Knowledge acquisition as knowledge assimilation†

LAWRENCE S. LEFKOWITZ AND VICTOR R. LESSER

Computer and Information Science Department, University of Massachusetts, Amherst, MA 01003, U.S.A.

(Based on a paper presented at the Second AAAI Workshop on Knowledge Acquisition for Knowledge-Based Systems, Banff, October 1987)

The assimilation of information obtained from domain experts into an existing knowledge base is an important facet of the knowledge acquisition process. Knowledge assimilation requires an understanding of how the new information corresponds to that already contained in the knowledge base and how this existing information must be modified so as to reflect the expert's view of the domain. This paper describes a system, K^n_{AC}, that modifies an existing knowledge base through a discourse with a domain expert. Using heuristic knowledge about the knowledge acquisition process, K^n_{AC} anticipates modifications to existing entity descriptions. These anticipated modifications, or expectations, provide a context in which to assimilate new domain information.

1. Introduction

An often overlooked aspect of the knowledge acquisition process is the assimilation of information presented by the domain expert into an existing knowledge base. Typically, knowledge bases are currently constructed through a series of dialogues between an expert, or experts, in the application domain and a knowledge engineer familiar with the target expert system. The knowledge engineer's task is the modification of the expert system's knowledge base so as to reflect the domain expert's knowledge. To a large extent, this knowledge acquisition task may be viewed as a recognition problem. All of the problems facing other recognition systems are present here as well, including: noisy data (i.e. incomplete or inaccurate information), ambiguous interpretations, and the need to produce intermediate results before all the data is available. Thus, a significant portion of this interactive knowledge acquisition task is a matching problem: How does the expert's description of the domain correlate with the description contained in the knowledge base? How should the knowledge base be modified based on new information from the expert? What should be done when the expert's description differs from the existing one?

K^n_{AC} is a system that we have developed that implements this knowledge assimilation approach to knowledge acquisition. It was developed to assist in the construction of knowledge bases for the POISE (Croft, Lefkowitz, Lesser & Huff, 1982) intelligent interface system. These knowledge bases use a frame-like representation, described more fully in Croft & Lefkowitz (1984) and Lefkowitz (1987),

†This research was supported, in part, by the External Research Program of Digital Equipment Corporation, by the Air Force Systems Command, Rome Air Development Center, Griffiss Air Force Base, New York 13441-5700, and by the Air Force Office of Scientific Research, Bolling AFB, DC 20332 under Contract No. F 30602-85-C-0008. This contract supports the Northeast Artificial Intelligence Consortium (NAIC).
to describe tasks, objects and relationships in the application domain. POISE's initial knowledge bases, for the office automation and software engineering domains, were created by hand from interviews between a knowledge engineer and the appropriate domain experts. Transcriptions of these interviews were examined and the results served as the basis of the K^NAc system.

It is important to note that the goal of the domain expert was not to modify POISE's knowledge base; this was the knowledge engineer's role. The expert simply presented the domain information, e.g. descriptions of tasks, objects, etc., and responded to questions and comments from the knowledge engineer. The burden of assimilating the information, that is, recognizing where it fitted into the existing knowledge base and what additions or modifications were needed, was not placed upon the domain expert. (Contrast this to approaches such as Eshelman, Ehret, McDermott & Tan, 1986; Ginsberg, Weiss & Politakis, 1985; and Kahn, Nowlan & McDermott 1985.)

K^NAc supports the domain expert by trying to assume much of the responsibility for assimilating the expert's information. To accomplish this, K^NAc models the knowledge engineer's role by anticipating modifications to the existing knowledge base using heuristic information about the knowledge acquisition process. As will be described later, these anticipated modifications allow K^NAc to focus on "relevant" portions of the knowledge base and provide a context in which to integrate the information provided by the domain expert.

Consider the opening portion of a discourse in which the expert, the principal clerk of an academic department, is describing the procedure for being reimbursed for business-related travel expenses.

OK—on travel. The proper way of doing it, if it's out of state, is that a travel authorization should be issued before the trip.

