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This paper presents studies in learning a form of organizational knowledge called
organizational roles in a multi-agent agent system. It attempts to demonstrate the
viability and utility of self-organization in an agent-based system involving complex
interactions within the agent set. We present a multi-agent parametric design system
called L-TEAM where a set of heterogeneous agents learn their organizational roles in
negotiated search for mutually acceptable designs. We tested the system on a steam
condenser design domain and empirically demonstrated its usefulness. L-TEAM produc-
ed better results than its non-learning predecessor, TEAM, which required elaborate
knowledge engineering to hand-code organizational roles for its agent set. In addition, we
discuss experiments with L-TEAM that highlight the importance of certain learning
issues in multi-agent systems. ( 1998 Academic Press Limited
1. Introduction

Requirements like reusability of legacy systems and heterogeneity of agent representa-
tions lead to a number of challenging issues in multi-agent systems (MAS). Lander and
Lesser (1994) developed the TEAM framework to examine some of these issues in
heterogeneous reusable agents in the context of parametric design. TEAM is an open
system assembled through minimally customized integration of a dynamically selected
subset of a catalogue of existing agents. Each agent works on a specific part of the overall
problem. The agents work towards achieving a set of local solutions to different parts of
the problem that are mutually consistent and that satisfy, as far as possible, the global
considerations related to the overall problem. Reusable agents may be involved in system
configurations and situations that may not have been explicitly anticipated at the time of
their design. Adding a learning component to these agents so that they can modify their
behavior based on the system configuration can lead to enhanced performance. In this
paper, we present an extension of TEAM called L-TEAM that learns to organize itself to
let the agents play the roles they are best suited for in such a multi-agent search process
for constructing an overall solution.

The agents in TEAM (and L-TEAM) perform an asynchronous-distributed con-
straint-optimization search to obtain a good design. Each of the agents has its own
local-state information, a local database with static and dynamic constraints on its
design components and a local agenda of potential actions. The search is performed over
a space of partial designs. It is initiated by placing a problem specification in a centralized
1071-5819/98/010051#17$25.00/0/hc970160 ( 1998 Academic Press Limited
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shared memory that also acts as a repository for the emerging composite solutions (i.e.
partial solutions) and is visible to all the agents. Any design component produced
by an agent is placed in the centralized repository. Some of the agents initiate base
proposals based on the problem specifications and their own internal constraints and
local state. Other agents in turn extend and critique these proposals to form complete
designs.

An agent may detect conflicts during this process and communicate feedback to the
relevant agents, consequently, affecting their further search by either pruning or reorder-
ing the expansion of certain paths. The evolution of a composite solution in TEAM can
be viewed as a series of state transitions as shown in Figure 1 (from Lander, 1994).
For a composite solution in a given state, an agent can play one of a set of organizational
roles (in TEAM, these roles are solution-initiator, solution-extender or solution-critic).
An organizational role represents a set of tasks an agent can perform on a composite
solution. An agent can be working on several composite solutions concurrently. Thus,
at a given time, an agent is faced with the problem of (1) choosing which partial
solution to work on; and (2) choosing a role from the set of allowed roles that it can
play for that solution. This decision is complicated by the fact that an agent has
to achieve this choice within its local view of the problem-solving situation (Lander,
1994).
FIGURE 1. Negotiated search. Initiate solution (I); Critique solution (C);
Extend solution (E); Relax solution (R); Terminate search (T);

Initial state; Termination state; Intermediate state.
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The objective of this paper is to investigate the utility of machine-learning techniques
as an aid to such a decision process in situations where the set of agents involved in
problem solving are not necessarily known to the designer of any single agent. The
results in this paper demonstrate the effectiveness of learning techniques for such a task
and then go on to provide empirical support to two important observations regarding
learning in multi-agent systems.

1. A credit assignment scheme can lead to enhanced learning if it considers the
relations between an action and the progress of the overall problem-solving
process, in addition to the end result that the action may lead to. This may be
especially true of systems with complex interactions involving transmission of
meta-level information.

2. Treating problem-solving control as situation-specific can be beneficial (discussed
in detail in Section 3). In our case, situation-specific organizational roles led to
better performance, especially in ‘‘harder’’ problems.

The rest of the paper is organized as follows. Section 2 discusses the characteristics of
a distributed search space and Section 3 presents our use of the UPC formalism
(Whitehair & Lesser, 1993) as a basis for learning organizational knowledge. The
following section discusses an implementation of L-TEAM based on this algorithm and
presents the results of our empirical explorations. We conclude by discussing some
related work and the implications of this work.

2. Organizational roles in distributed search

Problem domains like those dealt with in TEAM can be viewed as comprising a set of
interdependent subproblems. The overall solution to a problem is constructed by
aggregation of solutions to each of the subproblems. In these domains, partial search
paths over a composite search space are interrelated in such a way that the extension of
a path in the search space of one subproblem may effect the results of extending another
path, perhaps in another subproblem. In such complex search spaces, there is a need for
organizing the search to choose those actions that lead to generation of helpful con-
straints for subsequent searches for solving related subproblems. In multi-agent systems
like TEAM, the situation is further complicated by the fact that the search space is
distributed across many agents.

Organizational knowledge can be described as a specification of the way the overall
search should be organized in terms of which agents play what roles in the search process
and communicate what information, when and to whom. It provides the agents a way to
effectively and reliably handle cooperative tasks. Organizational roles represent a form of
organizational knowledge that lets each agent in L-TEAM take part in the formation of
a composite solution in a certain capacity. An organizational role is a task or a set of
tasks to be performed in the context of a single solution. A role may encompass one or
more operators, e.g. the role solution-initiator includes the operators initiate-solution and
relax-solution requirement. A pattern of activation of roles in an agent set is a role
assignment. All agents need not play all organizational roles, which in turn implies that
agents can differ in the kinds of roles they are allotted. Organizational roles played by the



FIGURE 2. Local and composite search spaces.
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agents are important for the efficiency of a search process and the quality of final
solutions produced.

To illustrate the above issue, we will use a simple, generic two-agent example. Figure 2
shows their search and solution spaces. The shaded portions in the local spaces of Agents
A and B are the local solution spaces and their intersection represents the global solution
space. It is clear that if Agent A initiates and Agent B extends, there is a greater chance of
finding a mutually acceptable solution. Agent A trying to extend a solution initiated by
Agent B is likely to lead to a failure more often than not due to the small intersection
space vs the large local solution space in Agent B. Note, however, that the solution
distribution in the space is not known a priori to the designer to hand-code good
organizational roles at the design time.

During each cycle of operator application in TEAM, each agent decides on the role it
can play next based on the available partial designs. An agent can choose to be an
initiator of a new design or an extender of an already existing partial design or a critic of
an existing design. The agent needs to decide on the best role to assume next and
accordingly construct a design component. This paper investigates the effectiveness of
learning situation-specific organizational role assignments. No single organizational role
assignment may be good for all situations. The agents adapt themselves to play roles that
are better suited for the current problem-solving situation, so as to be effective (we will
discuss situations in more detail in the following section).

3. Learning role assignments

Learning involves exploring the space of role assignments, i.e. developing rating
measures for roles in various situations. The formal basis for learning role assignments is
derived from the UPC formalism for search control (see Whitehair & Lesser, 1993) that
relies on the calculation and use of the utility, probability and cost (UPC) values
associated with each Sstate, R, final-stateT tuple. Utility represents an agent’s estimate of
the final state’s expected value or utility if it takes on role R in the present state.
Probability represents the expected uncertainty associated with the ability to reach the
final state from the present state, given that the agent plays role R. Cost represents the
expected computational cost of reaching the final state. These values comprise an explicit
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representation of the position of a search state with respect to the potential final states in
a search space. Additionally, in complex search spaces, for which the UPC formalism was
developed, an application of a role to a state does more than expand it. The role
application may result in an increase in the problem solver’s understanding of the
interrelationships among states. In these situations, a role that looks like a poor choice
from the perspective of a local control policy may actually be a good choice from
a more global perspective due to some increased information it makes available to the
problem solver. This property of a role is referred to as its potential and it needs
to be taken into account while rating the role. An evaluation function defines the
objective strategy of the problem-solving system based on the UPC components of a
role and its potential. For example, a system may want to reach any final state as quickly
as possible with high-quality solutions or it may want maximum utility per unit cost.
An agent applies the evaluation function to all the roles applicable at the present state of
the on-going search and a role that maximizes the ratings of all applicable roles is
selected.

Starting from this core of the UPC formalism, we modify it to suit our purpose of
learning organizational roles in negotiated search in multi-agent systems. Our
first modification involves classification of all possible states of a search into pre-
enumerated finite classes of situations. These classes of situations represent abstractions
of the state of a search. Thus, for each agent, there is UPC vector per situation per role
leading to a final state. A situation in L-TEAM is represented by a feature vector whose
values determine the class of a state of the search. Note that in order to get the values
of a situation vector at an agent, it might have to communicate with other agents to
obtain the relevant information regarding features that relate to their internal state.
In L-TEAM, an agent choosing a role indexes into a database of UPC values using the
situation vector to obtain the relevant UPC values for the roles applicable in the
current state. Depending on the objective function to be maximized, these UPC vectors
are used to choose a role to be played next. During learning, an organizational role is
chosen probabilistically in the ratio of its rating to the sum of the ratings of all the
possible organizational roles for an agent in the given situation. This permits the system
to explore the contributions of all the roles probabilistically. Once the learning is done,
an agent chooses the role with maximum rating in a given situation. This implies that
after the learning phase, each agent organizes itself to play a fixed role in a given
situation.-

We use the supervised-learning aproach to prediction learning (see Sutton, 1988) to
learn estimates for the UPC vectors for each of the situations. The agents collectively
explore the space of possible role assignments to identify good role assignments in each
of the situations. The role assignment at a particular agent is affected by the state of
problem solving at the other agents and also the nature of the non-local search spaces. At
each agent, the corresponding situation vector of the features representing the relevant
problem-solving activities at that time and an agent’s choice of the role it plays are stored
by that agent. The performance measures arising out of this decision will not be known at
- Even though we describe L-TEAM as an off-line learning system, we could make it on-line by letting the
system heuristically identify a point at which it could stop learning and switch to choosing roles to maximize
their evaluations rather than choosing them probabilistically in ratio of their ratings.
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that time and become available only at the completion of the search. After a sequence of
such steps leading to completion, the performance measures for the entire problem-
solving process are available. The agents then back-trace through these steps assigning
credit for the performance to the roles involved (the exact process will be described
below).- At each agent, values of the UPC vector for the role corresponding to the
situation at that agent are adjusted. In our use of the UPC framework, we assume that
there is a single final state—the generation of a complete design mutually acceptable to
all the agents.
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(see Figure 3). Let

F(T ) be the set of states on the path to the terminal state ¹. A terminal state is a state
that is not expanded further due to detection of a success or a failure. A final state is
a terminal state where the search ends successfully with a mutually acceptable design.
For example, let the following sequence of roles played by the agent set lead to a terminal
state—say a success:
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When the search enters a terminal state, the performance measures are back-
propagated to the relevant agents. In this case, the agents A1,A2,2 ,Am adjust the
UPC values for their respective situation—role pairs. Schemes for doing adjustments to
various performance measures are discussed below.

There are various ways of doing the actual changes to the UPC and Potential values of
each situation vector and we discuss some simple schemes here. Let

(p)
ºk

ij
represent the

predicted utility of the final solution achieved by Agent k playing role R
i
in a state n that

can be classified as situation j, accumulated after p problem-solving instances. LetF(T )
to be set of states on the path to a final state F. º

F
represents the utility of the solution
- Note that the supervised learning approach to prediction learning is different from reinforcement learning
which assigns credit by means of the differences between temporally successive predictions (Sutton, 1988). In
this paper we are primarily concerned with showing the benefits and characteristics of learning in multi-agent
systems rather than with the merits of a particular learning method over others. The reason for choosing
supervised learning method is simply that it worked for us.



FIGURE 3. Distributed search over the space of possible role assignments.
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and 04a41 is the learning rate. Then
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Thus, Agent k, that played role R
i
, modifies the Utility for its R

i
in situation j.

Let
(p)
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represent Agent k’s estimated probability that playing role R
i
in a state

n that can be classified as situation j will lead to a final state, accumulated after
p problem-solving instances. LetF(T ) be the set of states on the path to a terminal state
¹. O

T
3M0, 1N is the output of the terminal state ¹ with 1 representing success and
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0 a failure. 04a41 is the learning rate. Then
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We will not dwell on the details of the Cost component update rule because the
evaluation functions used in this work do not involve cost. In a design problem-solving
system, the computational costs are not a primary consideration. Successfully
completing a good design takes precedence over computational costs involved as long as
the costs are not widely disparate.

Obtaining measures of potential is a more involved process and requires a certain
understanding of the system—at least to the extent of knowing which are the activities
that can potentially make positive or negative contribution to progress of the problem-
solving process. For example, in L-TEAM, earlier on in a problem-solving episode, the
agents take on roles that lead to infeasible solutions due to conflicts in their require-
ments. However, this process of running into a conflict leads to certain important
consequences like exchange of constraints that were violated. The constraints an agent
receives from other agents aid that agent’s subsequent search in that episode by letting it
relate its local solution requirements to more global requirements. Hence, the roles
leading to conflicts followed by information exchange are rewarded by potential. Learn-
ing algorithms similar to that for utility can be used for learning the potential of a role.
Let
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In the L-TEAM system, each role is tagged with the result of its execution—either an
added component to a partial design, or a conflict on certain local requirements along
with the communicated violated local constraints, which can be used to determine the
potential of a sequence of roles ending in a conflict.

4. Experimental results

To demonstrate the effectiveness of the mechanisms in L-TEAM and compare them to
those in TEAM, we used the same domain as in Lander (1994)—parametric design of
steam condensers. The prototype multi-agent system for this domain, built on top of the
TEAM framework, consists of seven agents: pump-agent, heat-exchanger-agent, motor-
agent, v-belt-agent, shaft-agent, platform-agent and frequency-critic. The problem-solv-
ing process starts by placing a problem specification on a central blackboard (BB).
Problem specification consists of three parameters—required capacity, platform side
length and maximum platform deflection. During each cycle, each of the agents in
L-TEAM can decide either to initiate a design based on the problem specification or
extend a partial design on the BB or to critique a partial design on the BB. During the
process of extending or critiquing a design, an agent can detect conflicts and communic-
ate the cause of the conflict to other agents if it can articulate it. At present, an agent can
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communicate only single-clause numeric boundary constraints that are violated. If the
receiving agent can understand the feedback (i.e. the parameter of the communicated
constraint is in its vocabulary), it assimilates the information and uses it to constrain
future searches. If such conflict avoidance search does not work, an agent tries conflict
resolution by resorting to relaxing soft constraints. In addition, if an agent detects
stagnation in the progress of the local problem-solving process, it relaxes the local
quality requirement thresholds. The system terminates upon formation of a mutually
acceptable design that satisfies the local quality thresholds of all the agents.

Each agent has an assigned organizational role in any single design. As mentioned
before, TEAM identifies three organizational roles—initiate-design, extend-design and
critique-design. Learning the appropriate application of all these roles can be achieved,
but in this paper we confine ourselves to two roles in each agent: initiate-design and
extend-design. Four of the seven agents—pump-agent, motor-agent, heat-exchanger-
agent and v-belt-agent—are learning either to initiate a design or to extend an existing
partial design in each situation. The other three agents have fixed organizational
roles—platform and shaft-agents always extend and frequency-critic always critiques.
When an agent decides to extend or critique, it chooses the best partial design on the
blackboard (i.e. lowest cost) and plays the role of extending or critiquing for that design.

In the experiments reported below, the situation vector for each agent had three
components. The first component represented changes in the global views of any of the
agents in the system. If any of the agents receives any new external constraints from other
agents in the past m time units (m was 4 in the experiments), this component is ‘‘1’’ for
all agents. Otherwise it is ‘‘0’’. If any of the agents has relaxed its local quality require-
ments in the past n time units (n"2) then the second component is ‘‘1’’ for all agents.
Otherwise it is ‘‘0’’. Receiving a new external constraint or relaxing local quality
requirements change the nature of the local search space of an agent. This could prompt
it to initiate designs to seed the blackboard with partial designs that take these con-
straints into consideration. Typically, a problem-solving episode in L-TEAM starts with
an initial phase of generating seed designs, followed by a phase of exchange of all the
communicable information involved in conflicts and then a phase where the search is
more informed and all the information that leads to conflicts and can be communicated
has already been exchanged. During the initial phase, the third component is ‘‘1’’. During
the intermediate phase of conflict detection and exchange of information, the third
component is ‘‘2’’. In the final phase, it is ‘‘3’’. During the initial phase, some agents may
often play the role of initiators of designs so as to lead to discovery of conflicting
requirements that can be exchanged during the intermediate phase to enhance each of
the agents’ view of the global requirements on its local search. It is important to note that
these features are based on the negotiated search mechanisms rather than the underlying
steam condenser domain. They are generic to the domain of parametric design that
TEAM addresses.-
- While an understanding of the negotiated search is needed to get these features, we believe that it involves
much lesser effort than identifying the exact nature of interactions in a steam condenser domain, that a human
expert needs to know before she can assign good roles. For example, in TEAM, the human need to know the
nature of the constraints in pump-agent, motor-agent, heat-exchanger-agent before she could assign roles to
the agents.
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In design problem-solving, the probability of successfully completing a design and
obtaining a high-utility design are of primary considerations. In addition, in a complex
open environment like that in the L-TEAM system, some form of guidance to the
problem solver regarding the intermediate stages of search that may have an indirect
bearing on the final solution is helpful. So we used the following rating function:

f (º, P.C, potential)"º * P#Potential.

Learning rates were empirically determined and set to 0.1 for the Utility and Probabil-
ity components and 0.01 for the Potential component.

We first trained L-TEAM on 150 randomly generated design requirements and then
tested both L-TEAM and TEAM on the same 100 randomly generated design require-
ments different from those used for training. TEAM was set up so that heat-exchanger
and pump-agents could either initiate a design or extend a design, whereas v-belt, shaft-
and platform-agent could only extend a design. In TEAM, an agent initiates a design
only if there are no partial designs on the blackboard that it can extend. We looked at
two parameters of system performance. The primary parameter was the cost of the best
design produced (lowest cost). The other parameter was the number of cycles the system
went through to produce the best cost design. In TEAM (and L-TEAM), each agent in
turn gets a chance to play a role in an evolving composite solution during a cycle. The
number of cycles represents a good approximation of the amount of search performed by
the entire system. It is important to note that design cost is different from search cost.
Design cost is a representation of the solution quality, while the search cost is a repres-
entation of the computational cost of the design process. Even though the computational
cost is not a consideration in the credibility function for chosing a role in design
problem-solving, it is interesting to observe these measures as they are representative of
the search efficiency of the underlying problem-solving process.

We ran L-TEAM and TEAM in two ranges of the input parameters. Range 1 consisted
of required capacity 50—1500, platform-side length 25—225, platform deflection 0.02—0.1.
Range 2 consisted of required capacity 1750—2000, platform-side length 175—225, plat-
form deflection 0.06—0.1. Lower values of required capacity in Range 1 represented easier
problems. We choose the two ranges to represent ‘‘easy’’ and ‘‘tough’’ problems. One can
see from Tables 4 and 5 that the two learned organizations for Ranges 1 and 2 are
different. In order to understand the contribution of situation specificity, we also set up
L-TEAM to learn organizational roles in a situation-independent manner. Non-situ-
ation-specific TEAM learns the same organization, as shown in Table 6, over both the
ranges. Table 1 shows the average design costs for the three systems—situation-specific
L-TEAM (ss-L-TEAM), non-situation-specific L-TEAM (ns-L-TEAM) and TEAM—
over the two ranges. Table 2 shows the average number of cycles per design for the three
systems—ss-L-TEAM, ns-L-TEAM and TEAM.

Wilcoxon matched-pair signed-ranks test revealed significant differences (at signifi-
cance level 0.05) between the cost of designs produced by all the pairs in the table except
between situation-specific L-TEAM and non-situation-specific L-TEAM in Range 1 -
- Easy problems may not gain by sophisticated mechanisms like situation specificity. One interesting future
research direction involves meta-learning of the difficulty of ranges of problems based on which different role
tables can be selected.



TABLE 1
Average cost of a design

Range ss-L-TEAM ns-L-TEAM TEAM

Range 1 5603.2 5616.2 5770.6
Range 2 17353.75 17678.97 17704.70

TABLE 2
Average cycles per design

Range ss-L-TEAM ns-L-TEAM TEAM

Range 1 13.52 15.01 13.01
Range 2 15.0 21.0 15.0

TABLE 3
Organizational roles for ¹EAM

Agent
Pump
-agent

Heat
-agent

Motor-
agent

V-belt-
agent

Shaft-
agent

Platform-
agent

Frequency
critic

Initiate Initiate
Roles Extend Extend Extend Extend Extend Extend Critique
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(Table 3) and between non-situation-specific L-TEAM and TEAM in Range 2. The same
test also revealed no significant differences between the number of cycles per design for
situation-specific L-TEAM and TEAM over both the ranges, while showing significance
in differences between the number of cycles per design for non-situation-specific L-
TEAM and each of the other two systems over both the ranges.

These experiments suggest that the situation-specific L-TEAM is superior to non-
situation-specific L-TEAM that is superior to TEAM in terms of the cost of the designs
produced. Situation-specific L-TEAM did a little more search than the TEAM system
but non-situation-specific L-TEAM did significantly worse than both situation-specific
L-TEAM and TEAM in terms of the number of cycles (see Tables 4—6).

At this point we could ask more detailed questions about why the situation-specific-L-
TEAM performs better than the non-situation-specific-L-TEAM in terms of cost of
designs? It turns out that the pump-agent has a functional relationship between its
parameters water-flow rate and head. This relationship, which constrains the set of
acceptable solutions, cannot be communicated due to the restrictions on the representa-
tion of communicable information in TEAM; only single-clause numerical constraints
can be communicated. Thus, as discussed in Section 2, it may be best that the pump-
agent initiates a design because such a design then will have captured the relationship
between the above two parameters. Even though pump-agent is the initiator of designs in
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TABLE 6
Organizational roles for non-situation-specific ¸-¹EAM after learning

Agent
Pump-
agent

Heat-x-
agent

Motor-
agent

V-belt-
agent

Shaft-
agent

Platform-
agent

Frequency
critic

Roles Initiate Extend Extend Extend Extend Extend Critique

TABLE 7
Results for ss-¸-¹EAM without potential

ss-L-TEAM ss-L-TEAM
with potential withoutpotential

Range Cost Cycles Cost Cycles

Range 1 5603.2 13.52 5647.3 15.17
Range 2 17353.75 15.0 18105.56 25.88
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an overwhelming number of cases, it turns out that the designs initiated by heat-
exchanger-agent and motor-agent occasionally outperformed those initiated by the
pump-agent. We have reasons to believe that a situation vector captures these subtleties,
at least to a certain extent. In addition, it could also be the case that the initiations by
motor-agent early on in the search led to a quicker discovery of conflicting requirements
on shared parameters in certain problem runs. On a few occasions, situation-specific-L-
TEAM performed worse than non-situation-specific-L-TEAM. We attribute this obser-
vation to the phenomenon of distraction frequently observed in multi-agent systems
(Lesser & Erman, 1980). In the context of role assignments, this phenomenon maps to the
ability of the agents to judge whether it is effective to work on its own designs or respond
to the designs generated by the other members of the agent set in the present situation. It
could be true that the situation vector we adopted may not have been sufficiently
discriminating to eliminate such a distraction totally.

Next we investigated the role of the potential component in the evaluation function.
We set up an experiment where situation-specific L-TEAM was trained with an evalu-
ation function that did not take potential into consideration:

f (º,P,C, potential)"º *P.

The system learned the organizations shown in Tables 8 and 9. The boxed entries are
default values. The agent never played these roles in the corresponding situation in any
successful solution. So the system does not learn to discriminate between the roles. We
just let the agent choose the role that it plays in most other situations as the default. The
system was tested on the same 100 problem specifications used for tests in the previous
experiments. Table 7 shows the results.
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In Range 1, ss-L-TEAM with no potential performs similar to non-situation-specific
L-TEAM. This is not surprising because the organization learned by L-TEAM with no
potential in Range 1 is similar to that for non-situation-specific L-TEAM, i.e. pump-
agent is almost always the initiator. Motor-agent initiated designs in certain situations,
but these situations were the rarely occurring ones. In Range 2, the organization learned
by ss-L-TEAM with no potential is different from ss-L-TEAM with potential and it
performs significantly worse than non-situation-specific L-TEAM with potential and
situation-specific L-TEAM with potential.

The fact that potential leads to significant gains in the system performance brings us to
an important observation. In complex systems like L-TEAM, it is often the case that the
system performs actions that may only have an indirect bearing on the final solution
requirements. Identifying such actions and rewarding the learning system for them can
lead to an enhanced performance (Tables 8 and 9).

