
Evolution of the GPGP/TÆMS
Domain-Independent

Coordination Framework1,2

CMPSCI 02–03

V. Lesser, K. Decker3, T. Wagner4, N. Carver5, A. Garvey6, B. Horling, D. Neiman7, R.
Podorozhny, M. Nagendra Prasad8, A. Raja, R. Vincent9, P. Xuan and XQ. Zhang

Computer Science Department
University of Massachusetts, Amherst

January 11, 2002

ABSTRACT:

The GPGP/TÆMS domain-independent coordination framework for small agent groups was first described almost ten years
ago and then more fully detailed in an ICMAS95 paper. In this paper, we discuss the evolution of this framework over the
last six years motivated by its use in a number of applications, including: information gathering and management,
intelligent home automation, coordination of concurrent engineering activities, distributed situation assessment, and
hospital scheduling. First, we review the basic architecture of GPGP and then present extensions to the TÆMS domain-
independent representation of agent activities. We next describe extensions to GPGP that permit the representation of
situation-specific coordination strategies and social laws as well as making possible the use of GPGP in large agent
organizations. Additionally, we discuss a more complex view of commitments that takes into account uncertainty in
commitments. We then present new coordination mechanisms for use in resource sharing and contracting, and more
complex coordination mechanisms that use a cooperative search among agents to find appropriate commitments. We
conclude with a discussion of future research directions.

1 This material is based upon work that has been sponsored by the National Science Foundation (under Grant No.
IIS-9812755 and Grant No. IIS-9988784) and the Defense Advanced Research Projects Agency (DARPA) and Air
Force Research Laboratory, Air Force Materiel Command, USAF (under agreement number F30602-99-2-0525). The
views and conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of the Defense Advanced Research
Projects Agency (DARPA), Air Force Research Laboratory or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation
thereon.
2 This is a significant extension, including additional authors, of a paper with a similar title [38] written in 1998.
3 At Computer and Information Science Dept., University of Delaware.
4 At Honeywell Research Lab, Minneapolis, Minnesota
5 At Computer Science Dept., Southern Illinois University.
6 At Computer Science Dept., Truman State University.
7 At River Logic, Inc., Beverly, Massachusetts
8 At VerticalNet, Palo Alto, California.
9 At SRI International, Menlo Park, California

2

Introduction

Generalized Partial Global Planning (GPGP) and its associated TÆMS hierarchical task network
representation [7, 9, 10, 11, 25] were developed as a domain-independent framework for
coordinating the real-time activities of small teams of cooperative agents working to achieve a set of
high-level goals. GPGP’s development was influenced by two factors: one was to generalize and
make domain-independent the coordination techniques developed in the Partial Global Planning
(PGP) framework [16]10; the other was based on viewing agent coordination in terms of
coordinating a distributed search of a dynamically evolving goal tree as pictured in Figure 1 [36].
Underlying these two influences was a desire to construct a model that could be used to explain and
motivate the reasons for coordination among agents based on a quantitative view of
task/subproblem dependency. As discussed in [11], coordination of behaviors among agents
requires three things: specification (creating shared goals), planning (subdividing goals into
subgoals/tasks, i.e., creating the substructure of the evolving goal tree) and scheduling (assigning
tasks to individual agents or groups of agents, creating shared plans and schedules and allocating
resources). GPGP is primarily concerned with scheduling activities rather than the dynamic
specification and planning of evolving activities (e.g., such as decomposing a high-level goal into a
set of subgoals that if successfully achieved will solve the high-level goals)11.

The aim of the GPGP coordination framework is to maximize the overall utility accrued by the
group of agents as a result of successful completion of its high-level goals. These goals can be
independent or held jointly by two or more agents, can be time and resource sensitive, and can be of
different utilities. GPGP deals with high-level coordination issues (scheduling and task selection)
involving decisions for each agent about what subtasks12 of which high-level goals it will execute,
the level of resources it will expend in their execution, and when they will be executed. These
decisions, if not appropriately made, can lead to the group of agents acting incoherently in achieving
the desired set of high-level goals. This incoherence can be characterized by agents wasting
resources by: 1) doing redundant, unnecessary or less important subtasks, 2) having nothing to do
since the needed prerequisite information or external resources that are necessary for subtask
execution are not available in a timely fashion, 3) being overloaded while other agents are under-
loaded and, finally, 4) missing deadlines on important tasks. The need for these types of scheduling
decisions occurs when agents are solving subtasks that are interdependent, either through their
contention for scarce resources or through relationships arising among them because they are
contributing to the solution of the same higher-level goal. GPGP is thus most appropriate for soft
real-time applications operating in dynamic and resource-bounded environments where there are
complex interdependencies among activities occurring at different agents.

This line of research also assumes soft real-time multi-agent applications are best structured using
groups of sophisticated agents – where the individual agents are responsible for effectively
balancing the resources they choose to allocate to multiple, time and resource sensitive activities13.

10 This also involved our understanding that coordination activities could be separated from local agent control if an
appropriate bi-directional interface could be established between them.
11Though as will be discussed, TÆMS provides a rich language for the representation of agent activities and
alternative ways of achieving goals.
12 A subtask can potentially represent a significant body of code or a significant set of activities.
13In recent work on a distributed sensor network application [26], we exploited such a sophisticated agent architecture
[58] to create a virtual agent organization of simple, single-threaded agents. These “virtual” agents were created as
needed and dynamically assigned as goals to a specific sophisticated (“real”) agent based on gross information about
current resource usage of agents and the type of resources available at each agent. In the hardware implementation of
this architecture, there was one sophisticated agent for each processor node. The “real” agent then performed detailed
planning/scheduling based on local resource availability and priority of these goals, and multiplexed among the
different goals that it was concurrently executing in order to meet soft real-time requirements. The use of

3

An alternative approach to this multiplexing among multiple activities in a single agent (and
consequently avoiding the requirement for more sophisticated local agent control) is to use agents
that have simpler local control architectures that for instance only allow one goal or task to be
performed at any given time. In this latter approach, the underlying operating system handles the
multiplexing among the different “simple” agents’ activities when these agents are hosted on the
same processor node. Further, the arrival of new tasks/goals requires instantiating the appropriate
“simple” agent on a specific processor node to solve the desired task. However, if there are options
for not doing goals or doing them in different ways, depending on resource availability, then the
former approach will permit an agent to make the decisions based on an appropriate context, while
in the latter approach the “simple” agents cannot make the decision unless they get detailed
feedback from the underlying operating system about the current set of activities. Even in this case
it may be hard because a “simple” agent does not have the appropriate context to understand how
to balance its choice with the choice of other agents. We feel that, for many soft real-time multi-
agent applications, a certain class of information is required to reason about how to balance
resources between multiple tasks or goals that vie for limited resources (e.g. time). Decomposing
the problem space completely to “simple” agents does not address the problem or remove the
information and decision requirements.

The type of high-level coordination that we are discussing above is very different from the type of
low-level, local and fine-grained coordination that commonly occurs when a protocol is created
among agents to synchronize their activities. In frameworks such as COOL [2] and AGENTTALK
[32] the emphasis is on the flow of messages and how the dialog between agents is structured.
Such frameworks generally combine finite state machines with enhancements, e.g., exceptions, to
support a flexible and explicit specification of a communication process. In contrast, in
GPGP/TÆMS the focus is primarily analytical and domain independent. It is on the quantitative
evaluation of the interactions among tasks and the formation of temporal constraints to resolve and
to exploit the interactions. GPGP coordination is about exchanging the necessary information for
the agents to analyze their activities and perform distributed optimization problem solving to
produce better results. While GPGP does contain protocols that define the exchange of messages
and the flow of the conversation, the emphasis is not on the machinery for specifying the protocols
but on the information that must be exchanged, and when, in order to create a distributed
optimization process whose performance approximates that of a centralized process. GPGP and
work such as COOL relate in that GPGP could literally make use of COOL or AGENTTALK to
structure the flow of information between agents -- GPGP would still be dealing with a higher-level
analytical optimization problem. Aspects of the optimization problem considered by GPGP include
deadlines and temporal constraints as well as resource interactions. As will be discussed in more
detail later, the communication-based joint problem solving performed by GPGP also differs from
the coordination that takes places in most BDI agent systems and frameworks such as
TEAMCORE/STEAM [47, 56, 57]14, ARCHON [30]15 and SHARED-PLAN [24], in that GPGP
is focused on optimization – how to concurrently solve multiple, time and resource sensitive goals
of varying worth within existing resource constraints so as to maximize the overall utility accrued.

Over the last six years, we have significantly extended the framework based on our experience
applying it to a number of applications including information gathering and management, intelligent
home automation, distributed situation assessment, coordination of concurrent engineering activities,

sophisticated agents has also helped us to construct a resource negotiation protocol that operates on an abstract model
of resources and does not need to resolve all conflicts to be successful [43]. In this case, the agent took on the
responsibility of mapping the abstract resource allocation policy generated by the negotiation protocol into a detail
resource allocation schedule and where possible, solved resource allocation conflicts at the abstract level through
local shifting and modification of tasks.
14 TEAMCORE/STEAM allows for solving concurrent goals as long as there is no resource contention or
interdependencies among the goals, i.e., they are totally independent.
15 ARCHON does allow for some very simple scheduling of tasks taking into account their time and worth.

4

and hospital scheduling [14, 26, 39, 40, 41, 45, 46]. Most of these extensions have been already
discussed in published papers so the emphasis of this paper is not on providing an in-depth
discussion of each extension and empirical results that examine the performance of the extension.
Rather, our focus is to present a high-level overview of how this body of work fits together
intellectually and how it has been used to create a framework that solves many of the issues
necessary for building multi-agent applications that require sophisticated coordination among
agents. We start out by first reviewing the basic concepts behind GPGP and TÆMS, and how the
GPGP framework relates to other approaches.

Review of Basic Architecture

The GPGP approach to coordination assumes an operating environment consisting of cooperative
agents that are pursuing a number of high-level goals with varying worth (importance) and time
deadlines, each of whose achievement requires the (partial) satisfaction of a number of subgoals;
these subgoals in turn may have their own time constraints imposed as a result of the time
constraints on the higher-level goals that they are helping to achieve. This model of agent
computation leads to a situation where each agent may be trying to achieve a number of subgoals,
possibly associated with more than one high-level goal. We are also assuming that these subgoals
may be achieved with varying levels of quality (satisfaction) which in turn will have an impact on the
ultimate worth of the higher-level goal. We do not assume that every high-level goal needs to be
achieved in order for the collection of agents as a whole to operate effectively16.

Underlying Conceptual Model

The underlying model of computation implicit in the GPGP approach to agent coordination can be
conceptually represented as an extended AND/OR goal tree where the leaves of the tree are primitive
(non-decomposable) activities. For each goal that the system is solving, there is a tree that
represents alternative ways of solving this goal. For example, consider the goal tree for one high-
level goal as depicted in Figure 1. In this representation, subgoals are not only related to each other
by the AND/OR relationship among siblings, but also by constraints and other interdependencies
among the goals. Examples of these constraints and interdependencies include: when the result of
one subgoal is a precondition for another subgoal, when the result of one subgoal if available can
improve the performance of another subgoal (for instance, by providing additional constraints),
when two subgoal solutions need to be compatible (obey constraints on their solution) since they
contribute to the solution of the same higher-level goal, when one subgoal produces a resource (or a
state in the world) that is needed by another subgoal, and so forth.

A centralized view of the search control problem associated with solving this goal tree involves at
each point choosing which subgoal to work on in order to produce the highest quality result in the
available time. Now let us look at Figure 2, which is the distribution of this tree between two agents.
Note the circles around certain goals and subgoals indicating that both agents are working on the
same parts of the goal tree (jointly-shared goals). The question now arises as to what type of
knowledge about the current state of the problem-solving search in Agent 1 would be helpful to
Agent 2 in deciding which order to solve its subgoals, and how the decisions among the two agents
should be coordinated. For example, should they simultaneously pursue alternative ways of
achieving some subgoal (e.g., G1,2

k, 1 and G2
k, 2 solving for G1,2

k) or should one agent delay
executing its subgoal until it gets the results of another subgoal being solved by the other agent
(e.g., G2

k, 2 waiting for the result from G1
1, 1). This scheduling problem becomes significantly more

16In the initial implementation of GPGP using the DTT Scheduler [19], there was a bias in local decision making
towards achieving some minimal satisfaction of every high-level goal rather than maximizing the overall worth of
the high-level goals achieved. In the more recent DTC Scheduler [60], the bias is not present and the scheduler works
to maximize an overall utility function specified by the coordination module or the agent’s domain problem solver.

5

complex if the agents are pursuing more than one high-level goal due to the large number of
possible combinations. The computational complexity increases further when there are deadlines
for the achievement of goals, there are alternative ways of achieving a goal that trade off the utility of
the derived solution and the likelihood of successfully achieving a solution against resource usage,
or the goals are only partially overlapping among agents. For example, Agent 1 is pursuing a
subtask associated with high-level goals 1 and 2, while Agent 2 is pursuing a subtask associated
with high-level goal 2 and goal 3. We can further complicate this problem by assuming that the goal
tree is not a priori decomposed among the agents but is either dynamically assigned as the goal tree
is being created (a top-down perspective) or the relationship among subgoals is not known a priori.
In this latter case, the relationship among goals (e.g., G1

0 and G2
0 are the same goal) needs to be

discovered through agent communication.

