
Exploiting Meta-Level Information in a Distributed
Scheduling System�

Daniel E. Neiman, David W. Hildum, Victor R. Lesser

Tuomas W. Sandholm
Computer Science Department

University of Massachusetts
Amherst, MA 01003

DANN@CS.UMASS.EDU

May 13, 1994

Abstract

In this paper, we study the problem of achieving efficient interaction in a dis-
tributed scheduling system whose scheduling agents may borrow resources from
one another. Specifically, we expand on Sycara’s use of resource texture measures in
a distributed scheduling system with a central resource monitor for each resource
type and apply it to the decentralized case. We show how analysis of the ab-
stracted resource requirements of remote agents can guide an agent’s choice of local
scheduling activities not only in determining local constraint tightness, but also
in identifying activities that reduce global uncertainty. We also exploit meta-level
information to allow the scheduling agents to make reasoned decisions about when
to attempt to solve impasses locally through backtracking and constraint relaxation
and when to request resources from remote agents. Finally, we describe the current
state of negotiation in our system and discuss plans for integrating a more sophis-
ticated cost model into the negotiation protocol. This work is presented in the
context of the Distributed Airport Resource Management System, a multi-agent
system for solving airport ground service scheduling problems.

�This work was partly supported by DARPA contract N00014-92-J-1698 and NSF contracts CDA-
8922572 and IRI-9208920. The content of this paper does not necessarily reflect the position or the
policy of the Government and no official endorsement should be inferred.

1



1 Introduction

The problem of scheduling resources and activities is known to be extremely challenging
[8, 7, 14, 11]. The complexity increases when the scheduling process becomes dependent
upon the activities of other concurrent schedulers. Such interactions between scheduling
agents arise when, for example, agents must borrow resources from other agents in
order to resolve local impasses or improve the quality of a local solution. Distributed
scheduling applications are not uncommon, for example, the classic meeting planning
problem [13] can be considered as a distributed scheduling problem; the airport ground
service scheduling (AGSS) problem we address in this paper is another; and similar
problems may arise in factory floor manufacturing domains.

In distributed scheduling systems, problem-solving costs will likely increase because
of the interaction among agents caused by the lending of resources. One method of
increasing the quality of solutions developed by such multi-agent schedulers and mini-
mizing the costs of backtracking is to allow agents to communicate abstracted versions
of their resource requirements and capabilities to other agents. The use of this meta-level
information allows the scheduling agents to develop models of potential interactions
between their scheduling processes and those of other agents, where an interaction is
defined as a time window in which the borrowing or lending of a resource might occur.
We show how the identification of interactions affects the choice of scheduling heuristics,
communication, and negotiation policies in a distributed scheduling system. We discuss
our heuristics in the context of a specific testbed application, the Distributed Airport
Resource Management System (DIS-ARM).

2 Related Work

The use of meta-level information to define the interactions between agents has been
studied extensively by Durfee and Lesser via the use of partial global plans [5]. This
work has been extended by Decker and Lesser [3, 4] to incorporate more sophisticated
coordination relationships. According to this framework, we can view our detection of
potential loan requests using texture measures to be an identification of facilitating rela-
tionships, and our modification of the scheduling algorithm as an attempt to exploit this
perceived relationship. The formulation of distributed constraint satisfaction problems
as distributed AI was described by Yakoo [16], however, this work concentrated more on
the problem of distributed backtracking rather than on coordinating agents.

The problem of coordinating distributed schedulers has been studied extensively by
Sycara and colleagues [15]. They describe a mechanism for transmitting abstractions of
resource requirements (textures ) between agents. Each agent uses these texture measures
to form a model of the aggregate system demand for resources. This model is used

2



to allocate resources using various heuristics. For example, a least-constraining-value
heuristic is used to allocate resources based on the minimization of the probablity that
the reservation would conflict with any other. For each type of resource, one agent is
assigned the task of coordinating allocations and determining whether requests can be
satisfied. All resources of a given type are considered interchangeable and the centralized
resource monitor does not need to perform significant planning to choose the most
suitable resource; instead, its role is simply to ensure that each resource is allocated to no
more agents than can be served by that resource during any given time period.

