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ABSTRACT
The dominant existing routing strategies employed in peer-
to-peer(P2P) based information retrieval(IR) systems are
similarity-based approaches. In these approaches, agents
depend on the content similarity between incoming queries
and their direct neighboring agents to direct the distributed
search sessions. However, such a heuristic is myopic in that
the neighboring agents may not be connected to more rele-
vant agents. In this paper, an online reinforcement-learning
based approach is developed to take advantage of the dy-
namic run-time characteristics of P2P IR systems as repre-
sented by information about past search sessions. Specifi-
cally, agents maintain estimates on the downstream agents’
abilities to provide relevant documents for incoming queries.
These estimates are updated gradually by learning from the
feedback information returned from previous search sessions.
Based on this information, the agents derive corresponding
routing policies. Thereafter, these agents route the queries
based on the learned policies and update the estimates based
on the new routing policies. Experimental results demon-
strate that the learning algorithm improves considerably the
routing performance on two test collection sets that have
been used in a variety of distributed IR studies.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems

General Terms
Algorithms, Performance, Experimentation

Keywords
peer-to-peer information retrieval, multi-agent learning, dis-
tributed search control

1. INTRODUCTION
Over the last few years there have been increasing in-

terests in studying how to control the search processes in
peer-to-peer(P2P) based information retrieval(IR) systems
[6, 13, 14, 15]. In this line of research, one of the core prob-
lems that concerns researchers is to efficiently route user
queries in the network to agents that are in possession of
appropriate documents. In the absence of global informa-
tion, the dominant strategies in addressing this problem are
content-similarity based approaches [6, 13, 14, 15]. While
the content similarity between queries and local nodes ap-
pears to be a creditable indicator for the number of rel-
evant documents residing on each node, these approaches
are limited by a number of factors. First of all, similarity-
based metrics can be myopic since locally relevant nodes
may not be connected to other relevant nodes. Second, the
similarity-based approaches do not take into account the
run-time characteristics of the P2P IR systems, including
environmental parameters, bandwidth usage, and the his-
torical information of the past search sessions, that provide
valuable information for the query routing algorithms.

In this paper, we develop a reinforcement learning based
IR approach for improving the performance of distributed
IR search algorithms. Agents can acquire better search
strategies by collecting and analyzing feedback information
from previous search sessions. Particularly, agents main-
tain estimates, namely expected utility, on the downstream
agents’ capabilities of providing relevant documents for spe-
cific types of incoming queries. These estimates are up-
dated gradually by learning from the feedback information
returned from previous search sessions. Based on the up-
dated expected utility information, the agents derive corre-
sponding routing policies. Thereafter, these agents route
the queries based on the learned policies and update the
estimates on the expected utility based on the new routing
policies. This process is conducted in an iterative manner.
The goal of the learning algorithm, even though it consumes
some network bandwidth, is to shorten the routing time so
that more queries are processed per time unit while at the
same time finding more relevant documents. This contrasts
with the content-similarity based approaches where similar
operations are repeated for every incoming query and the
processing time keeps largely constant over time.

Another way of viewing this paper is that our basic ap-
proach to distributed IR search is to construct a hierarchical
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overlay network(agent organization) based on the content-
similarity measure among agents’ document collections in a
bottom-up fashion. In the past work, we have shown that
this organization improves search performance significantly.
However, this organizational structure does not take into
account the arrival patterns of queries, including their fre-
quency, types, and where they enter the system, nor the
available communication bandwidth of the network and pro-
cessing capabilities of individual agents. The intention of
the reinforcement learning is to adapt the agents’ routing
decisions to the dynamic network situations and learn from
past search sessions. Specifically, the contributions of this
paper include: (1) a reinforcement learning based approach
for agents to acquire satisfactory routing policies based on
estimates of the potential contribution of their neighboring
agents; (2) two strategies to speed up the learning process.
To our best knowledge, this is one of the first reinforcement
learning applications in addressing distributed content shar-
ing problems and it is indicative of some of the issues in
applying reinforcement in a complex application.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews the hierarchical content sharing systems and
the two-phase search algorithm based on such topology. Sec-
tion 3 describes a reinforcement learning based approach to
direct the routing process; Section 4 details the experimental
settings and analyze the results. Section 5 discusses related
studies and Section 6 concludes the paper.