From this information one can conclude that some unnamed task consists of two temporally ordered steps. Rather than simply adding this information to the knowledge base, it may be desirable to modify an existing task description. However, it is not clear what modifications need be made to the knowledge base to reflect this additional information.

If the knowledge base (prior to this interview) is examined, a description of the reimbursement process will be found (see Fig. 1). In this simplified view of the task, which knows nothing about a "travel authorization", the traveller simply goes on a trip and gets reimbursed. Though the knowledge engineer may realize that the clerk and this existing description are describing the same task, it is not readily apparent from the two descriptions. Matching such descriptions, and recognizing the implied modifications, are central to the assimilation process.

<table>
<thead>
<tr>
<th>EVENT</th>
<th>TAKE-A-TRIP-AND-GET-PAID</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEPS:</td>
<td>(TAKE-A-TRIP GET-REIMBURSED)</td>
</tr>
<tr>
<td>TEMPORAL-RELATIONSHIPS:</td>
<td>((TAKE-A-TRIP before GET-REIMBURSED))</td>
</tr>
<tr>
<td>CONSTRAINTS:</td>
<td>(...)</td>
</tr>
<tr>
<td>ATTRIBUTES:</td>
<td>(TRAVELER (...) (COST ...) (DESTINATION ...))</td>
</tr>
</tbody>
</table>

Fig. 1. Knowledge base event description.
To accomplish the assimilation of this new information, KnAc was required to perform two basic tasks: (1) recognizing where the expert’s information fits into the existing knowledge base, and (2) appropriately modifying the existing knowledge so that it reflects the expert’s view of the domain. Determining where the expert’s information fits into the existing knowledge requires that the new information be matched against the existing information. To avoid matching the new information against the entire (existing) knowledge base, the most likely candidate matches must be selected. Furthermore, since the goal of a knowledge acquisition discourse is the modification of the knowledge base, exact matches between the new and the existing information are not always expected.

Thus, the procedure for matching the expert’s entity descriptions with those already in the knowledge base must be specialized for knowledge acquisition. KnAc’s matching and match evaluation procedures are described in section 3. Discrepancies between the expert’s descriptions and the existing ones may imply needed modifications and need not degrade a match, especially if the discrepancies (or the implied modifications) can be predicted. Anticipated modifications, or expectations, arise from an understanding of the knowledge acquisition process. They can be derived from the state of the existing knowledge base, from cues in the discourse, from previous modifications to entity descriptions, or from the state of the knowledge acquisition task. The generation and management of these expectations is described in section 4. Finally, the status of this work and its contributions to the knowledge acquisition task are summarized in section 5.

2. The KnAc system

In this section, the basic architecture and functionality of the KnAc system† is presented. During each cycle of the KnAc system, descriptions of domain entities are accepted from the user (1) and compared with entities in the existing knowledge base (2). (Figure 4 contains a portion of this knowledge base.) These candidate entities (3) are selected based on KnAc’s expectations of changes to the knowledge base. The comparisons (4) are evaluated both in terms of how well they match and the extent to which the differences between them were expected (5) within the context of the match. Once the best matches are selected, the implied modifications (6) are made to the existing entity knowledge base (7), after being verified with the user (8), if necessary. Expectations of further modifications are generated from a variety of sources, including the information obtained from the discourse (9), the state of entities in the knowledge base (10), previously made modifications (11) and the state of the acquisition process.

The descriptions obtained from the expert must be presented to the matcher in the knowledge base’s representation language. The purpose of the discourse manager/user interface is two-fold: to permit a more “user-friendly” specification (e.g. natural language, graphics, menus, etc.) of these descriptions, and to provide KnAc with any available cues as to the state of the discourse. Note that the focus of this work is not the translation of the expert’s knowledge into the representation

† Figure 2 contains the architecture of the KnAc system. The parenthesized numbers in this paragraph, e.g. (1), refer to this figure.
used by the underlying knowledge base. Rather, $\mathcal{K}^n_{\mathcal{A}c}$ addresses the issue of how to integrate this knowledge once it is in such an accessible form. Currently, the natural language protocols are translated by hand into the system's representation language. Only minimal discourse cues, such as "topic" information, are assumed to be available.

