
Stochastic Planning for Weakly-Coupled
Distributed Agents

AnYuan Guo Victor Lesser
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003

{anyuan,lesser}@cs.umass.edu

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; I.2.11 [Artificial Intelligence]: Dis-
tributed Artificial Intelligence—multiagent systems

General Terms
Algorithms, Performance, Design, Experimentation

Keywords
planning, game theory

1. INTRODUCTION
Partially observable stochastic games (POSGs) provide a

powerful framework for modeling multi-agent interactions.
While elegant and expressive, this framework has been shown
to be computationally intractable [1]. An exact dynamic
programming algorithm for POSGs has been developed re-
cently, but due to high computational demands, it has only
been demonstrated to work on extremely small problems.
Several approximate approaches have been developed [3, 5],
but they lack strong theoretical guarantees. In light of these
theoretical and practical limitations, there is a need to iden-
tify special classes of POSGs that can be solved tractably.

One dimension along which computational gain can be
leveraged is by exploiting the independence present in the
problem dynamics. In this paper, we examine a class of
POSGs where the agents only interact loosely by restrict-
ing one another’s available actions. Specifically, rather than
having fixed action sets, each agent’s action set is a function
of the global state. The agents are independent from one
another otherwise, i.e. they have separate transition and re-
ward functions that do not interact. This class of problems
arises frequently in practice. Many real world domains are
inhabited by self-interested agents that act to achieve their
individual goals. They may not affect each other in any

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06 May 8–12 2006, Hakodate, Hokkaido, Japan
Copyright 2006 ACM 1-59593-303-4/06/000 ...$5.00.

way, except for occasionally putting restrictions on what
each other can do.

The best-known solution concepts in game theory are that
of computing Nash equilibrium and performing strategy elim-
ination. Our work addresses both of these solution con-
cepts. First, we show that finding a Nash equilibrium where
each agent achieves reward at least k is NP-hard. Then,
we present the MAAE algorithm, an exact algorithm that
performs iterated elimination of dominated strategies. It is
able to tackle much larger problems than algorithms for the
general class by exploiting the independence among agents.

2. FORMAL MODEL
In this section, we will present a formal definition of our

model. An n-agent POSG with state-dependent action sets
can be defined as 〈{Si}, {s

0
i }, {Ai}, {Bi}, {Pi}, {Ri}〉, where,

• Si is the state space of agent i. S = S1 ×S2 × . . .×Sn

denotes the joint state set.

• s0
i ∈ ∆(Si) is the initial state distribution of agent i.

• Ai is the action set of agent i. A = A1 ×A2 × . . .×An

denotes the joint action set.

• Bi : S → 2Ai is the available action function that maps
a joint state to the set of available actions for agent i.
Bi(s) ⊂ Ai for all s ∈ Si.

• Pi : Si × Ai × Si → [0, 1] is the transition function
of agent i. The joint transition function is completely
factored, where P ((s′1 . . . s′n) | (s1 . . . sn), (a1 . . . an))
=

∏n

i=1
Pi(s

′
i|si, ai).

• Ri : Si × Ai → ℜ is the reward function for agent i.
This states that the rewards of the agents depend only
on the local state and the action taken by agent i.

Definition 1. A local policy πi of agent i is a mapping

from local states and available action sets 〈si, Bi(s)〉 to ac-

tions in the available action set Bi(s). The joint state s is a

tuple of local states, where si denotes the local state of agent

i. A joint policy, π = 〈π1 . . . πn〉, is defined to be a tuple of

local policies, one for each agent.

There are several key differences between our model and
the general POSG model. First, the power of our model
comes from the available action function, B, which maps
joint states to available actions for each agent. Secondly, our

 326

model does not have an observation function. Each agent
has a complete view of its own local state. Partial observ-
ability arises as a result of an agent’s limited view of the the
states of other agents but not of its own. Finally, the local
policy of each agent is no longer a function of the local state
only but a function of the available action set as well.

Here is an example of a POSG with state-dependent ac-
tion sets. Two autonomous rovers are exploring an unknown
terrain and collecting rock samples. There is a river with a
narrow bridge on it that only allows one rover to pass at
a time. To simplify the illustration, we will assume the
rovers have two states {on land, on bridge}, and three ac-
tions each {move, get on bridge, pick up rock}. The rovers
receive reward for the number of rocks picked up. The state-
dependent action set is used to constrain the rover’s actions
such that only one is allowed on the bridge at a time. For
example, the available actions for rover 1 are specified as
follows, B1(〈s1 = on land , s2 = on land〉) = {move, get on

bridge, pick up rock}, B1(〈s1 = on land , s2 = on bridge〉) =
{move, pick up rock}, and analogously for rover 2.