2. SEARCH IN HIERARCHICAL
P2P IR SYSTEMS

This section briefly reviews our basic approaches to hi-
erarchical P2P IR systems. In a hierarchical P2P IR sys-
tem illustrated in Fig.1, agents are connected to each other
through three types of links: upward links, downward links,
and lateral links. In the following sections, we denote the
set of agents that are directly connected to agent Ai as
DirectConn(Ai), which is defined as

DirectConn(Ai) = NEI(Ai) ∪ PAR(Ai) ∪ CHL(Ai)

, where NEI(Ai) is the set of neighboring agents connected
to Ai through lateral links; PAR(Ai) is the set of agents
whom agent Ai is connected to through upward links and
CHL(Ai) is the set of agents that agent Ai connects to
through downward links. These links are established through
a bottom-up content-similarity based distributed clustering
process[15]. These links are then used by agents to locate
other agents that contain documents relevant to the given
queries.

A typical agent Ai in our system uses two queues: a local
search queue, LSi, and a message forwarding queue MFi.
The states of the two queues constitute the internal states of
an agent. The local search queue LSi stores search sessions
that are scheduled for local processing. It is a priority queue
and agent Ai always selects the most promising queries to
process in order to maximize the global utility. MFi con-
sists of a set of queries to forward on and is processed in
a FIFO (first in first out) fashion. For the first query in
MFi, agent Ai determines which subset of its neighboring
agents to forward it to based on the agent’s routing policy
πi. These routing decisions determine how the search pro-
cess is conducted in the network. In this paper, we call Ai

as Aj ’s upstream agent and Aj as Ai’s downstream agent if

A4 A5 A6 A7

A2
A3

A9

NEI(A2)={A3}

PAR(A2)={A1}

CHL(A2)={A4,A5}

A1
A8

Figure 1: A fraction of a hierarchical P2PIR system

an agent Ai routes a query to agent Aj .
The distributed search protocol of our hierarchical agent

organization is composed of two steps. In the first step, upon
receipt of a query qk at time tl from a user, agent Ai ini-
tiates a search session si by probing its neighboring agents
Aj ∈ NEI(Ai) with the message PROBE for the similarity
value Sim(qk, Aj) between qk and Aj . Here, Ai is defined as
the query initiator of search session si. In the second step,
Ai selects a group of the most promising agents to start
the actual search process with the message SEARCH. These
SEARCH messages contain a TTL (Time To Live) parame-
ter in addition to the query. The TTL value decreases by 1
after each hop. In the search process, agents discard those
queries that either have been previously processed or whose
TTL drops to 0, which prevents queries from looping in the
system forever. The search session ends when all the agents
that receive the query drop it or TTL decreases to 0. Upon
receipt of SEARCH messages for qk, agents schedule local
activities including local searching, forwarding qk to their
neighbors, and returning search results to the query initia-
tor. This process and related algorithms are detailed in [15,
14].

3. A BASIC REINFORCEMENT LEARNING
BASED SEARCH APPROACH

In the aforementioned distributed search algorithm, the
routing decisions of an agent Ai rely on the similarity com-
parison between incoming queries and Ai’s neighboring agents
in order to forward those queries to relevant agents with-
out flooding the network with unnecessary query messages.
However, this heuristic is myopic because a relevant di-
rect neighbor is not necessarily connected to other relevant
agents. In this section, we propose a more general approach
by framing this problem as a reinforcement learning task.
In pursuit of greater flexibility, agents can switch between
two modes: learning mode and non-learning mode. In the
non-learning mode, agents operate in the same way as they
do in the normal distributed search processes described in
[14, 15]. On the other hand, in the learning mode, in paral-
lel with distributed search sessions, agents also participate
in a learning process which will be detailed in this section.
Note that in the learning protocol, the learning process does
not interfere with the distributed search process. Agents can
choose to initiate and stop learning processes without affect-
ing the system performance. In particular, since the learning
process consumes network resources (especially bandwidth),
agents can choose to initiate learning only when the network
load is relatively low, thus minimizing the extra communi-
cation costs incurred by the learning algorithm.

The section is structured as follows, Section 3.1 describes
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a reinforcement learning based model. Section 3.2 describes
a protocol to deploy the learning algorithm in the network.
Section 3.3 discusses the convergence of the learning algo-
rithm.

