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Abstract

This paper presents studies in learning a form of or�
ganizational knowledge called organizational roles in
a multi�agent agent system� It attempts to demon�
strate the viability and utility of self�organization in
an agent�based system involving complex interactions
within the agent set� We present a multi�agent para�
metric design system called L�TEAM where a set of
heterogeneous agents learn their organizational roles
in negotiated search for mutually acceptable designs�
We tested the system on a steam condenser design do�
main and empirically demonstrated its usefulness� L�
TEAM produced better results than its non�learning
predecessor� TEAM� which required elaborate knowl�
edge engineering to hand�code organizational roles for
its agent set� In addition� we discuss experiments
with L�TEAM that highlight the importance of cer�
tain learning issues in multi�agent systems�

Introduction

Requirements like reusability of legacy systems and
heterogeneity of agent representations lead to a num

ber of challenging issues in Multi
agent Systems
�MAS�� Lander and Lesser �Lander  Lesser �����
developed the TEAM framework to examine some of
these issues in heterogeneous reusable agents in the
context of parametric design� TEAM is an open sys

tem assembled through minimally customized integra

tion of a dynamically selected subset of a catalogue of
existing agents� Each agent works on a speci�c part of
the overall problem� The agents work towards achiev

ing a set of local solutions to di�erent parts of the
problem that are mutually consistent and that satisfy�
as far as possible� the global considerations related to
the overall problem� Reusable agents may be involved
in system con�gurations and situations that may not
have been explicitly anticipated at the time of their de

sign� Adding a learning component to these agents so

�This material is based upon work supported by the Na�
tional Science Foundation under Grant Nos� IRI�����	
�
and EEC��������� The content of this paper does not nec�
essarily reect the position or the policy of the Government�
and no o�cial endorsement should be inferred�

that they can modify their behavior based on the sys

tem con�guration can lead to enhanced performance�
In this paper� we present an extension of TEAM called
L
TEAM that learns to organize itself to let the agents
play the roles they are best suited for in such a multi

agent search process for constructing an overall solu

tion�

The agents in TEAM �and L
TEAM� perform
an asynchronous distributed constraint
optimization
search to obtain a good design� Each of the agents
has its own local state information� a local database
with static and dynamic constraints on its design com

ponents and a local agenda of potential actions� The
search is performed over a space of partial designs� It
is initiated by placing a problem speci�cation in a cen

tralized shared memory that also acts as a repository
for the emerging composite solutions �i�e� partial so

lutions� and is visible to all the agents� Any design
component produced by an agent is placed in the cen

tralized repository� Some of the agents initiate base
proposals based on the problem speci�cations and their
own internal constraints and local state� Other agents
in turn extend and critique these proposals to form
complete designs�

An agent may detect con�icts during this process
and communicate feedback to the relevant agents� con

sequently a�ecting their further search by either prun

ing or reordering the expansion of certain paths� For
a composite solution in a given state� an agent can
play one of a set of organizational roles �in TEAM�
these roles are solution�initiator� solution�extender� or
solution�critic�� An organizational role represents a set
of tasks an agent can perform on a composite solution�
An agent can be working on several composite solu

tions concurrently� Thus� at a given time� an agent is
faced with the problem of� �� choosing which partial
solution to work on� and 	� choosing a role from the
set of allowed roles that it can play for that solution�
This decision is complicated by the fact that an agent
has to achieve this choice within its local view of the
problem
solving situation�Lander ������

The objective of this paper is to investigate the util

ity of machine learning techniques as an aid to such a



decision process in situations where the set of agents
involved in problem solving are not necessarily known
to the designer of any single agent� The results demon

strate the utility and viability of learning such decisions
in complex� heterogeneous multi
agent systems� and
then go on to provide empirical support for two im

portant observations regarding learning in multi
agent
systems�

�� A credit assignment scheme can lead to enhanced
learning if it considers the relations between an ac

tion and the progress of the overall problem
solving
process� in addition to the end result that the action
may lead to�

	� Treating problem solving control as situation

speci�c can be bene�cial�discussed in detail in Sec

tion ��

The rest of the paper is organized as follows� Section
discusses the characteristics of organizational roles in
distributed search and Section presents our use of
the UPC formalism�Whitehair  Lesser ����� as a ba

sis for learning organizational knowledge and discusses
our learning setup� The following section discusses an
implementation of L
TEAM based on this algorithm
and presents the results of our empirical explorations�
We conclude by discussing some related work and the
implications of this work�

Organizational Roles in Distributed
Search

Organizational knowledge can be described as a spec

i�cation of the way the overall search should be or

ganized in terms of which agents play what roles in
the search process and communicate what information�
when and to whom� It provides the agents a way to
e�ectively and reliably handle cooperative tasks� Orga

nizational roles represent a form of organization knowl

edge that lets each agent in L
TEAM take part in the
formation of a composite solution in a certain capac

ity� An organizational role is a task or a set of tasks
to be performed in the context of a single solution� A
role may encompass one or more operators� e�g�� the
role solution�initiator includes the operators initiate�
solution and relax�solution�requirement� A pattern of
activation of roles in an agent set is a role assignment�
All agents need not play all organizational roles� Or

ganizational roles played by the agents are important
for the e�ciency of a search process and the quality of
�nal solutions produced�

To illustrate the above issue� we will use a simple�
generic two
agent example� Figure � shows their search
and solution spaces� The shaded portions in the local
spaces of the agents A and B are the local solution
spaces and their intersection represents the global so

lution space� It is clear that if agent A initiates and
agent B extends� there is a greater chance of �nding
a mutually acceptable solution� Agent A trying to ex

tend a solution initiated by Agent B is likely to lead

to a failure more often than not due the small inter

section space versus the large local solution space in
Agent B� Note however� that the solution distribution
in the space is not known a priori to the designer to
hand code good organizational roles at the design time�

This paper investigates the e�ectiveness of learning
situation
speci�c organizational role assignments� No
single organizational role assignment may be good for
all situations� The agents adapt themselves to play
roles that are better suited for the current problem
solving situation� so as to be e�ective �we will discuss
situations in more detail in the following section��

Learning Role Assignments

Learning involves exploring the space of role assign

ments� developing rating measures for roles in various
situations� The formal basis for learning role assign

ments is derived from the UPC formalism for search
control �see Whitehair and Lesser�Whitehair  Lesser
������ that relies on the calculation and use of the
Utility� Probability and Cost �UPC� values associated
with each hstate�R� final statei tuple� Utility repre

sents an agent�s estimate of the �nal state�s expected
value or utility if it takes on role R in the present state�
Probability represents the expected uncertainty asso

ciated with the ability to reach the �nal state from the
present state� given that the agent plays role R� Cost
represents the expected computational cost of reaching
the �nal state� These values comprise an explicit repre

sentation of the position of a search state with respect
to the potential �nal states in a search space� Addi

tionally� in complex search spaces� a role that looks
like a poor choice from the perspective of a local con

trol policy may actually be a good choice from a more
global perspective due to some increased information
it makes available to the problem solver� This property
of a role is referred to as its potential and it needs to be
taken into account while rating the role� An evaluation
function de�nes the objective strategy of the problem
solving system based on the UPC components of a role
and its potential� An agent applies the evaluation func

tion to all the roles applicable at the present state of
the on
going search and selects the role that maximizes
the ratings�

Starting from this core of the UPC formalism� we
modify it to suit our purpose of learning organizational
roles in negotiated search in multi
agent systems� Our
�rst modi�cation involves classi�cation of all possible
states of a search into pre
enumerated �nite classes of
situations� These classes of situations represent ab

stractions of the state of a search� Thus� for each agent�
there is UPC vector per situation per role leading to
a �nal state� A situation in L
TEAM is represented
by a feature vector whose values determine the class
of a state of the search� Note that in order to get the
values of a situation vector at an agent� it might have
to communicate with other agents to obtain the rele

vant information regarding features that relate to their
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internal state� In L
TEAM� an agent choosing a role
indexes into a database of UPC values using the situ

ation vector to obtain the relevant UPC values for the
roles applicable in the current state�

We use the supervised�learning approach to predic

tion learning �see �Sutton ������ to learn estimates
for the UPC vectors for each of the situations� The
agents collectively explore the space of possible role
assignments to identify good role assignments in each
of the situations� The role assignment at a particu

lar agent is a�ected by the state of problem solving at
the other agents and also the nature of the non
local
search spaces� At each agent� the corresponding situ

ation vector of the features representing the relevant
problem
solving activities at that time and an agent�s
choice of the role it plays are stored by that agent�
The performance measures arising out of this decision
will not be known at that time and become available
only at the completion of the search� After a sequence
of such steps leading to completion� the performance
measures for the entire problem solving process are
available� The agents then back trace through these
steps assigning credit for the performance to the roles
involved �the exact process will be described below���
At each agent� values of the UPC vector for the role
corresponding to the situation at that agent are ad

justed� In our use of the UPC framework� we assume
that there is a single �nal state � the generation of a
complete design� mutually acceptable to all the agents�

Let
�
Skj
�
� �� j�Mk� be the set of possible situation

vectors for Agent k where each situation vector is a per

mutation of the possible values for the situation
vector
features and let Rk

i � � � i � Nk� be the set of roles an
Agent k can play in a composite solution� Agent k has
Mk � Nk vectors of UPC and Potential �abbreviated
as Pot� values�

�
Rk
i � S

k
j � Agent k� U

k
ij� P

k
ij� C

k
ij� P ot

k
ij

�
�

Given a situation Skb � objective function f�U�P�C� Pot�
is used to select a role Rk

a such that

�In this paper we are primarily concerned with showing
the bene�ts and characteristics of learning in multi�agent
systems rather than with the merits of a particular learning
method over others� The reason for choosing supervised
learning method is simply that it worked for us�
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where � � i � N� and kf��R �rating� represents the
role whose UPC values are such that f�U�P�C� Pot� �
rating�

There are various ways of doing the actual changes
to the UPC and Potential values of each situation vec

tor and we discuss some simple schemes here� Let

�p�U
k
ij represent the predicted utility of the �nal so


lution achieved by Agent k playing role Ri in a state n
that can be classi�ed as situation j� accumulated after
p problem solving instances� Let F�T � be the set of
states on the path to a �nal state F � UF represents the
utility of the solution and � � � � � is the learning
rate�

�p���U
k
ij � �p�U

k
ij � � �UF � �p�U

k
ij�� n � F�T �

where state n � situation j� Thus Agent k that
played role Ri� modi�es the Utility for its Ri in situa

tion j�

Let �p�P
k
ij represent Agent k�s estimated probability

that playing role Ri in a state n that can be classi�ed as
situation j will lead to a �nal state� accumulated after
p problem solving instances� Let F�T � be the set of
states on the path to a terminal state T � OT � f�� �g is
the output of the terminal state T with � representing
success and � a failure� � � � � � is the learning rate�

�p���P
k
ij � ��� ���p�P

k
ij � �OT � n � F�T �

where state n � situation j

We will not dwell on the details of the Cost compo

nent update rule because the evaluation functions used
in this work do not involve cost� In a design problem
solving system� the computational costs are not a pri

mary consideration� Successfully completing a good
design takes precedence over computational costs in

volved as long as the costs are not widely disparate�

Obtaining measures of potential is a more involved
process and requires a certain understanding of the sys

tem 
 at least to the extent of knowing which are the



activities that can potentially make positive or neg

ative contribution to progress of the problem solving
process� For example� in L
TEAM� earlier on in a prob

lem solving episode� the agents take on roles that lead
to infeasible solutions due to con�icts in their require

ments� However� this process of running into a con�ict
leads to certain important consequences like exchange
of constraints that were violated� The constraints an
agent receives from other agents aid that agent�s sub

sequent search in that episode by letting it relate its lo

cal solution requirements to more global requirements�
Hence� the roles leading to con�icts followed by infor

mation exchange are rewarded by potential� Learning
algorithms similar to that for utility can be used for
learning the potential of a role� Let �p�Pot

k
ij represent

the predicted potential of the terminal state achieved
by Agent k playing role Ri in a state n which can be
classi�ed as situation j� accumulated after p problem
solving instances� Let F�T � be the set of states on
the path to the terminal state T � PotT � f�� �g be the
potential arising from the state T � where PotT � � if
there is is a con�ict followed by information exchange
else PotT � �� Let � � � � � be the learning rate�

�p���Pot
k
ij � �p�Pot

k
ij � � �PotT � �p�Pot

k
ij�� n � F�T �

where state n � situation j

Experimental Results
To demonstrate the e�ectiveness of the mechanisms
in L
TEAM and compare them to those in TEAM�
we used the same domain as in Lander�Lander �����
� parametric design of steam condensers� The
prototype multi
agent system for this domain� built
on top of the TEAM framework� consists of seven
agents� pump
agent� heat
exchanger
agent� motor

agent� vbelt
agent� shaft
agent� platform
agent� and
frequency
critic� The problem solving process starts by
placing a problem speci�cation on a central blackboard
�BB�� Problem speci�cation consists of three parame

ters � required capacity� platform side length� and
maximum platform de�ection� During each cycle� each
of the agents in L
TEAM can decide either to initiate
a design based on the problem speci�cation or extend
a partial design on the BB or to critique a partial de

sign on the BB� During the process of extending or
critiquing a design� an agent can detect con�icts and
communicate the cause of the con�ict to other agents
if it can articulate it� At present� an agent can commu

nicate only single
clause numeric boundary constraints
that are violated� If the receiving agent can understand
the feedback �i�e� the parameter of the communicated
constraint is in its vocabulary�� it assimilates the in

formation and uses it to constrain future searches� If
such con�ict avoidance search does not work� an agent
tries con�ict resolution by resorting to relaxing soft
constraints� In addition� if an agent detects stagnation
in the progress of the local problem solving process� it
relaxes the local quality requirement thresholds� The

system terminates upon formation of a mutually ac

ceptable design that satis�es the local quality thresh

olds of all the agents�

Each agent has an assigned organizational role in any
single design� As mentioned before� TEAM identi�es
three organizational roles � initiate
design� extend

design� and critique
design� Learning the appropriate
application of all these roles can be achieved� but in
this paper we con�ne ourselves to two roles in each
agent 
 initiate
design and extend
design� Four of
the seven agents � pump
agent� motor
agent� heat

exchanger
agent� and vbelt
agent � are learning either
to initiate a design or to extend an existing partial de

sign in each situation� The other three agents have
�xed organizational roles � platform and shaft agents
always extend and frequency
critic always critiques�

In the experiments reported below� the situation vec

tor for each agent had three components� The �rst
component represented changes in the global views of
any of the agents in the system� If any of the agents re

ceives any new external constraints from other agents
in the past m time units �m was � in the experiments���
this component is ��� for all agents� Otherwise it is ����
If any of the agents has relaxed its local quality re

quirements in the past n time units �n � 	� then the
second component is ��� for all agents� Otherwise it
is ���� Receiving a new external constraint or relaxing
local quality requirements change the nature of the lo

cal search space of an agent� This could prompt it
to initiate designs to seed the blackboard with par

tial designs that take these constraints into considera

tion� Typically� a problem solving episode in L
TEAM
starts with an initial phase of generating seed designs�
followed by a phase of exchange of all the communica

ble information involved in con�icts and then a phase
where the search is more informed and all the informa

tion that leads to con�icts and can be communicated
has already been exchanged� During the initial phase�
the third component is ���� During the intermediate
phase of con�ict detection and exchange of informa

tion� the third component is �	�� In the �nal phase�
it is ���� During the initial phase� some agents may
often play the role of initiators of designs so as lead
to discovery of con�icting requirements that can be
exchanged during the intermediate phase to enhance
each of the agents� view of the global requirements on
its local search� It is important to note that these fea

tures are based on the negotiated search mechanisms
rather than the underlying steam condenser domain�
They are generic to the domain of parametric design
that TEAM addresses� �

In design problem solving� the probability of success

fully completing a design and obtaining a high utility
design are of primary considerations� In addition� in
a complex open environment like that in the L
TEAM

�We believe that it involves much lesser e�ort than iden�
tifying the exact nature of interactions in a steam condenser
domain�



system� some form of guidance to the problem solver
regarding the intermediate stages of search that may
have an indirect bearing on the �nal solution is helpful�
So we used the following rating function�

f�U�P�C� potential� � U � P � potential

Learning rates were empirically determined and set
to ��� for the Utility and Probability components and
���� for the Potential component�

We �rst trained L
TEAM on ��� randomly gen

erated design requirements and then tested both L

TEAM and TEAM on the same ��� randomly gener

ated design requirements di�erent from those used for
training� TEAM was setup so that heat
exchanger and
pump agents could either initiate a design or extend a
design whereas v
belt� shaft and platform agents could
only extend a design� In TEAM� an agent initiates
a design only if there are no partial designs on the
blackboard that it can extend� We looked at two pa

rameters of system performance� The primary param

eter was the cost of the best design produced �lowest
cost�� The other parameter was the number of cycles
the system went through to produce the best cost de

sign� In TEAM �and L
TEAM� each agent in turn
gets a chance to play a role in an evolving composite
solution during a cycle� The number of cycles repre

sents a good approximation of the amount of search
performed by the entire system�� Even though the
computational cost is not a consideration in the cred

ibility function for choosing a role in design problem
solving� it is interesting to observe these measures as
they are representative of the search e�ciency of the
underlying problem
solving process�

We ran L
TEAM and TEAM in two ranges of the
input parameters� Range � consisted of required

capacity �� 
 ����� platform
side
length 	� 
 		��
platform
de�ection ���	 
 ���� Range 	 consisted of
required
capacity ���� 
 	���� platform
side
length ���

 		�� platform
de�ection ���� 
 ���� Lower values of
required
capacity in Range � represented easier prob

lems� We chose the two ranges to represent �easy�
and �tough� problems� One can see from Table �
and Table �� that the two learned organizations for
Range � and Range 	 are di�erent� In order to un

derstand the contribution of situation
speci�city we
also set up L
TEAM to learn organizational roles in a
situation independent manner� Non
situation
speci�c
TEAM learns the same organization� as shown in Ta

ble �� over both the ranges� Table � shows the average
design costs for the three systems 
 situation
speci�c L

TEAM �ss
L
TEAM�� non
situation
speci�c L
TEAM
�ns
L
TEAM�� and TEAM 
 over the 	 ranges� Table 	
shows the average number of cycles per design for the
three systems 
 ss
L
TEAM� ns
L
TEAM� and TEAM�

�Note that search cost is di�erent from design cost that
is a representation of the solution quality�

�Unreachable situations are not shown in the tables�

Range ss
L
TEAM ns
L
TEAM TEAM
Range � �����	 �����	 ������
Range 	 �������� �������� ��������

Table 
� Average Cost of a Design

Range ss
L
TEAM ns
L
TEAM TEAM
Range � ����	 ����� �����
Range 	 ���� 	��� ����

Table �� Average Cycles per Design

Wilcoxon matched
pair signed
ranks test revealed
signi�cant di�erences �at signi�cance level ����� be

tween the cost of designs produced by all the pairs in
the table except between situation
speci�c L
TEAM
and non
situation
speci�c L
TEAM in Range �� and
between non
situation
speci�c L
TEAM and TEAM
in Range 	� The same test also revealed no signi�

cant di�erences between the number of cycles per de

sign for situation
speci�c L
TEAM and TEAM over
both the ranges while showing signi�cance in di�er

ences between the number of cycles per design for non

situation
speci�c L
TEAM and each of the other two
systems over both the ranges�

These experiments suggest that the situation speci�c
L
TEAM is superior to non
situation speci�c L
TEAM
that is superior to TEAM in terms of the cost of the
designs produced� Situation
speci�c L
TEAM did a
little more search than the TEAM system but non

situation
speci�c L
TEAM did signi�cantly worse than
both situation
speci�c L
TEAM and TEAM in terms
of the number of cycles�

At this point we could ask more detailed ques

tions about why the situation
speci�c
L
TEAM per

forms better than the non
situation
speci�c
L
TEAM
in terms of cost of designs It turns out that the pump

agent has a functional relationship between its parame

ters water��ow�rate and head� This relationship� which
constrains the set of acceptable solutions� cannot be
communicated due the restrictions on the represen

tation of communicable information in TEAM� only
single clause numerical constraints can be communi

cated� Thus� as discussed previously� it may be best
that the pump
agent initiates a design because such
a design then will have captured the relationship be

tween the above two parameters� Even though pump

agent is the initiator of designs in an overwhelming
number of cases� it turns out that the designs initiated
by heat
exchanger
agent and motor
agent occasionally
outperformed those initiated by the pump
agent� We
have reasons to believe that a situation vector cap

tures these subtleties� at least to a certain extent� In
addition� it could also be the case that the initiations
by motor
agent early on in the search led to a quicker

