
Automated Meta-Level Control Reasoning in Complex Agents

Anita Raja and Victor Lesser
Department of Computer Science,

University of Massachusetts,
Amherst, MA 01003-4610, USA

araja,lesser@cs.umass.edu
Ph: 413-545-3444 Fax: 413-545-1249

Abstract

Complex agents operating in open environments
must make real-time control decisions on schedul-
ing and planning of domain actions. These deci-
sions are made in the context of limited resources
and uncertainty about outcomes of actions. The
question of how to sequence domain and con-
trol actions without consuming too many resources
in the process is the meta-level control problem
for a resource-bounded rational agent. Our ap-
proach is to design and build a meta-level con-
trol agent architecture with bounded computational
overhead. It supports decisions on when to ac-
cept, delay or reject a new task, how much ef-
fort to put into scheduling when reasoning about
a new task and whether to reschedule when ac-
tual execution performance deviates from expected
performance. We show that efficient meta-level
control leads to significant improvement in perfor-
mance and provide empirical results based on hand-
generated heuristics and reinforcement learning to
support our claim.

1 Introduction
Agents in complex environments must reason about their lo-
cal problem solving actions, interact with other agents, plan
a course of action and carry it out. All these have to be done
in real time in the face of limited resources and uncertainty
about action outcomes. Furthermore, new tasks can be gener-
ated by the environment at any time, which in turn may neces-
sitate rescheduling or replanning. This requires an agent’s de-
liberation to be interleaved with execution. The planning and
scheduling of tasks are non-trivial activities, requiring either
exponential work, or in practice, a sophisticated scheme that
controls the complexity. In this paper, we describe a meta-
level control architecture which provides effective allocation
of computation resulting in improved performance of individ-
ual agents in a cooperative multi-agent system.

We classify agent actions into three categories - domain,
control, and meta-level control actions. Domain actions are
executable primitive actions that achieve the various high-
level tasks. Control actions are scheduling actions that choose
the high level tasks, set constraints on how to achieve them

and sequence the detailed domain level actions that achieve
the selected tasks. Other potential control actions are coor-
dination actions that facilitate cooperation with other agents
in order to achieve the high-level tasks; organizational adap-
tation and communication activities that generally occur in
multi-agent systems. For the purposes of this paper we re-
strict control actions to just scheduling actions within a single
agent.

Meta-level control actions optimize the agent’s perfor-
mance by choosing and sequencing control actions. The
meta-level control problem is a sequential decision making
process because it involves sequences of control decisions
whose consequences emerge over time periods of variable
and uncertain duration. The meta-level control decision strat-
egy should thus take into account both the expected short-
term and long-term consequences of its decisions.

Agents perform control actions to improve their perfor-
mance. Many efficient architectures and algorithms that sup-
port these actions have been developed and studied [Boutlier,
1999; Musliner, 1996; Raja et al., 2000; Kuwabara, 1996;
Zilberstein and Mouaddib, 1999]. Agents receive sensations
from the environment and respond by performing actions
that affect the environment using their effectors. The agent
chooses its domain level actions and this might involve con-
trol actions such as invoking the scheduling module. Classic
agent architectures either overlook the cost of control actions
or they assume a fixed and negligible cost and do not explic-
itly reason about the time and other resources consumed by
control actions, which may in fact degrade an agent’s perfor-
mance. An agent is not performing rationally if it fails to
account for the overhead of computing a solution. This leads
to actions that are without operational significance [Simon,
1976].

Consider an administrative agent capable of performing
multiple tasks such as answering the telephone, paying bills
and looking for information on laptops with the best value.
It usually takes the agent a significant amount of time to find
the laptop which best fits the user’s preferences. Suppose the
agent does not perform any meta-level reasoning about the
importance or urgency of the tasks. It will then spend the
same amount of time deciding whether to pick up a ringing
phone as it does on deciding which laptop manufacturer sites
to visit. If the agent is equipped with meta-level reasoning
capabilities, it will recognize the need to make quicker deci-

sions about the phone call than about the laptops since there is
a tight constraint on the ringing phone, namely that the caller
could hang up. Meta-level control will also allow the agent
to dynamically change its decisions based on its current state.
For instance, if the agent’s deadline for determining the lap-
top information is imminent, the agent could decide not to
answer any phone calls until the search is completed and the
suggestion is made to the user. The agent is thus able to make
better decisions about answering calls as well as completing
its other tasks by dynamically adjusting its decision based on
its current state and the tasks at hand.

Our agent architecture will support this dynamic adjust-
ment process by introducing resource-bounded meta-level
reasoning in agent control. Meta-level control actions allo-
cate appropriate amount of processor and other resources to
control actions at appropriate times. To do this optimally, an
agent would have to know the effect of all combinations of
actions ahead of time, which is intractable for any reasonably
sized problem. The question of how to approximate this ideal
of sequencing domain and control actions without consuming
too many resources in the process, is the meta-level control
problem for a resource bounded rational agent.

Our solution to this problem shows that a judicious choice
of high-level features can be used by simple meta-level con-
trol rules to get significant increase in performance. The high-
level state features provide qualitative characterizations of the
system state. We also show that there is significant advantage
to having a predictive model of task arrivals while making
control decisions. To our knowledge this is the first demon-
stration of the effectiveness of meta-level control in complex
agent architecture.

We construct a series of increasingly sophisticated ap-
proaches, all based on the abstract features used to represent
system state, to handle the meta-level control problem. They
differ by the amount of knowledge, including learned knowl-
edge they use. In the most simple case, the heuristic policy
is a set of hand-generated rules that are mostly environment
independent. Next, we explore a set of more sophisticated set
of hand generated rules that use knowledge about task charac-
teristics including arrival times and deadlines. Finally, we de-
scribe a how these abstract state features are used to represent
the state of a MDP-based meta-level controller which uses
reinforcement learning (RL). The abstract features bound the
otherwise exponential state space of the MDP for this com-
plex problem.