3.1 The Model
An agent’s routing policy takes the state of a search ses-

sion as input and output the routing actions for that query.
In our work, the state of a search session sj is stipulated as:

QSj = (qk, ttlj)

where ttlj is the number of hops that remains for the
search session sj , qk is the specific query. QL is an attribute
of qk that indicates which type of queries qk most likely
belong to. The set of QL can be generated by running a
simple online classification algorithm on all the queries that
have been processed by the agents, or an offline algorithm on
a pre-designated training set. The assumption here is that
the set of query types is learned ahead of time and belongs to
the common knowledge of the agents in the network. Future
work includes exploring how learning can be accomplished
when this assumption does not hold. Given the query types
set, an incoming query qi can be classified to one query class
Q(qi) by the formula:

Q(qi) = arg max
Qj

P (qi|Qj) (1)

where P (qi|Qj) indicates the likelihood that the query qi is
generated by the query class Qj [8].

The set of atomic routing actions of an agent Ai is denoted
as {αi}, where {αi} is defined as αi = {αi0 , αi1 , ..., αin}. An
element αij represents an action to route a given query to
the neighboring agent Aij ∈ DirectConn(Ai). The routing
policy πi of agent Ai is stochastic and its outcome for a
search session with state QSj is defined as:

πi(QSj) = {(αi0 , πi(QSi, αi0)), (αi1 , πi(QSi, αi1)), ...} (2)

Note that operator πi is overloaded to represent either the
probabilistic policy for a search session with state QSj , de-
noted as πi(QSj); or the probability of forwarding the query
to a specific neighboring agent Aik

∈ DirectConn(Ai) un-
der the policy πi(QSj), denoted as πi(QSj , αik

). There-
fore, equation (2) means that the probability of forward-
ing the search session to agent Ai0 is πi(QSi, αi0) and so
on. Under this stochastic policy, the routing action is non-
deterministic. The advantage of such a strategy is that
the best neighboring agents will not be selected repeatedly,
thereby mitigating the potential “hot spots” situations.

The expected utility, Un
i (QSj), is used to estimate the po-

tential utility gain of routing query type QSj to agent Ai

under policy πn
i . The superscript n indicates the value at the

nth iteration in an iterative learning process. The expected

utility provides routing guidance for future search sessions.
In the search process, each agent Ai maintains partial ob-

servations of its neighbors’ states, as shown in Fig. 2. The
partial observation includes non-local information such as
the potential utility estimation of its neighbor Am for query
state QSj , denoted as Um(QSj), as well as the load infor-
mation, Lm. These observations are updated periodically
by the neighbors. The estimated utility information will be
used to update Ai’s expected utility for its routing policy.

Load Information
Expected Utility For Different Query Types

Neighboring Agents

...

A0

A1

A3

A2

Un
0 (QS0) ...

...

...

...

......

Un
0 (QS1)

Un
1 (QS1)

Un
2 (QS1)

Un
3 (QS1)

Un
1 (QS0)

Un
2 (QS0)
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3 (QS0)

Ln
0

Ln
1

Ln
2

Ln
3

...

QS0 QS1 ...

Figure 2: Agent Ai’s Partial Observation about its
neighbors(A0, A1...)

The load information of Am, Lm, is defined as

Lm =
|MFm|

Cm

, where |MFm| is the length of the message-forward queue
and Cm is the service rate of agent Am’s message-forward
queue. Therefore Lm characterizes the utilization of an
agent’s communication channel, and thus provide non-local
information for Am’s neighbors to adjust the parameters of
their routing policy to avoid inundating their downstream
agents. Note that based on the characteristics of the queries
entering the system and agents’ capabilities, the loading of
agents may not be uniform. After collecting the utilization
rate information from all its neighbors, agent Ai computes

L
′

i as a single measure for assessing the average load condi-
tion of its neighborhood:

L
′

i =

P
k

Lk

|DirectConn(Ai)|

Agents exploit L
′

i value in determining the routing proba-
bility in its routing policy.

Note that, as described in Section 3.2, information about
neighboring agents is piggybacked with the query message
propagated among the agents whenever possible to reduce
the traffic overhead.

3.1.1 Update the Policy
An iterative update process is introduced for agents to

learn a satisfactory stochastic routing policy. In this itera-
tive process, agents update their estimates on the potential
utility of their current routing policies and then propagate
the updated estimates to their neighbors. Their neighbors
then generate a new routing policy based on the updated
observation and in turn they calculate the expected utility
based on the new policies and continue this iterative process.