We investigate a similar use of abstracted resource demands for a case in which
centralized resource monitors are not possible since resources of the same type may
possess unique characteristics, and agents possess proprietary information about local
resources (such as current location and readiness). Agents may respond to a request
for a resource either by immediately satisfying it with a reservation, denying it, or by
performing local problem-solving actions to attempt to produce a suitable reservation.

In our domain, we have found that Sycara’s texture measures alone do not convey
sufficient information to allow satisfactory scheduling. Their texture measures consist of
a demand profile for each resource which represents, for each time interval, the sum of
probabilities that resource requests will overlap that interval. These probabilities are based
on the assumption that reservations can occur at any time within the requested interval.
Assignment of resources is then performed using these probabilities to implement a
least-constraining-value heuristic.

These texture measures do not capture sufficient information regarding time-shift
preferences of resource assignments within the specified interval. In our domain, re-
sources may legally be assigned at any time within the interval between the earliest start
time and the latest finish time, but for some activities, there exist strong preferences as
to which end of the interval the assignment is biased. For example, when scheduling
ground services for an airport, once a flight arrives, it is important to unload baggage as
early as possible so that necessary transfers can be made to connecting flights. The shift
preference can be determined by the assigning agent using domain knowledge, provided
that it knows the nature of the task generating the request. Because this information is
not captured in the texture measures, the heuristic described by Sycara, et al. is likely to
lead to poor schedules within the airport ground service scheduling domain.

3 Overview: The Distributed Dynamic Scheduling System

In order to test our approach to solving distributed resource-constrained scheduling prob-
lems (RCSPs), we have designed a distributed version of a reactive, knowledge-based
scheduling system called DSS (the Dynamic Scheduling System) [9]. DSS provides a
foundation for representing a wide variety of real-world RCSPs. Its flexible scheduling

3



approach is capable of reactively producing quality schedules within dynamic environ-
ments that exhibit unpredictable resource and order behavior. Additionally, DSS is
equipped to manage the scheduling of shared tasks connecting otherwise separate orders,
and handle RCSPs that involve mobile resources with significant travel requirements.

DSS is implemented as an agenda-based blackboard system [6, 1] using GBB (the
Generic Blackboard System) [2]. It maintains a blackboard structure upon which a
developing schedule is constructed, and where the sets of orders and resources for a
particular RCSP are stored. A group of knowledge sources are provided for securing the
necessary resource reservations. These knowledge sources are triggered as the result of
developments on the blackboard, namely the creation and modification of the service
goals attached to all resource-requiring tasks. Triggered knowledge sources are placed
onto an agenda and executed in the order of their priority.

The Distributed Dynamic Scheduling System (DIS-DSS) maintains separate black-
board structures for each agent and provides communication utilities for transmitting
requests and meta-level information between agents. Remote analogues of service goals,
task structures, and other scheduling entities are created as needed to model the state
of other agents. The information about other agents’ schedules and commitments is
incomplete and is limited to the content of goals, meta-level information, and those
parts of the schedule to which the local agent itself has contributed.

The approach we have taken towards distributing DSS is to view each agent as repre-
senting an autonomous organization possessing its own resources. It is this autonomous
nature of the organizations that is the rationale for distributing the resource allocation
problem. Although a centralized architecture might produce more efficient solutions,
real world considerations such as cost and ownership often lead to confederations in
which information transfer regarding commitments and capabilities is limited. In this
model, the primary relationship between agents is a commitment to exchange resources as
needed and a willingness to negotiate with other agents to resolve impasses. This model of
a decentralized group of agents performing independent tasks in a resource-constrained
environment is similar to the architecture of Moehlman’s Distributed Fireboss [10]. We
distinguish our work from Moehlman’s by our use of meta-level information to con-
trol the decision process by which agents choose to resolve impasses locally, through
backtracking and constraint relaxation, or through requests to remote agents.

Because resources are owned by specific agents and possess unique characteristics
regarding location and travel times that are known only to the owning agent, we can not
define central resource monitors responsible for allocating each type of resource. This,
again, distinguishes our approach from that of Sycara, et al. [15]. Agents requiring a
resource must communicate directly with the agent owning a resource of that type and
negotiate for its loan.