DATA/
Resources

dj+1 . . . rm. . . .dzd1 rj

G0

G1 G2 . . . Gk-1 Gk Gn

G1,1 G1,2 G1,3 Gk,1 Gk,2

Gk,1,1... Gk,2,2

AND

OR

AND AND

AND

Gk,1,4
Gk,2,1

Gk,1,2 Gk,1,3

Figure 1: Represents an AND/OR goal tree that specifies a set of subgoals that need to be solved in
order to solve the top-level goal. At the bottom of the figure are raw data and resources that are
needed to solve specific subgoals. The figure also represents interdependencies among goals and the
fact that one subgoal may contribute to solving more than one higher-level subgoal.

6

Figure 2: Represents the goal tree pictured in Figure 1 distributed between two agents. The
superscript on a subgoal indicates which agent is responsible for solving that subgoal. A subgoal that
is being solved either partly or completely by both agents will have two numbers associated with its
superscript. Those subgoals have ovals around them. Subgoals being solved by only Agent 2 have
boxes around them while those being solved only by Agent 1 have nothing surrounding them.

In order to operate effectively in this framework, decisions need to be made about what subgoals an
agent will try to achieve, when it will attempt these goals, and how much effort it will spend on each
goal. In essence, we see these control decisions as the output of an optimization problem which is
trying to maximize the utility that the group of agents accrue over some time frame from the
(partial) satisfaction of a number of higher-level goals. As will be discussed later, additional
quantitative information beyond what is specified in a classic AND/OR goal tree is necessary for
appropriately formulating this optimization problem, e.g., the time it will take to achieve a subgoal
and how the achievement of a subgoal (if there are alternative ways of achieving it) contribute to the
utility accrued by its higher-level goal. Also needed is additional quantitative information and
sequencing constraints that specify a more detailed view of the nature of the interdependencies
among subgoals, their current degree of satisfaction, whether they are scheduled for execution (i.e.,
whether they are part of the agent’s current plan to satisfy the high-level goal), and deadlines on
their completion.

7

Our approach to this optimization problem of necessity needs to be distributed, quantitative and
approximate because of limits and delays imposed by the agent communication medium, the
uncertainty associated with agent problem-solving behavior, and the cost of decision making due to
the combinatorics resultant from even a relatively small number of agents in the system and a small
number of higher-level goals that are being pursued concurrently. For these reasons, GPGP is
designed so that each agent optimizes its own local computational activities over optimization
criteria defined by local considerations but mediated by both short-term and long-term knowledge
of the activities of other agents. This mediation occurs as a result of GPGP imposing additional
constraints on groups of these local optimization problems. These constraints connect local
optimization problems that are not independent (i.e. agents who have dependencies among their
activities) and represent a way of locally approximating the more global optimization problem
involving the group of agents having interdependent activities.

There is a strong connection between the GPGP coordination module that is resident at each agent
and a local scheduler/control module that is part of each agent’s architecture. The connection
between these two is necessary because the generation of suitable constraints must take into account
characteristics of the current solution to the local agent optimization problem, e.g., when resources
are available, when tasks will be performed, etc., but also the implications of change such as
performing an unplanned task at a particular time. In our current work, the agent’s local
optimization expert is the Design-to-Criteria Scheduler (DTC) [60, 62, 66] or another module built
on top of DTC [58], all of which are descended from the Design-to-Time (DTT) [19] scheduler17.
The scheduler plays a critical role in coordination because the GPGP module may engage in an
active search process to create constraints that are suitable to coordinate the activities of the local
agent with other agents. During this search process, GPGP may query the DTC scheduler
repeatedly to explore the implications of constraints, and their associated temporal/resource
bindings, and to obtain feedback from the scheduler about alternative constraints that may be more
appropriate [18]. In our work, the local scheduler module must also be more than a conventional
scheduler (that makes sequencing decisions) since it is required to carry out planning activities like
task selection. In essence, the scheduler must make decisions about which one of a pre-defined
(though potentially quite large) set of alternative approaches should be used to satisfy a goal and if
there are multiple goals to solve, which ones should be solved in order to generate the maximum
local utility.

The GPGP and DTC modules present in each agent thus combine to guide the agent’s activities
using knowledge of its own local situation and partial knowledge of the activities being carried out
by other agents. Each agent’s local GPGP module also coordinates or negotiates with the GPGP
modules of other agents to generate constraints on local control that will lead to more coherent
agent activities. The resulting local control decisions made by GPGP and DTC are only
approximately correct because of the limits on communication and processing resources. First,
complete and up-to-date knowledge of all agent activities is not used due to the cost of obtaining
and processing the information. Second, not all GPGP modules are involved in the decision
process; only those having goals that are directly related to the goals of the agent making the local
decision are18. Third, the GPGP modules do not engage in a complete/exhaustive negotiation
(search) process that is guaranteed to find the constraints to place on local agent control that lead to

17 In the work on the DECAF agent architecture [20, 21, 23] that uses a variant of TÆMS, a simpler scheduler than
DTC, called DRU, was used [22].
18 In the current implementation, even if the GPGP module is aware that there are multiple relationships among
goals of different agents that need to be taken into account, it will treat them independently rather than as a unified
group of relationships. There is current work on trying to take into account these other relationships [74].
Additionally, GPGP currently operates mainly on relationships that only span two agents except for one mechanism
(avoiding redundant activity) that can handle the situation where two or more agents are planning to do the same
activity. Again, the fact that existing GPGP mechanisms mainly operate in the context of two agents is not inherent
in the approach but was initially done to simplify the protocols among GPGP modules.

8

the most coherent behavior. Finally, because of combinatorics, the local scheduler module is not
guaranteed to generate optimal schedules [60, 62, 66].

Additionally, it is important to emphasize that the GPGP approach to coordination is an incremental
and evolving one. This also leads to an approximation of an optimal agent coordination policy since
the choice GPGP makes about how to coordinate at one instant does not fully reflect possible
changes in the coordination scenario as the result of the execution of scheduled activities nor the
arrival of new goals/tasks. It is incremental and evolving, since as the execution of activities results
in behaviors that do not fall into expected ranges, there are new tasks/goals that an agent encounters,
or there is new or revised information that the agent receives about the state of other agents’
activities, the agent will need to re-evaluate its current plans and schedules19. This re-evaluation may
in turn cause the agent to revise its coordination strategy that may then cause other agents to revise
their plans, schedules and coordination strategies.

This incremental and evolving approach to coordination is in contrast to a distributed MDP optimal
policy where all contingencies based on the execution behavior of activities in agents are pre-
analyzed and factored into the design of an optimal coordination policy [4, 71, 72]. We do not feel
this type of complete pre-planning for every execution contingency is feasible in environments
where there are a very large number of possible scenarios over some finite horizon involving how
goals are distributed among the agents and when goals become active and need to be completed. In
such environments, we do not think it is feasible in soft real-time to do the computation necessary to
generate an optimal coordination policy so that when a new or revised coordination scenario
presents itself a policy can be generated sufficiently quickly to be useful [3]. Further, off-line
generation of policies for all scenarios also seems infeasible because of the large number of
scenarios20. However, we are not saying that some level of contingency analysis is not worthwhile
[48, 70, 77], and in the future section on Uncertainty and Dynamics of Commitments we will
discuss how this analysis can be used to construct better coordination strategies. Further, in
environments where there is more regularity in distribution and arrival rate of goals, which also
implies more structure to the transitions among scenarios, a more pre-planned, contingency-based
approach may be appropriate.

In essence, there is a spectrum of approaches to coordination that represent different trade-offs
(optimality of coordination, computational costs, communication costs, delays, etc.) based on where
they lie in a multi-dimensional space. The dimensions of this space include for example: 1) the
amount, detail and accuracy of information used about the current and future set of activities for the
local agent and other agents; 2) the time horizon for which a strategy is appropriate; 3) the
contingencies that are analyzed and the ones that are pre-planned for; and 4) the optimality of the
coordination strategy. From this perspective, GPGP makes the following choices: it only acquires
information about other agents based on the existence of potential interdependencies among goals
that are deemed important in the current situation; it limits the time horizon and analysis to the

19Over the years, we have explored a number of techniques for reducing the frequency of complete re-planning, re-
scheduling, and re-coordination. The ability to reduce the need for re-coordination is also strongly related to the
ability of local agent control to find alternative schedules for its activities, in the event of performance deviation,
without breaking existing commitments. These techniques have included adding slack time into schedules, local re-
ordering of scheduled activities based on existing constraints and commitments, incremental planning and scheduling
as new task arrives, replacement of scheduled activities with semantically equivalent activities that use less resources
but have poorer performance [17, 58, 76].
20 In this discussion, we have not discussed the possibility of generating non-optimal distributed MDP policies on-
line quickly (which, though approximate are very good policies), or trying to dynamically adapt a smaller set of
optimal policies for a selected set of scenarios to work non-optimally for a scenario in the larger set of possible
scenarios. These are definitely possible approaches that may turn out to be very useful to have in a toolkit of
approaches to coordination.

9

known current goals21; it does some level of analysis of contingencies in choosing local schedules
and commitments but does not pre-generate alternative local schedules to handle specific
contingencies, and as describe above, it makes a variety of decisions that limit computational and
communication costs to the detriment of the optimality of coordination. As always, there is no one
best approach to coordination; the appropriateness of a specific approach to coordination depends
on factors such as the size, regularity and dynamics of the coordination scenario space, the type and
degree of inter-dependencies among agent goal and activities, the worth structure of different goals,
and the uncertainty in agent behavior, etc.

To summarize, GPGP approximates the solution to the global optimization problem of choosing
and sequencing activities of a group of agents that generate the highest combined utility by breaking
the problem down into a set of asynchronous and evolving local optimization problems, one per
agent, where part of the optimization problem is solved by GPGP and part by the DTC scheduler.
Each of these local optimization problems involve choosing and sequencing local agent activities;
these local optimization problems are in turn modified to reflect the dynamically evolving
interactions of activities in different agents with these local activities. This modification occurs
through the addition of constraints22 on local agent activities (commitments to other agents) and
expectation of the results of non-local agent activities (commitments by other agents). These
modifications occur through a limited sharing of information and search by a small group of
agents.

Implementation of Underlying Conceptual Model

GPGP starts by each agent (i.e., the domain problem-solving component of the agent) constructing
its own local view of the activities (goals and their associated task structures) that it intends to
pursue in the short-to-medium-term time frame, and the relationships among these activities. The
TÆMS representation, an enriched representation of a goal tree that includes quantitative
information and temporal sequencing constraints plus more dynamic information on the state of
subgoal scheduling execution, is the shared representation that is used by the problem-solving,
coordination and scheduling components to communicate among themselves. This view of local
agent activities may be augmented by information both static and dynamic about the activities of
other agents and the relationship between these activities and those of the local agent; thus, the view
evolves from a local view to one that is not entirely local (i.e., partially global). Individual
coordination mechanisms that are part of GPGP help to construct these partial views, and to
recognize and respond to particular inter-agent task structure relationships by making commitments
to other agents. These commitments result in more coherent, coordinated behavior by affecting the
tasks an agent will execute, when they will be executed, and where their results will be transmitted.
Integral to GPGP is a domain-independent scheduler that, based on commitments, agents’ goals,
the local and non-local values of tasks, and other agent activity constraints, creates an end-to-end
schedule of activities for the agent to perform23 that meets real-time deadlines and addresses cost
and resource constraints and preferences. In this way, GPGP coordinates the activity of agents
through modulating their local control as a result of placing constraints and commitments on the
local scheduler. No one coordination strategy is appropriate for all task environments, but by

21 As implemented in [64], a simple model of future task arrival could be easily incorporated into GPGP through an
opportunity cost model.
22These constraints consist of both simple constraints on the temporal ordering of activities, such as the earliest time
that an activity can start, the latest time it can finish, and a time interval at which the activity cannot occur and more
complex constraints such as guaranteeing that an activity (or related group of activities) is completed with a certain
quality by a specified time.
23Schedules, as previously discussed, are revised or replaced as new information arrives or the problem solving
context changes. This end-to-end view is necessary in order to meet overall real-time and resource constraints. This is
in contrast to the myopic view employed in [28].

10

selecting from a set of possible coordination mechanisms (each of which may be further
parameterized), we can create a wide set of different coordination responses that provide a range of
trade-offs between the overhead of coordination and the optimality of coordination.

To reiterate, the central representation that drives all of the GPGP coordination mechanisms is that
of the local (and non-local) task structures as specified in TÆMS. Several important pieces of static
information are captured in a TÆMS representation of agent activities. Figure 11 (see page 25)
illustrates pictorially some of these items, which include: (a) the top-level goals/objectives/abstract-
tasks that an agent intends to achieve including the deadline for their completion and the earliest
time they can begin being executed, (b) one or more of the possible ways that they could be
achieved, expressed as an abstraction hierarchy whose leaves are basic action instantiations, called
methods, (c) a precise, quantitative definition of the degree of achievement in terms of measurable
characteristics, such as solution quality and time, called quality-accumulation-functions (qaf’s), (d)
task relationships that indicate how basic actions or abstract task achievement affect task
characteristics (e.g., quality and time) elsewhere in the task structure, and (e) the resource
consumption characteristics of tasks and how a lack of resources affects them24. The existence of
interdependencies among subtasks situated in different agents as specified by qaf’s, task
relationships and resource consumption characteristics are the triggers that are used by GPGP to
establish coordination of activities among agents. It is also important to emphasize that the TÆMS
representation is not intended to capture the detailed problem-solving state of an activity. The only
state information easily representable is the level of resources used and the amount of quality so far
achieved25, and it is the responsibility of the domain problem solver to update this information as
methods complete execution. This choice of representation is quite unique and powerful. Unlike
many systems, it deals with worth-oriented [52] environments where a goal is not black and white,
but rather has a degree of achievement associated with it. We also allow many task structures to be
active at once, representing several objectives all of which must be achieved to some degree.
Additionally, the agent's task structure view may change over time due to uncertainty or a
dynamically changing environment26.