In particular, at time n, given a set of expected util-
ity, an agent Ai, whose directly connected agents set is
DirectConn(Ai) = {Ai0 , ..., Aim}, determines its correspond-
ing stochastic routing policy for a search session of state QSj

based on the following steps:
(1) Ai first selects a subset of agents as the potential

downstream agents from set DirectConn(Ai), denoted as
PDn(Ai, QSj). The size of the potential downstream agent
is specified as

|PDn(Ai, QSj)| = min(|NEI(Ai), d
n
i + k)|

where k is a constant and is set to 3 in this paper; dn
i ,

the forward width, is defined as the expected number of
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neighboring agents that agent Ai can forward to at time
n. This formula specifies that the potential downstream
agent set PDn(Ai, QSj) is either the subset of neighboring
agents with dn

i + k highest expected utility value for state
QSj among all the agents in DirectConn(Ai), or all their
neighboring agents. The k is introduced based on the idea
of a stochastic routing policy and it makes the forwarding
probability of the dn

i +k highest agent less than 100%. Note
that if we want to limit the number of downstream agents
for search session sj as 5, the probability of forwarding the
query to all neighboring agents should add up to 5. Set-
ting up dn

i value properly can improve the utilization rate
of the network bandwidth when much of the network is idle
while mitigating the traffic load when the network is highly
loaded. The dn+1

i value is updated based on dn
i , the previ-

ous and current observations on the traffic situation in the
neighborhood. Specifically, the update formula for dn+1

i is

d
n+1
i = d

n
i ∗ (1 +

1 − L
′

i

|DirectConn(Ai)|
)

In this formula, the forward width is updated based on the

traffic conditions of agent Ai’s neighborhood, i.e L
′

i, and its
previous value.

(2) For each agent Aik
in the PDn(Ai, QSj), the proba-

bility of forwarding the query to Aik
is determined in the

following way in order to assign higher forwarding probabil-
ity to the neighboring agents with higher expected utility
value:

π
n+1
i (QSj , αik

) =
dn+1

i

|PDn(Ai, QSj)|
+

β ∗
`
Uik

(QS
′

j) −
PDU(Ai, QSj)

|PDn(Ai, QSj)|

´
(3)

where

PDUn(Ai, QS
′

j) =
X

o∈PDn(Ai,QSj)

Uo(QS
′

j)

and QS
′

j is the subsequent state of agent Aik
after agent

Ai forwards the search session with state QSj to its neigh-

boring agent Aik
; If QSj = (qk, ttl0), then QS

′

j = (qk, ttl0 −
1).

In formula 3, the first term on the right of the equation,
d

n+1

i

|PDn(Ai,QSj)|
, is used to to determine the forwarding prob-

ability by equally distributing the forward width, dn+1
i , to

the agents in PDn(Ai, QSj) set. The second term is used to
adjust the probability of being chosen so that agents with
higher expected utility values will be favored. β is deter-
mined according to:

β = min
` m − dn+1

i

m ∗ umax − PDUn(Ai, QS
′

j)
,

dn+1
i

PDUn(Ai, QS
′

j) − m ∗ umin

´
(4)

where m = |PDn(Ai, QSj)|,

umax = max
o∈PDn(Ao,QSj)

Uo(QS
′

j)

and

umin = min
o∈PDn(Ao,QSj)

Uo(QS
′

j)

This formula guarantees that the final πn+1
i (QSj , αik

) value
is well defined, i.e,

0 ≤ π
n+1
i (QSj, αik

) ≤ 1

and
X

i

π
n+1
i (QSj, αik

) = d
n+1
i

However, such a solution does not explore all the possi-
bilities. In order to balance between exploitation and explo-
ration, a λ-Greedy approach is taken. In the λ-Greedy ap-
proach, in addition to assigning higher probability to those
agents with higher expected utility value, as in the equation
(3). Agents that appear to be “not-so-good” choices will
also be sent queries based on a dynamic exploration rate.

In particular, for agents in the set PDn(Ai, QSj), πn+1
i1

(QSj)
is determined in the same way as the above, with the only
difference being that dn+1

i is replaced with dn+1
i ∗ (1 − λn).

The remaining search bandwidth is used for learning by
assigning probability λn evenly to agents Ai2 in the set
DirectConn(Ai) − PDn(Ai, QSj).