We compare the heuristic approaches to two baseline
strategies: random and deterministic and show that the
heuristic strategies perform significantly better than the base-
line approaches in Section 5. The heuristic strategies provide
a better baseline to evaluate the learning strategy for meta-
level control because they are more indicative of the positive
effects of meta-level control.

The paper is structured as follows: we enumerate the as-
sumptions made in our approach in Section 2 and describe the
agent architecture in which meta-level control will operate in
Section 3. In Section 4, we present and evaluate a case-base
of hand-generated heuristics for the different meta-level con-
trol decisions. Experimental results illustrating the strength
of meta-level control in agent reasoning and the effectiveness

of the heuristics are provided are given in Section 5. In Sec-
tion 7, we describe the conclusions and the future directions
of this work.

2 Assumptions
The following assumptions are made in this work: Each agent
� has a finite set of tasks �� which are generated by the en-
vironment and arrive in a finite interval of time. The overall
goal of an agent is to maximize the utility generated over this
finite time horizon. Each agent has a model of all the high-
level tasks it is capable of performing. The agent is not ex-
plicitly aware of the arrival model of tasks but can potentially
learn information that either implicitly or explicitly models
the environment.

Each task �� arriving at an agent has an arrival time ���
and a deadline ��� associated with it. An agent may concur-
rently pursue multiple high-level tasks and the agent derives
utility by completing a task successfully within its deadline.
It is not necessary for all high-level tasks to be completed in
order for an agent to derive utility from its actions. A task
�� can be achieved by one of various alternative ways(plans)
��
� � ��

���� ��
������� �

� . A plan ��
� is a sequence of exe-

cutable primitive actions ��
� � �	��	�� ���	�� and has a

utility distribution
���
� and duration distribution ����

�

associated with it. The tasks do not accrue utility uniformly
over their execution duration, instead they gain utility only
when execution of the entire plan completes within the task
deadline.

The agent’s control decisions involve choosing which of
these high-level tasks to pursue and how to go about achiev-
ing them. There can be local dependencies within the prim-
itive actions belonging to a task. These dependencies can be
hard or soft precedence relationships. Scheduling actions do
not have to be done immediately after there are requests for
them and in some cases may not be done at all. There are
alternative ways of completing scheduling activities which
trade off the likelihood of these activities resulting in opti-
mal decisions versus the amount of resources used. System
execution is single threaded allowing for one primitive action
at the most to be in execution at any time.

3 Agent Architecture
In this section, we describe an open agent architecture which
provides efficient meta-level control for bounded rational
agents. Figure 1 describes the control flow in this architec-
ture.

Environment: The environment consists of a task gener-
ator which generates tasks for individual agents based on an
arrival model.

Meta-Level Control Layer (MLC): The MLC is invoked
when certain exogenous or internal events occur. The con-
troller computes the corresponding system state and deter-
mines the best action prescribed by the policy for that partic-
ular task environment. The policy is a simple hand-generated
heuristic policy in the case of the naive heuristic strategy
(NHS) and a more complex heuristic policy based on task
arrival information in the case of the sophisticated heuristic
strategy (SHS).

E
N

R
O
N
M

V

E
N
T

I

Simple
Scheduler

Complex
Scheduler

 Layer

Execution &
Monitoring
Subsystem

Meta-Level Control

new task(s)

action

output

input

Control Layer

Figure 1: Control-flow in a bounded rational agent

This architecture accounts for computational and execution
cost at all three levels of the decision hierarchy: domain, con-
trol and meta-level control activities. The cost of domain ac-
tivities is modeled directly in the task structures which de-
scribe the tasks. They are reasoned about by control activities
like scheduling. Performance profiles of the various control
activities are used to compute their costs and are reasoned
about by the meta-level controller. Meta-level control activ-
ities in this architecture are modeled as activities with small
yet non-negligible costs which are incurred by the compu-
tation of state features which facilitate the decision-making
process. These costs are accounted for by the agent, when-
ever events trigger meta-level activity. The state features and
their functionality are described in greater detail in the next
section.

The following are three events that are handled by the MLC
and the corresponding set of possible action choices. Arrival
of a new task: When a new task arrives at the agent, the
meta-level control component has to decide whether to reason
about it later; drop the task completely; or to do scheduling-
related reasoning about an incoming task at arrival time and
if so, what type of scheduling - complex or simple. The deci-
sion tree describing the various action choices named A1-A9
is shown in Figure 2. Each of the meta-level decisions has
an associated decision tree. Scheduling actions have costs
with respect to scheduling time and decommit costs of pre-
viously established commitments if the previous schedule is
significantly revised or completely dropped. These costs are
diminished or avoided completely if scheduling a new task is
postponed to a later convenient time or completely avoided
if the task is dropped. The meta-level controller can decide
that it does not have enough information to make a good de-
cision and will consequently choose to spend more time in
collecting features which will help with the decision making
process. The meta-level controller can hence choose to spend
more resources to make a better informed decision.

Invocation of the detailed scheduler: The parameters to the

New task

arrives

Use complex scheduler

Get more

Drop current schedule and

features

on all tasks including
partially executed tasks

Legend

state

 transition function

Use simple scheduler

Drop task

on new task

Drop task

[A2]

[A1]

[A3]

[A4]

[A5]

[A6]
[A7]

[A8]