This architecture provides a rich domain for the study of agent coordination issues
in a distributed environment; agents must be able to model the interactions of their tasks

4



with those of neighboring agents closely enough to be able to determine which agents
will be most likely to provide the desired resources at the lowest cost to both agents.
This coordination requires local reasoning on the part of agents in order to determine
how to cooperate efficiently with an acceptable level of communication and redundant
computation.

3.0.1 Assumptions

In our work with DIS-DSS, we have made a number of assumptions about the nature of
agents, schedules, and communication overheads.

� Agents are cooperative and will lend a resource if it is available.

� Agents will only request a resource from one agent at a time – this is to avoid
the possibility of redundant computation and communication if multiple agents
attempt to provide the resource cf. [12].

� Once agents have lent a resource to another agent, they will never renege on this
agreement. This limits the ability of the system to perform global backtracking;
we intend to eliminate this restriction in the next version of the system.

� Communication is asynchronous and can occur at any point during the con-
struction of a local schedule; therefore requests may arrive before an agent has
completely determined its own requirements for resources in the time window of
interest.

� The cost of messages is largely in the processing and in the inherent delay caused
by transmission – the amount of data within the message may be large, within
limits.

3.0.2 Communication of Abstract Resource Profiles

Without information regarding other agents’ abilities to supply missing resources, an
agent may be unable to complete a solution, or may be forced to compromise the quality
of its solution. To allow agents to construct a model of global system constraints and
capabilities, we have developed a protocol for the exchange and updating of resource
profiles: summarizations of the agent’s committed resources, available resources, and
estimated future demand.

Upon startup, each agent in DIS-DSS receives a set of orders to be processed.
The agents examine these orders and generate an abstract description of their resource
requirements for the scheduling period. This bottleneck-status-list consists of a list of
intervals, with each interval annotated by a triple: resources in use, resources requested,

5



and resources available. The request field of this triplet represents an abstraction of
the agent’s true resource requirements. Certain aspects of a reservation such as mobile
resource travel times to the objects to be serviced, cannot be easily estimated in advance.
The time intervals specified for each resource request are pessimistic, consisting of the
earliest possible start time and latest possible finish times for the activity requesting that
resource. The true duration of the task can be estimated by the scheduling agent using
its domain knowledge regarding the typical time required to perform a task. We define
the demand for a resource r performing task T in interval (tj; tk) to be:

avg demand(T; r; tj; tk) = duration(T; r)=(tk � tj)

Once resource abstractions have been developed for each resource type required (or
possessed) by the agent, it transmits its abstractions to all other agents. Likewise, it
receives abstractions from all agents. Once the agent has received communications from
all other agents, it prepares a map of global resource requirements and uses it to generate
a set of data structures called lending possibilities. Each lending possibility represents an
interval in which some agent appears to have a shortfall in a resource. For each lending
possiblity, the agent generates a list of possible lenders for that resource, based on the
global resource map and its knowledge of its own resource requirements. These lending
possibility structures are used to predict when remote agents may request resources and
when the local agent may need to borrow resources. This information guides the agent’s
decision-making process in determining both when to process local goals and when and
from whom to request resources.

3.1 The Distributed Airport Resource Management System

The Distributed Airport Research Management System testbed was constructed using
DIS-DSS to study the roles of coordination and negotiation in a distributed problem-
solver. DIS-ARM solves distributed AGSS problems where the function of each schedul-
ing agent is to ensure that each flight for which it is responsible receives the ground
servicing (gate assignment, baggage handling, catering, fuel, cleaning, etc.) that it re-
quires in time to meet its arrival and departure deadlines. The supplying of a resource is
usually a multi-step task consisting of setup, travel, and servicing actions. Each resource
task is a subtask of the airplane servicing supertask. There is considerable parallelism
in the task structure: many tasks can be done simultaneously. However, the choice
of certain resource assignments can often constrain the start and end times of other
tasks. For example, selection of a specific arrival gate for a plane may limit the choice
of servicing vehicles due to transit time from their previous servicing locations and may
limit refueling options due to the presence or lack of underground fuel tanks at that gate.
For this reason, all resources of a specific type can not be considered interchangeable in

6



the AGSS domain. Only the agent that owns the resource can identify all the current
constraints on that resource and decide whether or not it can be allocated to meet a
specific demand.