π
n+1
i2

(QSj , αik
) =

dn+1
i ∗ λn

|DirectConn(Ai) − PDn(Ai, QSj)|
(5)

where PDn(Ai, QSj) ⊂ DirectConn(Ai). Note that the
exploration rate λ is not a constant and it decreases over-
time. The λ is determined according to the following equa-
tion:

λn+1 = λ0 ∗ e
−c1n (6)

where λ0 is the initial exploration rate, which is a con-
stant; c1 is also a constant to adjust the decreasing rate of
the exploration rate; n is the current time unit.

3.1.2 Update Expected Utility
Once the routing policy at step n+1, πn+1

i , is determined
based on the above formula, agent Ai can update its own ex-
pected utility, Un+1

i (QSi), based on the the updated routing
policy resulted from the formula 5 and the updated U values
of its neighboring agents. Under the assumption that after a
query is forwarded to Ai’s neighbors the subsequent search
sessions are independent, the update formula is similar to
the Bellman update formula in Q-Learning:

U
n+1
i (QSj) = (1 − θi) ∗ U

n
i (QSj) +

θi ∗ (Rn+1
i (QSj) +

X

k

π
n+1
i (QSj , αik

)Un
k (QS

′

j)) (7)

where QS
′

j = (Qj , ttl − 1) is the next state of QSj =

(Qj , ttl); Rn+1
i (QSj) is the expected local reward for query

class Qk at agent Ai under the routing policy πn+1
i ; θi is the

coefficient for deciding how much weight is given to the old
value during the update process: the smaller θi value is, the
faster the agent is expected to learn the real value, while the
greater volatility of the algorithm, and vice versa. Rn+1(s)
is updated according to the following equation:
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R
n+1
i (QSj) = R

n
i (QSj)

+γi ∗ (r(QSj) − R
n
i (QSj)) ∗ P (qj |Qj) (8)

where r(QSj) is the local reward associated with the search
session. P (qj |Qj) indicates how relevant the query qj is to
the query type Qj , and γi is the learning rate for agent Ai.
Depending on the similarity between a specific query qi and
its corresponding query type Qi, the local reward associated
with the search session has different impact on the Rn

i (QSj)
estimation. In the above formula, this impact is reflected by
the coefficient, the P (qj |Qj) value.

3.1.3 Reward function
After a search session stops when its TTL values expires,

all search results are returned back to the user and are com-
pared against the relevance judgment. Assuming the set of
search results is SR, the reward Rew(SR) is defined as:

Rew(SR) =

j
1 if |Rel(SR)| > c
|Rel(SR)|

c
otherwise.

where SR is the set of returned search results, Rel(SR)
is the set of relevant documents in the search results. This
equation specifies that users give 1.0 reward if the number
of returned relevant documents reaches a predefined number
c. Otherwise, the reward is in proportion to the number of
relevant documents returned. This rationale for setting up
such a cut-off value is that the importance of recall ratio
decreases with the abundance of relevant documents in real
world, therefore users tend to focus on only a limited number
of searched results.

The details of the actual routing protocol will be intro-
duced in Section 3.2 when we introduce how the learning
algorithm is deployed in real systems.

3.2 Deployment of the Learning algorithm
This section describes how the learning algorithm can be

used in either a single-phase or a two-phase search process.
In the single-phase search algorithm, search sessions start
from the initiators of the queries. In contrast, in the two-step
search algorithm, the query initiator first attempts to seek a
more appropriate starting point for the query by introducing
an exploratory step as described in Section 2. Despite the
difference in the quality of starting points, the major part
of the learning process for the two algorithms is largely the
same as described in the following paragraphs.

Before learning starts, each agent initializes the expected

utility value for all possible states as 0. Thereafter, upon
receipt of a query, in addition to the normal operations de-
scribed in the previous section, an agent Ai also sets up a
timer to wait for the search results returned from its down-
stream agents. Once the timer expires or it has received
response from all its downstream agents, Ai merges and for-
wards the search results accrued from its downstream agents
to its upstream agent. Setting up the timer speeds up the
learning because agents can avoid waiting too long for the
downstream agents to return search results. Note that these
detailed results and corresponding agent information will
still be stored at Ai until the feedback information is passed
from its upstream agent and the performance of its down-
stream agents can be evaluated. The duration of the timer
is related to the TTL value. In this paper, we set the timer

to

ttimer = ttli ∗ 2 + tf

, where ttli ∗ 2 is the sum of the travel time of the queries in
the network, and tf is the expected time period that users
would like to wait.