[A9]

 executable action

 external action

on new task

Add new task to agenda

Add task

to agenda

Use complex

scheduler on task

Use complex scheduler

 complex schedule new task

Figure 2: Decision tree when a new task arrives

scheduler are scheduling effort, time to schedule for and slack
amount. They are determined based on the current state of the
system including characteristics of the existing schedule and
the set of new tasks that are being scheduled. The scheduling
effort parameter determines the amount of computational ef-
fort that should be invested by the scheduler. The parameter
can be set to either HIGH, where a high number of alterna-
tive schedules are produced and examined or LOW, where
pruning occurs at a very early stage and hence few alterna-
tive schedules are compared, reducing the computational ef-
fort while compromising the accuracy of the schedule. The
time to schedule for parameter determines the earliest start-
ing time for the schedule to begin execution. This parameter
is offset by the sum of the time needed to complete any prim-
itive executions whose execution has been interrupted by the
meta-level control action and the time spent on scheduling the
new task(s). The slack parameter determines the amount of
flexibility available in the schedule so that unexpected events
can be handled by the agent without it detrimentally affect-
ing its expected performance characteristics. The amount of
slack to be inserted depends on two factors, the amount of
uncertainty in the schedule as well the amount of expected
meta-level control activity that will occur during the duration
of the schedule. The scheduler determines the amount of un-
certainty in the schedules it builds and automatically inserts
slack to handle highly uncertain primitive actions. The meta-
level control component uses information about the arrival of
future tasks to suggest slack amounts to the scheduler. This
information is readily available to the sophisticated heuristic
strategy. The naive heuristic approach uses a simple method
of predicting arrival characteristics of future tasks based on
past task arrival characteristics and is described in the next
section.

Domain action completes execution: When a primitive ac-
tion is completed, the MLC checks to see if the real-time per-
formance of the current schedule is as expected. If the actual
performance deviates from expected performance by more
than the available slack time, then a reschedule may be ini-
tiated. A decision to reschedule helps in two ways: it would
preclude the agent from reaching a bad state in which too

many resources are spent on a schedule with bad performance
characteristics; and it would allow for meta-level activities to
be processed without the detrimental effects such processing
would have on domain activities if slack is minimal.

Control Layer: The control layer consists of two sched-
ulers, simple and complex schedulers, which differ in their
performance profiles.

Simple Scheduler: The simple scheduler is invoked by the
MLC and receives the task structure and goal criteria as in-
put. It uses the pre-computed abstract information of the task
to select the appropriate schedule which fits the criteria. This
will support reactive control for highly time constrained situ-
ations. When an agent has to schedule a task but doesn’t have
the resources or time to call the complex domain-level sched-
uler, the generic abstraction information of the task structure
can be used to provide a reasonable but often non-optimal
schedule.

The agent gathers knowledge about all tasks that it is ca-
pable of performing by subjecting each task through an ab-
straction process. Abstraction is an offline process where
potential schedules in the form of linear sequence of primi-
tive actions and their associated performance characteristics
such as expected quality distribution, expected duration dis-
tribution, and expected duration uncertainty for achieving the
high level tasks are discovered for varying objective criteria.
This is achieved by systematically searching over the space
of objective criteria. The abstraction hides the details of these
schedules and provides only the high level information nec-
essary to make meta-level choices.

Complex Scheduler: The domain level scheduler depicted
in the architecture is an extended version of the Design-to-
Criteria (DTC) scheduler[Wagner et al., 1998]. Design-to-
Criteria (DTC) scheduling is the soft real-time process of
finding an execution path through a hierarchical task net-
work such that the resultant schedule meets certain design
criteria, such as real-time deadlines, cost limits, and utility
preferences. Casting the language into an action-selecting-
sequencing problem, the process is to select a subset of prim-
itive actions from a set of candidate actions, and sequence
them, so that the end result is an end-to-end schedule of an
agent’s activities that meets situation specific design criteria.
If the meta-level action is to invoke the complex scheduler,
the scheduler component receives the task structure, objec-
tive criteria and a set of scheduler parameters as input and
outputs the best satisficing schedule as a sequence of primi-
tive actions.

Execution and Monitoring Layer:
The control layer can invoke the execution component ei-

ther to execute a single control action prescribed by the meta-
level controller or a series of domain actions determined by
the control component. The execution results are sent back to
the MLC where they are evaluated and if the execution perfor-
mance deviates from expected performance, then a resched-
ule is initiated.

This architecture and control flow provides the agent the
capability to adapt to changing conditions in an unpredictable
environment. This is explained in greater detail in the next
section, Moreover, the architecture is open in that the modules
belonging to the various layers can be replaced by modules

with better performance characteristics and the advantages of
the architecture will still hold true.

4 Meta-level control
The MLC in making its decisions does not directly use the in-
formation contained in the agent’s current state. This would
include detailed information regarding the tasks that are not
yet scheduled, status of tasks that are partially executed, and
the schedule of primitive actions that are to be executed. In-
stead the MLC uses in it decision making, a set of high-level
qualitative features that are computed from the full state in-
formation and pre-computed information about the behavior
of the tasks that the system can handle. The advantage of this
approach is that it simplifies the decision making process and
provides the possibility for learning these rules (which we are
currently exploring). The following are some of the features
of the high-level state used by the meta-level controller. They
take on qualitative values such as high, medium and low.

F1: Utility goodness of new task describes the utility of
a newly arrived task based on whether the new task is very
valuable, moderately valuable or not valuable in relation to
other tasks being performed by the agent.

F2: Deadline tightness of a new task describes the tight-
ness of the deadline of a new task in relation to expected
deadlines of other tasks. It determines whether the new task’s
deadline is very close, moderately close or far in the future.

F3: Utility goodness of current schedule describes the
utility of the current schedule normalized by the schedule
length and is based on information provided by the scheduler.
This feature determines whether the current schedule is very
valuable, moderately valuable or not valuable with respect to
other tasks and schedules.

F4: Deadline tightness of current schedule describes the
deadline tightness of the current schedule in relation to ex-
pected deadlines of tasks in that environment. It determines
whether the schedule’s deadline is very close, moderately
close or far in the future.

F5: Arrival of a valuable new task describes the proba-
bility of a high utility, tight deadline task arriving in the near
future by using information on the task characteristics like
task type, frequency of arrival and tightness of deadline.

We will now describe some of the low-level parameters that
determine the high-level features of the system state. Sup-
pose an agent A can perform task T which is Obtain Infor-
mation on Laptops. Figure 3 describes how this task is de-
composed into a subtask which is to Access Information Sites
and method Choose Option that compares information gath-
ered from the various sites. Methods are primitive actions
that can be scheduled and executed and are characterized by
their expected utility and duration distributions. For instance,
the utility distribution of method Choose Option described as
��� �� ��� ��, indicates that it achieves a utility value of 30
with probability 0.1 and utility of 45 with probability 0.9.

