
Control Issues

in Parallel Rule�Firing Production Systems �

Daniel E� Neiman
Department of Computer and Information Sciences

University of Massachusetts

Amherst� MA �����

dann�cs�umass�edu

Abstract
When rules are executed in a parallel production sys�
tem� the goal of control is to ensure both that a high�
quality solution is achieved and that processing re�
sources are used e�ectively� We argue that the con�
ventional con�ict resolution algorithm is not suitable
as a control mechanism for parallel rule��ring systems�
The necessity for examining all eligible rules within
a system imposes a synchronization delay which lim�
its processor utilization� Rather than perform con�ict
resolution� we propose that rules should be executed
asynchronously as soon as they become enabled� how�
ever� this approach leaves the problem of controlling
the computation unsolved� We have identi�ed three
distinct types of control� program sequencing� heuris�
tic control� and dynamic scheduling� which are required
for e�cient and correct parallel execution of rules� We
discuss the issues involved in implementing each type
of control without undue overhead within the context
of our system� a parallel rule��ring system with an aug�
mented agenda manager�

Introduction
The rule�based system is a fundamental paradigm
in AI research which allows domain speci�c knowl�
edge to be captured in rules and applied to situ�
ations in a data�directed manner� In order to in�
crease the performance of such systems� recent re�
search has explored the bene�ts of rule�level paral�
lelism in which many rules are allowed to �re si�
multaneously 	Ishida and Stolfo 
��� Schmolze 
����
Miranker� Kuo and Browne 
����� Much of this re�
search has been directed towards the problems of ex�
tracting parallelism from existing rule sets or ensuring
that the parallel execution of rules produces a serial�
izable result� Our research has focussed instead on
the problem of controlling a parallel rule��ring system�
We have found that within the context of such a sys�
tem� the conventional con�ict resolution control mech�

�This work was partly supported by the O�ce of
Naval Research under a University Research Initiative
grant� number N�������	�K��
	�� NSF�CER contract
DCR�������� and DARPA contract N���������J���

�

anism unnecessarily synchronizes rule�based computa�
tions� encourages the use of serializing control idioms�
and cannot express strategies for ensuring e�cient use
of processing resources� In order to eliminate the syn�
chronization delay imposed by con�ict resolution and
increase the average level of activity within our system�
we employ a rule��ring policy called ��re�when�ready�
which executes rules asynchronously� We discuss the
e�ects of such a policy on the control of a rule��ring
system and identify three distinct types of control ac�
tivity which must occur during the parallel execution of
rules� dynamic scheduling� heuristic discrimination be�
tween alternative activities� and algorithmic sequenc�
ing of computational phases�

� Dynamic Scheduling� Dynamic scheduling de�
scribes the process of scheduling rule activations so
as to make e�ective use of limited processing re�
sources while ensuring that the computation pro�
ceeds in a timely manner� We describe a set of
heuristic rules derived from our research in parallel
blackboard systems which can be applied to schedul�
ing parallel rule �rings�

� Heuristic Control� Heuristic control consists of
the process of determining which of a set of alterna�
tive actions should be executed when more than one
are appropriate to a given situation� The method
of achieving heuristic control via con�ict resolution
is inherently serializing and we discuss methods of
avoiding or reducing this overhead in asynchronous
rule��ring systems�

� Algorithmic control� We de�ne algorithmic con�
trol as the process by which common programming
idioms such as iteration and program sequencing
are implemented within a rule�based system� We
present a solution to the program sequencing prob�
lem which is non�serializing and does not depend on
either the matching process nor a con�ict resolution
proctocol�

In this paper� we describe methods of achieving each
type of control within the context of our experimental
vehicle� a parallel rule��ring production system with
an augmented agenda manager� Finally� because the



asynchronous execution of rules prohibits a dynamic
analysis of rule interactions� we present a method of
partially enforcing database consistency which is suf�
�cient to allow our control idioms to be implemented
without imposing undue overhead upon the system�
In order to place our research in context� we present
a brief survey of previous work on parallel rule��ring
systems in the following section�

Related Work

In describing his research on the sources of par�
allelism within production systems� Gupta noted
that performance could be greatly increased by
executing rules in parallel and cited the SOAR
system	Laird� Newell� and Rosenbloom 
���� as one
which was potentially capable of executing all mem�
bers of its con�ict set in parallel 	Gupta 
����� Ishida
and Stolfo �rst discussed the problem of main�
taining consistency within a parallel rule�based sys�
tem 	Ishida and Stolfo 
���� Their solution� which
involved detecting references by rules to particular
classes of working memory elements signi�cantly re�
stricted parallelism� e�ectively only one instance of
each rule could �re simultaneously� More recently�
Schmolze has devised an algorithm which uses both
static analysis and a run time uni�cation scheme
to detect more precisely the rules within the con�
�ict set which potentially interact 	Schmolze 
�����
Schmolze�s scheme allows multiple instantiations of
rules to be executed in parallel� Both Schmolze and
Ishida have proposed distributed parallel rule��ring
systems� Ishida�s system dynamically organizes it�
self to meet demand by copying rules to other pro�
cessors 	Ishida� Yokoo� and Gasser 
����� Schmolze�s
system� PARS� assigns distinct rules to each processor
and distributes working memory elements to each rel�
evant rule� the rules �re asynchronously� using a com�
munication protocol between the processors to ensure
that consistency of working memory is maintained�
Recent work by Ishida has discussed design princi�

ples for parallel rule�based systems� dividing the prob�
lem into three components� interference analysis� the
parallel �ring algorithm which determines how rules
should be distributed� and the parallel programming
environment which provides language facilities for par�
allel rule execution 	Ishida 
����� Ishida�s paper is one
of the �rst to discuss control issues� he proposes di�
viding rules into separate rule groups and de�ning sep�
arate con�ict resolution policies for each group� and
dividing rules into two classes� control and heuristics�
these two ideas also appear in our own work� Miranker
has proposed allowing independent rules sets to exe�
cute asynchronously in parallel and has developed op�
timizing transformations for partitioning rules intomu�
tual exclusion sets 	Miranker� Kuo and Browne 
�����
but has not addressed the problem of control in parallel
asynchronous programs�
In our previous work in cooperative distributed

problem solvers� we have performed considerable re�
search in the control of parallel and distributed black�
board systems and have noted many similarities be�
tween the issues faced in distributed blackboard sys�
tems and those of rule�based systems	Corkill 
����
Decker et al� 
��
�� Both types of systems consist of
knowledge sources or productions acting upon a central
data structure� Eligible knowledge sources are stored
upon an agenda� and agenda management must be
performed to ensure that the appropriate knowledge
sources are executed in a timely fashion� It is natural
to investigate whether it is possible to apply some of
the techniques appropriate to large�grained blackboard
systems in which the operators are relatively long�lived
to the �ner grained rule�based systems�

The Parallel Rule Firing System

At the University of Massachusetts� we have developed
a parallel language based on the rule programming lan�
guage OPS which supports both matching and rule�
level parallelism 	Neiman 
��
a�� The system is im�
plemented in TopCL�� a parallel Common Lisp which
supports futures and lightweight tasks called threads�
Using this system and a set of benchmarks which dis�
play high levels of potential rule parallelism� we have
observed speedups of � to 
� times over the serial case
on a Sequent Symmetry shared memory multiprocessor
with 
� processors�
Our initial use of this system was to experi�

ment with a number of di�erent rule �ring poli�
cies and collect data on their relative perfor�
mance� One of our �rst observations �also reported
in 	Miranker� Kuo and Browne 
����� was that rule�
�ring in a parallel system should proceed� whenever
possible� in an asynchronous manner� using what we
call the ��re�when�ready� policy�
Previous rule��ring schemes have employed a syn�

chronous rule��ring policy which performs con�ict res�
olution� detects potential rule interactions� and creates
a maximal set of executable rule instantiations which
are then �red� the system must then wait for comple�
tion of all working memory changes� This synchro�
nization delay can cause eligible rule instantiations to
remain idle in the con�ict set for signi�cant lengths
of time due to discrepancies in matching and execu�
tion time between rules� In our experiments� the asyn�
chronous rule �ring policy reduced con�ict set latency
time signi�cantly� resulting in performance improve�
ments of between a factor of 
� and an order of mag�
nitude� depending on the benchmark under consider�
ation� The speedup becomes more pronounced as the
variance in production execution times in the bench�
mark increases� There is a trade�o� between perfor�
mance and control� the requirement of the ��re�when�
ready� strategy that rules execute as soon as they be�
come enabled eliminates the role of the con�ict set in

�TopCL is a trademark of Top Level� Inc�



determining the control policy of the system and de�
tecting potential rule interactions 	Neiman 
��
b��
In order to contend with the control issues we have

encountered� we are developing an agenda manager
which is responsible for dynamically scheduling pro�
ductions� interpreting meta�level speci�cations of pro�
gram sequencing� and ensuring that pathological inter�
actions do not exist between executing rules�

Control Issues
In this section� we discuss the three control areas we
have identi�ed� dynamic scheduling� heuristic� and al�
gorithmic control and brie�y outline the issues asso�
ciated with achieving each type of control within the
context of an asynchronous rule��ring system�

Dynamic Scheduling

In a production system in which many rules are eligible
to �re at a given time� there is substantial competition
for processing and matching resources� For example�
in a modi�ed version of the Toru�Waltz benchmark�

we have seen as many as 
�� rule instantiations eligi�
ble to �re concurrently on a 
� processor machine� In
any implementation of a parallel OPS�like language�
there will also be unavoidable contention for critical
regions within the Rete net� the principal data struc�
ture used in the match process 	Forgy 
����� We have
observed the following phenomena� �rst� when a stan�
dard con�ict resolution scheme is used� many rules
must be activated within a short span of time� caus�
ing massive contention for processors and shared re�
sources as evidenced by increased latency periods on
processor queues and increased wait time for locks in
critical regions such as timetag allocation routines��
Second� when many instantiations of the same type of
rule are active� they initiate similar working memory
changes which must compete for access to matching re�
sources� as evidenced by increased contention for locks
on the memory nodes within the Rete net� Finally�
rules which produce results necessary to the computa�
tion may not execute promptly due to contention for
processors with less critical rules�
The problem of contention for resources is reduced�

but not eliminated� by the use of the ��re�when�ready�
policy� If rules are allowed to �re whenever they are
eligible� the demand for processors and resources is
spread out over a larger time period� Because the
time spent in critical regions is very short� stagger�
ing the demand for resources eliminates much of the

�The Toru�Waltz program� written by Toru Ishida�
demonstrates considerable rule parallelism and has been
widely used as a benchmark in the literature on parallel
rule��ring systems� For a description of the benchmark and
analysis of the sources of parallelism� see �Neiman ����a��

�In order to ensure that working memory elements are
assigned unique timetags� the allocation of timetags and
other necessary bookkeeping must be performed in a criti�
cal region�

contention� To solve the remaining problems� we pro�
pose using a heuristic scheduling scheme which uses
simple knowledge about the relative priorities of rules
and their resource utilization� this scheme has been
successfully applied by members of our research group
to the scheduling of low�level blackboard activities
	Decker et al� 
��
�� it remains to be seen whether it
will be e�ective for the �ner�grained rule scheduling�
Note that dynamic scheduling is only appropriate when
the number of rules eligible to be executed exceeds the
number of available processors� the heuristic rules can
be then applied while waiting for resources to become
free�

The following set of heuristic scheduling rules illus�
trate some of the goals of dynamic scheduling� in�
creasing processor utilization� reducing contention for
shared resources� and meeting deadlines�

� Develop triggering data �rst� Production systems
are data�driven� thus� rules which produce data nec�
essary for the activation of many rules should be ex�
ecuted as soon as possible� For example� in a circuit
simulation program� this policy would schedule rule
instantiations simulating earlier clock times �rst� In
such cases� the recency criteria of conventional con�
�ict resolution could result in starvation� preventing
the necessary data from being asserted�

� Schedule goal�related rules �rst� The structure of
parallel rule�based programs makes it necessary to
divide computations into rules which perform goal�
related tasks� and rules which perform bookkeeping
functions� such as deleting obsolete working mem�
ory elements� While these latter increase the ef�
�ciency of the matching process by reducing node
memory sizes� they do not further the computation
and should be scheduled with a lower priority�

� Execute dissimilar rules� We have observed that the
simultaneous execution of many instantiations of the
same rule may lead to contention for system re�
sources� When the level of activity exceeds a thresh�
old� the matching process becomes e�ectively serial�
While we have reduced this overhead using hash�
ing techniques� contention should also be reduced
by scheduling rules which have disparate righthand
sides�

� Delete redundant rule instantiations� In a parallel
asynchronous system� it is necessary to disable ac�
tivities once they have become redundant or unnec�
essary in order to conserve processing resources� For
example� in a goal�directed system consisting of an
AND�OR hierarchy� unless the scheduler explicitly
halts their execution� tasks related to a high�level
goal may continue to execute inde�nitely after that
goal has been achieved� or has been shown to be
unachievable�



Heuristic Control in Parallel Rule��ring
Systems

We distinguish heuristic control from scheduling in
that control is concerned not with the e�cient use of
resources� but rather with optimizing the quality of
the eventual solution by selecting the best alternative
among a set of applicable rules� The problem of heuris�
tic control is complicated by the relatively short exe�
cution time of rules and the requirement that rules be
executed asynchronously whenever possible� Because
the ��re�when�ready� policy executes productions be�
fore su�cient information is available to generate com�
pletely accurate control decisions� a computation must
either generate only the correct productions to exe�
cute or be able to recover from the occasional spurious
production execution� Space limits our discussion of
heuristic control to the three following cases�

� Classes of problems in which con�ict resolution need
not be performed either because the nature of the
problem ensures a one�to�one mapping between rules
and subproblems or because the necessary focussing
heuristics are already contained within the rules
themselves�

� Algorithms in which executing con�icting rules can
be viewed as a parallel search process whose cost is
less than that of heuristic control and synchroniza�
tion�

� Problems in which the number of con�icting rules
grows exponentially and heuristic con�ict resolution
is unavoidable�

Execution of Independent Subtasks There is a
large class of problems presenting signi�cant oppor�
tunities for rule�level parallelism which do not require
heuristic control� These problems possess the property
that any rule which becomes enabled is both necessary
to the computation and is not subsumed by any other
rule instantiation� We have observed that problems
which display object or data parallelism usually possess
this property and are particularly well�suited for asyn�
chronous rule execution� An example of a problem in
this domain is the Toru�Waltz benchmark� our analysis
of this program indicates that rule instantiations enter
the con�ict set monotonically� with each rule instan�
tiation corresponding to a single labelling constraint�
Each constraint is a unique entity which may be pro�
cessed in a data�directed manner� Because the enabled
rule instantiations do not con�ict� but rather co�exist
within the con�ict set� no heuristic decisions are nec�
essary� and the rules may be �red asynchronously�

Parallel Exploration of Alternatives The poten�
tial of parallel program to explore many alternatives
concurrently is one of the most potent arguments for
reducing the dependence on con�ict resolution� Be�
cause rules are typically inexpensive to execute� the
overhead of occasionally executing an inferior rule may
well be less than the combined cost of waiting for quies�

cence within the con�ict set and performing a heuristic
evaluation function� Instead of viewing rules attend�
ing to the same subproblem as mutually exclusive and
requiring con�ict resolution� they can be viewed as op�
erators generating the set of successor nodes to a node
in a state space search� Executing all productions will
lead to an exploration of all relevant search paths�
Unless an enumeration of all possible solutions to

a subproblem is desired� parallel execution of rules
which produce competing solutions requires a mech�
anism for ensuring that a unique solution is even�
tually produced� The principal reason for this is
the avoidance of combinatorial growth of rules within
the con�ict set� If multiple potential solutions en�
ter working memory� they may each enable succes�
sive rules� eventually causing saturation of the sys�
tem� One possible solution is to implement a form
of what Siler� et al� have labeled memory con�ict
resolution 	Siler� Tucker� and Buckley 
���� in which
working memory elements may be modi�ed only if the
changes monotonically converge towards a solution�
We can produce a similar result in an asynchronous
system by using a heuristic rule to propagate solutions
of increasing quality in a data�directed fashion�


� Create a working memory element of the type
�current�solution �subproblem subproblem�id
�value nil� to hold the �nal value�

�� For each rule �ring which develops a potential
solution� asynchronously assert a working mem�
ory element of the form� �potential�solution
�subproblem subproblem�id �value value��

�� Create a heuristic join rule which compares the
value of each potential�solution to the value of
current�solution and updates current�solution
as necessary� while deleting the tentative solution��

�� Delete any rule instantiations and working memory
elements created by the assertion of the previous so�
lution�

This algorithm is particularly appropriate for real
time systems in that it possesses the desirable fea�
ture of producing incrementally better results as time
passes� Computations of this sort which converge
on solutions despite incomplete or inconsistent mem�
ory states have been termed functionally accurate by
Lesser and Corkill 	Lesser and Corkill 
��
��

Partitioning the Con�ict Set for Heuristic De�
cisions The approach of performing a parallel search
of alternatives by executing all eligible rules and merg�
ing the results depends on the set of eligible rules being
manageably small� In cases in which the search space

�In an asynchronous system� multiple instantiations of
this join rule may become eligible to �re simultaneously�
causing a potential clashing situation� Our approach to
the problem of enforcing consistency is discussed in a later
section�



grows exponentially� rules must be collected within a
con�ict set so that heuristic pruning may be performed�
In order to reduce the synchronization overhead asso�
ciated with con�ict resolution� we propose partitioning
the con�ict set and only performing con�ict resolution
between rule instantiations which are attending to the
same subproblem�
The partitioning process presents two problems

which are not explicitly present within the standard
production system paradigm� Rules instantiations
must be identi�ed as being relevant to a particular
subproblem so that they can be assigned to partitions�
and it must be determined when all rules bearing on
a subproblem have become enabled so that heuristic
discrimination can begin�

Attaching rule instantiations to subproblems�
Individual working memory elements may be matched
by rules in di�erent subproblems� and individual
rules may operate on di�erent sets of data� there�
fore rule instantiations cannot be easily partitioned
on the basis of either the type of rule or the data
matched 	McDermott and Forgy 
����� Except for
problems displaying object parallelism in which the
correlation between rule and object is easily distin�
guished� we take the approach of explicitly annotating
rule instantiations�
We make the observation that any goal�directed ac�

tivity is e�ectively traversing a state space� For any
rule activation� a subset of the working memory ele�
ments referenced by the lefthand side of the rule denote
an individual state within the state space� while the re�
maining elements represent global facts which remain
static over the course of the computation�
In order to partition elements into a particular state�

we assign each element a unique state identi�er� In
order to ensure that each rule instantiation accesses
only working memory elements from either the current
space or global data� we de�ne a goal element which
de�nes the type of the subproblem and which is aug�
mented with a unique tag indicating the appropriate
space� Each rule instantiation stimulated by a goal el�
ement is assigned to a con�ict set corresponding to its
state identi�er� Because only rules in the same con�ict
set may interact� the contents of disparate con�ict sets
may be scheduled independently� minimizing synchro�
nization delays�

Achieving quiescence within a partitioned con�
�ict set� Before a heuristic decision can be made� all
relevant rule instantiations must be present in the con�
�ict set� In general� we can never guarantee that this is
the case� Even if quiescence is achieved throughout the
entire system� a rule �ring at a later time may produce
new information relevant to the current state� Thus�
we make the assumption when testing for quiescence
within a partitioned con�ict set that all working ele�
ments relevant to the current state have been asserted

when the activating goal is asserted� or are asserted
in parallel with the activating goal element� We fur�
ther assume that all global working memory elements
not speci�c to the current state remain stable during
the course of con�ict resolution� If these assumptions
hold� we can insure quiescence within a partitioned
con�ict set by waiting until each working memory el�
ement which is annotated as belonging to the current
state has been asserted and propagated throughout the
entire network�
This discussion has not fully addressed the problem

of determining quiescence� for example� when perform�
ing an AND�OR traversal of a search space� it is neces�
sary to determine when all competing or contributing
subproblems have developed solutions � in situations
such as these� the agenda manager must maintain a
record of the goal hierarchy and check each task for
quiescence�

Algorithmic Control

Although rule�based programs are data�driven� it is
common practice to impose speci�c orderings on the
rule �rings in order to emulate programming idioms
such as iteration� to implement particular algorithms
such as search or goal�directed reasoning� or to parti�
tion the computation into discrete phases� Because of
their dependance on the manipulation of con�ict reso�
lution and rule ordering� such idioms are rarely suitable
for parallel rule execution� There are certain unavoid�
able serial constructs� for example� I�O operations and
trivial iteration of operations over working memory el�
ements� We argue that such operations are not essen�
tially knowledge�based and are best performed using
imperative constructs such as those provided in the
OPS�� programming language	Forgy 
�����
One of the most problematic algorithmic constructs

is that of program sequencing� that is� ensuring that
a computation proceeds through a number of discrete
processing phases� This is usually done by means of
mode or goal working memory elements� Each rule in
a given processing phase contains a reference to the
mode element in its lefthand side� In order to change
modes� a mode�changing rule is provided which is de�
signed to �re only when no other rules within the phase
are eligible� This particular construct poses a num�
ber of problems to the parallel programmer� First� it
depends on the speci�city condition of the standard
con�ict�resolution algorithm� When executing rules in
parallel� con�ict�resolution is not performed and the
mode�changing production� being always enabled� may
�re in parallel with other rules in the phase� disabling
them prematurely� The mode�changing productions�
therefore� should not be executed in parallel with any
other rule�
To make matters worse� mode�changing is match in�

tensive� Not only are large numbers of rules enabled by
the addition of a new mode element� causing contention
within the Rete net� but many partial matches within



the Rete net must be retracted� We have observed
that it is not unusual for a mode�changing rule which
adds a single working memory element to take two or�
ders of magnitude longer to �re than any other rule
within the phase� Within the Toru�Waltz benchmark�
for example� in a run of ��� rule �rings� a single mode�
changing rule consumes �� of the run time� While we
can reduce this execution time by enabling match par�
allelism for the duration of the production execution
or allowing rules enabled by the mode change to exe�
cute asynchronously� it is clear that a construct which
requires a single working memory change to activate a
large number of rules is inherently serializing�
In order to remove the overhead of mode�changing

while allowing the programmer to specify program se�
quencing� we have implemented a meta�level facility
which allows the programmer to specify both a type
and a rule group for each production� Each mode�
changing production is explicitly tagged as a mode�
changer� Our agenda manager ensures that no mode�
changing rule will �re until all rules within a phase
have executed and quiescence has been achieved�
To remove the matching overhead associated with

mode�changing� we have created a new righthand�side
action which allows a rule to communicate a new mode
to the agenda manager� Because no matching is asso�
ciated with the speci�cation of the new mode� execu�
tion of mode�changing productions is extremely fast�
and rules within the new computational phase are im�
mediately executed by the agenda manager� During
each computational phase� rule instantiations belong�
ing to a subsequent phase may become enabled and en�
ter the con�ict set but will not execute until the mode
has changed� This approach distributes the overhead
of matching rules instantiations for subsequent phases
over a set of parallel activities rather than the serial
addition of a single working memory element�

Correctness of Algorithms

A problem which is closely related to the problem of al�
gorithmic control is that of maintaining database con�
sistency� When productions are allowed to execute in
parallel� they may interact to produce results which
could not be achieved by any serial ordering of rule
�rings�
A number of techniques have been developed

for detecting rule interactions 	Ishida and Stolfo 
���
Schmolze 
���� Ishida 
����� These algorithms usually
consist of a static analysis phase which is performed at
compile time and a runtime component which dynam�
ically examines all eligible rules in order to select a set
of co�executable rules� The runtime component is rel�
atively expensive� both because of the synchronization
cost of accessing all eligible rules� and because it must
perform uni�cation of variables in order to precisely
identify the rule interactions�
Our study of parallel rule��ring programs has indi�

cated that rule interactions occur only rarely� Rather

than accept the synchronization delays associated with
a full analysis of rule interactions� we have chosen to
only enforce a subset of the correctness criteria using
a scheme of read�write locks on working memory el�
ements� Each working memory element is assigned
a write �ag and a read counter� A working memory
element whose write �ag is set may not be modi�ed
or referenced by any rule instantiation� Any working
memory element whose read counter is greater than
zero cannot be modi�ed by any rule� When a rule in�
stantiation is selected from the agenda� it must check
the write �ags of elements it references and the read
counters of elements it wishes to modify� If it is not
safe to perform the desired operation� the rule instan�
tiation is replaced on the agenda for future execution�
otherwise the appropriate �ags are set and counters
are incremented�
The use of locks to enforce working memory consis�

tency has the advantage of not requiring either static
analysis of rule sets or runtime uni�cation of variables�
does not require synchronization of the con�ict set� and
possesses an extremely low overhead� on the order of
one percent of rule execution time� However� when us�
ing this scheme� the agenda manager detects only a
subset of potential rule interactions�
As it is not possible to lock a non�existent working

memory element� interactions in which one of a pair of
rules adds a working memory which is negatively refer�
enced by the other may still occur� We have chosen to
respond to this problem by creating speci�c language
idioms and constructs which� instead of guaranteeing
correctness� allow the design of correct programs� For
example� in the initialization idiom� in which a rule
checks for the existence of a working memory element
and creates it if it does not exist� we have developed
a variant of the make command which allows one and
only one instance of a particular working memory el�
ement to be created� thus avoiding potential multiple
executions of the initialization rule� So far� we have
found that our locking mechanisms are both necessary
and su�cient to allow the design of correctly written
systems�

Conclusion

Executing productions in parallel in a rule�based sys�
tem promises very high rates of rule execution� but only
if the synchronization overhead introduced by conven�
tional con�ict resolution policies can be eliminated�
We have taken the approach of executing productions
asynchronously whenever the nature of the algorithm
permits� this approach greatly increases processor uti�
lization� but eliminates the principal control mecha�
nism of rule�based systems� We have described three
areas of control for which alternative mechanisms must
be developed� dynamic scheduling of rules� heuristic
control� and algorithmic sequencing of rule execution�
To support these control activities� we have developed
an agenda manager which provides support for en�



forcing consistency of the database� allows the user
to specify rule types and groups for sequencing rule
executions� and which allows both asynchronous and
synchronous execution of rules� We are in the pro�
cess of adding to the agenda manager the capability to
perform dynamic scheduling using meta�level heuris�
tics about rule priorities�

Acknowledgements
The author would like to thank his advisor� Victor
Lesser� for his signi�cant contributions to the ideas
presented in this paper and his support and encourage�
ment during the course of this research� I would also
like to thank Jim Schmolze for his advice and feedback
on the parallel OPS system� Kelly Murray for devel�
oping Top Level Common Lisp� and Penelope Sibun
and members of the CDPS lab for their comments on
this paper�

References
Corkill� Daniel D�� Design Alternatives for Parallel
and Distributed Blackboard Systems� in Blackboard
Architectures and Applications� V� Jagannathan� Ra�
jendra Dodhiawala� and Lawrence S� Baum� eds��
Academic Press� pp� ���
��� 
����

Decker� K�� Garvey� A�� Humphrey� M��and Lesser� V�
E�ects of Parallelism on Blackboard System Schedul�
ing� Proceedings of the ��th International Joint Con�
ference on Arti�cial Intelligence� Sydney� Australia�
August� 
��
�

Forgy� C�L�� On the E�cient Implementation of Pro�
duction Systems� PhD thesis� Dept� of Computer Sci�
ence� Carnegie�Mellon University� February� 
����

Forgy� C�L�� The OPS	
 Report� Technical Report
CMU�CS����
��� Department of Computer Science�
Carnegie�Mellon University� May 
����

Gupta� Anoop� Parallelism in Production Systems�
Morgan Kaufman Publishers� Inc�� Los Altos� CA�

����

Ishida� T� and Stolfo� S�� Towards the Parallel Ex�
ecution of Rules in Production System Programs�
Proceedings of the IEEE International Conference on
Parallel Processing� pp� ����� 
���

Ishida� Toru� Methods and E�ectiveness of Parallel
Rule Firing� �th IEEE Conference on Arti�cial Intel�
ligence Applications� March ��� 
����

Ishida� Toru� Makoto Yokoo� and Les Gasser� An Or�
ganizational Approach to Adaptive Production Sys�
tems� AAAI���� pp� ����

Laird� J�E�� Newell� A�� and Rosenbloom� P�S� Soar�
An Architecture for General Intelligence� Arti�cial
Intelligence ���
����
����

Lesser� V� and Corkill� D�� Functionally Accurate�
Cooperative Distributed Systems� IEEE Transactions
on Man� Machine� and Cybernetics� Vol� SMC�

� No�

� January 
��
�

McDermott� J�� and C� Forgy� Production System
Con�ict Resolution Strategies� in Pattern�Directed
Inference Systems� D� A� Waterman and Frederick
Hayes�Roth� eds�� Academic Press� 
����

McDermott� J�� Extracting Knowledge from Expert
Systems� IJCAI���� pp� 
���
���

Miranker�Daniel� Chin�Ming Kuo� and James C�
Browne� Parallelizing Transformations for a Concur�
rent Rule Execution Language� TR������� Depart�
ment of Computer Science� University of Texas at
Austin� October� 
����

Neiman� Daniel� Parallel OPS User�s Manual and
Technical Report� COINS TR �
�
� Computer and
Information Sciences Dept�� University of Mas�
sachusetts� 
��
�

Neiman� Daniel� Control in Parallel Production Sys�
tems� A Research Prospectus� COINS TR �
��� Com�
puter and Information Sciences Dept�� University of
Massachusetts� 
��
�

Schmolze� James G�� Guaranteeing Serializable Re�
sults in Synchronous Parallel Production Systems�
Technical Report ���� Department of Computer Sci�
ence� Tufts University� October� 
����

Schmolze� James G� and S� Goel� A Parallel Asyn�
chronous Distributed Production System� AAAI���
pp� ���
�

Siler� William� Douglas Tucker� and James Buck�
ley� A Parallel Rule Firing Fuzzy Production System
with Resolution of Memory Con�icts by Weak Fuzzy
Monotonicity� Applied to the Classi�cation of Multi�
ple Objects Characterized by Multiple Uncertain Fea�
tures� International Journal of Man�Machine Studies�
�
����������
�����


