tag indicating the appropriate
space. Each rule instantiation stimulated by a goal el-
ement is assigned to a conflict set corresponding to its
state identifier. Because only rules in the same conflict
set may interact, the contents of disparate conflict sets
may be scheduled independently, minimizing synchro-
nization delays.

Achieving quiescence within a partitioned con-
flict set: Before a heuristic decision can be made, all
relevant rule instantiations must be present in the con-
flict set. In general, we can never guarantee that this is
the case. Even if quiescence is achieved throughout the
entire system, a rule firing at a later time may produce
new information relevant to the current state. Thus,
we make the assumption when testing for quiescence
within a partitioned conflict set that all working ele-
ments relevant to the current state have been asserted

when the activating goal is asserted, or are asserted
in parallel with the activating goal element. We fur-
ther assume that all global working memory elements
not specific to the current state remain stable during
the course of conflict resolution. If these assumptions
hold, we can insure quiescence within a partitioned
conflict set by waiting until each working memory el-
ement which is annotated as belonging to the current
state has been asserted and propagated throughout the
entire network.

This discussion has not fully addressed the problem
of determining quiescence; for example, when perform-
ing an AND/OR traversal of a search space, it is neces-
sary to determine when all competing or contributing
subproblems have developed solutions — in situations
such as these, the agenda manager must maintain a
record of the goal hierarchy and check each task for
quiescence.

Algorithmic Control

Although rule-based programs are data-driven, it is
common practice to impose specific orderings on the
rule firings in order to emulate programming idioms
such as iteration, to implement particular algorithms
such as search or goal-directed reasoning, or to parti-
tion the computation into discrete phases. Because of
their dependance on the manipulation of conflict reso-
lution and rule ordering, such idioms are rarely suitable
for parallel rule execution. There are certain unavoid-
able serial constructs, for example, I/O operations and
trivial iteration of operations over working memory el-
ements. We argue that such operations are not essen-
tially knowledge-based and are best performed using
imperative constructs such as those provided in the
OPS83 programming language[Forgy 1984].

One of the most problematic algorithmic constructs
is that of program sequencing, that is, ensuring that
a computation proceeds through a number of discrete
processing phases. This is usually done by means of
mode or goal working memory elements. Each rule in
a given processing phase contains a reference to the
mode element in its lefthand side. In order to change
modes, a mode-changing rule is provided which is de-
signed to fire only when no other rules within the phase
are eligible. This particular construct poses a num-
ber of problems to the parallel programmer. First, it
depends on the specificity condition of the standard
conflict-resolution algorithm. When executing rules in
parallel, conflict-resolution is not performed and the
mode-changing production, being always enabled, may
fire in parallel with other rules in the phase, disabling
them prematurely. The mode-changing productions,
therefore, should not be executed in parallel with any
other rule.

To make matters worse, mode-changing is match in-
tensive. Not only are large numbers of rules enabled by
the addition of a new mode element, causing contention
within the Rete net, but many partial matches within



the Rete net must be retracted. We have observed
that it is not unusual for a mode-changing rule which
adds a single working memory element to take two or-
ders of magnitude longer to fire than any other rule
within the phase. Within the Toru-Waltz benchmark,
for example, in a run of 370 rule firings, a single mode-
changing rule consumes 25% of the run time. While we
can reduce this execution time by enabling match par-
allelism for the duration of the production execution
or allowing rules enabled by the mode change to exe-
cute asynchronously, it is clear that a construct which
requires a single working memory change to activate a
large number of rules is inherently serializing.

In order to remove the overhead of mode-changing
while allowing the programmer to specify program se-
quencing, we have implemented a meta-level facility
which allows the programmer to specify both a type
and a rule group for each production. Each mode-
changing production is explicitly tagged as a mode-
changer. Our agenda manager ensures that no mode-
changing rule will fire until all rules within a phase
have executed and quiescence has been achieved.

