
Resource-Bounded Searches
in an Information
Marketplace
VICTOR LESSER, BRYAN HORLING, ANITA RAJA,
AND XIAOQIN ZHANG

University of Massachusetts at Amherst
THOMAS WAGNER

University of Maine

Advances in information retrieval (IR) technologies have led to the
development of such tools as AltaVista and Google, which give
information seekers a starting point for their searches. However,

in many cases, manual browsing through even a limited portion of the rel-
evant information is no longer effective. The problem originates not in
the IR technologies, but rather in the volumes of information available via
the Web and the generality of the term-frequency approach to searches.
For any given query, there are often simply too many relevant documents
for the human client to process the information efficiently.

Over the past five years, we have been developing a Web-based,
resource-bounded, information-gathering agent—called BIG, for Bound-
ed Information Gathering—to support a human decision process.
Although its techniques are general enough to apply to a wide range of
domains, BIG specifically helps clients pick software packages. For exam-
ple, a client can instruct BIG to recommend a database package for Win-
dows 98 and specify constraints on both the search process and the prod-
uct characteristics. BIG will then formulate a plan, locate and extract
relevant information from both structured and unstructured documents,
and return a recommendation to the client, along with supporting data.

The BIG system and its performance are well documented.1,2 We give a
brief overview of how it works in the sidebar on p. 51, “BIG Agent Architec-
ture and Information-Gathering Scenario,” but our focus here is on a recent-
ly developed capability, namely, to schedule information-gathering activity
in a way that controls the money spent on acquiring information from sites
that charge a fee for access. This capability supports an “information mar-
ketplace” on the Web, which we feel will eventually supersede (but obvi-
ously not completely replace) the current model of free information access
supported by advertising fees.

49IEEE INTERNET COMPUTING 1089-7801/ 00/$10.00 ©2000 IEEE h t tp ://computer.org/in terne t/ MARCH • APRIL 2000

A
G

EN
TS O

N
 TH

E N
ET

BIG is an information-gathering

agent that processes Web

documents to create product

models and recommend

purchases based on user

selection criteria.

New capabilities support

sophisticated controls on the

money spent to acquire

information from sites that

charge an access fee.

A G E N T S O N T H E N E T

50 MARCH • APRIL 2000 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

In fact, a number of sites already charge access fees
for information that is (theoretically) screened for
quality. Such information could be especially useful
to an intelligent agent in systems like BIG, which
support purchasing and other high-level decisions.
These decisions require extensive information gath-
ering and high confidence in the extracted informa-
tion that make the potential increased accuracy
worth paying for.

Recent work on digital libraries supports this
view of an information economy.3 Though the
work we report here does not emphasize a market-
place model for negotiating the costs of informa-
tion acquisition, our basic approach will support
this more dynamic costing model.

INFORMATION GATHERING
ON THE WEB
This new capability fits very nicely with BIG’s exist-
ing ability to control both the end-to-end time to
gather information and the balance between the
information’s scope/coverage and the resulting deci-
sion’s precision. From the perspective of the soft-
ware domain, this balance refers to the number of
products discovered and analyzed versus the
amount of detailed and overlapping information
gathered on each product and used to make the
final decision.

More generally, BIG is designed with the view that
information gathering on the Web must be resource-

bounded and that different degrees and dimensions
of resource boundedness are appropriate in different
situations. Figure 1 shows the user interface for a typ-
ical query/response search episode. The client’s initial
query directed BIG to search for a word-processing
package for Windows; the search process itself was to
take no more than 10 minutes and cost no more than
$3. The user could set additional preferences in the
quality attributes window shown at the bottom of the
figure, but in this case has assigned equal weight to
all preferences. The right panel in the main screen
shows that a decision was returned to the user after
approximately eight minutes; the center panel shows
some of BIG’s characterization of both the selected
product and the overall decision process.

Much of BIG’s strength is derived from its use
of AI mechanisms to dynamically integrate a variety
of information-retrieval and -gathering techniques.

■ Like a metasearch engine (for example, Zurfrid-
er at http://www.zurf.com/), BIG may use mul-
tiple Web search tools to locate information.4,5

Unlike the metasearch engines, BIG learns
about products over time and reasons about the
time, cost and quality trade-offs of different Web
search options.

■ Like a personal information agent (for example,
Robo surfer at http://www.robosurfer.com/),
BIG actively gathers documents on the Web by
using search engines and following chains of

Figure 1. User interface (on the left) for a query-response episode using the BIG resource-bounded information-gather-
ing agent, and (on the right) for weighting quality attributes.

R E S O U R C E - B O U N D E D S E A R C H E S

51IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ MARCH • APRIL 2000

Figure A shows the major BIG agent architecture components:

■ Resun planner—a blackboard-based interpretation planner
that is the domain expert and driving force behind the
information-gathering and decision-making process (from
REsolving Sources of UNcertainty).

■ Information extractors—text-extraction tools use a
variety of techniques to process free-format text,
converting it into structured data.

■ Document classifiers—text-processing filters quickly
qualify text before sending it on to the information
extractors, thus eliminating unrelated documents before
more complex techniques are used on them.

■ Server information database—a local database of
information sources stores qualitative data, such as
average server response time and cost, which are used
in generating information-gathering plans.

■ Object database—a local database stores product
information during the construction of product models,
including information learned from prior searches.

■ Design-to-Criteria (DTC) scheduler—an agent-control
problem solver enables BIG to meet deadlines and cost
restrictions by selecting an appropriate course of action
from a problem-solving model.

■ TAEMS modeling language—a Task Analysis,
Environment Modeling, and Simulation language is
used to quantify and model an agent’s problem-solving
behaviors for the DTC scheduler.

■ Task assessor—a software module manages the

interface between the Resun opportunistic planner and
the DTC scheduler, converting the problem-solving
process generated by Resun into a TAEMS structure
usable by DTC.

The control and information flow in a BIG scenario begins with
input through the user interface to the Resun planner, which for-
mulates a rough description of the information needed to gen-
erate a useful decision. The task assessor uses these information
requirements to generate a TAEMS model,1,2 which organizes
and quantifies a set of high-level information-gathering plans.

The DTC scheduler decides which high-level plan is most appro-
priate and how best to plan activities based on user-specified
performance criteria. Resun uses the schedule to begin infor-
mation retrieval, culling data from online databases, search
engines, or static Web pages. Document classifiers quickly cat-
egorize and rate the resulting information; documents passing
this phase can then be processed by information extractors,
which attempt to distill the data into a concise record.

The interpreted data is used to generate product models, which
are incrementally improved over time. At the end of the process,
the user’s product specification input is used to select the most
appropriate product from the set generated on the blackboard.

References
1. K. Decker and V. Lesser, “Quantitative Modeling of Complex Compu-

tational Task Environments,” Proc. 11th Nat’l Conf. Artificial Intelligence,
AAAI/MIT Press, Cambridge, Mass., 1993, pp. 217-224.

2. B. Horling et al., “The TAEMS White Paper,” 1999; available online at
http://mas.cs.umass.edu/research/taems/white/.

BIG Agent Architecture and Information-Gathering Scenario

Design-to-criteria
scheduler Task schedule

TAEMS
task structure

Web retrieval interface Information extractors
Document classifiers

Blackboard

Task assessor

Resun information-
gathering planner

Execution subsystem
and monitoring

Produce

Read/write

Execution
and results

Executable module
Data module
Data flow (active data model)

Queries,
goals/criteria,

results,
guidance

User interface

Server information
and read

Object databases

Decision
maker

Read

Inform

Produce

Document
classifiers

Documentproduce

Figure A. The BIG agent architecture includes seven main components for planning, scheduling, informational retrieval,
text processing, knowledge management, and decision making.

A G E N T S O N T H E N E T

52 MARCH • APRIL 2000 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

links; however, in addition to locating relevant
information, BIG analyzes the documents using
a variety of techniques that include natural lan-
guage text-extraction and site-specific wrapper
utilities. Conceptually, BIG “reads” free-format
text, identifies product features like price, disk
requirements, and support policies, extracts
these features from the documents, and then
reasons about them.

■ Like shopping agents (for example, Jango at
http://www.jango.com), BIG gathers informa-
tion to support a decision process.6 However,
BIG differs in its complex decision process and
its runtime information-processing facilities.

■ BIG is related to the Warren7 multiagent port-
folio management system, which also retrieves
and processes information, but differs in sever-
al areas: its reasoning about the trade-offs
among alternative ways to gather information,
its use of gathered information to drive further
gathering activities, its bottom-up and top-
down directed processing, and its explicit rep-
resentation of sources of uncertainty associated
with both inferred and extracted information.

In the remainder of this article, we discuss the gen-
eral framework that allows BIG to make resource-
bounded decisions that organize its processing to
achieve cost objectives. Then we present detailed
experimental data indicating how BIG reorganizes
its search process to live within specific monetary
constraints on how much can be spent on access-
ing information useful in making a software pur-
chasing decision.

PLANNING FOR
RESOURCE BOUNDS
BIG addresses time and cost limitations by using a
domain-independent agent scheduler, the Design-
to-Criteria scheduler.8 The expertise of BIG’s DTC
scheduler lies in analyzing an agent’s candidate set
of problem-solving actions and choosing a course
of action for the agent that meets complex, multi-
dimensional design criteria. In BIG, the design cri-
teria specify the relative importance of solution com-
pleteness and coverage, as well as the restrictions on
cost and time. DTC achieves domain independence
through the Task Analysis, Environment Modeling,
and Simulation (TAEMS) task-modeling frame-
work,1,2 which describes and quantifies key activities and
decision points in the agent’s problem-solving process.

The DTC scheduling problem has commonal-
ities with both classic scheduling and planning

problems. One aspect of scheduling a TAEMS task
structure is deciding which alternative tasks to per-
form or which methods to use to achieve a partic-
ular objective; the other aspect is determining the
best sequence in which to perform the activities.
We not only order the activities; we can concur-
rently schedule nonlocal activities. For example,
new document-retrieval requests to Web search
engines can be scheduled simultaneously with the
local processing of documents already retrieved.

This element of choice in BIG’s problem-solv-
ing process gives DTC the room to maneuver and
address resource limitations. Without this flexibil-
ity, BIG’s problem-solving behavior would not be
adjustable to different resource situations.

TAEMS is a domain-independent task-model-
ing framework used to describe and reason about
complex problem-solving processes. TAEMS mod-
els are used in multiagent coordination research and
are currently deployed in many research projects,
including cooperative information gathering, col-
laborative distributed design, intelligent home envi-
ronments, and software process coordination. Typ-
ically, a problem solver represents domain
problem-solving actions in TAEMS, possibly at
some level of abstraction, and then passes the
TAEMS models on to agent control problem
solvers like the DTC scheduler.

TAEMS models are hierarchical abstractions of
problem-solving processes that describe alternative
ways of accomplishing a desired goal; they repre-
sent major tasks and major decision points, inter-
actions between tasks, and resource constraints but
they do not describe the intimate details of each
primitive action. All primitive actions in TAEMS,
called methods, are statistically characterized via dis-
crete probability distributions in three dimensions:

■ quality is a deliberately abstract domain-inde-
pendent concept that describes the contribu-
tion of a particular action to overall problem
solving;

■ cost describes the financial or opportunity cost
inherent in performing the action; and

■ duration describes the amount of time that the
action modeled by the method will take to
execute.

Uncertainty in each of these dimensions is implic-
it in the performance characterization. Thus, agents
can reason about the certainty of particular actions
as well as their quality, cost, and duration trade-offs.
Task structure programmers or problem-solver gen-

R E S O U R C E - B O U N D E D S E A R C H E S

53IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ MARCH • APRIL 2000

erators estimate the performance characteristics of
primitive actions, and reasoning components typ-
ically replan and reschedule when unexpected
events occur.

To illustrate, consider Figure 2. This simpli-
fied subgraph of a BIG-generated task structure
conceptualizes the portion of the information-
gathering process that pertains to constructing
models or objects of commercial products. The
top-level task is to construct product models of
retail PC systems. It has two subtasks, Get-Basic
and Gather-Reviews, both of which are decom-
posed into methods described in terms of their
expected quality, cost, and duration.

The Enables arc between Get-Basic and Gather-
Reviews is a nonlocal effect (NLE), or task interac-
tion; it models the fact that the review-gathering
methods need product names as a precondition to
gathering reviews for them. As we will illustrate,
task interactions are critical to BIG’s behavior
model because they describe the relationship
between obtaining more documents or more text
processing and solution attributes such as coverage
or precision.

Returning to the example, Get-Basic has two
methods, joined under the sum() quality-accumu-
lation function, which defines how performing the
subtasks relates to performing the parent task. In
this case, either method or both may be employed

to achieve Get-Basic. In general, a TAEMS task
structure represents a family of plans, rather than a
single plan, where the different paths through the
network exhibit different statistical characteristics
or trade-offs.

Given the process described in Figure 2, DTC
can construct custom schedules for BIG to meet its
current situation. Even this simple task structure
gives DTC room to adapt BIG’s problem solving.
Figure 3 (next page) shows four different schedules
constructed for different BIG clients that have dif-
ferent objectives and criteria:

■ Schedule A is constructed for a client that has
both time and financial resources; the user is
simply interested in maximizing overall solution
quality.

■ Schedule B is constructed for a client that wants
a free solution.

■ Schedule C is constructed for a client interest-
ed in trading off quality, duration, and cost
equally.

■ Schedule D meets the needs of a client inter-
ested in maximizing quality while meeting a
hard deadline of seven minutes.

Note that schedule D is actually preferred over a
schedule that includes method Query-and-Extract-
PC-Connection, even though said method has a

Build PC
product objects

Objects

Get-Basic
product information

Information

Query-and-
Extract-Vendor m

Query-and-Process-
Consumers-Reports

Query-and-Extract-
Possible-Maker n

Query-and-Extract-
PC-Connection

Query-and-
Extract-PC-Mall

Gather-Reviews

Search-and-Process-
ZDnet-Reviews

ZDnet Reviews

Search-and-
Process-PC-World

q_seq_last()

q_sum()

q_sum()

q (10% 0)(90% 8.5)
c (100% 0)
d (10% 2 min)
 (10% 2.5 min)
 (80% 3 min)

q (20% 0)(80% 10)
c (100% 0)
d (50% 1 min)(50% 2 min)

q (25% 0)(75% 30)
c (100% $2)
d (90% 3)(10% 5)

q (10% 0)(90% 20)
c (100% 0)
d (30% 3 min)
 (30% 4 min)
 (40% 5 min)

q(..), c(..), d(..)
q(..), d(..), c(..)

q(..), c(..), d(..)

Task
Method
Subtask relation
Task NLE
Resource NLE

Enables

Figure 2. Simplified subgraph of a TAEMS information-gathering task structure. The top-level task is to construct product
models of retail PC systems. Task interactions are critical to BIG’s behavior model.

A G E N T S O N T H E N E T

54 MARCH • APRIL 2000 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

higher expected value than Query-and-Extract-PC-
Mall. This is because the PC-Connection method
has a higher probability of failure. The Enables
NLE from the task of getting product informa-
tion to retrieving reviews increases the probabili-
ty of failure and also impacts the probability of
being able to query the consumer’s site for a
review. Thus, though the local choice would be
to prefer PC-Connection over PC-Mall for this
criteria, the aggregate effects lead to a different
decision.

Thus far we have illustrated the DTC planner’s
capabilities and TAEMS using a small example.
Figure 4 shows a complete TAEMS task structure
generated by the task assessor.

COST-BASED EXPERIMENTS
To study how BIG addresses cost limitations, we
ran a series of experiments. The experimental
environment simulated fee-for-access models
based on eight websites often used by BIG and

arbitrarily assigned different qualities and costs,
as shown in Table 1. All other sites are assumed to
be free, and their quality is determined by the rel-
ative number of external sites that link to them.
The assumption is that the more frequently a site
is referred to, the higher its quality is likely to be.
Methods making queries to these sites are also
associated with different quality and cost charac-
terizations, based on the quality and cost associ-
ated with the site they access.

Different Schedules Based on Cost
The BIG system constructs different schedules
where execution reaches different product decisions
based on different cost constraints. In the sample
query shown in Figure 1, BIG is to find word-pro-
cessing software for the Windows platform, given
an end-to-end completion time of 10 minutes and
a product price limit of $200. The DTC scheduler
was used with function or design criteria dictating
that it search for a schedule that achieves the high-

Figure 3. Custom schedules for the information-gathering task structure.

Schedule A — Client has no resource limitations; maximize quality.
Query-and-Extract-PC-Connection Query-and-Extract-PC-Mall Query-and-Process-ZDnet Query-and-Process-Consumers-Reports
Quality distribution: (0.02 0.00)(0.00 8.50)(0.00 10.00)(0.02 8.50)(0.04 28.50)(0.02 30.00)(0.18 38.50)(0.01 40.00)

(0.05 48.50)(0.12 58.50) (0.05 60.00)(0.49 68.50)
Expected quality: 55.34 Probability q or greater: 0.66
Cost distribution: (1.00 2.00)
Expected cost: 2.00 Probability c or lower: 1.00
Finish time distribution: (0.09 9.00)(0.35 1.00)(0.03 1.66)(0.47 12.00)(0.05 15.00)
Expected finish time: 11.50 Probability d or lower: 0.45

Schedule B — Client is interested in a free solution.
Query-and-Extract-PC-Connection Query-and-Extract-PC-Mall Query-and-Process-ZDnet
Quality distribution: (0.02 0.00)(0.02 8.50)(0.01 10.00)(0.07 18.50)(0.16 28.50)

(0.07 30.00)(0.65 38.50)
Expected quality: 33.29 Probability q or greater: 0.65
Cost distribution: (1.00 0.00)
Expected cost: 0.00 Probability c or lower: 1.00
Finish time distribution: (0.1 6.00)(0.38 8.00)(0.04 8.45)(0.31 9.00)(0.17 10.00)
Expected finish time: 8.4 Probability d or lower: 0.52

Schedule C — Client requests an even trade-off between quality, cost, and duration.
Query-and-Extract-PC-Connection Query-and-Process-ZDnet
Quality distribution: (0.20 0.00)(0.08 10.00)(0.72 30.00)
Expected quality: 22.40 Probability q or greater: 0.72
Cost distribution: (1.00 0.00)
Expected cost: 0.00 Probability c or lower: 1.00
Finish time distribution: (0.15 4.00)(0.30 5.00)(0.35 6.00)(0.20 7.00)
Expected finish time: 5.60 Probability d or lower: 0.45

Schedule D — Client wishes to maximize quality while meeting a hard deadline of 7 minutes.
Query-and-Extract-PC-Mall Query-and-Process-Consumers-Reports
Quality distribution: (0.10 0.00)(0.29 8.50)(0.61 38.50)
Expected quality: 25.88 Probability q or greater: 0.61
Cost distribution: (1.00 2.00)
Expected cost: 2.00 Probability c or lower: 1.00
Finish time distribution: (0.09 5.00)(0.09 5.50)(0.72 6.00)(0.01 6.05)(0.09 8.00)
Expected finish time: 6.05 Probability d or lower: 0.90

R E S O U R C E - B O U N D E D S E A R C H E S

55IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ MARCH • APRIL 2000

est quality within the cost and time limits. How-
ever, meeting cost limits were given a much high-
er priority than meeting time limits. Thus, the time
limit may not be met in every schedule produced
by DTC.

Table 2 (next page) shows the different schedules
constructed for cost thresholds of $0, $1, $3, $6, and
$9. In this table, a “Y” in a row indicates that the
method in that row is included in the schedule with
a specific cost threshold. For example, method
Query_To_Net sales is only used in the schedule
where the cost threshold is nine dollars.

When the search cost threshold is $0, the BIG
system first makes a query to the free site “zdnet”
to get low-quality, basic product information; it
then chooses seven text-processing methods to
process information (these methods are also free).
Next, it elects to query a free review site, “cybout
review,” to get review information. Finally, it makes
a decision based on the available information.

In contrast, when given the search cost thresh-
old of $1, the system makes an extra query to the
“pczone” site that charges $0.8 and gains access to
medium-quality information. When the search cost
threshold increases to $3, the system spends $2 on
the “benchin” review site to get high-quality infor-

mation. Given $6, the system queries three product
sites: “zdnet,” “pczone,” and “pcmall.” It also queries
the “benchin” site twice for different review infor-
mation: company reviews and user reviews. With a
searching cost of $9, the system chooses to query all
five product sites and three review methods.

In all five cases, the method “Review_Finder” is
not chosen because its quality-to-cost ratio is lower
relative to other alternatives.

Experimental Results
We ran experiments with five different given cost

Query_To_Pcmall

Query_To_Warehouse

Query_To_Netsales

Query_To_Pczone

Query_To_Zdnet

Review_Product_Quality

Review_Finder

Cybout_Review

Benchin_Review

Benchin_User_Review

TE_4 TE_6 TE_12

Get_Information

Send_Query_Pcmall Get_Back_Pcmall

Get_Basic_Information

Look_For_Materials

Make_Decision

Detail_Product_Information

q_sum()

q_sum()

q_sum()

Get_More_Objects

Text_Extraction

q_seq_sum()

q_min()

q_sum()

q_sum()q_sum()

q_sum()

q_seq_sum()

QE_6

TE+C_3

TE+C_4

TE+C_8 QE_9

QE_19

Satisfy_User_Query

q_sum()

Text_Extraction+CGrep

Quick_Extraction

Find_Additional_Objects

Get_Extra_Information

q_seq_sum()
Task
Method
Enables

Figure 4. Complete example of BIG information-gathering task structure.

Table 1. Eight websites with different qualities
and costs used in cost-based experiments.
Site Quality Cost
pcmall high (3) 1.2
pczone medium (2) 0.8
warehouse high (3) 1.6
zdnet low (1) 0.0
netsales low (1) 0.6
benchin-review high (3) 2.0
review-finder medium (2) 1.5
cybout-review low (1) 0.0

A G E N T S O N T H E N E T

56 MARCH • APRIL 2000 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

thresholds, $0, $1, $3, $6, and $9. For each specif-
ic cost, we ran the system 10 times; Table 3 presents
the experiment results.

The first and second columns are the user-
specified cost limit (SC) and the real searching cost
(RC), respectively. The RC is very close to the SC
without exceeding the limit because the scheduler
was directed to put great importance on not going
over the cost threshold.

The next four columns denote the number of
considered products (#CP), total number of prod-
ucts found (#TP), aggregate information coverage
(IC), and average information coverage per product
object (AC). These values reflect the number of
information sources used to generate the final deci-
sion. Given additional cost, BIG will adjust its
searching behavior in an attempt to find both more
sources of information and more supporting infor-
mation for previously discovered products. The #CP
and #TP did not increase when the cost increased
from $1 to $3. In the $3 cases, BIG chose to spend
the extra $2 on a high-quality review site to get bet-
ter review information on previously discovered
products, which is consistent with the semantics
behind the objective criteria we supplied.

The information quality (IQ)
column reflects the quality of the
information sources that con-
tributed to the decision; IQ
increases according to the search-
ing cost because high-quality
sites charge a higher fee than
lower quality sites. The next col-
umn denotes the extraction pro-
cessing accuracy per object (PA),
supplied in part by the informa-
tion-processing tools. This char-
acteristic is not affected by the
searching cost, because our text-
processing tools are cost-inde-
pendent. Decision confidence
(DC), generated by a Resun
knowledge source called the deci-
sion maker, reflects the likeli-
hood that the selected product is
the best choice among the entire
set of products considered. This
value is based on the quality dis-
tributions of each product, and
represents the chance that the
expected quality is correct; it is
not directly related to search cost
thresholds.

The scheduling time (ST) for the first three
experiments is very close to the given deadline. The
last two experiments exceed the deadline because
the scheduler has significantly more money to
spend and can therefore expect to obtain a higher
quality decision, so it chooses to spend more time.
The execution time (ET) increases with cost
because the increased amount of money spent
makes it more likely that queried sites will contain
relevant material. This in turn will increase the
overall time to extract relevant information, since
there will be more documents to process.

The final column shows the more frequently
chosen product as the final decision in the set of 10
runs. Overall, the results indicate that the more
money a client is willing to spend in gathering
high-quality information, the better the final prod-
uct selection decision BIG makes—although clear-
ly this trend cannot continue forever (in the final
two runs the same product was chosen).

Note also that it is quite possible to find the best
product without spending any money at all. In this
example we just illustrate that it is more likely that
BIG will find a better product as a result of pur-
chasing higher quality information.

Table 2. BIG schedules under varying cost thresholds.
Given Searching Cost

Method Name Quality Cost $0 $1 $3 $6 $9
Query_To_Zdnet 56 0 Y Y Y Y Y
Query_To_Pczone 112 0.8 Y Y Y Y
Query_To_Netsales 56 0.6 Y
Query_To_Warehouse 168 1.5 Y
Query_To_Pcmall 168 1.2 Y Y
Text_Extraction_4 40 0 Y Y Y Y Y
Text_Extraction_6 49 0 Y Y Y Y
Text_Extraction_12 69 0 Y Y Y Y
Text_Extraction+Cgrep_3 40 0 Y Y Y Y Y
Text_Extraction+Cgrep_4 56 0 Y Y Y Y Y
Text_Extraction+Cgrep_8 72 0 Y Y Y Y
Quick_Extraction_6 22 0 Y Y Y Y
Quick_Extraction_9 27 0 Y Y Y Y
Quick_Extraction_19 39 0 Y Y Y
Benchin_Review 189 2.0 Y Y Y
Benchin_User_Review 175 2.0 Y Y
Cybout_Review 41 0 Y Y Y Y Y
Review_Finder 81 1.5
Make_Decision 90 0 Y Y Y Y Y
total cost 0 0.8 2.8 6 8.2
total quality 565 653 776 1,277 1,502

R E S O U R C E - B O U N D E D S E A R C H E S

57IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ MARCH • APRIL 2000

CONCLUSIONS
The BIG system can be organized to account for
complex resource-bounded constraints on its activi-
ties. In this article, we have shown the feasibility of
developing complex information-gathering agents
that can adjust their behavior on the basis of available
processing and monetary resources. We believe that
we are moving toward an information marketplace
that charges for access to valuable information. As
agents develop the ability to not only retrieve docu-
ments but also process their contents, the capabilities
we have explored in BIG may become the norm.

The basic architecture we have laid out for
resource-bounded reasoning will also be appropriate
when the prices for accessing information are dynam-
ically arrived at based on a direct negotiation with an
information provider or through an auction. The
DTC scheduler can be used to assess the expected
effects of certain information costs on the overall
decision process of an agent. This analysis is a key
component in the agent deciding a reasonable price
to pay for specific information and comparing alter-
native bids from other sites that may have different
quality and coverage attributes. ■

ACKNOWLEDGMENTS
We would like to thank Norman Carver and Frank Klassner for

their contributions relating to the Resun planner and the task

assessor component. We would also like to acknowledge the

help of Mike Chia during the formative stages of this project.

This material is based on work supported by the Dept. of Com-

merce, Library of Congress, and National Science Foundation

under Grant No. EEC-9209623; the NSF under Grant No. IRI-

9523419; and the Dept. of the Navy and Office of the Chief of

Naval Research under Grant No. N00014-95-1-1198. The con-

tent does not necessarily reflect the position or policy of the Gov-

ernment or NSF, and no official endorsement should be inferred.

REFERENCES
1. V. Lesser et al., “BIG: A Resource-Bounded Information Gath-

ering Agent,” Proc. 15th Nat’l Conf. on Artificial Intelligence,

AAAI/MIT Press, Cambridge, Mass., 1998, pp. 539-546; see

also UMass CS Tech. Reports 98-52, 98-03, and 97-34.

2. V. Lesser et al., “BIG: A Resource-Bounded Information

Gathering and Decision Support Agent,” submitted for pub-

lication in Artificial Intelligence (special issue on Internet infor-

mation agents).

3. E. Durfee et al., “Strategic Reasoning and Adaptation in an

Information Economy,” in Intelligent Information Agents,

M. Klusch, ed., Springer-Verlag, 1999, pp. 176-203.

4. A. Howe and D. Dreilinger, “A Meta-Search Engine that

Learns Which Engines to Query,” AI Magazine, Vol. 19,

No. 2, 1997, pp. 19-25.

5. O. Etzioni, “Moving Up the Information Food Chain:

Employing Softbots on the World Wide Web,” Proc. 30th

Nat’l Conf. Artificial Intelligence, AAAI/MIT Press, Cam-

bridge, Mass, 1996, pp. 1322-1326.

6. B. Krulwich, “The BargainFinder Agent: Comparison Price

Shopping on the Internet,” in Bots and Other Internet Beast-

ies,” J. Williams, ed., Sams.Net, 1996; also available online

at http://bf.cstar.ac.com/bf/.

7. K. Decker et al., “Designing Behaviors for Information

Agents,” Proc. First Int’l Conf. Autonomous Agents, ACM

Press, New York, 1997, pp. 404-413.

8. T. Wagner, A. Garvey, and V. Lesser, “Criteria-Directed

Heuristic Task Scheduling,” Int’l J. of Approximate Reason-

ing (special issue on scheduling), Vol. 19, No. 1-2, 1998,

pp. 91-118.

SC
0

1

3

6

9

RC
0
0

0.8
0

2.8
0

6
0

8.2
0

#CP
1
0

8
0

7
0

15.2
0.87

21.6
1.36

#TP
3
0

22
0

22
0

54
0

69.8
0.6

IC
8
0

28
0

33
0

67.5
1.96

80.5
0.5

AC
1
0

1
0

1.71
0

1.5
0.1

1.44
0.01

DC
1
0

0.84
0

0.88
0

0.83
0

0.85
0.06

IQ
0.33

0

0.57
0

0.64
0

0.83
0

0.92
0.02

PA
1.83

0

1.08
0

0.96
0

1.16
0.03

1
0.05

ST
667
0

600
0

670
0

990
0

974
0

ET
133
2.2

414
35.4

470
11.3

1041
50.5

1134
52.1

Final decision
Product name: Lotus FastSite 2.0

Price: 99
Occurrence: 10/10

Product name: Lotus Word Pro 97
Price: 63.98

Occurrence: 6/10
Product name: Lotus Word 97

Price: 63.98
Occurrence: 8/10

Product name: Word Pro 97 CD WIN/W95
Price: 59.19

Occurrence: 8/10
Product name: Word Pro 97 CD WIN/W95

Price: 59.19
Occurrence: 10/10

Average
St.dev.