4 Exploiting Meta-level Information in DIS-DSS

In this section, we examine three areas in which meta-level abstractions of global resource
requirements are exploited in DIS-DSS. We show how the goal rating scheme of an agent’s
blackboard-based scheduler is modified to satisfy the twin aims of scheduling based on
global constraints and of planning activities in order to reduce uncertainty about agent
interactions. We describe how communication of resource abstractions is based on
models of agents’ interests and the manner in which agents choose between local and
remote methods of satisfying a request.

4.1 Scheduling using Texture Measures

Many scheduling systems divide processing into the categories of variable selection, the
choice of the next activity to schedule, and value selection, the selection of a resource and
time slot for that activity. In DIS-DSS, variable selection corresponds to the satisfaction
of a particular resource request. Value selection is handled in DSS by a collection of
opportunistic scheduling heuristics. We focus here on the problem of coordinating
resource requests so that local variable-selection heuristics possess sufficient information
to make informed decisions.

In many knowledge-based scheduling systems, the object of control is to arrange
scheduling activities so that the most tightly constrained activities are scheduled first in
order to reduce the need for backtracking. In a distributed system, we have an additional
criterion: to schedule problem-solving activities in such a way that global uncertainty
about certain tasks is reduced before decisions regarding those tasks are made. A scheduler
may be uncertain of whether other agents will request a resource in a tightly constrained
time period and whether other agents will be able to supply a needed resource. While
the resource abstractions may indicate a loan request is likely, the duration of the loan
and details of the resource’s destination can only be determined once the request has
been received. Likewise, details of the precise timing and duration of a loan can only be
determined upon receipt of a remote reservation. We have added coordination heuristics
to the agenda scheduler of DIS-DSS whose purpose is to promote problematic activities
in each agent’s scheduling queue so that their early execution will reduce uncertainty
about global system requirements.

In the DIS-DSS blackboard-based architecture, tasks which require resourcesgenerate
service-goals. Requests received from remote agents generate remote-service-goals. Each

7



goal stimulates knowledge sources that act to secure an appropriate resource. The order
of execution of knowledge sources depends on the rating of the stimulating goals. Goals
are rated using a basic ‘most-tightly-constrained-first’ opportunistic heuristic. The goals
are then stratified according to the following scheme, with the uppermost levels receiving
the highest priority and contention within each level being resolved according to the
basic rating heuristic.

1. Tightly constrained goals that may not be satisfiable locally or that can only be
satisfied by a borrowing event and remote requests that do not overlap any local
request.

2. Tightly constrained goals that can only be satisfied locally.

3. Goals representing requests from remote agents that overlap local goals.

4. Unconstrained or loosely constrained tasks.

5. Goals that potentially overlap with tasks of remote agents.

A goal g is considered to be tightly constrained in interval (tj; tk) if there exists a
time within that interval such that for each resource type r that can satisfy g, the number
of unreserved resources is less than the sum of the average demand for all outstanding
goals.

8 r s:t : Sat(g ; r) 9 t 2 (tj ; tk) s:t :

Navailable(r; t) <
X

g

avg demand(task(g); r; tj; tk)

A goal potentially overlaps with a task of a remote agent if there exists a lending-
possibility data structure for that remote agent describing a potential shortfall within the
time interval spanned by that goal for some resource type that could satisfy the goal.

The rationale for this goal ordering is as follows. Goals that can not be satisfied locally
must be transmitted to remote agents. The transmission of a goal conveys considerably
more information than is available in the resource texture profiles. The potential lending
agent will therefore have more accurate information regarding the interval for which the
resource is desired and the preferred shift preference for the reservation in that interval
(early or late). Once it has received the goal, it will be able to make more informed
decisions about the tightness of constraints for both the local and remote goals. If the
agent is able to satisfy the remote goal, it will be able to update its resource demand

8



curve and transmit it to other agents who may also have been potential lenders of that
resource. For all these reasons, early transmittal and satisfaction of remote service goals
is desirable.

Tightly constrained goals that potentially overlap remote requests are deferred until
some overlapping goal arrives, or until a resourceupdate arrives indicating that the remote
agent no longer requires that resource, or until no other work is available for the agent
to perform. By deferring goals until more information about interactions is available,
the system can avoid making premature decisions while at the same time working on
unrelated or less constrained tasks. Once a request arrives, conflicts for resources can be
arbitrated according to which goal is most pressing and least conducive to backtracking
and/or constraint relaxation.

There are a number of competing requirements for the rating and processing of
remote service goals. One would like to process a remote service goal as soon as possible
in order to return information to the requesting agent. At the same time, both local and
remote service goals requesting the same type of resource should be rated according to
the same constraint tightness heuristics. The goal rating function in DIS-DSS attempts
to satisfy these requirements by prioritizing those remote service goals that do not
overlap any local service goals and by mapping overlapping remote service goals onto
the same priority level as those local goals that they overlap. Note that the “overlapping”
relationship is transitive: if the priority of a goal is reduced while waiting for a remote
request, any lower rated goal that overlaps that goal’s time interval must also wait even
though it may not directly overlap the interval of the potential remote request.

4.2 Guiding Communication using Texture Measures

Reducing communication costs is an important issue in distributed systems. For this
reason, DIS-DSS agents use the lending possibility models of agent interactions to guide
communication activities. When its resource requirements change, an agent transmits
the information about the resource type only to those agents who, based on its local
information, would be interested in receiving updates concerning that resource type. An
agent with no surplus resources of a given type may not be interested if the local agent
increases its need for a particular resource, likewise, an agent with a surplus of a particular
resource may not need to be notified if an agent reduces its demand for that resource
type. However, agents who possess shortfalls in a time interval for a particular type of
resource will receive updates during processing whenever an agent increases the precision
of its resource abstractions by securing or releasing a resource.

The use of local knowledge to guide communication episodes may lead to agents’
knowledge of the global state of the system becoming increasingly out of date. The
degree to which this should be allowed to happen is dependent upon the acceptable level
of uncertainty in the system and the accuracy with which resource abstractions can be

9



made.

4.3 Ordering Methods for Achieving Resource Assignments

In DSS, the process of securing a resource is achieved through a series of increasingly costly
methods: assignment, preemption, and right shifting. These correspond roughly to
request satisfaction, backtracking, and constraint relaxation. Preemption is a conservative
form of backtracking in which existing reservations are preempted in favor of a more
constrained task. Right shifting satisfies otherwise intractable requests by shifting the time
interval of the reservation downstream (later) until a suitable resource becomes available.
Because this method relaxes the latest finish time constraint, it has the potential to
seriously decrease the quality of a solution. In the AGSS domain, for example, right
shifting a reservation may result in late departures.

In DSS, methods are ordered according to increasing cost. In the distributed version
of the system, the choice and ordering of methods is more complex. When an agent
cannot immediately acquire a resource locally, it faces a decision: should it perform
backtracking or constraint relaxation locally, communicating only when it has exhausted
all local alternatives, or should it immediately attempt to borrow the resource from
another agent? The decision-making process becomes even more difficult if we allow
requests from remote agents to take precedence over local requirements such that agents
may have to perform backtracking or constraint relaxation in order to satisfy a remote
request. We consider this last decision process a form of negotiation, because it involves
determining which of two agents should bear the cost of reduced solution quality and/or
increased problem-solving effort.

In DIS-DSS, we use the lending possibility data structures to dynamically generate
plans for achieving each resource assignment. When it appears that a remote agent will
have surplus resources at the necessary time, then the agent will generate a request as soon
as it becomes clear that the resource can not be secured locally. If, however, it appears that
the resource is tightly constrained globally, the agent will choose to perform backtracking
and/or constraint relaxation operations locally rather than engage in communication
episodes that will probably prove futile.