�� ��M1,M2,M3�, �� ��M1,M3� and � � �
�M2,M3� are three alternate plans to achieve task � . The du-
ration distribution of � � is 	���
� ���

��
� ��
�,
which means that plan � � takes 30 time units ��� of the
time, 22 time units ��� of the time and so on. Also � � has

a utility distribution of 	�� �� ���
� ���

. The utility
distribution (
����) and duration distribution (�����) for
each plan ��

� is given below.

���� � ���� �� �	� �� �
� �� �� �
�

���� � �
� �	 �	� �� �
� ���

���� � ���� �� �� ���

���� � �
�� �� ��� �
 �� �	�

���� � �
�� 	 ��� ���

���� � ��
� ��
	� �� �
� �
�

We now use an example to show how these low-level system
parameters can be used to determine the high-level features
of the system state. Suppose T arrives at time 45 and has a
deadline of 66.

Definition 1: The earliest start time ���� for a task �� is
the arrival time ��� of the task delayed by the sum of 	�

,
the time required for completing the execution of the action
	� which is interrupted by a meta-level control event and � �,
the time required for scheduling the new task. ��� � � ����
	�

� ��. Suppose in this example there is no other task in
execution when T arrives at time 45 and the average time for
scheduling task T is 4 units. So, ���
 � �� � � � ��

Definition 2: The maximum available duration �� � for a
task �� is the difference between the deadline of the task and
its earliest start time. ��� � ��� ����� So, ��
 � ��

enablesSites
Information

Access

Q 10% 30 90% 45

D 80% 6 20% 8

min

Find Information
on Laptops

Q 60% 8 40% 10

D 80% 8 20% 6

sum

Dell Site
M1

Choose Option
M3

Gateway Site
M2

Q 90% 12 10% 10

D 80% 8 20% 10

Figure 3: Task T

Definition 3: Given a task �� and its maximum available
duration ���, the probability that a plan ��

� meets its dead-
line ������ is the sum of the probabilities of all values in the
duration distribution of plan ��

� that are less than the task’s
maximum available duration. For the above constraint where
the maximum available duration for task � is 17,

������ �

��

���

�� � ����� � ��� ��� � ����
� � � ��� � 	���

����� � �
�� ����� � �

� � �
�� � �

����� � �
�
 � �

	 � �
�
 � �
�

Definition 4: The expected duration ����� of a plan ��
� ,

is the expected duration of all values in the duration distri-
bution of plan ��

� that are less than the maximum available
duration for the task.

����
� �

��

���
�� � ��

������
� ����� � ��� ��� � ����

� � � ��� � 	���

���� � �
�

���� �
�
�� � �� � ��� � �
�

�
	
� ��
��

���� �
��
� � �� �
	� � �� � �
� � �
�

�
�
� ��

Definition 5: The expected utility �
��� of a plan ��
� ,

is the product of the probability that the alternative meets its
deadline and the expected utility of all values in the utility
distribution of alternative ��

� .

����� �

��

���

������ � �� � �� � ����� � ��� ��� � ����
� �

When the maximum available duration for task � is 17,

���� � �
�

���� � �
	 � ��
� � �� � �
 � ��� � ��
�
�

���� � �
� � ��

 � 	 � �
� � ��� � 	
	

Definition 6: Given the maximum available duration for a
task, the preferred alternative ���� for a task �� is the alter-
native whose expected utility to expected duration ratio is the
highest. ���� is the alternative that has the potential obtain
the maximum utility in minimum duration within the given

deadline. ���� � ��
� � �������

��
��
�

�
��
�

Plan ��’s expected utility to expected duration ratio is
0, plan ��’s expected utility to expected duration ratio is
������
����	

� ����� and plan ��’s expected utility to expected
duration ratio is
�

��
� ���
�. So the alternative with the

maximum expected utility to expected duration ratio is � �

and ���
 � ��

Definition 7: The utility goodness
��(feature F1) of a
task �� is the measure that determines how good the expected
utility to expected duration of the task’s preferred alternative
is in relation to the expected utility to expected duration ratio
of the preferred alternatives of all the other tasks that arrive
at the system. The tasks with high utility are those whose
expected utility to expected duration ratio are in the 66th per-
centile(top 1/3rd). Tasks whose ratios are in the middle third
are tasks with medium utility and tasks whose ratios are in
the bottom third are of low utility.

Definition 8: The utility goodness of the current schedule
(feature F3) changes as execution of the schedule proceeds.
The utility goodness increases as more effort is put into exe-
cuting the actions the agent’s schedule.

Definition 9: The deadline tightness(feature F2) �� � of
a task �� measures the flexibility of the maximum available
duration. It determines the amount by which the maximum
available duration of the task can be reduced by unexpected
meta-level actions and similar delays and the system without
having a detrimental effect on the performance characteristics

of the preferred alternative for the task. The detailed compu-
tation underlying the determination of the tightness of dead-
line feature of the task is omitted in the interests of space, but
it is similar to the determination of utility goodness.

Definition 10: The deadline tightness of the current sched-
ule(feature F4) measures the flexibility in the execution dura-
tion of a schedule. The lower the flexibility, the tighter the
deadline. Suppose a meta-level action on average has an ex-
pected duration of ���.

Definition 11: The expected amount of time required for
handling unexpected meta-level actions ��� �, during the
execution of task ��, is computed as follows: ���� �
��� � ���

�

���� where ��
 is the total number of tasks

that have arrived at the system from the start to current time
�� . This parameter is computed only by the meta-level con-
troller using the naive heuristic strategy and is used to deter-
mine the amount of slack to insert into the schedule.

Definition 12: The high priority task set for an agent
� ����� is the set of tasks whose utility goodness is
HIGH and deadline tightness is TIGHT. ����� � ���� �
	
�� � ���� � 	��� � �����

Definition 13: The arrival rate of high priority tasks (fea-
ture F5) for an agent �, ���, is the ratio of the number of
high priority tasks that arrive at the system to the total number
of tasks � that have arrived at the system.