3. COMPLEXITY
We state our decision problem, denoted as POSG-NE, as

follows: given a POSG with state-dependent action sets,
G = 〈{Si}, {s

0
i },

{Ai}, {Bi}, {Pi}, {Ri}〉, does there exist a Nash equilibrium
where all agents have expected utility at least k?

Theorem 1. POSG-NE is NP-hard even in problems in-

volving 2 agents and a horizon of 2.

Proof: We will present a reduction from NFG-NE, a known
NP-hard problem [2]. This is the problem of determining
the existence of a Nash equilibrium where all agents have
expected utility at least k in a 2-agent normal form game,
N = 〈Σ1, Σ2, U1, U2〉.

The basis for the reduction rests on the observation that
normal form games can be thought of as degenerate POSGs
in which each agent only has one state and is allowed to
take only one action from that state. When encoding the
utility function of the normal form game using constructs in
our problem, the challenge lies in the fact that the utility is
specified as a function of the actions of both agents, whereas,
in our model, both the transition and the reward function
only have access to the local state and action.

To solve this problem, we add auxiliary states to memo-
rize the action taken at each state. We also add composite
actions to the action set that corresponds to all possible
pairs of actions by each agent. The state-dependent action
set restricts the legal actions from the auxiliary states to be
the single composite action that corresponds to the pair of
actions taken by the agents. The reward for taking the com-
posite action simply corresponds to the utility of the pair
of component primitive actions in the normal form game.
Therefore, there exists a Nash equilibrium where all agents
have expected utility at least k in the POSG if and only if
the same is true in the normal form game. 2

4. THE MAAE ALGORITHM
We present an algorithm that performs iterated elimina-

tion of dominated strategies. The algorithm is able to work
directly with the compact representation of a POSG without
first converting it to the double exponentially large normal

form representation. In this algorithm, first, we first fix
the action sets of each agent at each state to the optimistic
and pessimistic action sets. The idea behind this is that al-
though an agent cannot predict exactly what actions will be
available at each state, it can find out what actions would
be available in the best and worst case scenario. In the best
case, none of the actions that can be restricted by the state
of the other agents are, and in the worst case, all of the
actions that can be restricted are in fact unavailable.

For each agent i:

1. For each state sk, compute the optimistic and pes-
simistic action sets. Here, D = {s | si = si

k}.

Aopt(s
i
k) =

⋃

s∈D

Bi(s)

Apes(s
i
k) =

⋂

s∈D

Bi(s)

2. Compute the value functions of the 2 MDPs that
correspond to alternately fixing the available action
sets to the Aopt and Apes.

U(s) = max
a∈Aopt(s)

[

R(s, a) +
∑

s′

P (s′|s, a)U(s′)

]

L(s) = max
a∈Apes(s)

[

R(s, a) +
∑

s′

P (s′|s, a)L(s′)

]

3. For each action in each state, derive upper and
lower bounds on the action value from the value
function bounds U(s) and L(s).

QU (s, a) = R(s, a) +
∑

s′

P (s′|s, a)U(s)

QL(s, a) = R(s, a) +
∑

s′

P (s′|s, a)L(s)

4. At each state, eliminate all actions a′ whose action
value is dominated by another action a, QL(s, a) ≥
QU (s, a′).

5. Repeat steps 1 to 4 until no more actions can be
eliminated at any state.

Table 1: The iterated action elimination algorithm.

Once we fix the available action sets of each agent at all
the states, the agents no longer depend on each other in any
way. Our model decomposes to a set of MDPs. For each
agent, we solve two MDPs, one using the optimistic action
sets and the other using the pessimistic action sets. The
solutions will provide us with an upper and a lower bound
on the actual value function of each agent. With these upper
and lower bounds on the expected values of each state, we
can now derive bounds on the expected action values. At
each state, dominated actions are pruned. We iterate the
action elimination procedure until no more actions can be
pruned. Since the number of actions at each state is finite,
the procedure will eventually converge.

 327

Theorem 2. The iterated action elimination algorithm

corresponds to the iterated elimination of very weakly dom-

inated strategies.