One use of meta-information occurs during the planning for constraint relaxation.
The scheduling agent attempts to minimize the magnitude of the right shift in order to
reduce the effect of the constraint relaxation on the quality of the solution. To do this,
the agent must determine whether the minimum right shift can be achieved locally or
remotely. However, requiring agents to submit bids detailing their earliest reservations
for a given resource would be a costly process. Instead, the agent uses the abstractions of
remote resource availability to generate a threshold value for the right shift delay. If this
value is less than the delay achieved through right shifting locally, the agent sequentially
transmits the resource request to the appropriate remote agents. If a remote agent

10



can provide a reservation with a delay of less than or equal to the threshold value, it
immediately secures the resource. Otherwise, it returns the delay of the earliest possible
reservation. If no reservation is found, the local agent sets the threshold to the earliest
possible value returned by some remote agent. This new threshold is then compared to
the current best local delay (which might have changed due to local scheduling while the
remote requests were being processed). This process continues until a reservation is made
or until the threshold becomes greater than the delay achievable by right shifting locally.
Obviously, the better the initial estimate for the delay threshold, the less communication
activities will be required.

The meta-information is also used to determine the order in which agents should
be asked for resources, beginning with the agent(s) with the least tightly constrained
resources.

5 Experimental Results

The performance of the mechanisms that we have developed for DIS-DSS were tested in
a series of experiments using a single agent system as a basis for comparison. We used six
scenarios designed to test the performance of the system in tightly constrained situations.
The number of orders in each scenario ranged from 10 to 60 and a minimal set of
resources was defined for each scenario. Each scenario was distributed for a three agent
case. Orders were assigned to each agent on a round-robin basis such that each agent
would perform approximately the same amount of work. Resources were distributed
randomly so that in some cases each agent would possess all necessary resources while in
other cases, borrowing from remote agents would be necessary.

We ran DIS-ARM on each scheduling scenario using the following configurations of
the scheduler:

� The baseline case with a single agent.

� The 3 agent case with no use of meta-level information, and an opportunistic
(most-tightly-constrained-variable-first) goal rating scheme

� The 3 agent case using the heuristic goal rating scheme incorporating meta-level
information but requesting resources from remote agents only when all local
methods have failed.

� The 3 agent case using heuristic goal rating, meta-level information, and dy-
namic reordering of resource acquisition methods to account for the probability
of securing a goal either locally or remotely.

For each run, we recorded the average tardiness of the schedule, the number of failed
goals (if any), the number of resource-securingmethods tried, the number of requests, the

11



number of satisfied remote service goals, and the number of communication episodes that
occurred during problem solving. In each case, we assumed that communication costs
were negligible in relation to problem-solving and that requests and resource constraint
updates would be received on the simulation cycle immediately succeeding the one in
which they were sent.

Because of the small number of test cases we have examined in our preliminary
experiments, we present our results anecdotally. As expected, the distributed version of
the scheduler always produces a schedule of somewhat lower quality than the centralized
one. When the opportunistic scheduler of the centralized version is used for scheduling
in a distributed environment, its lack of information about global constraints causes it
to produce somewhat inferior results. The heuristic incorporating meta-level informa-
tion consistently outperforms the opportunistic scheduler in terms of the number of
tardy tasks. The opportunistic scheduler occasionally will produce a schedule with less
total tardiness than the distributed algorithm. We interpret this as a trade-off between
satisfying global requirements (by delaying certain goal satisfactions until remote infor-
mation becomes available) and satisfying local requirements by producing needed results
promptly. This is an interesting trade-off that we intend to study in depth. Attempting
to always solve problems locally using preemption and constraint relaxation produced
schedules with much greater delays than when agents dynamically determined when to
request resources remotely based on the meta-level resource abstractions.

6 Conclusions and Future Work

The work we have performed with DIS-DSS is preliminary, but promising. Our results
indicate that the idea of using meta-level information to schedule activities in order to
reduce local uncertainty about global constraints results in better coordination between
agents with a subsequent increase in goal satisfaction. We have also demonstrated that
meta-level information can be successfully used to guide the choice between satisfying
goals locally and remotely, and in optimizing the choice of agents from which to request
resources.

Our experiments were performed with each agent’s orders being defined statically
before scheduling. This allowed the agents to develop a model of their predicted resource
requirements before scheduling began. If we were to model a system in which orders
changed dynamically, either due to equipment failures or timetable changes, we would
expect the model of global resource requirements to become increasingly inaccurate. We
would like to understand the implications of allowing jobs to arrive dynamically on the
performance of a distributed system using meta-level information.