5. Related Work

Previous work related to learning in multi-agent systems is limited. Tan (1993),
Sandholm and Nagendra Prasad (1993), Sandholm and Crites (1995) and Sen,
Sekaran and Hale (1994) discuss multi-agent reinforcement learning systems. All
these systems rely on reinforcement learning methods (Sutton, 1988; A. Barto & Watkins,
1990). While these works highlight interesting aspects of multi-agent learning systems,
they are primarily centered around toy problems on a grid world. Even though we
do not deny the importance of such studies to a nascent field like learning in multi-
agent systems, learning in complex systems can provide many challenges and interesting
insights that may not be forthcoming in simple toy domains or homogeneous agent
systems. L-TEAM is one of the few multi-agent systems demonstrating the viability
of learning problem-solving control for realistic and complex domains. We believe
that importance of concepts like ‘‘potential’’ become more apparent in such domains.
Mataric (1994) discusses the concept of progress estimators akin to the idea of potential.
Potential differs from progress estimators in that the latter was primarily used as
a method speeding up reinforcement learning, whereas the former plays a more complex
role. In L-TEAM, the concept of potential leads to different organizations and better
quality results and is not a just a speedup device.

A related work using classifier systems for learning suitable multi-agent organizations
is presented in Weiss (1994). Multiple agents use a variant of Holland’s (1985) bucket
brigade algorithm to learn appropriate instantiations of hierarchical organizations.
Though Weiss (1994) studies this system in the blocks world domain, it could represent
an interesting alternative to the learning mechanism we proposed in this paper for
learning organizational knowledge.

Nagendra Prasad, Lesser and Lander (1996) and Garland and Alterman (1996) discuss
issues in knowledge reuse in multi-agent systems. Sugawra and Lesser (1993) discuss
a distributed networking system where each local segment of the network has an
intelligent diagnosis agent called LODES that monitors traffic on the network and uses
an explanation-based learning technique to develop coordination rules for the LODES
agents. Unlike these systems, TEAM-like systems may not be amenable to the know-
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ledge-intensive task of extracting coordination rules or situation-specific organizational
rules from histories due to the heterogeneity of its agents.

Certain multi-agent learning systems in the literature deal with a different task from
that presented in this paper. Systems like ILS (Silver, Frawely, Iba, Vittal & Bradford,
1990) and MALE (Sian, 1991) use multi-agent techniques to build hybrid learners from
multiple learning agents. On the other hand, L-TEAM learns problem-solving control
for multi-agent systems.

6. Implications and conclusion

Previous work in self-organization for efficient distributed search control has, for the
most part, involved simple agents with simple interaction patterns. The work presented
in this paper represents one of the few attempts at demonstrating the viability and utility
of self-organization in an agent-based system involving complex interactions within the
agent set.

L-TEAM is an example of an open system comprising reusable heterogeneous agents
for parametric design. Agents in L-TEAM learn their organizational roles in a negotiated
search for mutually acceptable designs. We tested the system on a steam condenser
design domain and empirically demonstrated its usefulness. L-TEAM produced better
results than its non-learning predecessor, TEAM, which required elaborate knowledge
engineering to hand-code organizational roles for its agent set. However, the contribu-
tions of this paper go beyond just learning organizational roles. Experiments in the
previous section taught us important lessons with ramifications for issues of learning in
multi-agent systems in general.

f Different situations need different kinds of organizations in multi-agent systems. While
this is not a new observation, our work takes this insight a step further and proposes
exploiting learning techniques to provide multi-agent systems with non-situation-
specific organizational knowledge. The need for such techniques becomes especially
acute in multi-agent systems constructed form a set of reusable agents.

f Moreover, the role organizations produced by learning is different for the two different
ranges implying that different nature of the problems being solved by the system may
need different role organizations.

f It was noted that the performance was significantly better when an evaluation function
took into consideration the potential of a role to make indirect contributions to the
final solutions.

In complex systems, recognition and exploitation of actions with potential can result in
a better learning process. This observation encourages system designers to go beyond
looking at the end result of a series of actions for credit-assignment schemes. They may
also need to consider the role of meta-level information like relations of actions to the
progress in the overall problem-solving process.
This material is based upon work supported by the National Science Foundation under Grant Nos
IRI-9523419 and EEC-9209623. The content of this paper does not necessarily reflect the position
or the policy of the Government, and no official endorsement should be inferred.
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