The search results will eventually be returned to the search
session initiator A0. They will be compared to the relevance
judgment that is provided by the final users (as described
in the experiment section, the relevance judgement for the
query set is provided along with the data collections). The
reward will be calculated and propagated backward to the
agents along the way that search results were passed. This
is a reverse process of the search results propagation. In the
process of propagating reward backward, agents update es-
timates of their own potential utility value, generate an up-
to-dated policy and pass their updated results to the neigh-
boring agents based on the algorithm described in Section 3.
Upon change of expected utility value, agent Ai sends out its
updated utility estimation to its neighbors so that they can
act upon the changed expected utility and corresponding
state. This update message includes the potential reward
as well as the corresponding state QSi = (qk, ttll) of agent
Ai. Each neighboring agent, Aj , reacts to this kind of up-
date message by updating the expected utility value for state
QSj(qk, ttll +1) according to the newly-announced changed
expected utility value. Once they complete the update, the
agents would again in turn inform related neighbors to up-
date their values. This process goes on until the TTL value
in the update message increases to the TTL limit.

To speed up the learning process, while updating the ex-
pected utility values of an agent Ai’s neighboring agents we
specify that

Um(Qk, ttl0) >= Um(Qk, ttl1) iff ttl0 > ttl1

Thus, when agent Ai receives an updated expected utility
value with ttl1, it also updates the expected utility values
with any ttl0 > ttl1 if Um(Qk, ttl0) < Um(Qk, ttl1) to speed
up convergence. This heuristic is based on the fact that
the utility of a search session is a non-decreasing function of
time t.

3.3 Discussion
In formalizing the content routing system as a learning

task, many assumptions are made. In real systems, these
assumptions may not hold, and thus the learning algorithm
may not converge. Two problems are of particular note,

(1) This content routing problem does not have Markov
properties. In contrast to IP-level based packet routing, the
routing decision of each agent for a particular search ses-
sion sj depends on the routing history of sj . Therefore,
the assumption that all subsequent search sessions are in-
dependent does not hold in reality. This may lead to “dou-
ble counting” problem that the relevant documents of some
agents will be counted more than once for the state where
the TTL value is more than 1. However, in the context
of the hierarchical agent organizations, two factors mitigate
this problems: first, the agents in each content group form
a tree-like structure. With the absense of the cycles, the es-
timates inside the tree would be close to the accurate value.
Secondly, the stochastic nature of the routing policy partly
remedies this problem.
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(2) Another challenge for this learning algorithm is that
in a real network environment observations on neighboring
agents may not be able to be updated in time due to the
communication delay or other situations. In addition, when
neighboring agents update their estimates at the same time,
oscillation may arise during the learning process[1].

This paper explores several approaches to speed up the
learning process. Besides the aforementioned strategy of
updating the expected utility values, we also employ an
“active update” strategy where agents notify their neigh-
bors whenever its expected utility is updated. Thus a faster
convergence speed can be achieved. This strategy contrasts
to the “Lazy update”, where agents only echo their neigh-
boring agents with their expected utility change when they
exchange information. The trade off between the two ap-
proaches is the network load versus learning speed.

The advantage of this learning algorithm is that once a
routing policy is learned, agents do not have to repeatedly
compare the similarity of queries as long as the network
topology remains unchanged. Instead, agent just have to
determine the classification of the query properly and follow
the learned policies. The disadvantage of this learning-based
approach is that the learning process needs to be conducted
whenever the network structure changes. There are many
potential extensions for this learning model. For example, a
single measure is currently used to indicate the traffic load
for an agent’s neighborhood. A simple extension would be to
keep track of individual load for each neighbor of the agent.

4. EXPERIMENTS SETTINGS AND RESULTS
The experiments are conducted on TRANO simulation

toolkit with two sets of datasets, TREC-VLC-921 and TREC-

123-100. The following sub-sections introduce the TRANO
testbed, the datasets, and the experimental results.

4.1 TRANO Testbed
TRANO (Task Routing on Agent Network Organization)

is a multi-agent based network based information retrieval
testbed. TRANO is built on top of the Farm [4], a time
based distributed simulator that provides a data dissemi-
nation framework for large scale distributed agent network
based organizations. TRANO supports importation and ex-
portation of agent organization profiles including topological
connections and other features. Each TRANO agent is com-
posed of an agent view structure and a control unit. In sim-
ulation, each agent is pulsed regularly and the agent checks
the incoming message queues, performs local operations and
then forwards messages to other agents .