To remove the matching overhead associated with
mode-changing, we have created a new righthand-side
action which allows a rule to communicate a new mode
to the agenda manager. Because no matching is asso-
ciated with the specification of the new mode, execu-
tion of mode-changing productions is extremely fast,
and rules within the new computational phase are im-
mediately executed by the agenda manager. During
each computational phase, rule instantiations belong-
ing to a subsequent phase may become enabled and en-
ter the conflict set but will not execute until the mode
has changed. This approach distributes the overhead
of matching rules instantiations for subsequent phases
over a set of parallel activities rather than the serial
addition of a single working memory element.

Correctness of Algorithms

A problem which is closely related to the problem of al-
gorithmic control is that of maintaining database con-
sistency. When productions are allowed to execute in
parallel, they may interact to produce results which
could not be achieved by any serial ordering of rule
firings.

A number of techniques have been developed
for detecting rule interactions [Ishida and Stolfo 1985,
Schmolze 1989, Ishida 1990]. These algorithms usually
consist of a static analysis phase which is performed at
compile time and a runtime component which dynam-
ically examines all eligible rules in order to select a set
of co-executable rules. The runtime component is rel-
atively expensive, both because of the synchronization
cost of accessing all eligible rules, and because it must
perform unification of variables in order to precisely
identify the rule interactions.

Our study of parallel rule-firing programs has indi-
cated that rule interactions occur only rarely. Rather

than accept the synchronization delays associated with
a full analysis of rule interactions, we have chosen to
only enforce a subset of the correctness criteria using
a scheme of read/write locks on working memory el-
ements. Each working memory element is assigned
a write flag and a read counter. A working memory
element whose write flag is set may not be modified
or referenced by any rule instantiation. Any working
memory element whose read counter is greater than
zero cannot be modified by any rule. When a rule in-
stantiation is selected from the agenda, it must check
the write flags of elements it references and the read
counters of elements it wishes to modify. If it is not
safe to perform the desired operation, the rule instan-
tiation is replaced on the agenda for future execution,
otherwise the appropriate flags are set and counters
are incremented.

The use of locks to enforce working memory consis-
tency has the advantage of not requiring either static
analysis of rule sets or runtime unification of variables,
does not require synchronization of the conflict set, and
possesses an extremely low overhead, on the order of
one percent of rule execution time. However, when us-
ing this scheme, the agenda manager detects only a
subset of potential rule interactions.

As it is not possible to lock a non-existent working
memory element, interactions in which one of a pair of
rules adds a working memory which is negatively refer-
enced by the other may still occur. We have chosen to
respond to this problem by creating specific language
idioms and constructs which, instead of guaranteeing
correctness, allow the design of correct programs. For
example, in the initialization idiom, in which a rule
checks for the existence of a working memory element
and creates it if it does not exist, we have developed
a variant of the make command which allows one and
only one instance of a particular working memory el-
ement to be created, thus avoiding potential multiple
executions of the initialization rule. So far, we have
found that our locking mechanisms are both necessary
and sufficient to allow the design of correctly written
systems.

Conclusion

Executing productions in parallel in a rule-based sys-
tem promises very high rates of rule execution, but only
if the synchronization overhead introduced by conven-
tional conflict resolution policies can be eliminated.
We have taken the approach of executing productions
asynchronously whenever the nature of the algorithm
permits; this approach greatly increases processor uti-
lization, but eliminates the principal control mecha-
nism of rule-based systems. We have described three
areas of control for which alternative mechanisms must
be developed: dynamic scheduling of rules, heuristic
control, and algorithmic sequencing of rule execution.
To support these control activities, we have developed
an agenda manager which provides support for en-



forcing consistency of the database, allows the user
to specify rule types and groups for sequencing rule
executions, and which allows both asynchronous and
synchronous execution of rules. We are in the pro-
cess of adding to the agenda manager the capability to
perform dynamic scheduling using meta-level heuris-
tics about rule priorities.