�Easy problems may not gain by sophisticated mecha�
nisms like situation�speci�city�



agent pump heatx motor vbelt shaft platform frequency
agent agent agent agent agent agent critic

roles initiate initiate
extend extend extend extend extend extend critique

Table �� Organizational roles for TEAM

situation

� � 	 	 � � 	 	 	
� 	 � 	 � 	 � 	 	

agent � � � � � � � � �
pump initiate initiate initiate initiate initiate initiate initiate
agent extend extend
heatx initiate
agent extend extend extend extend extend extend extend extend
motor initiate initiate
agent extend extend extend extend extend extend extend
vbelt

agent extend extend extend extend extend extend extend extend extend
shaft

agent extend extend extend extend extend extend extend extend extend
platform

agent extend extend extend extend extend extend extend extend extend
frequency

critic critique critique critique critique critique critique critique critique critique

Table 	� Organizational roles learned by situation�speci�c L�TEAM for Range 


situation

� � 	 	 � � 	 	 	
� 	 � 	 � 	 � 	 	

agent � � � � � � � � �
pump initiate initiate initiate initiate initiate
agent extend extend extend extend
heatx initiate initiate
agent extend extend extend extend extend extend extend
motor initiate initiate
agent extend extend extend extend extend extend extend
vbelt

agent extend extend extend extend extend extend extend extend extend
shaft

agent extend extend extend extend extend extend extend extend extend
platform

agent extend extend extend extend extend extend extend extend extend
frequency

critic critique critique critique critique critique critique critique critique critique

Table �� Organizational roles learned by situation�speci�c L�TEAM for Range �

agent pump heatx motor vbelt shaft platform frequency
agent agent agent agent agent agent critic

roles initiate
extend extend extend extend extend critique

Table �� Organizational roles for non�situation�speci�c L�TEAM after learning



discovery of con�icting requirements on shared param

eters in certain problem runs� On a few occasions�
situation
speci�c
L
TEAM performed worse than non

situation
speci�c
L
TEAM� We attribute this observa

tion to the phenomenon of distraction frequently ob

served in multi
agent systems�Lesser  Erman ������
In the context of role assignments� this phenomenon
maps to the ability of the agents to judge whether it is
e�ective to work on its own designs or respond to the
designs generated by the other members of the agent
set in the present situation� It could be true that the
situation vector we adopted may not have been su�

ciently discriminating to eliminate such a distraction
totally�

Next we investigated the role of the potential com

ponent in the evaluation function� We set up an ex

periment where situation
speci�c L
TEAMwas trained
with an evaluation function that did not take potential
into consideration�

f�U�P�C� potential� � U � P

The system was tested on the same ��� problem
speci�cations used for tests in the previous experi

ments� Table � shows the results�

ss
L
TEAM ss
L
TEAM
with potential without potential

Range cost cycles cost cycles

Range � �����	 ����	 ������ �����
Range 	 �������� ���� �������� 	����

Table �� Results for ss�L�TEAM without potential

In Range �� ss
L
TEAM with no potential per

forms similar to non
situation
speci�c L
TEAM� This
is not surprising because the organization learned by L

TEAM with no potential in Range � is similar to that
for non
situation
speci�c L
TEAM i�e� pump
agent is
almost always the initiator� Motor
agent initiated de

signs in certain situations� but these situations were the
rarely occurring ones� In Range 	� the organization
learned by ss
L
TEAM with no potential is di�erent
from ss
L
TEAM with potential and it performs sig

ni�cantly worse than non
situation
speci�c L
TEAM
with potential and situation
speci�c L
TEAM with po

tential�

The fact that potential leads to signi�cant gains in
the system performance brings us to an important ob

servation� In complex systems like L
TEAM� it is often
the case that the system performs actions that may
only have an indirect bearing on the �nal solution re

quirements� Identifying such actions and rewarding
the learning system for them can lead to an enhanced
performance�

Related Work
Previous work related to learning in multi
agent
systems is limited� Tan�Tan ������ Sandholm

and Crites�Sandholm  Crites ������ and Sen and
Sekaran�Sen� Sekaran�  Hale ����� discuss multi

agent reinforcement learning systems� All these sys

tems rely on reinforcement learning methods�A� Barto
 Watkins ����� Sutton ������ While these works
highlight interesting aspects of multi
agent learning
systems� they are primarily centered around toy prob

lems on a grid world� While we do not deny the im

portance of such studies to a nascent �eld like learning
in multi
agent systems� learning in complex systems
can provide many challenges and interesting insights
that may not be forthcoming in simple toy domains
or homogeneous agent systems� L
TEAM is one of
the few multi
agent systems demonstrating the viabil

ity of learning problem solving control for realistic and
complex domains� We believe that importance of con

cepts like �potential� become more apparent in such
domains� Mataric�Mataric ����� discusses the concept
of progress estimators akin to the idea of potential� Po

tential di�ers from progress estimators in that the later
was primarily used as a method of speeding up rein

forcement learning whereas the former plays a more
complex role� In L
TEAM� the concept of potential
leads to di�erent organizations and better quality re

sults and is not a just a speedup device�

A related work using classi�er systems for learn

ing suitable multi
agent organizations is presented in
Weiss�Weiss ������ Multiple agents use a variant of
Holland�s�Holland ����� bucket brigade algorithm to
learn appropriate instantiations of hierarchical organi

zations� Though Weiss�Weiss ����� studies this sys

tem in the blocks world domain� it could represent
an interesting alternative to the learning mechanism
we proposed in this paper for learning organizational
knowledge�

Nagendra Prasad et al��Nagendra Prasad� Lesser� 
Lander ����� and Garland and Alterman�Garland 
Alterman ����� discuss issues in knowledge reuse in
multi
agent systems� Sugawra and Lesser�Sugawara
 Lesser ����� discuss a distributed network
diagnosis
system where each local segment of the network has an
intelligent diagnosis agent called LODES that monitors
tra�c on the network and uses an explanation
based
learning technique to develop coordination rules for the
LODES agents� Unlike these systems� TEAM
like sys

tems may not be amenable to the knowledge
intensive
task of extracting coordination rules or situation

speci�c organizational rules from histories due to the
heterogeneity of its agents�

Certain multi
agent learning systems in the litera

ture deal with a di�erent task from that presented in
this paper� Systems like ILS�Silver et al� ����� and
MALE�Sian ����� use multi
agent techniques to build
hybrid learners from multiple learning agents� On the
other hand� L
TEAM learns problem
solving control
for multi
agent systems�



Implications and Conclusion
Previous work in self
organization for e�cient dis

tributed search control has� for the most part� involved
simple agents with simple interaction patterns� The
work presented in this paper represents one of the few
attempts at demonstrating the viability and utility of
self
organization in an agent
based system involving
complex interactions within the agent set�

L
TEAM is an example of an open system compris

ing reusable heterogeneous agents for parametric de

sign� Agents in L
TEAM learn their organizational
roles in a negotiated search for mutually acceptable
designs� We tested the system on a steam condenser
design domain and empirically demonstrated its use

fulness� L
TEAM produced better results than its
non
learning predecessor� TEAM� which required elab

orate knowledge engineering to hand
code organiza

tional roles for its agent set� However� the contri

butions of this paper go beyond just learning orga

nizational roles� Experiments in the previous section
taught us two important lessons with rami�cations for
issues of learning in multi
agent systems in general�

� Di�erent situations need di�erent kinds of organiza

tions in multi
agent systems� While this is not a new
observation� our work takes this insight a step fur

ther and proposes exploiting learning techniques to
provide multi
agent systems with situation
speci�c
organizational knowledge� Our experiments high

light two dimensions of this speci�city� �� Orga

nizational roles are task
speci�c as evidenced by
di�erent learned organizations for di�erent ranges
of problems and 	� Organizational roles are sensi

tive to the state of the multi
agent system as evi

denced by situation
vector dependent learned orga

nizational roles�

� It was noted that the performance was signi�cantly
better when an evaluation function took into consid

eration the potential of a role to make indirect con

tributions to the �nal solutions� In complex systems�
recognition and exploitation of actions with poten

tial can result in a better learning process� This
observation encourages system designers to go be

yond looking at the end result of a series of actions
for credit
assignment schemes� They may also need
to consider the role of meta
level information like
relations of actions to the progress in the overall
problem
solving process�
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