4.2 Experimental Settings
In our experiment, we use two standard datasets, TREC-

VLC-921 and TREC-123-100 datasets, to simulate the col-
lections hosted on agents. The TREC-VLC-921 and TREC-

123-100 datasets were created by the U.S. National Institute
for Standard Technology(NIST) for its TREC conferences.
In distributed information retrieval domain, the two data
collections are split to 921 and 100 sub-collections. It is ob-
served that dataset TREC-VLC-921 is more heterogeneous
than TREC-123-100 in terms of source, document length,
and relevant document distribution from the statistics of the
two data collections listed in [13]. Hence, TREC-VLC-921 is
much closer to real document distributions in P2P environ-
ments. Furthermore, TREC-123-100 is split into two sets of
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sion) versus the number of search sessions for 2phase
search in TREC-VLC-921

sub-collections in two ways: randomly and by source. The
two partitions are denoted as TREC-123-100-Random and
TREC-123-100-Source respectively. The documents in each
subcollection in dataset TREC-123-100-Source are more co-
herent than those in TREC-123-100-Random. The two dif-
ferent sets of partitions allow us to observe how the dis-
tributed learning algorithm is affected by the homogeneity
of the collections.

The hierarchical agent organization is generated by the
algorithm described in our previous algorithm [15]. During
the topology generation process, degree information of each
agent is estimated by the algorithm introduced by Palmer
et al. [9] with parameters α = 0.5 and β = 0.6. In our
experiments, we estimate the upward limit and downward
degree limit using linear discount factors 0.5, 0.8 and 1.0.
Once the topology is built, queries randomly selected from
the query set 301−350 on TREC-VLC-921 and query set 1−
50 on TREC-123-100-Random and TREC-123-100-Source

are injected to the system based on a Poisson distribution

P (N(t) = n) =
(λt)n

n!
e
−λ
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In addition, we assume that all agents have an equal chance
of getting queries from the environment, i.e, λ is the same
for every agent. In our experiments, λ is set as 0.0543 so
that the mean of the incoming queries from the environment
to the agent network is 50 per time unit. The service time
for the communication queue and local search queue, i.e tQij

and trs, is set as 0.01 time unit and 0.05 time units respec-
tively. In our experiments, there are ten types of queries
acquired by clustering the query set 301 − 350 and 1 − 50.

4.3 Results analysis and evaluation
Figure 3 demonstrates the ARSS(Average Reward per

Search Session) versus the number of incoming queries over
time for the the Single-Step based Non-learning Algorithm
(SSNA), and the Single-Step Learning Algorithm(SSLA) for
data collection TREC-VLC-921. It shows that the average
reward for SSNA algorithm ranges from 0.02− 0.06 and the
performance changes little over time. The average reward
for SSLA approach starts at the same level with the SSNA

algorithm. But the performance increases over time and
the average performance gain stabilizes at about 25% after
query range 2000 − 3000.

Figure 4 shows the ARSS(Average Reward per Search Ses-
sion) versus the number of incoming queries over time for the
the Two-Step based Non-learning Algorithm(TSNA), and
the Two-Step Learning Algorithm(TSLA) for data collec-
tion TREC-VLC-921. The TSNA approach has a relatively
consistent performance with the average reward ranges from
0.05− 0.15. The average reward for TSLA approach, where
learning algorithm is exploited, starts at the same level with
the TSNA algorithm and improves the average reward over
time until 2000−2500 queries joining the system. The results
show that the average performance gain for TSLA approach
over TNLA approach is 35% after stabilization.

Figure 5 shows the cumulative utility versus the number
of incoming queries over time for SSNA, SSLA,TSNA, and
TSLA respectively. It illustrates that the cumulative util-
ity of non-learning algorithms increases largely linearly over
time, while the gains of learning-based algorithms acceler-
ate when more queries enter the system. These experimental
results demonstrate that learning-based approaches consis-
tently perform better than non-learning based routing al-

gorithm. Moreover, two-phase learning based algorithm is
better than single-phase based learning algorithm because
the maximal reward an agent can receive from searching its
neighborhood within TTL hops is related to the total num-
ber of the relevant documents in that area. Thus, even the
optimal routing policy can do little beyond reaching these
relevant documents faster. On the contrary, the two-step-
based learning algorithm can relocate the search session to
a neighborhood with more relevant documents. The TSLA

combines the merits of both approaches and outperforms
them.