Qaf’s are generalizations of logical constraints among tasks and their subtasks such as and and or
to quantitative functions such as min and max, respectively. The idea is to provide a repertory of
such qaf’s that can be used to approximate how the relative success in achieving a low-level
problem-solving activity will eventually affect higher-level activities of which they are a part. In a
similar way, task relationships represent a quantified view of temporal constraints among activities27

as a result of information sharing relationships. Hard relationships (e.g., enables) denote when the
result from one problem-solving activity is required to perform another28, or when performing one

24 Though resource consumption characterizations were part of the specification of TÆMS as defined in [11] they
were not used as a basis of coordination in the original GPGP.
25 As will be discussed later, TÆMS has been extended to include outcomes on methods. In this way, a limited and
local representation of domain state can be represented. Additionally, pseudo resources can be created to add in some
capability for representing a more global domain state.
26An agent’s problem-solving component is expected to modify the task structure to reflect its revised view of its
expected domain problem solving activities.
27 Task relationships as specified currently in TÆMS only involve relationships between two tasks. There is no
reason that more complex relationships irreducibly involving more than two tasks could not be created but we have
not yet found a compelling need for such relationships in effectively modeling subtask interdependencies for the
applications we have so far studied. It should be noted however that qaf’s represent relationships among an arbitrary
number of subtasks.
28 The enables relationship between tasks at different agents indicates that a result needs to be transferred, after the
enabling task is completed, to the enabled task at the other agent before it can execute. There are other types of
semantics that could be associated with the type of precedence relationship represented by enables. For instance in
STEAM [47, 56, 57], there is a role dependency relationship between tasks that does not imply information transfer.

11

activity precludes the performance of another (e.g., disables). Soft relationships, such as facilitates (or
hinders), express the notion that the results of one activity may be beneficial (or harmful) to another
activity, but that the results are not required in order to perform the activity. The quantified view of
these relationships indicate how the quality of the information generated by an activity will affect the
performance characteristics of the activity using this information, such as the length of its execution
and the quality of its resulting solution. The quantified aspects of these relationships are
parameterized so that the user has some flexibility in specification. Resource consumption
characteristics are specified in much the same way as task relationships, except that relationship is
between a resource and a task rather than a task and a task. We have used the produce and consume
relationships from task to resource to specify the amount of a resource used and produced,
respectively, as a result of task execution; the limits relationship from resource to task has been used
to represent how the lack of the required resources will affect the performance characteristics of the
task such as delaying task execution or increasing the amount of time for the task to execute. The
set of task and resource relationships that we have chosen is again an attempt to construct an
appropriate repertory of such relationships that will allow the faithful modeling of domain problem-
solving activities.

By restricting the set of qaf’s, task relationships and resource consumption characterizations to be
predefined rather than user defined, it permits more computationally efficient analysis of the TÆMS
structure by the DTC scheduler and GPGP but at the cost of less faithful approximation by TÆMS
of domain problem-solving activity. This efficiency is important since one of the main analyses
done repeatedly on the TÆMS task structure is making predictions on how the choice of particular
paths through the task structure will affect the expected quality and duration of the overall task. To
re-emphasize, TÆMS takes both a very abstracted view of the state of domain problem solving and
a very local view of how intermediate activities affect the state of domain problem solving as
reflected in the definition of qaf’s and task relationships. The key issue is whether this very
abstracted and approximate view of domain activities is sufficient to make effective coordination
decisions among agents. We will delay a more detailed discussion on TÆMS until the section on
extensions to TÆMS.

In terms of BDI-style architectures [51], an agent selects from among its desires an intended set
which are then “planned” for, and whose component actions are then “scheduled” for execution.
In this paper, we view “planning” as the process of elucidating a task structure with a manageable
number of possibilities, and “scheduling” as the process of selecting specific intended actions and
locating them in time. In fact, planning, scheduling, and action execution can be viewed as
increasingly specific and less revocable intentions to more and more precise action specifications.
As stated earlier, GPGP, despite the name, has so far focused primarily on coordinating the
scheduling process29.

The GPGP approach uses this basic TÆMS task structure representation, and adds two important
extensions: partial representations of the task structures at other agents, and local and non-local

Rather, it indicates that one task has created a state of the world that is necessary for the execution of the other task.
A transfer of a message from one agent to the other can indicate the existence of this state of the world or it can just
be observed by the dependent task. We can easily model this type of “role dependency” relationship in our
framework, either though the use of a new relationship that is similar to enables but without the information
transfer, or with the use of the producer/consumer relationship on a pseudo resource which represents the state of the
world that is desired. In fact in [11, pp. 54–58], a more complete list of relationships (facilitates, hinders, precedence,
causes, shares-results, cancels, favors) are specified, many of them oriented toward modeling interrelationships
among non-computational activities such as “causes” where the result of completing one activity results in the
completion of another activity.
29The name GPGP derives from Durfee's Partial Global Planning [16], which by today's definition of AI planning
also focuses on the scheduling end of the planning-scheduling spectrum.

12

commitments to task achievement. Each GPGP coordination mechanism is specified with respect to
features in these dynamically changing task structures, and so provides flexible coordinated
responses across different problem domains. The quantitative, worth-oriented approach has several
benefits when compared to symbolic, preplanned, domain-specific approaches [29]. In particular,
GPGP is not domain-specific, but rather task-structure-characteristic-specific. The same task
relationships may appear across many different domains, and the same coordination mechanisms
can be used30. Efficient and effective coordination must account for the benefits and the costs of
coordination in the current situation. The current situation includes the goals that the agent is
currently pursuing, the goals it will likely pursue in the near term, the characteristics of the abstract
tasks and basic actions available to achieve these goals, their relationships to other tasks (possibly at
other agents), and the degree of achievement necessary for each goal. Purely symbolic reasoning
about costs and benefits can be extremely complex, particularly in large systems and open
environments. Thus, the ability to reason quantitatively about the benefits and costs of coordination
seems essential for effective system operation where there is a large set of situations that need to be
reasoned about [37].31

Connections to Joint –Intention Model

The initial set of mechanisms for GPGP was derived from Durfee's work on PGP [16] in the
Distributed Vehicle Monitoring Testbed (DVMT). These five mechanisms were: (1) communicate
non-local views; (2) communicate appropriate results; (3) avoid redundancy; and (4,5) handle hard
and soft coordination relationships that extend between tasks at two agents [10, 11]. These five
basic mechanisms formed a domain-independent set for basic agent teamwork. As such, it is
interesting to compare them to Tambe's work on flexible teamwork, implemented in the STEAM
and TEAMCORE frameworks [47, 56, 57], that is in turn based on Cohen & Levesque's work on
joint-intentions32 [42]. In particular, the five initial GPGP mechanisms do not separate the
environment-centered coordination actions from actions oriented toward teamwork itself. In other
words, in general, GPGP does not communicate solely to maintain some explicit model of
teamwork. However, a striking example of the relationship of GPGP to the Cohen and Levesque
teamwork model is their prediction that team members should communicate when they believe that
the object of a joint persistent goal has been achieved, found to be unachievable, or irrelevant. The
GPGP “communicate results” mechanism contains a clause to communicate a “final result”
(degrees of achievement) for every task group (implicit joint persistent goal) indicating that the
agent believes no further actions can be done for that task group. Interestingly, this is one of the
small generalizations that were added when creating the general GPGP mechanisms from the
original DVMT PGP heuristics.

GPGP currently only represents joint intentions implicitly. There are no explicit mechanisms to
guarantee agents have mutual intentions to achieve their parts of the jointly shared goal. GPGP
generates commitments to accomplish subtasks of a jointly shared goal though these detailed
commitments are not in response to a more encompassing commitment, explicitly held by each
agent, to achieve the jointly shared goal. There is no guarantee that an agent will solve its part of a

30The question of which mechanism to use when more than one is possible is a question about
organizational/societal norms.
31In fact, there are two primary classes of reasoning embodied in the GPGP/scheduler pair. The first class pertains to
the reasoning required to form and propose commitments with the other agents, the second class pertains to
understanding how the choice of actions is affected by commitments and when/if commitments may realistically be
satisfied. In our current work [63], we are further separating these two different types of activities so that
commitments may be specified by components other than the GPGP coordination module.
32 STEAM/TEAMCORE framework extends the original joint-intentions model in some important practical ways
such as providing mechanism/reasoning so that agents’ can 1) switch roles if one of their teammates fails in
fulfilling its role, and 2) selectivity choose whether to follow the prescriptions of the joint-intention model based on
a decision theoretic analysis of the costs of communication in the current situation.

13

jointly shared goal though it knows of its existence. In fact from a social utility perspective, an agent
may choose to solve other goals/tasks that it knows of rather than its part of a jointly shared goal.
However, what is of concern is if the following situation occurs: an agent solves its part of a jointly
shared goal while an other agent chooses not to solve a critical part of the jointly shared goal, thus
making the other agent’s effort worthless. Additionally, there are limited mechanisms in the initial
GPGP to coordinate about which alternative ways agents should achieve their local subtasks of the
jointly shared goal that would be maximally beneficial to them in the context of the other tasks they
are doing. This latter problem entails a complex distributed search due to the complex qaf
relationships possible among distributed subtasks. We have only recently begun to solve this
problem in restricted cases as will be described in the section on more complex coordination
mechanisms. Of the original five initial mechanisms only the redundancy mechanism is triggered
by the existence of a qaf’s relationship (i.e., max) among sibling subtasks located in different
agents, and it uses a very simple heuristic not involving distributed search for making a decision33.
Neither the lack of explicit mechanisms to generate a joint intention nor the lack of mechanism to
handle qaf’s such as min (and) turned out to be a serious problem in the experiments [10, 11] that
we have conducted. Problems did not often occur because: 1) subtasks in a jointly shared goal were
often connected through interrelationships so that failing to schedule a subtask in one agent would
lead another agent to not schedule its related subtask—this resulted in implicitly deciding to not
solve the shared joint goal34; and 2) the scheduling heuristic used by the local scheduler (DTT [19])
was to first guarantee, if possible, that all local task structures achieved some minimum level of
utility before attempting to maximize the overall utility achieved by all local tasks. Based on these
reasons, the GPGP mechanisms operated correctly in most cases by either explicitly generating
commitments to solve a subtask of the jointly shared goal (or not solve it) due to an
interrelationship between a subtask of the shared goal held by another agent or scheduling these
subtasks due to local utility concerns. We now feel that with a few additional messages being
transmitted among agents35, GPGP could be made to work in all cases within our existing
mechanisms; these messages would guarantee that when an agent made a decision not to schedule
activities to generate utility for their part of a shared goal other agents having parts of the shared
goal would be notified. In essence, we are saying that the joint–intentions model is compatible and
integratable with our quantitative view of coordination and the issue of implicit versus explicit
representation of jointly shared goals becomes moot as we add additional attributes to the TÆMS
task structure representation necessary to support the reasoning associated with these additional
messages being exchanged among agents.

33 We have also explored more complex heuristics involving load balancing [11, pg 163-164].
34 When non-local tasks were connected to local tasks as a result of task relationships such as enables, this would
trigger a coordination mechanism to be invoked. If successful, it would result in a commitment that would guarantee
that the result needed by the local task would be generated in a timely way. If a commitment could not be achieved
successfully, then either an alternative way of solving the local task that did not need the non-enabled task was
found, or the local task would not be scheduled for execution. This knowledge of the resultant local scheduling
decision would be transmitted to the other agent so it could update the expected utility to be produced by doing its
local task as part of the larger task. If this utility were zero, the other agent would not schedule tasks associated with
its part of the shared goal. However, this local utility as contained in a non-local commitment at a remote agent was
not always changed when it changed at the local agent because too much communication was needed.
35 We already send messages alerting agents of failed commitments. What we don’t handle correctly in all situations
is a case where the lack of successful generation of a commitment may still allow agents to find another way to
solve their part of the joint goal, nor the case where there are no task interrelationships among the task structures
that make up the shared goal and there is only a qaf relationship that defines the connection among activities.
However, it should be mentioned that none of these issues arise when one agent contracts with another agent to do
part of a higher-level goal, i.e., top-down coordination. All the problematic situations described above occur when
agents need to recognize that their local activity is part of a higher-level goal to which other agents are also
contributing, i.e., bottom-up coordination. In this case, the execution of their local activity does not make any sense
unless other agents are committed to executing their local activity, which is part of the jointly shared goal.