Average
St.dev.

Average
St.dev.

Average
St.dev.

Average
St.dev.

Table 3. Experimental results when running BIG with different cost thresholds.

A G E N T S O N T H E N E T

58 MARCH • APRIL 2000 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

Victor Lesser is a professor of computer science and director of

the Multi-Agent Systems Laboratory at the University of

Massachusetts at Amherst. He is a leading researcher in the

areas of blackboard systems, distributed AI/multiagent sys-

tems, and real-time AI. Lesser received his PhD in com-

puter science from Stanford University in 1972. He is a

founding fellow of the American Association of Artificial

Intelligence (AAAI).

Bryan Horling is a senior research fellow in the Dept. of Com-

puter Science, University of Massachusetts at Amherst. His

research interests include distributed systems and multia-

gent organizations. Horling received his BS in computer

science and biology from Trinity College in 1996, and his

MS in computer science from UMass in 1998.

Anita Raja is a PhD candidate in the Dept. of Computer Science,

University of Massachusetts at Amherst. Her research interests

include information gathering, resource-bounded reasoning

and real-time agent control. She received her BS in computer

science and mathematics from Temple University in 1996, and

her MS in computer science from UMass in 1998.

Thomas Wagner is an assistant professor of computer science

and a director of the Agent Institute at the University of

Maine. His research interests include control technolo-

gies for intelligent software agents and information-cen-

tric agent applications. Wagner received a PhD in com-

puter science from the University of Massachusetts at

Amherst.

Xiaoqin Zhang is a PhD candidate in the Dept. of Comput-

er Science, University of Massachusetts at Amherst. Her

research interests include multiagent negotiation and

coordination. She received her BS in computer science

in 1995 from the University of Science and Technology

of China and her MS in computer science from UMass

in 1998.

Readers may contact Victor Lesser at lesser@cs.umass.edu, and

Tom Wagner at wagner@umcs.maine.edu.

JAN/FEB — Top 10 Algorithms of the Millennium
Jack Dongarra, dongarra@cs.utk.edu, University of Tennessee, and
Francis Sullivan, fran@super.org, IDA Center for Computing Sciences
The 10 algorithms that have had the largest influence on the development and
practice of science and engineering in the 20th century (also the challenges facing us
in the 21st century).

MAR/APR — ASCI Centers
Robert Voigt, rvoigt@compsci.wm.edu, and Merrell Patrick, mpatr@concentric.net
Status report on the five university Centers of Excellence funded in 1997 along with
their accomplishments.

MAY/JUN — Earth Systems Science
John Rundle, rundle@hopfield.colorado.edu, Colorado Center for Chaos and Complexity
The articles featured in this special issue will document the progress being made in
modeling and simulating the earth as a planet.

JUL/AUG — Computing in Medicine
Martin S. Weinhous, weinhous@radonc.ccf.org, Cleveland Clinic, and
Joseph M. Rosen, joseph.m.rosen@hitchcock.org
In medicine, computational methods have let us predict the outcomes of our
procedures through mathematical simulation methods. Modeling the human body
remains a challenge for computational mathematics.

SEP/OCT — Computational Chemistry
Donald G. Truhlar, truhlar@chem.umn.edu, University of Minnesota, and
B. Vincent McKoy, mckoy@its.caltech.edu, California Institute of Technology
Overviews of the state of the art in diverse areas of computational chemistry with an
emphasis on the computational science aspects.

NOV/DEC — Materials Science
Rajiv Kalia, kalia@bit.csc.lsu.edu, Louisiana State University
This issue will focus on the impact of multiscale materials simulations, parallel
algorithms and architectures, and immersive and interactive virtual environments on
experimental efforts to design novel materials.

2000
EDITORIAL CALENDAR

LOOK
WHAT
WE’RE

FEATURING

THIS
YEAR

IN

CiSE!

LOOK
WHAT
WE’RE

FEATURING

THIS
YEAR

IN

CiSE!

LOOK
WHAT
WE’RE

FEATURING

THIS
YEAR

IN

CiSE!
To submit an article, visit
computer.org/cise
for author guidelines