Thus, the discourse fragment presented in section 1 translates, approximately, into the structures shown in Fig. 3. These structures may then be compared with selected entities from the existing knowledge base.

To avoid having to examine the entire knowledge base in order to assimilate the new information, entities that are most likely to be modified are selected as candidate matches. Thus, if there exists an expectation of some modification to a given entity description, that entity is compared to the new information from the expert. The way in which these modifications are anticipated will become clearer in section 4. Initially, the only expectations available are based on the discourse cue recognizing that TRAVEL is a topic of interest. Hence, the entities semantically close to TRAVEL in the knowledge base are selected as candidate matches. These entities include TAKE-A-TRIP-AND-GET-PAID, shown in Fig. 1.

The system then compares the expert's descriptions with the selected match
candidates. The matching process, described more fully in section 3, determines the similarities and differences between a pair of entity descriptions. The results of these comparisons are then evaluated in order to select the best match for each of the expert’s entity descriptions. Section 3.2 describes the evaluation process, which rates the match results on a field-by-field basis and combines these ratings to produce an overall rating for each match.

For example, when the unnamed task described by the expert, labelled EVENT-1, is compared with the existing task description TAKE-A-TRIP-AND-GET-PAID, the contents of each field of these structures (e.g., parts, generalizations, temporal-relationships, pre- and post-conditions, etc.) are compared. In the steps field, they have one entity in common (TAKE-A-TRIP) and each has one entity not found in the other (ISSUE-TRAVEL-AUTHORIZATION in EVENT-1 and GET-REIMBURSED in TAKE-A-TRIP-AND-GET-PAID). They have several attributes in common (TRAVELER and DESTINATION). Their temporal-relationships are mutually consistent, though different. Both entities are specializations of EVENT.

The ratings for these field matches is shown in Fig. 5. Remember, these ratings reflect not only the degree to which the fields match, but more importantly (from the point of view of knowledge acquisition) the likelihood of the modifications, in future parts of the dialogue, required to make them match.

From these ratings, the best matches are selected. If there is significant ambiguity, the matches are verified with the expert. If there are no acceptably good matches for one of the expert’s entity descriptions, a new entity is added to the knowledge base.

When the best matches have been selected, the differences between the expert’s description and the existing one are used to modify the knowledge base. For instance, the “extra” step in EVENT-1, i.e. ISSUE-TRAVEL-AUTHORIZATION, is added as a step of TAKE-A-TRIP-AND-GET-PAID. The extent to which this modification requires confirmation from the expert depends on the level of autonomy granted to the system. At various levels, all such modifications could be verified with the expert or only unexpected ones or only deletions, etc.

Once the knowledge base has been modified, new expectations are generated to be used in interpreting the next “discourse frame”. The generation and management of these expectations is described in section 4.
3. Matching for knowledge acquisition

In order to match entity descriptions provided by the domain expert to those already known to the system, K^n_{AC} must be able to compare these structures and evaluate the results. This matching process, while in some ways similar to that found in most recognition/interpretation systems, displays certain characteristics unique to knowledge acquisition. In particular, since the goal of a knowledge acquisition dialogue is the modification of the knowledge base, the information provided by the domain expert should not completely match the existing entity descriptions. The matching process must be modified so as to be able to recognize and, where possible, anticipate these discrepancies. The matching techniques presented in this section make these discrepancies explicit; the evaluation of these match results, described in section 3.2, incorporates the extent to which these discrepancies were anticipated into its rating procedure.

3.1. MATCHING ENTITY DESCRIPTIONS

POISE's knowledge base is represented in a frame-based language, similar to that used by systems like Knowledge Craft (Wright & Fox, 1983; Carnegie Group Inc., 1986). Comparison of these knowledge structures requires matching on a field-by-field basis. Each field may be considered to be one of two types of structures: a set of elements such as steps and generalizations of an event, or a collection of constraints such as the temporal-relationships and the pre- and post-conditions. K^n_{AC} contains matching techniques for each of these types of structures.