14

Additionally, Tambe’s STEAM/TEAMCORE work points to a need to more carefully define
coordination mechanisms to separate bottom-up, environment-centered coordination activities from
top-down, organizationally-prescribed teamwork coordination activities — an exciting area of future
work. On the other hand, the success of using GPGP environment-centered mechanisms in multiple
environments demonstrates that there are indeed general mechanisms for solving domain-level
coordination problems in different environments, because the task relationships in those
environments can be characterized in a general way. While STEAM's teamwork rules are general, it
still requires the addition of new, different, domain-specific coordination rules for each domain.
Another difference is that TÆMS and GPGP deal in worth-oriented environments, thus goals are
achieved to varying degrees, rather than black and white “achieved or not achieved.”36

A Detailed GPGP Example

To illustrate how GPGP operates, consider the task structure shown in Figure 3. The task structure
represents a global view of all of the activities being carried out by three cooperative agents, A, B,
and C, and the interactions between these activities. In this example, the agents are fully cooperative
and working to achieve common objectives so the utility produced by one agent has equal value to
another agent.37 In this structure, task A1 facilitates task C1 and task A2 facilitates task B1 – in
other words, agent A’s tasks interact with tasks being carried out by each of the other agents. Given
this global view, control problem solving, while exponential, is straightforward. However, in GPGP
we do not assume that a global view exists or that it is even composable. In large-scale multi-agent
systems, particularly those embedded in dynamic environments, construction of the view is
generally not possible and the combinatorics of centralized problem solving make the centralized
approach intractable.

����������	

�
�����

�����

�	���	�	

	����

�� ������

�����
��	���	�	

	����

��
��

�����
��	���	�	

	����
������ ��

����������	

Figure 3 – The Hypothetical Global View

In GPGP, initially, each agent has a view of only its own local problem-solving activities. Figure 4A
shows agent A’s initial view, Figure 4B shows B’s initial view, and Figure 4C shows C’s initial
view. In this example, the agents are autonomous and operating on their own local task structures.
None of the agents’ activities require input from any other agent and the potential relationships
between their activities are not known a priori. Each agent’s tasks also have quality, cost, and
duration characteristics, as well as potential local constraints such as deadlines and earliest start
times. In this example, we will assume that the agents are fully cooperative (attempting to maximize

36 In STEAM, there are some quantitative thresholds that are used to indicate whether a goal was successfully
achieved, e.g., 70% of the planes reached their destination. However, there is no reasoning to our knowledge in
STEAM about how to dynamically set this threshold given current conditions and how to generate different plans
that will likely achieve different thresholds.
37 Because the agents are fully cooperative, in the global view, there is actually a root task common to all the agents
that joins their activities. In other words, the cooperative relationship that results in the summing of the utilities
produced by the individual agents is represented explicitly in TÆMS by placing a super task over the tasks of the
individual agents. In this example we have omitted the root task to clarify the different world views held by the
different agents.

15

overall utility) and that the tasks have the following durations and deadlines: A1 has a duration of 6,
A2 a duration of 5, B1 a duration of 5 and a deadline of 10, C1 a duration of 4 and a deadline of 10.
We will assume that the other tasks are unconstrained and ignore their characteristics, to clarify the
example.

��
��

�����
��	���	�	

	����
������ ��

Figure 4A - Agent A's Initial
View

�� ������

�����
��	���	�	

	����

Figure 4B - Agent B's Initial
View

�
�����

�����

�	���	�	

	����

Figure 4C - Agent C's Initial
View

Each agent constructs a local schedule based on its local view. This is generally done by the
Design-to-Criteria (DTC) agent scheduler [60]. DTC analyzes the agent’s task structure, its
constraints, and evaluates the different trade-offs of different possible courses of action and custom
tailors a schedule for the agent. Given that the agents’ initial views are only of their local problem-
solving activities and their local constraints, the initial schedules of the agents are shown in Figure
5. Note that time 10, which is the deadline for tasks B1 and C1, is identified in all of the schedules.

�� �������
��	��������� ���!���

�"�#

�
������

�	��������� ���!���

�"�#

��	��������� ���!���
�� ����

�"�#

Figure 5 - The Agents' Initial Schedules

If agent A encounters agent B during the course of problem solving, the agents may then engage in
a dialogue during which they compare their activities, or portions thereof, and look for interactions
between the activities. In GPGP, the mechanism used to exchange and compare task structures is
called exchange-non-local-views. It is during this dialogue that the facilitation relationship between
agent A’s task A2 and agent B’s task B1 is discovered. To ground the example, if the agents were
information-gathering agents, the facilitation might model agent A providing a URL to agent B so
that agent B does not need to search for said URL. After the exchange, agent A and agent B have
views of each other’s activities as shown in Figure 6. Note that if the agents have larger task
structures, it is unlikely that the agents will exchange entire task structures38.

����������	
�� ������

�����
��	���	�	

	����

��

��

�����
��	���	�	

	����
������ ��

Figure 6 - Agent A's and B's View After the Information Exchange

38 In the experimental work cited in [10, 11], the norm for most experiments was to exchange only partial views.

16

After A and B detect the facilitation relationship they can then compute that performing A2 before
B1, and sending agent B the result from agent A, will improve the overall utility of their problem
solving. Thus, to improve problem solving the agents deploy the GPGP handle-soft-interactions
mechanism and agent A reschedules, using DTC, and offers agent B a commitment to produce a
result for A2 by time 5 so that agent B can execute task B1 between time 5 and 10 and still meet its
deadline. Agent B then reschedules, again using DTC, to take advantage of this result. Their
respective schedules after the commitment is formed are shown in Figure 7.

��
��	�$�%�	�!� ���!���

�"�#

 ���� �������
�����
����������&����!

���� ��

�"�#

Figure 7 - Agents A and B Revise Schedules to Leverage Positive Task Interaction

The example thus far illustrates a single exchange, discovery, and commitment formation between
two cooperative agents. However, GPGP was designed to operate in an open environment where
this type of activity occurs frequently as agents discover one another and as the environment
changes or the tasks being performed by the agent’s change. Control in this context is a difficult
problem because little remains static – the goal in GPGP is to perform control from a satisficing
perspective and to respond to these dynamics of the environment.

Returning to the example, let us now assume that agent C encounters agent A. As with the exchange
between A and B, agents A and C will now exchange their local views. Agent A’s revised view is
shown in Figure 8 and agent C’s in Figure 9. Note that agent C does not have a view of agent B’s
activities – only agent A now has a full view of the activities happening at the other agents.

����������	

�
�����

�����

�	���	�	

	����

�� ������

�����
��	���	�	

	����

��

��

�����
��	���	�	

	����
������ ��

����������	

Figure 8 - Agent A's Revised View

�
�����

�����

�	���	�	

	����

��
��

�����
��	���	�	

	����
������ ��

����������	

Figure 9 - Agent C's Revised View

Let us assume that when task C1 is facilitated by A1 it will produce greater utility than B1 when it is
facilitated by A2. Note that because of the time 10 deadline held by both C1 and B1 agent A is
unable to facilitate both tasks. In this case, agent A must break its commitment with agent B, and
then reschedule in cooperation with agent C to form a new commitment to provide the result of task
A1 to agent C by time five so that agent C can perform C1. The act of decommitting from agent B
may involve a penalty depending on how the decommitment is structured. In the original GPGP

17

work, decommitment penalties were not used39. The revised schedules for the agents are shown in
Figure 10.

�� �������
��	�&����� ���!���

�"�#

�

�	�$�%�	�!� ���!���

�"�#

������
������
��
��
����������&����!
�� �� ��

�"�#

Figure 10 - The Final Schedules of Agents A, B, and C

This example shows the basic style of coordination in the original formulation of GPGP, which
involves an incremental, dynamically evolving process. It is also indicates the close interplay
between the local scheduler and coordination mechanisms.

Extensions to TÆMS

In its original conceptualization, TÆMS was a hierarchical task representation language that
featured the ability to express alternative ways of performing tasks, characterization of methods
according to expected quality and expected duration, and the representation of interactions between
tasks. As a result of using it in a number of applications, TÆMS has evolved considerably in its
representational power and in the scope of applications that can be appropriately represented.

Addition of Discrete Distributions

As TÆMS has evolved, we have moved beyond simple quality/time trade-off reasoning to a multi-
dimensional satisficing methodology [60]. Methods are no longer simply characterized in terms of
expected quality and duration values but are characterized statistically via discrete probability
distributions in three dimensions: quality, cost, and duration; and the work is extensible to multiple
other dimensions as well. The switch from expected values to discrete distributions enables
reasoning about the certainty [61] of particular courses of action, perhaps performing contingency
analysis [50, 77], as well as the quality/cost/time trade-offs. This more complete view is crucial in
highly constrained situations (e.g., where deadlines are present). For example, in meeting an
important commitment, it may be preferable to choose a highly certain course of action that has only
moderate overall quality to ensure that results are available by the deadline, rather than a less certain
solution path, even though it may have the possibility of a very high-quality payoff. The
enhancement of multiple attribute dimensions, including uncertainty, is also important because the
representation enables the multi-agent system designer to better characterize the desired system
performance [60, 62]. This new performance characterization takes into account both hard and soft
constraints on quality, cost and duration of the schedule of tasks intended to meet a high-level goal
or commitment. Additionally, the amount of uncertainty that is tolerable in meeting these constraints
can be specified [61].

Additional Quality Accumulation Functions

In TÆMS, progress toward the problem-solving objective is expressed and tabulated in terms of
quality. Tasks accumulate quality from their subtasks according to quality accumulation functions
(qafs). Originally, qafs defined only which combinations of subtasks could be performed to achieve
the parent task and how the subtask qualities are tabulated at the parent task. For example, the sum()
qaf denotes that the power set of the child tasks, minus the empty set, can be performed to achieve
the parent task and that the parent task's quality is the sum of the children's qualities. In the current

39 Although decommitment penalties were not used, an alternative, more qualitative mechanism was used to make
decisions about what commitments could be decommitted from and in what circumstances. A commitment when
initially constructed was marked with different “levels of negotiability” which reflected its relative importance.

18

TÆMS, qafs may also define orderings40. In all, we have developed a suite of nine different qafs to
represent the needs of different application domains.

q_min - Minimum single quality of all subtasks.
q_max - Maximum single quality of all subtasks.
q_sum - Total aggregate quality of all subtasks.

q_all - As with q_sum, except all subtasks must be completed.
q_seq_min - As with q_min, except all subtasks must be completed in order.

q_seq_max - As with q_max, except all subtasks must be completed in order.
q_seq_sum - As with q_sum, except all subtasks must be completed in order.

q_exactly_one - Quality of single subtask. Only one subtask may be performed.
q_sigmoid – Similar to q_sum except there is a parameterized sigmoid

function that defines how quality accumulates

Table 1: Definition of Quality Accumulation Functions

Another important enhancement is the representation of different possible outcomes for primitive
activities. For example, an action may produce a result of type A or type B, or it may fail entirely.
With the outcome enhancement, clients can represent cases where a result of type A is beneficial to
some other method, say method A; type B is beneficial to yet another method, method B; and the
failure outcome enables a recovery action. While outcomes have always been included conceptually
in TÆMS, either via entries in a method's quality, cost, and duration distributions or via a
contribution to the expected values in the early versions of TÆMS, this new explicit outcome
representation enables the expression of task interactions that are based on particular outcomes41.
The new outcomes feature also allows the representation of different outcomes that have different
statistical characteristics, i.e., different discrete probability distributions for quality, cost, and
duration.

40 The addition to qafs of task ordering information such as in q_seq_sum has provoked much discussion. One
argument against inclusion of this type of information is that with the appropriate set of temporal relationships
among tasks there is no need for the addition of ordering information to qafs. However, we eventual came down on
the side of ease of representation that occurs when in certain situations the qafs contain such information.
41 However, we have not developed the equivalent of qafs that are able to specify how outcomes at the method level
should be propagated to outcomes of higher-level tasks. The reason is that these functions seem very domain-
dependent and not amenable to systemization. This can be solved in part by having code in the domain problem
solver that will compute the higher-level outcome to be associated with a specific higher-level task. This can be
represented by slightly modifying the task structure such that each higher-level task that requires an outcome will
have a brother task, which is a method with the set of outcomes that are possible for its brother higher-level task.
The method, when executed after its brother higher-level task completes, is in reality a call to the appropriate code in
the domain problem solver that computes the desired outcome to be associated with the method. Unfortunately, this
does not solve the problem completely since there is no way for the scheduler to reason about the likelihood of
different higher-level tasks’ outcomes given a specific plan to achieve the higher-level task. An alternative approach
to solving this problem was taken in the DECAF architecture [20, 21, 23]. In DECAF, task outcomes are signaled
by the child tasks (and thus the outcome probability is the same as that of the child outcome). The outcome of a
parent task does not need to be signaled by the same, or even a unique, child.

19

Recommend a High-End PC System

Make Decision

Money
Resource

Build Product
Objects

Outcomes

Num Prod 1-4

Num Prod 5-8

Num Prod 9-12

Num Prod ...