As well as continuing to explore the role of meta-level resource abstractions, we
plan to use the DIS-DSS testbed to explore a number of important issues in distributed

12



scheduling. One of our primary goals is to expand the idea of negotiation between agents
that we have touched upon in this paper. Because the airport ground service scheduling
domain represents a “real world” scenario, we are able to create a meaningful cost model
involving not only the delay in each schedule, but the probable cost of that delay in terms
of missed connections. By allowing agents to exchange this information when requesting
resources, they will be able to more meaningfully weigh the importance of local tasks
against the quality of the global solution.

References

[1] N. Carver and V. Lesser. The evolution of blackboard control architectures,.
Expert Systems with Applications- Special Issue on the Blackboard Paradigm and Its
Applications, 7(1):1–30, Jan–Mar 1994.

[2] D. D. Corkill, K. Q. Gallagher, and K. E. Murray. GBB: A generic blackboard
development system. In Proceedings of the Fifth National Conference on Artificial
Intelligence, pages 1008–1014, Philadelphia, PA., August 1986.

[3] Keith S. Decker and Victor R. Lesser. Generalizing the partial global planning
algorithm. International Journal of Intelligent and Cooperative Information Systems,
1(2):319–346, June 1992.

[4] Keith S. Decker and Victor R. Lesser. Quantitative modeling of complex compu-
tational task environments. In Proceedings of the Eleventh National Conference on
Artificial Intelligence, pages 217–224, Washington, July 1993.

[5] E.H. Durfee and V.R. Lesser. Partial global planning: A coordination framework
for distributed hypothesis formation. IEEE Transactions on Systems, Man, and
Cybernetics, 21(5):1167–1183, September 1991.

[6] Lee D. Erman, Frederick Hayes-Roth, Victor R. Lesser, and D. Raj Reddy. The
hearsay-ii speech-understanding system: Integrating knowledge to resolve uncer-
tainty. Computing Surveys, 12(2):213–253, June 1980.

[7] Mark S. Fox. Constraint-Directed Search: A Case Study of Job-Shop Scheduling. PhD
thesis, Carnegie Mellon University, Pittsburgh PA, December 1983.

[8] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman, New York, 1979.

[9] David W. Hildum. Flexibility in a Knowledge-Based System for Solving Dynamic
Resource-Constrained Scheduling Problems. PhD thesis, Computer Science Dept.,
University of Massachusetts, Amherst, MA 01003, May 1994.

13



[10] Theresa A. Moehlman, Victor R. Lesser, and Brandon L. Buteau. Decentralized
negotiation: An approach to the distributed planning problem. Group Decision
and Negotiation, (2):161–191, 1992.

[11] Norman Sadeh. Look-Ahead Techniques for Micro-Opportunistic Job Shop Scheduling.
PhD thesis, Carnegie Mellon University, Pittsburgh PA, March 1991.

[12] Tuomas Sandholm. An implementation of the contract net protocol based on
marginal cost calculations. In Proceedings of the Eleventh National Conference on
Artificial Intelligence, pages 256–262, Washington, July 1993.

[13] Sandip Sen and Edmund Durfee. A formal analysis of communication and com-
mitment in distributed meeting scheduling. In Proceedings of the Twelfth Workshop
on Distributed AI, Hidden Valley, PA, May 1993.

[14] Stephen F. Smith, Mark S. Fox, and Peng Si Ow. Constructing and maintaining
detailed production plans: Investigations into the development of knowledge-based
factory scheduling systems. AI Magazine, 7(4):45–61, Fall 1986.

[15] K. Sycara, S. Roth, N. Sadeh, and M. Fox. Distributed constrained heuristic
search. IEEE Transactions on Systems, Man, and Cybernetics, 21(6):1446–1461,
November/December 1991.

[16] M. Yakoo, T. Ishida, and K. Kuwabara. Distributed constraint satisfaction for DAI
problems. In Proceedings of the 10th International Workshop on Distributed Artificial
Intelligence, October 1990.

14