3.1.1. Set matching

Determining how well two sets of elements match is not difficult; neither is determining how "different" they are (e.g. see Tversky, 1977). For knowledge acquisition purposes, however, the relevant question is "How likely is it that they can be modified so as to match?" To determine this, K^n_{AC} examines not only the elements in each (set) field of the knowledge structure, but also makes use of information about that field (i.e. meta-information or facets). In particular, information about the size of each field and the range of the elements in that field permit K^n_{AC} to calculate the probability that the extra elements in one of the structures will be added to the other.

Consider the comparison of the steps of EVENT-1 and TAKE-A-TRIP-AND-GET-PAID. A typical measure of similarity is:

$$\text{Match-rating} = \begin{cases}
1 & \text{if Set}_1 = \text{Set}_2 = \phi \\
\frac{|\text{Set}_1 \cap \text{Set}_2|}{|\text{Set}_1 \cup \text{Set}_2|} & \text{otherwise.}
\end{cases}$$

With one step out of the three unique steps between them in common, the similarity of these fields would be $1/3$. How likely is it, however, that the "extra" step in the expert's description (i.e. ISSUE-TRAVEL-AUTHORIZATION) will be added to the existing description? Without requiring a deep understanding of domain-specific semantics, some additional information can still be used. If events usually have few steps (as specified by the meta-information about the step field of EVENT), the
addition of this particular step is less likely than if there are many more steps still to be added. Similarly, if a step is going to be added, the range of possible steps will affect the probability of the desired one being added. This range is determined by combining the "type restriction" meta-information about the slot (i.e. a step of an EVENT must be an EVENT) with the existing knowledge base (i.e. the number of EVENT descriptions known to the system).

Thus, \(K_h^{Ac}\) rates each set match based on the likelihood of the modifications implied by the match. The likelihood is determined from the anticipated size and

<table>
<thead>
<tr>
<th>Field</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>generalizations</td>
<td>1.000</td>
</tr>
<tr>
<td>parts</td>
<td>0.133</td>
</tr>
<tr>
<td>attribute-names</td>
<td>0.055</td>
</tr>
<tr>
<td>constraints</td>
<td>0.007</td>
</tr>
<tr>
<td>Match Rating</td>
<td>0.299</td>
</tr>
</tbody>
</table>

Fig. 5. Ratings for field matches.
range of the sets and requires no additional semantic information about their content. The derivation of these ratings is fully described in Lefkowitz (1987).

3.1.2. Constraint matching

Although comparing (or combining) arbitrarily constrained sets of entities is a difficult problem often requiring substantial domain knowledge, KN_{Ac} compares sets of constraints, pairwise related by a common relation, in a purely mechanical fashion.† This section describes a mechanism for comparing such constrained sets; the mechanism is independent of the particular relation, requiring only a description of its algebraic properties, i.e. whether or not the relation is reflexive, symmetric and/or transitive.

First, any implicit constraints are made explicit by propagating the specified constraints using the relation's algebraic properties. The temporal relation before, for example, is only transitive; if the constraints (A before B) and (B before C) were specified, then (A before C) could be deduced. When the constraints are thus propagated, inconsistencies may be detected by checking the results for any of the prohibited properties of the relation (i.e. non-reflexive, non-symmetric and non-transitive). If each set of constraints is internally consistent, the two sets may be merged and re-propagated, and this combined set of constraints may be checked for consistency.

If two sets of constraints are mutually consistent, a measure of their similarity may be obtained by determining the changes required to make them equivalent. Simply adding each set of constraints to the other would accomplish this, but this may add more information than is necessary. For instance, if the first set of constraints contained (A before B) and (A before C) and the second sets contained (B before C), then only (A before B) need be added to the second set. Requiring the addition of both constraints from the first set would imply a larger discrepancy between the sets than actually exists. Obtaining the minimal set of constraints that need to be added is not a trivial problem. KN_{Ac} contains a new approach to generating these sets, called "opensures"‡, based on their algebraic properties.

Thus, as with fields containing sets, KN_{Ac} is able to rate constraint matches by determining the likelihood of the implied modifications. This rating is based on the algebraic properties of the relationships involved and requires no additional semantic information. KN_{Ac}’s methods for constraint propagation, determination of consistency, and generation of opensures are presented in Lefkowitz (1987).