Get Basic Product
Information

Query & Extract
Vender m

Query & Extract
Possible Maker n

Gather Reviews

Search & Process
ZDnet Reviews

Search & Process
PC World

Query & Process
Consumers Reports

q_sum_all()

q_sum()

q_sum()

q_seq_last()

q (10% 0)(90% 10)
c (100% 0)
d (10% 2min)(10% 2.5min)(80% 3min)

q (20% 0)(80% 8)
c (100% 0)
d (50% 1min)(50% 2min)

Query & Extract
PC Connection

Query& Extract
NECX

q (25% 0)(75% 20)
c (100% $2)
d (90% 3)(10% 5)

q (15% 0)(75% 10)
c (100% 0)
d (30% 3min)
 (30% 4min)
 (40% 5min)

q(..), c(..), d(..)
q(..), d(..), c(..)

consumes $2

limits
q multiplier (100% 0)
c multiplier (x)
d multiplier (x)

q(..), c(..), d(..)

facilitates & hinders

facilitates & hinders
q multiplier (100% +20%)
d multiplier (100% +20%)

Task

Method

Resource nle

Task nle

Subtask Relation

Key

enables

...

q_sum()

Figure 11: An Example of a TÆMS Task Structure for an Information-Gathering Agent

Figure 11 shows an example information-gathering TÆMS task structure, from the BIG
information-gathering agent [41] that contains some of these new extensions to TÆMS. The top-
level task is to recommend a high-end PC system. It has two subtasks: one that pertains to finding
information about various products and constructing models of the products, and one for making
the decision about which product to purchase. The two tasks are governed by a seq_last() qaf, which
indicates that the tasks must be performed in order and that the quality of the top-level task is
determined by the quality returned by the last subtask executed, i.e., the decision process task. This
models the fact that the decision process described here takes into consideration the quality,
coverage, and certainty of the information used to make the decision and reflects these attributes in
the quality of its final decision. The task that handles finding, extracting, and building information
objects Build-Product-Objects is decomposable into tasks for finding basic product information
and for gathering reviews. The sum_all () qaf denotes that both of these tasks must be performed
and that the quality of Build-Product-Objects is a sum of the qualities produced by the subtasks.
Build-Objects has a set of different outcomes42 that indicate the number of objects produced during
the information-gathering phase. Note the dotted edges leading from Build-Objects to Make-
Decision. These denote task interactions also called non-local-effects (or nles). The nles pictured
denote facilitation and hindering effects to model the notion that the decision maker’s quality is
improved by more objects but that more objects also increases the time required to make the
decision. Get-Basic-Product-Information has four children governed by a sum() qaf, which means
that the power-set of the children (minus the empty set) may be performed and that the quality of
Get-Basic is the sum of the qualities of its children. Note that the child tasks have different quality,
cost, and duration characteristics—essentially, there are 24-1 different alternative ways to perform
Get-Basic and the agent will determine which approach to employ based on the current problem-
solving context. For example, if time is limited, it may only get information from one fast site as
opposed to a set of sites.

42 The actual information-gathering task structure does not incorporate outcomes at the task level. This example is a
conceptual abstraction of the actual class of task structures produced by the information-gathering agent’s planner and
is simplified for example purposes.

20

Representation of Non-Computational Resources

The explicit representation of non-computational resources, such as network bandwidth, databases,
and physical resources like printers, is another important TÆMS enhancement. To do this, we
represent each resource explicitly in the existing task structure. As with task–task relations, a
task–resource relation indicates how the execution of a task affects the state of the resource, and
how the state of the resource affects the characteristics (quality, cost, duration) of the tasks to which
it is related. A monetary resource is shown in Figure 11 with appropriate consumption and limiting
resource relationships. Iteration and repetitive tasks are still more enhancements recently added to
TÆMS but not yet fully implemented.

Virtual Tasks

Figure 12 shows the same information-gathering task structure as it might be decomposed and
assigned to several agents. Obviously, many such decompositions are possible; the decomposition
in Figure 12 is according to the WARREN [13] approach to agent specialization in multi-agent
information-gathering systems. The Task Agent is responsible for producing the result but
Information Agents are the retrieval and processing experts. The interrelationships between the
different task structures denote GPGP coordination points. The task structure in Figure 12 actually
contains several different types of coordination-centric interactions. The inability of the Task Agent
to carry out the information-gathering actions means it must contract those duties out to the
specialists — this is handled by new GPGP mechanisms for virtual tasking or contracting
(discussed later). The enables nle between the two information agents requires the use of the original
GPGP coordinate-hard-task-interaction mechanism. The monetary resource interaction requires
resource centric coordination like that found in the recent hospital patient scheduling [14] and the
intelligent home automation [39, 40] applications.

Money
Resource

enables

enables

Recommend a High-End PC System

Make Decision

q_sum_all()

q_seq_last()

Build Product
Objects

Get Basic Product
Information
Non-local Task

Gather Reviews
Non-local Task

Get Basic Product
Information

Query & Extract
Vender m

Query & Extract
Possible Maker n

q_sum()

Query & Extract
PC Connection

Buy
Information

Gather Reviews

Search & Process
PC Worldq_sum()

Search & Process
ZDnet Reviews

Query & Process
Consumers Reports

task contracting
task contracting

consumes / limits
consumes

/ limits

Task Agent

Information
Agent

Information Agent

Figure 12: WARREN Style Model of Multi-Agent Information Gathering

The task structures shown in Figure 12 provide a small-scale example of TÆMS and interaction-
motivated GPGP. One can easily imagine a pool of information-gathering and decision-making
agents cooperating to equip an office. Interactions would exist between information-gathering
activities at multiple levels of abstraction. For example, two agents shopping for computer systems
might share free-format text reviews of the structured data produced by abstraction. Interactions

21

would also exist over shared resources and to support data-assimilation and data-driven decision
making.

TÆMS as an Abstract Model of Problem Solving

There are two views of how TÆMS is related to agent problem solving. One views TÆMS as a way
to represent agent problem-solving activities, that is, agents would literally use TÆMS internally.
The other view TÆMS as an abstract model of agent problem-solving activities43. It is this latter
view that is typical of our current uses in real applications: a domain problem solver uses its own
internal representation for problem solving and this representation is abstracted into a TÆMS task
structure for use by GPGP. In this way of using TÆMS/GPGP, we are arguing that for most
coordination needs an appropriately abstracted view of activities is sufficient for effective agent
coordination. This perspective motivates the continuous evolution of TÆMS. The addition of new
features and new representations to TÆMS is caused by the constant tension among
representational power of TÆMS to accurately model an agent’s problem solving activities, the ease
of being able to map these activities into TÆMS, and the ability to reason without significant
computational cost about these activities. There is a trade-off between representing large amounts of
problem-solving possibilities, and contingencies, and maintaining a somewhat unwieldy modeling
framework. For example, if the problem solver enumerates all possible problem-solving actions for
every step in the problem-solving process, and all possible actions caused by carrying out the first
set of actions, and all possible contingencies in the case of failure or a change in the environment,
the TÆMS model becomes computationally intractable44. However, through new constructs like
iteration, outcomes, and qafs that impose orderings and other semantics, the representational power
of TÆMS is enhanced without increasing the computational complexity of reasoning with the
TÆMS models. It also allows the domain problem solver to more accurately model key
contingencies and key repetitive actions, and thus provide GPGP with more information while not
overloading it with details. Without these features, an agent might have to constantly communicate
with GPGP about how its view of its future activities needs to be modified as the result of its
incremental execution of its tasks; this modified view may entail significant re-coordination
activities since other agents may also need to be notified of these changes. Instead, GPGP can now,
when it makes its original coordination decisions based on the agent’s description of its activities,
factor into these decisions that an agent’s activities may change in certain ways as a result of the
partial execution of its activities. For example, instead of establishing a commitment that is highly
uncertain because there is a significant possibility that a task established to satisfy the commitment
may not be completed successfully, it is now possible to analyze whether there would be another
way that the agent could successfully complete the commitment with additional time. Thus, the
coordination mechanism can, in making the original commitment, factor in some of the implications
of the original task failing and an alternative method being required, which can result in making a
different commitment that has a much higher certainty of being successfully honored.

Other Extensions to TÆMS

 We have also explored ideas for a number of other task relationships. We mention them here to
emphasize that the TÆMS/GPGP framework can be easily extended to represent other types of
task interdependencies. One relationship involves a new type of temporal synchronization among
tasks that denotes the constraint that both tasks need to be started and completed within the same
temporal window; the more quantitative aspects of this relationship would be the tolerable overlap

43 In this more abstracted view, a schedule of activities generated is more like a high-level policy indicating to the
domain problem solver which approaches to problem solving to use when, and what amount of resources to expend
on each approach [41].
44 Examples of modeling frameworks that have more complex control constructs are [53, 69].

22

among the temporal windows of tasks and how the task’s solution quality is affected by the amount
of overlap. Another relationship indicates that there are consistency constraints among solutions to
a set of tasks that will require sharing intermediate information among them to converge on a
solution; the more quantitative aspects of this relationship would be the expected frequency of
information exchange among tasks. Knowledge of both relationships could lead to more
coordinated scheduling of task activities in the different agents. Another interesting relationship
represents a meta-level exchange of information between tasks. In this case, the relationship
indicates that the completion of one task would provide information about the performance
characteristics of another task; this information could then be used by the agent’s problem-solving
component to revise its TÆMS description of the task. This relationship is like facilitates in that the
task can be performed without an updated view of its performance characteristics, but waiting for
this information in certain situations would lead to more optimized behavior45.

We have also implemented a more complex view of a method’s execution that permits us to model
activities that do not use the processor resource for their entire duration [59]46. This is
accomplished by specifying an additional attribute associated with a method that indicates what
percentage of the processor the method will use. Using this information, the scheduler can then
overlap method execution. In recent work [58], we have developed a more comprehensive view of
method execution that allows us to reason about concurrent execution of methods where there are
multiple processors and multiple copies of resources at a single agent and where methods may not
be using processor resources. This allows us to build agents that can not only schedule
computational activities but also act as resource controllers for shared resources [39, 40, 58].

Extensions to GPGP

There are three main areas of extensions to GPGP. The first concerns how the partial global view
used in making coordination decisions is constructed. It also has implications for how GPGP can
interact with other components in the agent. The second involves a more complex representation of
commitments. The third focuses on new and more complex mechanisms for establishing
commitments among agents. These extensions have been made for a number of reasons. One
reason has been to reduce the communication and computational overhead of using GPGP — the
full use of all the mechanisms is not warranted in all environments. This is also especially important
if GPGP is to operate in an environment with a large number of agents where agents take on
organizational roles. Another reason is to avoid forcing users of GPGP into only one style of
building multi-agent systems. The final reason is the desire to exploit the additional information
representable in the extended TÆMS on uncertainty and on usage of non-computational resources
for effective coordination.

It is important to mention that a current version of GPGP that includes all these extensions does not
exist. Some have been done in different versions of GPGP while others have been done outside of
GPGP though they have used TÆMS as their basic representation of task activities and
interrelationships. To our knowledge, there is no impediment to creating a version of GPGP/TÆMS
that incorporates all of these extensions in a unified way; in fact, this is a current goal of ours.

Constructing and Using the Partial Global View

45 The need for this meta-level relationship has been recognized in our own work [55] and by others [1].
46 We found this very useful in an information-gathering application [41] where we need to model methods that
access a WWW server site for information. In this case, there was not that much processor time spent in executing
the setting up of the call to the server and processing the received information but there was a significant delay before
the results were returned by the remote activity.

23

We have significantly enriched how the partial global view used in making coordination decisions is
constructed. Two issues motivated this first extension. One was a desire for increased efficiency in
coordination by being able to exploit default knowledge whenever it was available. The second was
being able to handle not only an agent-centric and bottom-up view on how goals and their subgoals
were created and distributed among the agents (which was the original orientation of GPGP) but
also a hierarchical and top-down perspective on their creation and distribution. The ability to handle
both perspectives in an integrated way significantly increases the scope of multi-agent applications
that can be represented in GPGP.

Conditioned View

As mentioned earlier, TÆMS task structures are typically used to encode the different plans for
achieving a goal, and the constraints and trade-offs associated with each potential plan. They are
also used to describe those instances during execution where it has been determined that
coordination is to take place. For instance, a TÆMS structure might indicate that one method
enables another. If these two methods are to be performed by different agents, this enablement
indicates a point where coordination between the two parties would be beneficial.

Interrelationships in TÆMS therefore have additional meanings. A (consumes) relationship between
a method and a resource would cause the usage of that resource to be appropriately coordinated
over with other entities in the system prior to use. A hard or soft (enables, facilitates) interrelationship
arising from a method or task represented at a remote agent with a local target would cause the local
agent to contact the remote one to coordinate their activities in a satisfactory manner. A relationship
indicating potential negative effects on a remote agent (disables, hinders) would require the agent to
first determine if performing the activity is acceptable before execution. Scheduling a method
flagged as being non-local would cause the agent to coordinate over the execution of that method by
a remote agent.

In this way, an agent possessing a task structure containing methods or constraints that may be
satisfied by many different remote agents may actually represent quite a large range of coordination
possibilities. Under some conditions the availability of so many alternatives can be beneficial, but
when operating under a deadline or tight resource constraints, too many alternatives can be
distracting and wasteful. What is needed then, is a way to represent an agent’s true operating
potential, while limiting the scope of this representation to only those parts that are reasonable and
necessary.

To achieve this, we have added a second view of an agent’s task structure; each agent will possess
two different versions of its local task structure, called the subjective and conditioned views. The
subjective view contains what the agent believes to be a complete view of its local execution
alternatives. The conditioned view is a copy of the subjective that has gone through a process of
conditioning — it may contain task, method or interrelationship deletions and modifications to
better adapt that structure to current operating conditions. When the conditioned view is used for
plan construction, these modifications indirectly allow the problem solver performing the
conditioning process to focus the attention of the scheduling and coordination mechanisms. These
changes serve two purposes: to prevent certain subtrees from being considered during scheduling,
and to remove interrelationships that are not to be coordinated over. In the first case, if the problem
solver has determined that a particular action should not be performed, it can simply remove it from
the conditioned view to prevent it from being considered. The second use is more germane to the
issue at hand — by convention any interrelationships present in the conditioned view indicates that
the interrelationship should be coordinated over when the related tasks or methods are scheduled
for execution. Removing the interrelationship will either prevent the coordination from taking place,
or prevent the method from being selected for execution. By making these changes, the overhead
required to reason about the task structure is reduced, and the agent’s attention is more focused.