We now describe the heuristic strategies which use hand-
generated rules for meta-level control based on the above
mentioned high-level features. The heuristic strategies are
meant to provide a sanity check on the usefulness of these
features.

4.1 Heuristic Strategies
The heuristic strategies are discussed in the context of the de-
cision making process when a new task arrives at the agent.
The agent has similar heuristic rules for the other two events:
invocation of the domain scheduler and domain action com-
pletion.

The Naive Heuristic Strategy (NHS) uses state-
dependent hand-generated heuristics based on high-level fea-
tures to decide what control decision to make. These heuris-
tics are myopic and do not reason explicitly about the arrival
of tasks in the near future. The following are some of the
heuristics used to make a decision when a new task arrives.

� If new task has low utility goodness, tight deadline; cur-
rent schedule is of high priority (high utility, tight dead-
line), then best action is drop new task.

� If new task has high priority; current schedule has low
utility goodness, then best action is drop its current
schedule and schedule the new task immediately inde-
pendent of the schedule’s deadline.

The Sophisticated Heuristic Strategy(SHS) is a set of
hand-generated rules that use knowledge about environment
characteristics to make non-myopic decisions. An environ-
ment is typically characterized by qualitative information on
the quality the tasks that will arrive during the episode , their
deadline tightness and frequency of arrival.

The knowledge of the task arrival model enables the SHS to
make decisions that in the long term minimize the resources

spent on redundant control actions. For instance, in the first
example heuristic rule described below, if the meta-level con-
troller is aware that tasks with high expected utilities and tight
deadlines will arrive frequently, it will decide to drop a new
task with low utility and tight deadline because there is a high
probability that the decision to schedule it would be reversed
when a high priority new task arrives in the near-future. Sim-
ilarly if the meta-level controller is aware that task arrival is
infrequent, it would make a decision to schedule the low pri-
ority task because there is a high probability that the decision
will not be reversed and the agent will gain some utility in-
stead of just waiting for the infrequent high priority task.

We provide the environment characteristics directly to the
SHS. However, this information can be learned. The follow-
ing are some sample heuristics that show that the SHS can
be more discriminatory about its decisions than NHS since it
reasons about tasks that could arrive in the future.

� If new task has low utility goodness, tight deadline; high
probability of high priority tasks arriving in the near fu-
ture, then best action is drop new task.

� If new task has very low utility goodness, loose deadline;
low probability of a high priority tasks arriving in the
near future, then best action is schedule new task using
simple scheduling.

4.2 Reinforcement Learning

In the Reinforcement Learning (RL) framework, the learn-
ing agent interacts with an environment over a series of time
steps t=0,1,2,3... At each time t, the agent observes the en-
vironment states, ��, and chooses an action, ��, which causes
the environment to transition to state ���� and to emit a re-
ward, ����. In a Markovian system, the next state and re-
ward depend only on the preceding state and action, but they
may depend on these in a stochastic manner. The objective
of the agent is to learn to maximize the expected value of
reward received over time. It does this by learning a (possi-
bly stochastic) mapping from states to actions called a policy.
More precisely, the objective is to choose each action � � so as
to maximize the expected return, �	

�
�

��� �
�������, where

� � ��� � is a discount parameter. A common solution strat-
egy is to approximate the optimal action-value function, or
Q-function, which maps each state and action to the maxi-
mum expected return starting from the given state and action
and thereafter always taking the best actions.

We adopt the learning approach developed in [Singh et al.,
2000] for using RL in the design of a spoken dialogue system.
Their problem is similar to ours in that it is also a sequential
decision making problem and there is a bottle neck associated
with collecting training data. Each of our simulation runs
takes approximately four minutes since we are accounting for
real-time control costs.

As described earlier, the MLC in making its decisions does
not directly use the information contained in the agent’s cur-
rent state. The state of the markov-decision process is an ab-
straction of the actual state of the systems and uses the fea-
tures described previously. We then specified the appropriate
actions to take in each state. The actions are a list of control
actions. Action nodes A1-A9 Figure 2 describe some of the

action choices. The reward function is the sum of the utili-
ties accrued by each completed task. The meta-level control
policy is a mapping from each state to an action.

We then implemented an initial meta-level control policy
which randomly chooses an action at each state and collects
a set of episodes from a sample of the environment. Each
episode is a sequence of alternating states, actions and re-
wards. As described in [Singh et al., 2000], we estimated
transition probabilities of the form � 	� ���� �, which denotes
the probability of a transition to state � �, given that the system
was in state � and took action � from many such sequences.
The transition probability estimate is the ratio of the number
of times in all the episodes, that the system was in � and took
� and arrived at �� to the number of times in all the episodes,
that the system was in � and took � irrespective of the next
state. The Markov decision process (MDP) model represent-
ing system behavior for a particular environment is obtained
from state set, action set, transition probabilities and reward
function. The efficiency of the model depends on the extent
of exploration performed in the training data with respect to
the chosen states and actions. In the final step we determine
the optimal policy in the estimated MDP using the Q-value
version of the standard value iteration algorithm [Sutton and
Barto, 1998]. The expected cumulative reward (or Q-value)
Q(s,a) of taking action � from state � is calculated in terms of
the Q-values of successor states via the following recursive
equation [Sutton and Barto, 1998]:

�	�� � � 	�� � � �
�

��

� 	����� ����
��

�	��� ��

The algorithm iteratively updates the estimate of �	�� �
based on the current Q-values of neighboring states and stops
when the update yields a difference that is below a thresh-
old. Once value iteration is completed, the optimal meta-level
control policy (according to the estimated model) is obtained
by selecting the action with the maximum Q-value at each
state. To the extent that the estimated MDP is an accurate
model of the particular environment, this optimized policy
should maximize the reward obtained in future episodes. The
summary of the proposed methodology is as follows

1. Choose an appropriate reward measure for episodes and
an appropriate representation for episode states.

2. Build an initial state-based training system that creates
an exploratory data set. Despite being exploratory, this
system should provide the desired basic functionality.