3.2. MATCH EVALUATION

After comparing each of the entity descriptions provided by the domain expert against those candidate entities selected from the existing knowledge base, KN_{Ac} evaluates these match results in two passes. First, the likelihood of two entities matching, based on the extent to which they differ and the probability of these differences being corrected, is determined as described above. This “degree of fit” is a relatively inexpensive means of pruning the set of possible matches.

† The current system checks each relation separately; it does not handle interaction between different relations, though it is able to combine relations with their inverses. For instance, before and after constraints are handled together.
‡ i.e. the inverse of “closures”.
The second pass of the match evaluation takes into account the context in which the comparison is being made. In addition to how the descriptions differ, it considers whether these differences are expected in a particular situation. The extent to which the modifications implied by the differences between the structures are expected serves as a “context-dependent” measure of the match. The anticipation of such modifications is a crucial part of the KnAc system and is described in the following section.

Consider, for example, the addition of the step ISSUE-TRAVEL-AUTHORIZATION to the description of TAKE-A-TRIP-AND-GET-PAID. The addition of such a step could have been foreseen for several reasons. First, since there were fewer steps in the existing description than are typically found in events, adding another step was reasonable. More importantly, upon examining the existing description to see if it was consistent and complete, it was discovered that a precondition of the step GET REIMBURSED, describing the traveller as the recipient of funds, could not be satisfied by the only earlier step in the task (i.e. TAKE-A-TRIP). This further supported the addition of another step (occurring before GET-REIMBURSED) to the task.

4. Anticipating modifications

KnAc provides a context in which to interpret information provided by a domain expert by anticipating modifications to an existing knowledge base. These anticipated modifications, or expectations, are derived from KnAc’s heuristic information about the knowledge acquisition process. This section describes how these expectations are generated, how they are used to provide a context in which matches may be evaluated, and how they ranked and managed.

4.1. Generating expectations

KnAc contains a body of heuristics about the knowledge acquisition process. These heuristics, obtained through the analysis of several knowledge acquisition dialogues, allow KnAc to anticipate modifications to an existing knowledge base. These heuristics may be divided into four categories. The first group is based on the state of the knowledge, both that already contained in the knowledge base and new information provided by the expert. The second category depends on modifications previously made to the existing knowledge base. The third set makes use of a model of the discourse process, while the final set incorporates knowledge about teaching and learning strategies.

Since it is expected that the collection of heuristics will be modified, both as a result of improved understanding of the knowledge acquisition process and through the addition of domain specific heuristics, KnAc allows heuristics to be added (or removed) in a straightforward way. Most of KnAc’s current heuristics are quite simple and domain-independent; the addition of more complex, application-specific heuristics may improve the system’s performance in certain domains.

KnAc’s state heuristics are based on the assumption that the information contained in the knowledge base should (eventually) be complete and consistent. Obviously, such attributes can be measured in a variety of ways, some dependent on the
application domain, some dependent on the knowledge representation, and some rather generic. Consider a simple heuristic based on one measure of incompleteness:

Heuristic S1: *Fields with too few components will be augmented.*

This heuristic states that if information is detected to be missing from a field of some entity description, the addition of that information may be expected. One simple approach to detecting such missing information compares the number of entries in a field of a knowledge structure with the field’s expected cardinality. If the field is determined to contain too few values, additional values (of the appropriate type) will be expected. The expected field size may come, in order of specificity, from meta-information about a given field of a given entity, via inheritance from a generalization of the entity, from the default information for the type of the entity, or from an overall field default size. This size information may be static or determined dynamically by the system. An expectation generated by this heuristic is:

```
EXP146: Expecting (certainty 0.360):

  MOD: ADD ?new-part (is-a knac-structure p) to the
       Parts field of Take_a_trip_and_get_paid
       Derived from Take_a_trip_and_get_paid and H_S1.
```

Other *state* heuristics exploit references to unknown entities, unsatisfied preconditions of task steps, and range/value conflicts to detect inconsistencies in the knowledge base and anticipate changes. One example of such heuristics,

Heuristic S2: *Unsatisfied step preconditions will be satisfied.*

uses incompleteness in an event description to anticipate the addition of a step and a temporal constraint placing it before the existing step with the unsatisfied precondition.