5. EXPERIMENTS
We tested the algorithm on two domains involving ma-

chine maintenance and autonomous rover exploration. In
manufacturing settings, factories frequently have to make
maintenance and repair decisions. The question is how to
weigh these two decisions at different stages of the machine
life-cycle so as to minimize the likelihood of a machine mal-
function.

The detailed specifications for the problem are as follows.
There are ten factories, or agents, each owns and operates a
machine. Routine maintenance is performed on site. When
the machine becomes very old, they need to be serviced by
the machine’s manufacturer who could only take on one job
at a time. This resource constraint is modeled by our state
dependent action sets. The state space of each agent is
characterized by the current life-cycle of its machine {new,

worn, old, broken}. Each year, the factory examines the
current state of the machine and makes one of the following
decisions: do nothing, perform maintenance or make repairs.

Furthermore, each factory has its own reward function. A
sample reward function is as follows. There is a high cost,
$100,000 associated with a catastrophe (machine breaking
while in operation). The factory makes a profit of $5,000
each year when the machine is in operation. Machine main-
tenance cost $1,000 while repairs cost $10,000. The goal is
to maximize the factory’s profit.

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

of strategies left

of

 tr
ia

l i
ns

ta
nc

es

Figure 1: Machine maintenance problem: the distri-

bution of the size of the policy set after the MAAE

algorithm is run.

We performed 500 trials by randomly choosing the reward
functions of each of the agents. The maintenance costs are
chosen in the ranges of $1,000 to $10,000; the cost of a catas-
trophe ranges from $50,000 to $100,000; finally, the cost
of repairs ranges from $10,000 to $50,000. The qualitative
trends we found actually correspond well to our intuition.
When the machine is relatively new, most of the policies
would recommend to do nothing. Unless the penalty for a
machine breaking is very high, in which case it adopts a
more conservative approach of performing maintenance.

As the machine ages, the algorithm tries to weight the cost

of maintenance and repairs. Overall, the MAAE algorithm
drastically reduces the size of the policy space. The number
of policies before pruning is 162 per agent, while the the
number of policies after the algorithm is run, averaged over
all trials, is 6. The distribution of the number of policies
over all trial runs can be seen in Figure 1 below.

Aside from the large policy space reduction, another key
advantage of this algorithm is that it scales well with the
number of agents. There are ten agents in this experiment
while the general POSG algorithm, due to its high computa-
tional demands, has so far only been shown to be effective on
2 agent problems [4]. Next, we tested the MAAE algorithm
on a problem with much a larger state space. We examine
how the size of the state space and the level of interaction
affect the efficiency of the algorithm.

before after
states pruning pruning

6 972,000 13
8 34,992,000 168
9 2.1 ×108 69

12 4.5 ×1010 774
16 5.9 ×1013 2,198

Table 2: Average size of the policy space before and

after action elimination for problems with 3 con-

strained states.

The second test domain is a simplified 2-agent autonomous
rover exploration scenario. The size of each agent’s local
state space varies from 6 to 16. We introduced up to three
constrained states in each agent’s state space. 100 trials
were run for each size of state space and number of con-
straints. Table 2 shows detailed results for problems with
three constrained states. For problems with one and two
constrained states, the final policy space ranges from 3 to
106 and 8 to 252 respectively. In all three cases, the iterated
action elimination algorithm is able to reduce the size of the
policy space by several orders of magnitude.

6. REFERENCES
[1] D. S. Bernstein, R. Givan, N. Immerman, and

S. Zilberstein. The complexity of decentralized control
of Markov decision processes. Mathematics of

Operations Research, 27:4, November 2002.

[2] V. Conitzer and T. Sandholm. Complexity results
about Nash equilibria. In Proceedings of the Eighteenth

International Joint Conference on Artificial

Intelligence, 2003.

[3] R. Emery-Montemerlo, G. Gordon, J. Schneider, and
S. Thrun. Approximate solutions for partially
observable stochastic games with common payoffs. In
Proceedings of the Third Joint Conference on

Autonomous Agents and Multiagent Systems, 2004.

[4] E. Hansen and D. Bernstein. Dynamic programming for
partially observable stochastic games. In Proceedings of

the Nineteenth National Conference on Artificial

Intelligence, 2004.

[5] R. Nair, M. Tambe, M. Yokoo, D. Pynadath, and
S. Marsella. Taming decentralized POMDPs: Towards
efficient policy computation for multiagent settings. In
Proceedings of the Eighteenth International Joint

Conference on Artificial Intelligence, 2003.

 328