3. Use these training episodes to build an empirical MDP
model on the state space.

4. Compute the optimal meta-level control policy accord-
ing to this MDP.

5. Reimplement the system using the learned meta-level
control policy

5 Experimental Results
The meta-level controller, the various schedulers with differ-
ent performance profiles, and the execution and monitoring
component described in Section 3 have been implemented.
In this section, we compare the performance of four differ-
ent strategies to meta-level control: Naive Heuristic Strategy

Row# SHS NHS Deter. Rand.
1 AUG 205.49 192.10 121.90 89.97
2 � 57.0 62.5 62.55 59.114
3 CT 20.37% 23.92% 39.27% 11.77%
4 RES 0% 14.53% 0% 50.56%

Table 1: Performance evaluation of four algorithms over a
single environment with a combination of tasks, medium fre-
quency of arrival and medium deadline tightness; Column 1
is row number; Column 2 describes the various comparison
criteria; Columns 3-6 represent each of the four algorithms;
Rows 1 and 2 show the average utility gain (AUG) and respec-
tive standard deviations (�) per run; row 3 shows the percent-
age of the total 500 units spent on control actions(CT); row 4
is percent of tasks rescheduled (RES)

(NHS); Sophisticated Heuristic Strategy (SHS); Determinis-
tic Strategy; and Random Strategy. The deterministic strat-
egy uses a fixed choice of meta-level action. When a new
task arrives, this strategy always chooses to perform complex
scheduling on the new task along with the tasks in the current
schedule and tasks in the agenda. The scheduler is invoked
with a fixed effort level of high and fixed slack amount of
10% of the total schedule duration. This strategy also does
not reschedule when a primitive action completes execution.
The random strategy randomly chooses its actions for each of
the three meta-level control decisions.

The task environment generator randomly cre-
ates task structures while varying three criti-
cal factors, namely, the complexity of tasks
� � ���	���	�� � 	���!	�� � 	"�#�$� #	��, frequency
of arrival % � �&�'&	��	�(�)		�� � *	�� and tight-
ness of deadline (� � �$�'&$	� �	�(�)		�� � ��	��.
Complexity of tasks refers to the expected utilities of tasks
and the number of alternative plans available to complete
the task. Typically, complex tasks have higher expected
utility, higher expected durations and a greater number of
alternatives than simple tasks. The frequency of arrival of
tasks refers to the number of tasks which arrive within a
finite time horizon. The contention for resources among the
tasks increases as the task frequency increases. The tightness
of deadline refers to the parameter defined in the previous
section and it is task specific. The resource contention is also
proportional to the deadline tightness.

The experimental results described in Table 1 show the per-
formance of the various strategies in an environment which
contains a combination of simple and complex tasks. The fre-
quency of task arrival is medium and ranges between 9 and
13 tasks in the 500 time unit interval. The deadline tightness
is also medium. Simple tasks have an average duration of 22
time units and complex tasks have an average duration of 32
time units. Each strategy was evaluated over 100 runs and
each run has an associated task arrival model, lasts 500 time
units and has an average of 15 meta-level control decision
points per run.

Rows 1 and 2 of the table describe the average utility
gained (AUG) by each of the strategies and the correspond-
ing standard deviations. The heuristic strategies (SHS and

Environment# SHS NHS Deter. Rand.
AMT 117.34 117.25 82.17 67.33
AHT 123.35 122.29 60.27 76.72
ALM 135.05 124.74 115.93 48.21
CMM 163.77 157.27 103.33 50.86

Table 2: Utility Comparisons over a number of environments;
Column 1 is the environment type; Columns 2-5 represents
the average utility gained by each of the four algorithms for
that environment;

NHS) significantly (p + 0.05) outperform the deterministic
and random strategies with respect to utility gain. The ac-
cepted hypothesis is that SHS and NHS on average achieved
at least 68.5% and 57.58% higher utility than the determinis-
tic strategy respectively.

SHS has about a 10% improvement in utility gain than
NHS. Upon detailed analysis of the data, we find that NHS
assigns incorrect amounts of slack in the schedule which is re-
quired to handle unexpected meta-level activities. This leads
to frequent reschedule calls and an increase in time spent on
control actions. The SHS is able to allocate accurate amounts
of slack because it has access to the task arrival model in-
formation and is able to avoid unnecessary control actions
(particularly reschedules).

Row 3 shows the percent of the 500 time units for each
run that was spent on control actions (CT) and row 4 shows
the percent of tasks that were rescheduled (RES) per run in
the midst of their execution. For the above mentioned rea-
son, NHS has a significant number of reschedules resulting
in time being spent on control actions instead of being spent
the utility deriving domain actions. Row 3 shows that the
duration spent on control actions by NHS is significantly (p
+ 0.05) higher than that of SHS. The deterministic strategy
does not ever reschedule but invests a lot of time on control
actions since the fixed strategy is time-intensive. The random
strategy spends the least amount of time on control (11.77%)
because it attempts relatively few tasks (there is a high prob-
ability of a task being dropped randomly upon arrival).

Tables 2 and 3 show the utility and control comparisons
over a number of environments. Environment AMT means
the complexity of tasks are combination (A), the arrival fre-
quency is Medium (M); and the deadline tightness is Tight
(T). The experiments in this section show that heuristic strate-
gies provide a better baseline to evaluate other strategies for
meta-level control, including learning strategies, as they are
more indicative of the positive effects of meta-level control.

Our initial results described in Figure 4 shows the utility
accrued and control time used by the reinforcement learn-
ing, SHS and NHS strategies for 2 environments AMM and
AMT. The training data for the RL strategy consisted of 2000
episodes. The results are averaged over 300 simulation test
episodes. The RL strategy with 100 training episodes was
significantly better(p + 0.05) than SHS with respect to utility
and had significantly lower control duration. For the two en-
vironments studied, we see that performance improvement is
not proportional to number of training episodes. The learning
curve saturation properties are currently being studied.