24

Manufacture-Z
q_seq_sum

Get-Materials

Consume_X

Assemble-Z

Produce_Z

X

0.0 / 0.0 / 100.0

Z

0.0 / 0.0 / 100.0

Make_X_P1

Produce_X_P1

Make_X_P2

Produce_X_P2

Make_X_P3

Produce_X_P3

Manufacture-Z
q_seq_sum

Get-Materials

Consume_X

Assemble-Z

Produce_Z

X

0.0 / 0.0 / 100.0

Z

0.0 / 0.0 / 100.0

Make_X_P2

Produce_X_P2

Figure 13: A Simple Example of a Subjective and Conditioned View of a TÆMS Task Structure

Consider the simple conditioning process that has taken place in the task structure in Figure 13. On
the left, the subjective view shows that resource X, which is needed as part of Z’s manufacturing
process, can be produced by three different agents: P1, P2 and P3. While the local agent could elect
to coordinate with all three suppliers, this is time and resource intensive, and can be avoided with the
simple use of historical data. In this case, the agent knows that P2 did a good job of producing X
the last few times it has been used, so as part of its conditioning process the other two candidates
are removed, simplifying the selection process and eliminating potentially unnecessary
communication. If P2’s performance fails to meet expectations this time, the next conditioning
process might elect to leave one or two of the other producers in, to increase the probability of an
acceptable result at the expense of higher scheduling and reasoning costs.

We have also recognized that many of the additional attributes that are dynamically attached to the
TÆMS task structure as a result of coordination mechanisms (e.g., learning about the existence of
non-local task relationships and the related task structure of other agents, and dynamic generation
of commitments) can be statically predefined. As will be described next, this has led us to be able to
not only develop highly efficient coordination protocols for specific situations but also to allow
GPGP to operate in a wide range of application environments.

Exploiting Default Knowledge in Coordination

We have also introduced the idea of coordination mechanisms that are based on default knowledge
that allows us to represent coordination based on social laws. As previously discussed, coordination
in GPGP is achieved through the use of commitments, that is, inter-agent contracts to perform
certain tasks by certain times. The commitments which are dynamically constructed generally fall
into three categories: 1) deadline commitments are contracts to perform work by a certain deadline;
2) earliest start time commitments are agreements to hold off on performing certain tasks until a
certain time has passed; and 3) do commitments are agreements to perform certain tasks without a
particular time constraint. By allowing these commitments to be specified a priori as part of the
TÆMS task structure, social law-type coordination, which has low overhead, can be achieved among
agents. For example, a priori commitments could indicate that an agent could expect another agent
to generate a specific result and transmit it to this agent by a certain time [45]. The transmitting
agent, in turn, has an a priori commitment to generate the results by a specific time. In this way,
agent activities can be coordinated without the agents exchanging information about their current
activities, and then negotiating over a suitable commitment47. More generally, knowledge of
potential task relationships can be created based on 1) organizational knowledge of the activities of
other agents, 2) another agent decomposing a task structure and then assigning parts of the task

47 An easy extension of this idea that we have not yet implemented is for either agent to notify the other that it
either cannot honor the a priori commitment, or no longer has any need for the commitment to be honored.

25

structure to different agents, 3) the past history of agent interactions, and 4) a process of extensive
broadcast and discovery. In summary, our goal is to have a suite of coordination mechanisms that
can reason about in a controlled manner any existing information useful for making coordination
decisions, and to acquire in a controlled manner additional information that is important to making
the coordination decision in the current situation.

Bottom-Up versus Top-Down Agent Coordination

The TÆMS task structure can be viewed as not only representing an agent’s problem-solving
activities but also as a repository of information about how these activities relate to activities in other
agents (including knowledge about in what situations will coordination take place, and what
commitments have been made among agents and their current status). From this perspective, it is
not important how this repository is constructed (e.g., generated locally through dynamic
information sharing and negotiations with other agents, statically predefined by the system designer,
generated by another agent and then transferred to this agent, etc.); this is true as long as the
mechanisms that use this repository make no assumptions about how the repository was
constructed and how it will evolve. On the face of it, this does not seem a radical shift in thinking.
However, it has important implications for GPGP since it extends the range of applications for
which GPGP is appropriate48 and it allows GPGP to inter-operate with other coordination schemes.

GPGP traces its origins to PGP, which was designed to handle coordination problems occurring in
the DVMT (Distributed Vehicle Monitoring Testbed [35]). In order for agents to coordinate and
communicate effectively in this distributed situation-assessment application domain, they need to
understand that the vehicle they are about to track is being tracked by another agent who has
overlapping sensors, that the previous track positions of a vehicle they are tracking had been or is in
the process of being constructed by another agent, or that the vehicle they are tracking is part of a
larger pattern of vehicle movements that are being tracked by other agents. Each of these situations
can be thought of as recognizing that the tracking goals of specific individual agents were, in reality,
part of a higher-level goal to track a specific vehicle or formation of vehicles. This recognition needs
to be dynamic because neither the number of vehicles nor the pattern of their movements was
predefined. From this perspective, the agents were dynamically recognizing and constructing, where
appropriate, shared high-level goal trees from a bottom-up perspective. The GPGP mechanism-1
(“communicate non-local views”) was responsible for this bottom-up construction process49. Let
us change this problem slightly so that once an agent recognized the track of a vehicle locally, it
could make very good predictions about what and when agents will sense that vehicle, and possibly
other associated vehicles. In this case, an approach to coordinating the agents would be to have the
initial recognizing agent generate a goal structure for tracking the vehicle in the different agents and
then appropriately distribute it to relevant agents. This goal structure would consist of individual
tracking subgoals for specific agents, and would also indicate how the subgoals were related to each
other. For example, two tracking subgoals (one for agent1 and the other for agent2) involved
tracking the same fragment of track, since both agents were capable of sensing the vehicle in a
specific region. Thus, in this case the generation of the goal tree is top-down and there is no reason
for agents to discover interrelationships among their goals and other agents since all this

48 In the original STEAM framework [47, 56, 57], they used an approach to coordination where it was not necessary
for agents to exchange knowledge about what their activity tasks were. This occurred for two reasons: one reason was
that there was only one higher-level goal active at any one time, and the other was that once an agent decided to
pursue its part of a higher-level goal the coordination framework made the assumption that the other agents who had
roles that mandate work on this goal would also reach a similar conclusion that this specific higher-level goal was
the goal that they should now work on. This type of social law can now be easily implemented in our system
through appropriate generation of commitments by the domain problem solver when it generates new goals/task
structures that it wants to pursue.
49 Though the PGP mainly involved the bottom–up creation of subgoals and the recognition of how these subgoals
were part of a larger goal, PGP did allow for hierarchical control [16] and task contracting [15].

26

information is part of the goal structure that is distributed to specific agents50. In this way, GPGP
can provide effective coordination independent of whether the application employs a bottom-up
creation and synthesis of agent task structures, or a top-down elaboration and assignment of agent
task structures51. In fact, we foresee applications in which both approaches to generation of agent
task structures co-exist and operate concurrently. Figure 14 embodies the complex goal creation
process [33] that we see possible in a complex multi-agent system that we feel can be mirrored in
GPGP.

Figure 14: Interaction Patterns among Phases of Goal Creation, Selection, Allocation and
Achievement

50 In fact, if you knew that there would be only one vehicle in the environment the information contained in the
generated goal structure could contain commitments on exactly when certain activities would be completed. In [17],
we explored such an approach to hierarchical control where significant deviations in meeting commitments would
then cause the higher agent to be notified and for it to generate a new more appropriate global coordination plan.
However, in a multiple vehicle environment you want the agents to coordinate with appropriate agents since one
agent may be working on more than one vehicle-tracking task.
51 In early research [54], bottom-up creation/synthesis of goals was associated with a style of problem solving called
result sharing, while the top-down elaboration/assignment of goals was associated with the style of problem solving
called task sharing.

27

GPGP interactions with other components

In using GPGP as part of a real multi-agent system, we have developed a more complex view of the
interaction among GPGP, the scheduler and the agent’s problem-solving component. We have
introduced an additional component: a (domain-specific) task assessor (see Figure 15). The
problem solver and its associated task assessor use TÆMS to represent the tasks that will likely
need to be carried out in the future. The methods that the task assessor provides to the scheduler
represent higher-level entities, which may still require that numerous decisions be made before the
actual selection of executable actions is accomplished. It is the problem-solving component that
makes these decisions—possibly in a reactive manner. This is one way that we have accommodated
the need for some reactivity (without necessitating repeated reschedulings)—by having the task
assessor only abstractly plan how to accomplish tasks52. The agents' local coordination modules
interact, possibly resulting in modifications to the agents' local task structures to represent inter-
agent task relationships. This information is used in implementing domain-independent
coordination protocols. The coordination-adapted task structures are then used by each agent's real-
time scheduler to find the best sequences of activities to meet both the local and network-wide
objectives. The resulting schedule of tasks (methods) directs the problem solver, which ultimately
determines what actions to take to best achieve a task. The TÆMS description of the expected tasks
created by the task assessor is used to update the current task model that is accessible to the
scheduler and coordination module. This triggers the scheduler to generate a new schedule, which is
passed back to the problem solver to direct the selection of actions. The schedule consists of an
ordered list of methods to be carried out. It implicitly represents the order in which the top-level
tasks should be pursued as well as the approaches that should be used to pursue them. The
scheduler also associates monitoring information with each method that indicates in what situations
the problem solver should alert the scheduler that the partial execution of the method is not
performing as expected.

Problem Solver
State Information

Exchange
Domain
Information

Task Assessor

Execution Subsystem

Execution Monitor

Problem Solver

Knowledge
OrganizationalAgents

Belief DB

GPGP
Coordination

Module

Non-Local
Commitment

DB

Exchange
Short-term
Meta-level
Information

Task Structure
and

Client Goal Criteria

Scheduler
Design-to-Criteria

U
pdates Data Flow

Data

Components

Schedule

Key:
U

ses

Uses
Produces

Reschedule Requests

U
ses

Updates

U
pdates

Reschedule Requests

UsesU
ses

Updates

Updates
Uses

Figure 15: A Typical Agent Architecture

52 In recent work on SRTA a soft real-time agent architecture [58], we have developed a variety of mechanisms to
avoid complete rescheduling when there are ways to do local shifting of activities—replacing activities with
functionally similar but less resource-intensive activities, and inserting a precomputed sequence of activities to
recover from execution failures (such precomputed recoveries may be learned over time).

28

We can also think of GPGP interacting with other coordination mechanisms (e.g., domain-specific,
user-defined coordination rules built into a BDI system integrated into the domain problem-solving
component) that, for instance, would generate and assign parts of goal trees to agents and make
tentative commitments to the achievement of certain goals by specific agents. GPGP would then
attempt to verify the feasibility of achieving these commitments in the context of the given goals
structures using more detailed reasoning about resource usage and analysis of the comparative
worth of achieving specific goals, and to further elaborate the commitments with, for instance,
detailed temporal constraints and the level of quality desired. This leads to a layered view of the use
of GPGP [75], as pictured in Figure 16, where other non-GPGP coordination mechanisms would
be embedded in the domain problem-solving component of the agent.

Figure 16: The Layered Use of GPGP

More Complex View of Commitments

The use of a more complex representation of commitments is motivated by two disparate issues.
One was the development of coordination protocols that involved resource sharing among activities.
(In the original GPGP, protocols only involved information-sharing relationships among agents.)
The other was the desire to exploit more fully the knowledge about contingent/uncertain behavior
that could now be represented in the extended version of TÆMS. This new knowledge involved the
specification of distributions on duration, quality and cost behaviors of activities and the
specification of alternative outcomes of activities.

Commitments for Resource Sharing

In the process of developing new mechanisms in GPGP to coordinate over shared resources, a new
class of commitments called don’t commitments have been introduced. They indicate to the local
scheduler that a specific task cannot be executed during a certain time interval. Through the use of
this type of commitment, a coordination mechanism can serialize access to a resource by a group of
agents, or restrict the number of agents that will access the resource during a specific time interval.
For example, we have defined a new coordination mechanism that uses a simple negotiation
protocol to schedule access to any such mutually exclusive resource [14]. The idea behind this
resource-constraint coordination mechanism is that when an agent intends to execute a resource-
constrained task, it sends a bid of the time interval it needs and the local priority (projected utility)
of its task. After a communication delay, it knows all the bids given out by the other agents at the
same time as its own bid. Since all the agents who bid will have the same information about others,

29

if they all use the same commonly accepted rule to decide who will get the time interval, they can get
the same result on this round of bidding. The agent who wins will keep its schedule and execute
that task within its time interval, and everyone else will mark this time interval with a don't
commitment, and never try to execute the resource-constrained task in it unless the owner gives it
up. All the agents who didn't get their time intervals at the first round will recompute their schedules
and bid again53.

We have also explored another type of commitment for use in a distributed resource allocation
problem [26, 43]. This commitment, called a periodic commitment, allows us to represent
commitments that reoccur at some fixed time interval. The use of this type of commitment reduces
coordination costs by incurring the overhead of coordination only for the first time the commitment
is established.