In addition to the state of the knowledge, changes made during the knowledge acquisition process may imply additional modifications. For instance, two *modification* heuristics are triggered when a new entity description is added:

Heuristic M1: *Detailed information usually follows the introduction of a new entity.*

Heuristic M2: *Context information usually follows the introduction of a new entity.*

Additions of information to specific fields of entity descriptions (e.g. attributes, steps, constraints, etc.) form the basis for other more specific modification heuristics. Examples of such heuristics include:

Heuristic M3: *Adding two parts to an entity usually implies a relation between them.*

Heuristic M4a: *Parts of Events are usually temporally constrained after being introduced.*

Cues from the discourse manager, such as the topic of discourse or recently referred to entities, are the key to K\(^\text{II}\)Ac's *discourse* heuristics. Because the current system lacks a sophisticated discourse manager, we do not rely heavily on discourse cues. Thus, the only discourse heuristics being used are:
Heuristic D1: Entities close to specified topics are likely to be referenced or modified.

Heuristic D2: Referenced entities are likely to be modified or referenced again.

These heuristics generate expectations of some unspecified modification to the referenced entities or to those semantically close to them. "Closeness" is determined by the number and types of relationships (i.e. links) separating two entities.

4.2. MANAGING EXPECTATIONS

As the number of expected modifications to the knowledge base grows, KnAc's ability to use the expectations to focus its attention diminishes. Thus, a means of selecting the most likely expectations (for a given point in the acquisition discourse) is required. This is accomplished by assigning a rating to each expectation and pruning the set of heuristics based on this rating.

Each heuristic is responsible for determining a rating for each expectation it generates. This rating depends on the quality of the data and the specificity of the heuristic. Since different types of heuristics generate expectations based on different types of data (e.g. state information, previous modifications, etc.), each heuristic has its own function for determining ratings. For example, Heuristic D1 (shown above) includes the semantic "distance" from the specified topic in its rating calculation; Heuristic S1, which is based on "missing information", incorporates the system's certainty that the information is actually missing.

In addition to the initial ratings assigned to each expectation, each heuristic contains a function that specifies how these ratings will change with time. For instance, certain expectations are important when they are created but become less valid with the passage of time; others become more critical as time passes. Some become more (or less) significant based on some state of (or change to) the knowledge base; others are always valid. KnAc's current set of predefined functions for specifying the change in rating includes: fade, increase, until, while, after, for, always and never.

5. Status and conclusions

In this paper we have examined an often overlooked aspect of the knowledge acquisition process: the assimilation of information presented by a domain expert into an existing knowledge base. Though a fundamental part of the current conventional knowledge base development process, the issue of automatically locating and appropriately modifying existing knowledge to conform to the domain expert's descriptions has received little, if any, emphasis. Most current knowledge acquisition tools place this burden on the domain expert, forcing him to take over part of the knowledge engineer's task. By automating this assimilation process, the KnAc system better insulates its user from the knowledge base.

KnAc accomplishes this assimilation by (1) comparing entity descriptions provided by the domain expert with existing knowledge base descriptions, (2) evaluating these matches in the context of the knowledge acquisition discourse, (3) making the modifications to the existing descriptions implied by the expert's information, and (4) generating (and managing) expectations of further changes to the knowledge base.
This work has developed several generic matching (and match evaluation) techniques especially adapted for knowledge acquisition. They shift the focus of matching from examining how closely two entities match to exploring the likelihood of their being modified so as to match. This is accomplished by matching procedures (for sets of entities and collections of constraints) which determine differences as well as similarities, an evaluation technique which explores the probability of the modifications required to make entities match and the degree to which these modifications are expected, and a means of anticipating modifications to the knowledge based on heuristic information about the knowledge acquisition process.

The Khan system is implemented in Common Lisp running on a TI Explorer. Its current use is still experimental, though it has been able to assimilate a 20 step dialogue on the travel reimbursement process, correctly constructing an internal representation of the plan in the POISE knowledge base. A complete description of the implementation and the sample dialogue can be found in Lefkowitz (1987).

References