Acknowledgements

The author would like to thank his advisor, Victor
Lesser, for his significant contributions to the ideas
presented in this paper and his support and encourage-
ment during the course of this research. I would also
like to thank Jim Schmolze for his advice and feedback
on the parallel OPS5 system, Kelly Murray for devel-
oping Top Level Common Lisp, and Penelope Sibun
and members of the CDPS lab for their comments on
this paper.

References

Corkill, Daniel D., Design Alternatives for Parallel
and Distributed Blackboard Systems, in Blackboard
Architectures and Applications, V. Jagannathan, Ra-
jendra Dodhiawala, and Lawrence S. Baum, eds.,
Academic Press, pp. 99-136, 1989.

Decker, K.; Garvey, A.; Humphrey, M.;and Lesser, V.
Effects of Parallelism on Blackboard System Schedul-
ing, Proceedings of the 12th International Joint Con-
ference on Artificial Intelligence, Sydney, Australia,
August, 1991.

Forgy, C.L., On the Efficient Implementation of Pro-
duction Systems, PhD thesis, Dept. of Computer Sci-
ence, Carnegie-Mellon University, February, 1979.

Forgy, C.L., The OPS583 Report, Technical Report
CMTU-CS-84-133, Department of Computer Science,
Carnegie-Mellon University, May 1984.

Gupta, Anoop, Parallelism in Production Systems,
Morgan Kaufman Publishers, Inc., Los Altos, CA,
1987.

Ishida, T. and Stolfo, S., Towards the Parallel Ex-
ecution of Rules in Production System Programs,
Proceedings of the IEEE International Conference on
Parallel Processing, pp. 568-575, 1985.

Ishida, Toru, Methods and Effectiveness of Parallel
Rule Firing, 6th IEEE Conference on Artificial Intel-
ligence Applications, March 5-9, 1990.

Ishida, Toru, Makoto Yokoo, and Les Gasser, An Or-
ganizational Approach to Adaptive Production Sys-
tems, AAAI-90, pp. 52-57.

Laird, J.E.; Newell, A.; and Rosenbloom, P.S. Soar:
An Architecture for General Intelligence, Artificial
Intelligence 33:1-64,1987.

Lesser, V. and Corkill, D., Functionally Accurate,
Cooperative Distributed Systems, IEEE Transactions
on Man, Machine, and Cybernetics, Vol. SMC-11, No.
1, January 1981.

McDermott, J., and C. Forgy, Production System
Conflict Resolution Strategies, in Pattern-Directed
Inference Systems, D. A. Waterman and Frederick
Hayes-Roth, eds., Academic Press, 1978.

McDermott, J., Extracting Knowledge from Expert
Systems, IJCAI-83, pp. 100-107.

Miranker,Daniel, Chin-Ming Kuo, and James C.
Browne, Parallelizing Transformations for a Concur-
rent Rule Execution Language, TR-89-30, Depart-
ment of Computer Science, University of Texas at
Austin, October, 1989.

Neiman, Daniel, Parallel OPS5 User’s Manual and
Technical Report, COINS TR 91-1, Computer and
Information Sciences Dept., University of Mas-
sachusetts, 1991.

Neiman, Daniel, Control in Parallel Production Sys-
tems: A Research Prospectus, COINS TR 91-2, Com-
puter and Information Sciences Dept., University of
Massachusetts, 1991.

Schmolze, James G., Guaranteeing Serializable Re-
sults in Synchronous Parallel Production Systems,
Technical Report 89-5, Department of Computer Sci-
ence, Tufts University, October, 1989.

Schmolze, James G. and S. Goel, A Parallel Asyn-
chronous Distributed Production System, AAAI-90,
pp. 65-71.

Siler, William, Douglas Tucker, and James Buck-
ley, A Parallel Rule Firing Fuzzy Production System
with Resolution of Memory Conflicts by Weak Fuzzy
Monotonicity, Applied to the Classification of Multi-
ple Objects Characterized by Multiple Uncertain Fea-
tures, International Journal of Man-Machine Studies,
(1987),26,321-332.