Uncertainty and the Dynamics of Commitments

Although commitments are often regarded as “contracts” that have a binding effect, it would be a
misconception if commitments were treated as static objects. In fact, commitments are highly
dynamic objects. Commitments are built on top of various sources of uncertainties in the agent
problem-solving activities, therefore they are inherently uncertain. Let us look at the issue of de-
commit, for example. De-commit often occurs for one of these reasons:

1. “statistically unlucky.” This refers to the fact that the tasks often have uncertain, sometimes
undesirable outcomes (such as failure). In this case, if the task being promised in the
commitment simply fails, the commitment fails simply because the agent does not have luck
on its side for its current problem-solving episode.

2. “infeasible.” Sometimes, the task being promised in the commitment may depend on a
number of conditions in order to be ready to run. These conditions include precondition
tasks, and sufficient computational and non-computational resources needed for its
execution. If one or more of these conditions are not satisfied, it is infeasible for the agent to
execute the task successfully.

3. “undesirable.” It is also possible that although the agent can manage to satisfy the
conditions for the commitment to be kept, it decides not to do so because keeping the
commitment is not in the agent's current best interest; for example, the utility gain associated
with the commitment has become less than the gain the agent may receive if choosing a
different action due to for instance a new task of high utility arriving at the agent after it
made the original commitment.

The above discussion is focused on the agent who offers the commitment. Similarly, the agent who
requested the commitment may find the commitment unnecessary if the conditions for its local use
of the commitment are no longer valid, or the commitment offers no gain since the agent has
decided on a more advantageous use of its resources. In these cases, the receiving agent may also

53 We have also developed a resource coordination protocol [39, 40] that uses a different approach that involves the
agent owning the resource to have a statistical model of the current reservations for this resource [58]. In this
protocol, each resource request contains a priority that denotes the importance of the task for which the resource is
being requested. Priority ranges are associated with the different tasks and these reflect the client's preferences.
Conflicts occur when resources for a particular time period are insufficient to meet the demand. When this happens,
agents holding resource confirmations for the time slot may be requested to release their reservation or may simply
be told that their reservation is canceled. The affected agents can then decide to raise their priority and negate the
release request or they can simply release the resource.

30

prefer to retract its request for the commitment, and hence its need to de-commit. If we can predict
the likelihood of these changes in the desirability of commitments, which is now possible with
representation of outcomes and distributions in TÆMS, the question then arises of how to exploit
this information so that agents can coordinate their activities more effectively.

As an example, let us study a commitment offered at time 0, indicating that agent X would complete
task A for agent Y before time 160. The following are some scenarios that may occur due to the
uncertainty and dynamics of problem solving:

Scenario 1. In typical commitment semantics, this commitment means that Y can expect to receive
information about the completion of A by time 160. However, if task A has a 20% chance of failure,
Y can only receive the utility gain 80% of the time. Furthermore, it means that Y needs to make
contingency plans after time 160 when A fails. Thus, if Y knows about the uncertainty about this
commitment, it may evaluate the commitment differently at time 0, and may have a better picture of
its own overall utility.

Scenario 2. Continuing with the change added to the commitment, let us assume that task A
actually depends on a preceding task B, which has a success rate of 70%, and B finishes at time 80
according to the schedule of X. Immediately we now know that 30% of the time A becomes
infeasible. For Y, it would mean that the commitment has only a 56% chance of being delivered.
This is another source of uncertainty for Y. New information would be added to the semantics of
the commitment to indicate that there is a 30% chance of de-commit from X. More importantly, the
new semantics should point out that the decision to de-commit or not will arrive at time 80. Thus,
for Y, it means that another contingency schedule needs to be made at time 80. Given this
information, agent Y will now have a more complete picture of the commitment at time 0.

Scenario 3. Again, following the change made in the previous scenario, we will address the issue of
a commitment becoming undesirable or unnecessary. Here we need to introduce the concept of
marginal gain (marginal loss). Namely, marginal gain (loss) is the difference between the agent's
expected utility with and without receiving (offering) the commitment. Clearly, we need to take into
account the uncertainty associated with the commitment in order to evaluate the expected utility with
the commitment. For cooperative agents, the agents need to make sure that the sum of marginal gain
and loss is positive, so that the total expected utility increases with the commitment. As such, if the
value of the commitment decreases (in terms of the sum of marginal gain and loss), it is desirable
for the agents to agree to de-commit, although the commitment is otherwise satisfiable. For
example, let us assume that the task B has two outcomes when it does not fail: 40% of the time the
outcome quality is 5, and 30% of the time the quality is 2. Also, task A's outcome quality depends
on B's outcome: A will have quality 6 if B has quality 2, and 3 if B has quality 2. As a result, the
potential marginal gain in Y when A's quality is 3 may be much less when A's quality is 6, if Y's
reward depends on the quality of A's outcome. In this case, agents might want to de-commit at time
80 when B's outcome is 2 — if the total expected reward would be better for the agents to forgo the
commitment and choose some other alternative. As such, it would be beneficial if the agent provides
marginal gain/loss information in the commitment, so that the agent would be able to know the value
of the commitment to the other agent. Then it could decide if the commitment is desirable/necessary,
thereby allowing agents to make contingency plans earlier in the planning process.

In summary, we need to incorporate these three types of uncertainty information in the
commitments, and treat commitments as dynamic objects in order to fully understand and evaluate
the role of commitments, which serve as the key to agent coordination. In [66] the need for more
complex coordination protocols based on uncertainty of commitments is more fully addressed
together with implementation and experimental details.

31

New and More Complex Coordination Mechanisms

The development of new and more complex mechanisms for establishing commitments among
agents evolved out of a desire to provide a more sophisticated and parameterized set of coordination
protocols that offer a wider range of trade-offs between the overhead of coordination protocols and
the optimality of the resulting coordination. In the original GPGP, the coordination mechanisms
were basically single-shot in that there was no negotiation process among agents. A commitment
was established, or not, based on the requesting agent’s local view of reasonableness, and the
recipient agent’s local view of whether the requested commitment was reasonable for it to commit
to54. There was no idea of a cooperative search among agents to find an acceptable (or for that
matter, best) commitment among agents based on some more encompassing view of the effect of
the commitment on both agents. We begin this discussion by first examining how task
allocation/contracting can be done in GPGP.

Contracting in GPGP

In the original conception of GPGP, all coordination decisions were based on agents already
intending to perform certain activities as a result of the local goals that they were currently pursuing.
There was no way for one agent to get another agent to generate results for it if that agent was not
already intending to generate those results. Obviously, for many applications, agents may be
structured so that they can pursue a large number of different types of local activities and only when
there is a specific need for the result of an activity will the agent want to execute that activity. In
order to handle the coordination that arises out of this contracting model of agent interaction, we
have introduced a new coordination mechanism with associated additional information in the
TÆMS task structure. The development and character of this mechanism is consistent with the
work described above on the use of default knowledge and situation-specific control. It is also
interesting to note that this new mechanism is valuable even in applications which use bottom-up,
data-directed processing strategies such as distributed situation assessment.

The new contracting mechanism models the potential for external interaction using “virtual tasks.”
A task structure is created at an agent with a “possible-task” or “virtual task” or “partially
instantiated” task that abstractly describes results that could be generated by another agent. These
results are described in terms of a goal that another agent could satisfy. Virtual tasks are related to
an agent's task structures via non-local-effect (nle) (e.g., enables, facilitates, and so on). If an agent
wishes to take advantage of this nle, it generates a goal, describing its desired outcome, and transmits
it to the appropriate agent. The receiving agent then instantiates a task structure, based on the
characteristics of the goal. The actual question of whether the receiving agent is capable of or
interested in performing the task is handled by that agent's domain problem-solving component.

The purpose of the virtual task is to serve as a placeholder in scheduling. An agent can attempt to
develop schedules including the contributions of the virtual task to determine whether it can indeed
develop feasible schedules were that task to be executed. This can take place before the actual
communication with the remote agent. It is the modeling of the utility of the virtual task using the
discrete probability distribution features of the TÆMS framework that distinguishes the GPGP
contracting mechanism from a conventional goal-driven system. The incorporation of the TÆMS

54 For example if task A in agent 1 enabled a task B in agent 2, then agent 1 would initiate the establishment of a
commitment. Agent 1 in deciding when to do task A would call its local scheduler to find out what was the earliest
time that task A could be done while still achieving reasonable utility for its other local activities. The results of the
scheduling process would then define the completion time of task A in the proposed commitment that was
transmitted to agent 2. This proposed commitment by agent 1 to complete task A by a specified time could be either
accepted or rejected by agent 2 depending on whether it was still worthwhile for agent 2 to execute task B given that
its earliest start time was the completion time of task A plus some time for message transmission.

32

relationships allows the system to model in advance the contributions of the actions of the remote
agent, to reason about the nature and magnitude of the coordination relationships required, and to
parameterize the request according to this information, as well as deadlines for transmitting the
information represented by the coordination relationships.

M11
M12 M13

T11 T12

TG1
VT2,1

VM2,1

Agent 1

VT3,1

VM3,1

Agent2 Agent 3

facilitates(q:+2,d:-2,c:-2)

q: 6
d: 8
c: 20

q: 5
d: 10
c: 12

q: 4
d: 15
c: 12

facilitates(q:+3,d:-10,c:+3)

q: d.c.
d: 10
c: 12

q: d.c.
d: 5
c: 4

Figure 17: Example of agent reasoning about how best to contract for needed information from
another agent

Consider the idealized situation depicted in Figure 17. Agent 1 has a choice of three methods for
achieving task T11. Two of these methods can be facilitated by the actions of other agents. Unlike
the original GPGP, there is no presupposition that the tasks will actually be performed unless the
agent specifically requests them. Each local method has different performance characteristics.
Method M11, for example, has a potential quality of 6, a duration of 8, and a cost of 20. Based
purely on a local perspective, and weighing quality of solution most highly, this would be the
method of choice. All other methods produce lower quality solutions, although with lower costs
and/or durations. However, by understanding in detail how other agents' activities may interact with
its own, the agent is able to predict that, were other agents to execute the appropriate tasks, methods
M12 and M13 would be facilitated with quality/cost/duration tuples of (7,8,10) and (7,5,15)
respectively. Knowing that higher quality can be achieved, Agent 1 can now reason about the
coordination issues involved in ensuring that another agent executes the appropriate task in a timely
fashion. First, it can use secondary criteria such as cost and duration to choose which task should
be executed by a remote agent. Duration is of consideration both in scheduling later activities and in
ensuring that sufficient time exists for a request to be transmitted, processed, and for a response to
be sent. The agent may or may not have information regarding the cost of executing the tasks by the
remote agents and the duration of these tasks— information that might be useful in determining
which agent to ask for assistance.

Once a remote agent and remote task have been selected, the agent must transmit a request that the
task be executed. This request can be annotated with information provided by the local scheduler,
indicating the desired parameters under which the task should be executed, including but not limited
to the quality, cost, and duration modifiers of the transmitted information, and the preferred finish
time of the task. We next describe how this single-shot task allocation coordination mechanism can
be extended to allow for a cooperative search process among agents to find an appropriate
commitment.

33

Multi-Step Coordination Protocols

Before discussing how to structure a cooperative search process among agents, it is crucial to
understand the criteria/objective being maximized in the search process; the criteria chosen is very
strongly related to the scope and nature (different degrees) of cooperation among agents. Having
appropriate criteria allows agents to reason more accurately about how a specific task allocation
commitment will affect overall system performance. The most encompassing form of cooperation is
what has been called “global cooperation” [34], which occurs when an agent, while making its
local decision, always tries to maximize the global utility function that takes into account the
activities of all agents in the system. Global cooperation is unachievable in most realistic situations
because of the number of agents and bounds on computational power and bandwidth. Thus we
focus our approach on organizing a cooperative distributed search among agents to find an
acceptable commitment based on “local cooperation” [34]. This type of cooperation occurs when
two or more agents, while negotiating over an issue, try to find a solution that increases the sum of
their local utilities, without taking into account the rest of the agents in the system. As mentioned
briefly in the section on coordination based on commitment uncertainty, we introduce the notion of
marginal utility gain and cost (loss) as a way of computing the effect of a specific commitment on
the two agents involved in the negotiation.

In [73], we developed a multi-dimensional, multi-step negotiation mechanism for task allocation that
uses marginal utility gain and marginal utility cost to structure this search process to find a solution
that maximizes the agents’ combined utility55. These two utility values together with temporal
constraints generated as a result of an agent’s local search process summarize the agents' local
information used in the negotiation process, and thus reduce the communication bandwidth
necessary to implement the negotiation. This is a multi-step negotiation process since agents engage
in a series of proposals and counter-offers to decide whether the contractee agent will perform a
task for the contractor agent. The proposals and counter-offers specify ranges of acceptable times
for what is the earliest time a contracted task can be started and when it needs to be completed.
Furthermore, this negotiation is over multiple dimensions (by a specified time with a certain
minimum quality) rather than over a single dimension. For example, agent A wants agent B to do
task T for it by time 10 and starting it no earlier than time 3, and requests the minimum quality of 8
for the task to be achieved. Agent B replies that it can do task T by time 10 but only with the quality
of 6; however, if agent A can wait until time 15, it can get a quality of 12. Agent A will select the
alternative it believes is better for both agents. Since the negotiation relates to both the completion
time and achieved quality of the task, the scope of the search space for the negotiation is increased
and thus improves the agents' chance of finding a solution that increases the combined utility.

This mechanism is anytime in character: by investing more time, the agents increase the likelihood
of getting a better solution. A parameterized version of this coordination mechanism allows control
over the amount of search done among agents—from a single-shot mechanism, all the way to an
unlimited search for the best solution. As part of this effort, a measure of negotiation complexity
that is based on local measures of agent task complexity was developed that can be used by an
agent to choose the appropriate protocol through the exchange of limited meta-level information.
This measure allows agents to explicitly balance the gain from the negotiation and the resource
usage of the negotiation56.