Table 1 lists the cumulative utility for datasets TREC-

123-100-Random and TREC-123-100-Source with hierarchi-
cal organizations. The five columns show the results for four
different approaches. In particular, column TSNA-Random

shows the results for dataset TREC-123-100-Random with
the TSNA approach. The column TSLA-Random shows the
results for dataset TREC-123-100-Random with the TSLA

approach. There are two numbers in each cell in the col-
umn TSLA-Random. The first number is the actual cu-
mulative utility while the second number is the percentage
gain in terms of the utility over TSNA approach. Columns
TSNA-Source and TSLA-Source show the results for dataset
TREC-123-100-Source with TSNA and TSLA approaches
respectively. Table 1 shows that the performance improve-
ment for TREC-123-100-Random is not as significant as the
other datasets. This is because that the documents in the
sub-collection of TREC-123-100-Random are selected ran-
domly which makes the collection model, the signature of
the collection, less meaningful. Since both algorithms are
designed based on the assumption that document collections
can be well represented by their collection model, this result
is not surprising.

Overall, Figures 4, 5, and Table 1 demonstrate that the
reinforcement learning based approach can considerably en-
hance the system performance for both data collections.
However, it remains as future work to discover the corre-
lation between the magnitude of the performance gains and
the size of the data collection and/or the extent of the het-
erogeneity between the sub-collections.

5. RELATED WORK
The content routing problem differs from the network-

level routing in packet-switched communication networks in
that content-based routing occurs in application-level net-
works. In addition, the destination agents in our content-
routing algorithms are multiple and the addresses are not
known in the routing process. IP-level Routing problems
have been attacked from the reinforcement learning per-
spective[2, 5, 11, 12]. These studies have explored fully
distributed algorithms that are able, without central coor-
dination to disseminate knowledge about the network, to
find the shortest paths robustly and efficiently in the face of
changing network topologies and changing link costs. There
are two major classes of adaptive, distributed packet rout-
ing algorithms in the literature: distance-vector algorithms
and link-state algorithms. While this line of studies carry a
certain similarity with our work, it has mainly focused on
packet-switched communication networks. In this domain,
the destination of a packet is deterministic and unique. Each
agent maintains estimations, probabilistically or determin-
istically, on the distance to a certain destination through its
neighbors. A variant of Q-Learning techniques is deployed
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Table 1: Cumulative Utility for Datasets TREC-123-100-Random and TREC-123-100-Source with Hierarchical

Organization; The percentage numbers in the columns “TSLA-Random” and “TSLA-Source” demonstrate

the performance gain over the algorithm without learning

Query number TSNA-Random TSLA-Random TSNA-Source TSLA-Source
500 25.15 28.45 13% 24.00 21.05 -13%
1000 104.99 126.74 20% 93.95 96.44 2.6%
1250 149.79 168.40 12% 122.64 134.05 9.3%
1500 188.94 211.05 12% 155.30 189.60 22%
1750 235.49 261.60 11% 189.14 243.90 28%
2000 275.09 319.25 16% 219.0 278.80 26%

to update the estimations to converge to the real distances.
It has been discovered that the locality property is an im-

portant feature of information retrieval systems in user mod-
eling studies[3]. In P2P based content sharing systems, this
property is exemplified by the phenomenon that users tend
to send queries that represent only a limited number of top-
ics and conversely, users in the same neighborhood are likely
to share common interests and send similar queries [10]. The
learning based approach is perceived to be more beneficial
for real distributed information retrieval systems which ex-
hibit locality property. This is because the users’ traffic and
query patterns can reduce the state space and speed up the
learning process. Related work in taking advantage of this
property include [7], where the authors attempted to address
this problem by user modeling techniques.

6. CONCLUSIONS
In this paper, a reinforcement-learning based approach

is developed to improve the performance of distributed IR
search algorithms. Particularly, agents maintain estimates,
namely expected utility, on the downstream agents’ ability to
provide relevant documents for incoming queries. These es-
timates are updated gradually by learning from the feedback
information returned from previous search sessions. Based
on the updated expected utility information, the agents mod-
ify their routing policies. Thereafter, these agents route the
queries based on the learned policies and update the es-
timates on the expected utility based on the new routing
policies. The experiments on two different distributed IR
datasets illustrates that the reinforcement learning approach
improves considerably the cumulative utility over time.
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