Environment# SHS NHS Deter. Rand.
AMT 24.95% 20.32% 36.59% 8.07%
AHT 35.26% 28.98% 55.04% 16.63%
ALM 10.11% 10.32% 14.42% 4.61%
CMM 11.08% 10.99% 12.39% 4.29%

Table 3: Control Time Comparisons over a number of en-
vironments; Column 1 is the environment type; Columns 2-5
represents the % of total time spent on control actions by each
of the four algorithms for that environment;

RL-2000 RL-1000 SHS NHS
AMM-UTIL 211.85 211.56 205.49 192.10
AMM-CT 18.14% 18.16% 20.37% 23.92%

AMT-UTIL 145.11 140.57 117.34 117.25
AMT-CT 17.31% 17.58% 24.95% 20.32%

Table 4: Utility and Control Time Comparisons over 2 envi-
ronments; Column 1 is the environment type; Column 2 rep-
resents the performance characteristics of the RL policy after
2000 training episodes; Column 3 represents the performance
characteristics of the RL policy after 1000 training episodes;
Column 4 and 5 represent the performance characteristics of
SHS and NHS respectively;

6 Related Work
There has been enormous amount of work on intelligent agent
control [Musliner et al., 1995; Garvey and Lesser, 1996;
Wagner et al., 1998; Boddy and Dean, 1994; Zilberstein and
Russell, 1996]. These systems describe systems describe
flexible and goal-directed mechanisms capable of recogniz-
ing and adapting to environmental and dynamics and resource
bounds. The emphasis in these works is to build an adaptive
control layer which reasons about domain-level costs. They,
however, do not explicitly reason about the control costs. Our
work reasons about control costs as first class objects and in-
cludes reasoning about costs at all levels of computation.

There has also been a lot of work on layered architectures.
In the mid-1980’s, the subsumption architecture [Brooks,
1986] was introduced. The Beliefs-Desires-Intentions (BDI)
model [Bratman, 1987] is probably the most popular ap-
proach towards the design of intelligent agents, mainly due
to trigger behaviors driven by conceptually modeled interac-
tions and goals rather than procedural information. In addi-
tion, it seems to be a functional abstraction for the higher-
level reasoning processes such as action selection. [Bratman
et al., 1991] describes Intelligent Resource-bounded Machine
Architecture (IRMA), an architecture for resource-bounded
(mainly in terms of computational power) deliberative agents,
based on the BDI model. IRMA agents consist of four main
modules: a means-end planner, an opportunity analyzer, a
filtering process and a deliberation procedure. In addition,
they contain a plan library and data structures to store be-
liefs, desires and intentions. The Procedural Reasoning Sys-
tem [Georgeff and Lansky, 1987] is a hybrid system, where
beliefs are expressed in first-order logic and desires represent
system behaviors instead of fixed goals. PRS agents are capa-

ble of deliberative and reactive control. They however do not
have an explicit meta-level control component as described in
our architecture. They focus on choosing deliberative or reac-
tive control rather than balancing control and domain actions.

There has been previous work on meta-level control [Si-
mon, 1976; Russell et al., 1993; Stefik, 1981; Durfee and
Lesser, 1988] but in reviewing the literature there is little that
is directly related the meta-level control problem discussed
in this paper. The difficult characteristics of the our problem
are the complexity of the information that characterize system
state; the variety of responses with differing costs and param-
eters available to the situation; the high degree of uncertainty
caused by the non-deterministic arrival of tasks and outcomes
of primitive domain actions; and finally the fact that the con-
sequence of decisions are often not observable immediately
and may have significant down-stream effects.

[Harada and Russell, 1999] describes initial work where
the computational process is explicitly modeled. The paper
describes initial ideas for using search as the model of com-
putation in the Tetris domain. They propose the use of MDP’s
and reinforcement learning as their solution approach. This
work was not pursued further(personal communication with
second author). Our methodology was developed indepen-
dently of their effort and was built for a more complex se-
quential decision making process involving a number of de-
cisions.

The problem worked on that is closest to the complex-
ity of our meta-level control decisions is the Guardian
system[Hayes-Roth et al., 1994]. However their sys-
tem is knowledge intensive and the heuristic rules seem
very domain-dependent in comparison to the domain-
independence of our approach. The other work that seems
directly applicable is [Russell and Wefald, 1992] and [Hansen
and Zilberstein, 1996]. However the techniques used by both
are limited to specific problem solving situations that were
much more structured than those encountered in our domain.

[Lagoudakis and Littman, 2000] describes a reinforce-
ment learning based algorithm for dynamically selecting the
right algorithm for a given instance based on instance features
while minimizing overall execution time. This problem has
several interesting overlaps with our work although they only
deal with a single problem instance at any point in time and
do not deal with a sequential decision process which compli-
cates the reasoning process.

7 Current and Future Work

In this paper we present a novel meta-level control agent ar-
chitecture for bounded-rational agents. The meta-level con-
trol has limited and bounded computational overhead and
will support reasoning about planning and scheduling costs
as first-class objects. We have shown experimentally that
meta-level control is beneficial. The heuristics described in
this paper enable the meta-level controller to make satisfic-
ing decisions which adapt to different environments. The
significance of the solution approach described in this pa-
per comes from the following observation: A few high-level
features which accurately capture the state information and
task arrival model enable the meta-level control component

to make useful decisions which significantly improve agent
performance. We have also shown that Reinforcement learn-
ing is potentially a viable approach for studying real-work,
complex sequential decision making problems.

We plan to extend this work by introducing more com-
plex features which will make the reasoning process more
robust. The agent will be augmented with the capability to
learn the task arrival model knowledge used by SHS. We
are currently using insight gathered from the heuristic ap-
proaches and reinforcement learning approaches to study pa-
rameters which will allow for policy generalization over sim-
ilar environments. We are are also experimentally studying
the parameters for learning curve saturation for each envi-
ronment. We expect this analysis to provide valuable expe-
rience about applying Reinforcement Learning techniques to
complex real-world problems. And finally, we plan to reason
about coordination, organizational adaptation and communi-
cation as control actions to achieve our overall goal of intro-
ducing efficient meta-level control in cooperative multi-agent
systems.

References
[Boddy and Dean, 1994] M. Boddy and T. Dean. Decision-

theoretic deliberation scheduling for problem solving in
time-constrained environments, 1994.

[Boutlier, 1999] Craig Boutlier. Sequential Optimality and
Coordination in Multiagent Systems. In Proceedings of
the Sixteenth International Joint Conference on Artificial
Intelligence, 1999.

[Bratman et al., 1991] Michael E. Bratman, David Israel,
and Martha Pollack. Plans and resource-bounded practi-
cal reasoning. In Robert Cummins and John L. Pollock,
editors, Philosophy and AI: Essays at the Interface, pages
1–22. The MIT Press, Cambridge, Massachusetts, 1991.

[Bratman, 1987] M.E. Bratman. Intention, Plans, and Prac-
tical Reason. Harvard University Press, 1987.

[Brooks, 1986] Rodney A. Brooks. A robust layered control
system for a mobile robot. IEEE Journal of Robotics and
Automation, RA-2:14–23, 1986.

[Durfee and Lesser, 1988] E. Durfee and V. Lesser. Pre-
dictability vs. responsiveness: Coordinating problem
solvers in dynamic domains. In Proceedings of the Fifth
National Conference on Artificial Intelligence, pages 66–
71, 1988.

[Garvey and Lesser, 1996] Alan Garvey and Victor Lesser.
Issues in design-to-time real-time scheduling. In AAAI
Fall 1996 Symposium on Flexible Computation, Novem-
ber 1996.

[Georgeff and Lansky, 1987] M. P. Georgeff and A. L. Lan-
sky. Reactive reasoning and planning. In In Proceedings
of the Sixth National Conference on Artificial Intelligence,
Seattle, WA, pages (2) 677–682, 1987.

[Hansen and Zilberstein, 1996] Eric Hansen and Shlomo
Zilberstein. Monitoring the Progress of Anytime Problem-
Solving. In Proceedings of the 13th National Conference

on Artificial Intelligence, pages 1229–1234, Portland, Ore-
gon, 1996.

[Harada and Russell, 1999] Daishi Harada and Stuart Rus-
sell. Extended abstract: Learning search strategies. In
Proc. AAAI Spring Symposium on Search Techniques for
Problem Solving under Uncertainty and Incomplete Infor-
mation, Stanford, CA, 1999., 1999.

[Hayes-Roth et al., 1994] B. Hayes-Roth, S. Uckun, J.E.
Larsson, D. Gaba, J. Barr, and J. Chien. Guardian: A pro-
totype intelligent agent for intensive-care monitoring. In
Proceedings of the National Conference on Artificial In-
telligence, pages 1503–1511, 1994.

[Kuwabara, 1996] Kazuhiro Kuwabara. Meta-level Con-
trol of Coordination Protocols. In Proceedings of the
Third International Conference on Multi-Agent Systems
(ICMAS96), pages 104–111, 1996.

[Lagoudakis and Littman, 2000] Michail G. Lagoudakis and
Michael L. Littman. Reinforcement learning for algorithm
selection. In AAAI/IAAI, page 1081, 2000.

[Musliner et al., 1995] D. J. Musliner, J. A. Hendler,
A. K. Agrawala abd E. H. Durfee, J. K. Strosnider, and
C. J. Paul. The challenges of real-time ai. In IEEE Com-
puter, pages 28(1):58–66, 1995.

[Musliner, 1996] David J. Musliner. Plan Execution in
Mission-Critical Domains. In Working Notes of the AAAI
Fall Symposium on Plan Execution - Problems and Issues,
1996.

[Raja et al., 2000] Anita Raja, Victor Lesser, and Thomas
Wagner. Toward Robust Agent Control in Open Environ-
ments. In Proceedings of the Fourth International Con-
ference on Autonomous Agents, pages 84–91, Barcelona,
Catalonia, Spain, July, 2000. ACM Press.

[Russell and Wefald, 1992] S. Russell and E. Wefald. Do the
right thing: studies in limited rationality. MIT press, 1992.

[Russell et al., 1993] S. J. Russell, D. Subramanian, and
R. Parr. Provably bounded optimal agents. In Proceed-
ings of the Thirteenth International Joint Conference on
Artificial Intelligence (IJCAI-93), pages 338–344, 1993.

[Simon, 1976] H. Simon. From substantive to procedural ra-
tionality, 1976.

[Singh et al., 2000] Satinder P. Singh, Michael J. Kearns, Di-
ane J. Litman, and Marilyn A. Walker. Empirical evalua-
tion of a reinforcement learning spoken dialogue system.
In Proceedings of the Seventeenth National Conference on
Artificial Intelligence, pages 645–651, 2000.

[Stefik, 1981] M. Stefik. Planning and meta-planning. Arti-
ficial Intelligence, 16(2):141–170, 1981.

[Sutton and Barto, 1998] R. Sutton and A. Barto. Reinforce-
ment Learning. MIT Press, 1998.

[Wagner et al., 1998] Thomas Wagner, Alan Garvey, and
Victor Lesser. Criteria-Directed Heuristic Task Schedul-
ing. International Journal of Approximate Reasoning, Spe-
cial Issue on Scheduling, 19(1-2):91–118, 1998. A version
also available as UMASS CS TR-97-59.

[Zilberstein and Mouaddib, 1999] Shlomo Zilberstein and
Abdel-Illah Mouaddib. Reactive control of dynamic pro-
gressive processing. In IJCAI, pages 1268–1273, 1999.

[Zilberstein and Russell, 1996] Shlomo Zilberstein and Stu-
art J. Russell. Optimal composition of real-time systems.
Artificial Intelligence, 82(1-2):181–213, 1996.