55 A very similar cooperative search process, which we have implemented, can also be used to establish coordination
for non-local relationships such as enables and facilitates. It is also our suspicion that a variant of this same search
process can be used to implement coordination over qaf’s such as min, max and sum.
56 An interesting research question that we are just beginning to address is how this cooperative search process can be
extended to more than two agents. The need for this type of a more encompassing search process occurs in a variety
of different forms of multi-linking of activities among a set of agents [74].

34

Conclusions and Future Directions

The experiences that we have had in applying GPGP/TÆMS to a number of different applications
and the ability to extend GPGP/TÆMS as described in this paper have led us to believe that our
basic approach to coordination, based on quantitative coordination relationships represented in
TÆMS and the generation of commitments among agents that then constrain local agent
scheduling, is a powerful and general framework for implementing sophisticated, domain-
independent coordination mechanisms. Further, GPGP/TÆMS can be naturally extended to be
highly situation-specific where the overhead for coordination can be adjusted for the specific
coordination situation. This can be accomplished by substituting a priori knowledge for
dynamically acquired knowledge and dynamically generated commitments and the use of a
“conditioned” TÆMS task structure. Additionally, GPGP has been able to be easily extended to
allow the implementation of more top-down and contracting types of coordination mechanisms.
These extensions are what make GPGP applicable to a wider range of multi-agent domains that
require both top-down and bottom-up coordination regimes and more easily integratable into a
multi-layered control architecture in which organizational design rules and/or domain-specific
coordination protocols define policies for multi-agent coordination [37].

Our plans for further extending GPGP fall into the following major categories: (1) to explore the
interplay between local, environment-centered coordination mechanisms and coordination of large
agent organizations; (2) to expand the range of possible coordination mechanisms, including those
that might make sense only in a large organizational context, (3) to experiment with different
coordination protocols and determine their contextually dependent efficacy, (4) to make GPGP
operate in a soft real-time environment where the true costs of coordination are factored into
dynamically made decisions about what and how much effort to put into coordination, and when,
(5) to allow for multiple coordination mechanisms to operate concurrently, (6) to explore the
interplay between domain specific coordination policies and other approaches to coordination with
GPGP, and (7) to connect the GPGP approach to coordination with more formal models of
coordination.

An important emphasis in further extending GPGP is to allow it to operate effectively in large agent
organizations involving hundreds of agents. One aspect of our approach to these organizational
extensions to GPGP is to view an organization as something that provides limits, constraints, and
other bounds on the local agent coordination process (i.e., making coordination situation-specific)
[5, 6]. An organizational approach might strictly limit or pre-specify the specific relationships that
are “important” to coordinate over. Organizational limits might also extend to how various
commitments (including pre-established ones) or their associated tasks should be valued.
Organizational information might pre-specify certain relationships, or allow for the partial
specification of relationships. Finally, the organization might bound the total amount of effort to
spend on the meta-task of coordination reasoning and control. A key question then arises of
whether we should represent these organizational directives as part of an extended version of the
TÆMS representation or develop a different representation for this type of organizational
knowledge. The other aspect of our organizationally centered future work is the integration of
organizational roles and knowledge structures into an agent’s decision process. Our work on the
MQ framework [64, 67] represents a step in this direction. In this work, the value of local tasks,
coordination actions, and commitment satisfaction (or decommitment) is evaluated using a unified
framework, and the values of these items are influenced by their relationship to organizations (and
the agent’s relationship to said organizations).

As part of this work on making GPGP more appropriate for use in an organizational context, we are
also trying to extend GPGP’s coordination mechanisms so that they will work in an agent
organization where all agents are not totally cooperative. We want to explore that introduction of
mechanisms to support coordination among self-interested agents as well as cooperative agents

35

[74]. Additionally, as alluded to in our introduction, we feel that the semantics of GPGP
mechanisms need to be augmented to more fully operationalize the semantics of the joint-intention
framework. This will also require us to develop mechanisms for implementing the relationships
among different agent tasks that occur because of quality-accumulation-function relationships. As
discussed previously, we see this as a complex distributed search process that can span multiple
agents. Likewise, the GPGP mechanisms have been oriented around coordinated interactions
between two agents. The question then arises: Do we need to develop special mechanisms that deal
explicitly with multi-linked interactions among agents that span more than two agents? Our intuition
is that, in fact, there is a definite need for more complex mechanisms to deal with these multi-linked
interactions and the need for these mechanisms will begin to surface as we build more complex
multi-agent systems in the future. We also see the need for more contingency analysis and explicit
reasoning about uncertainty as part of the decision process in establishing commitments among
agents. The work we have done on commitment uncertainty [70], described previously, is only a
first step in understanding how to effectively deal with uncertainty inherent in coordination.

Experimental work continues to be an important emphasis in our research orientation. This is
especially important to be undertaken now before the next generation of sophisticated and large
multi-agent applications are constructed. From the perspective of GPGP, we want to understand the
context within which certain approaches to coordination are effective. GPGP is a heuristic approach
to coordination and makes numerous assumptions about the level of satisficing coordination that is
acceptable. We have, as a result of the extensions to GPGP described here, gone a long way in
being able to control the degree of satisficing. What we really don’t have is a theory about the
nature of multi-agent interactions that would tell us the appropriate level of satisficing given the
characteristic of a particular application57. This is a long-term goal of our research but at this stage
of our understanding, we feel it is still very important to generate more empirical studies that will
provide the intuitions about the necessary components of such a formal model that can predict the
performance of specific types of coordination for a given application domain.

Another important future direction in the evolution of GPGP, closely allied to the previous
discussion, is to make GPGP operate in a soft real-time and dynamically evolving environment.
There are many requirements necessary for this to occur. Probably most important is the ability to
represent and reason about the interleaving (at times concurrently) of domain problem-solving
activities and coordination (and control) activities which in part involve being able to make trade-
offs between spending resources on either coordination or domain activities. We feel that this meta-
level control for multi-agent systems is a very important issue that is just now beginning to be
addressed [49]. A necessary aspect of this approach is the existence of a family of coordination
protocols that trade off the level of coordination optimality for the end-to-end delay in establishing
coordination and also the amount of computing and communication resources required. We also
foresee that numerous heuristics will need to be employed in the agent architecture to reduce the
need for re-coordination in case of unexpected events. In recent work of ours [58], we have
developed the beginning of such an agent architecture that hopefully can be extended to support a
soft real-time version of GPGP. More generally, even if the costs of re-coordination can be
decreased they will often still be significant which implies that meta-level control reasoning needs to
deal with not only the cost of the initial coordination but also potential subsequent costs that will
arise out of re-coordination.

Another area for extension, which is also closely allied to developing a GPGP that operates in a soft
real-time environment, centers around the problems that occur when multiple sessions of
coordination protocols are concurrently executing; this problem can occur since there may be more

57 Based on both older work of ours [8] as well as more recent work [71], it seems that the level of uncertainty in the
behavior of agents should be explicitly modeled in such a theory. We have also observed many other factors such as
the relative utility among different goals, the loading of agents, communication bandwidth, etc., that relate to the
effectiveness of different coordination protocols [10, 11, 45].

36

than one subtask at any one time that requires coordination commitments to be established.
Additionally, as we have observed58 in our recent work on a distributed situation assessment
application [26, 43], the coordination protocol session may need to be terminated prematurely
because the domain problem-solving component has changed the domain tasks it now wants
executed, or the results of another concurrently executing coordination session invalidates the
current resource context being using by this session. This leads to the need for being able to
recognize and resolve complex interactions occurring among concurrently executing coordination
sessions. We made an initial attempt at solving this problem in earlier work [11, 65] but the
framework we established for building protocols was not rich enough to handle the complex
interactions that we now understand can occur among coordination sessions. Creating a richer
framework for building coordination protocols will be an important focus of future work. We have
also done work on separating resource contexts used for concurrent coordination sessions so that
they are mostly independent [74], which does not solve the problem but reduces the frequency of
interaction among sessions.

In order to make GPGP more generally applicable, we feel that it is important for it to effectively
inter-operate with other coordination approaches. As described in Figure 16, we view GPGP as
being in a layered relationship with other non-GPGP coordination protocols. The key problem in
building such a layered approach is determining how information will be exchanged among the
layers and the type of directives that non-GPGP coordination protocols can give to GPGP
coordination mechanisms. Research described in [1, 65] in terms of monitoring conditions give us
some clues about how to approach this interface problem. We will probably need to monitor the
intermediate states of the coordination protocol, as well as the performance and resource usage of
tasks. This interface issue is also critical to how an organization layer of control can be integrated
with GPGP.

Our final research direction concerns how to relate the GPGP approach to coordination to more
formal models of coordination. There are two basic questions that we would like to understand
from a more theoretical perspective. One question is to understand for a particular coordination
situation how difficult this situation is in terms of the complexity of coordination/communication
policy necessary to reach a specific level of coherent agent behavior; we see answering this question
in terms of the generated utility of a “satisficing” policy versus the maximum utility of an optimal
policy as related to the amount of communication necessary to implement the “satisficing” policy.
A second closely related question is to understand for a particular situation how much distributed
search is necessary to find a “satisficing” coordination policy. We feel that distributed MDPs
provide a rich theoretical framework [4] that may be the right one to understand GPGP since it
deals explicitly with uncertainty of agent activities, though it has problems modeling communication
costs [3]. We have already begun to investigate the connection between MDPs and TÆMS and our
local agent scheduler [48], and have also been using MDPs to study coordination [71], and are
currently extending this work to relate more directly to GPGP coordination [72].

In closing, it would be remiss of us not to mention the significance that we attach to learning. As we
build multi-agent systems that operate in open and evolving environments, the system must be able
to adapt its heuristics/assumptions (and there are many in GPGP), to the current structure of the
environment—not some predefined view of the environment. We have done some work in this area
[27, 31, 44] but we need to do a lot more. Especially interesting is building up, either implicitly or
explicitly, models of task arrival so that opportunity costs [49, 67] can be factored into coordination
decisions at both a protocol level and a meta-level.

58 Private communication with R. Mailler, the developer of a distributed resource allocation protocol for this
domain.

37

Acknowledgements

As is obvious by the author list, the development and evolution of GPGP has been a long
process over the last ten years that has been the focus of much of the intellectual directions of the
Multi-Agent System Laboratory at University of Massachusetts at Amherst. Where appropriate, we
have referenced papers by specific members of the laboratory who took major responsibility in
developing a research idea explained in this paper. However, it should go without saying that there
were many interchanges with, and building on ideas developed by, other laboratory members who
are not directly recorded in article citations. Though they did not directly contribute to the
development of GPGP, we would also like to acknowledge some long-term visitors to our
laboratory, other laboratory members, and associated faculty who were part of the intellectual
ferment that generated the ideas expressed here. They are: Michael Atighetchi, Ana Bazzan, Brett
Benyo, Satoru Fujita, David Jensen, Qiegang Long, Roger Mailler, Lee Osterweil, Tuomas
Sandholm, Jiaying Shen, Toshiharu Sugawara, Robert Whitehair and Shlomo Zilberstein. We
would also like to thank Sherief Abdallah for his thoughtful comments on this paper. Finally, it
almost goes without saying the intellectual debt this paper owes to the pioneering work of our early
laboratory members, Daniel Corkill and Edmund Durfee.

REFERENCES

1. S. Abdallah, et al. “Monitoring and Synchronization for Teamwork,” Proceedings of the
17th ACM Symposium on Applied Computing (SAC2002), 2002. (To appear.)

2. M. Barbuceanu and M. S. Fox, “COOL: A Language for Describing Coordination in Multi-
Agent Systems,” in Proceedings of the First International Conference on Multi-Agent
Systems, Menlo Park, CA: AAAI Press, pp. 17-24, 1995.

3. D.S. Bernstein, S. Zilberstein, and N. Immerman, “The Complexity of Decentralized Control
of Markov Decision Processes,” Proceedings of the 16th International Conference on
Uncertainty in Artificial Intelligence, Stanford, CA, pp. 32-37, 2000.

4. C. Boutilier, “Sequential Optimality and Coordination in Multiagent Systems,” Proceedings
of the 16th International Joint Conference on Artificial Intelligence (IJCAI99), 1999.

5. D.D. Corkill and V.R. Lesser, “The Use of Meta-Level Control for Coordination in a
Distributed Problem-solving Network,” Proceedings of the Eighth International Joint
Conference on Artificial Intelligence, pp. 748–756, 1983.

6. Daniel Corkill, “A Framework for Organizational Self-Design in Distributed Problem-
Solving Networks,” Ph.D. thesis, University of Massachusetts/Amherst, 1983.

7. K. Decker and V. Lesser, “Generalizing The Partial Global Planning Algorithm,”
International Journal on Intelligent Cooperative Information Systems, 1(2):319-346, 1992.

8. K. Decker and V. Lesser, “An Approach to Analyzing the Need for Meta-Level
Communication,” Proceedings of the 13th International Joint Conference on Artificial
Intelligence, Vol. 1, 1993.

9. K. Decker and V. Lesser, “Quantitative Modeling of Complex Environments,” International
Journal of Intelligent Systems in Accounting, Finance, and Management, 2(4):215–234,
Special issue on Mathematical and Computational Models of Organizations: Models and
Characteristics of Agent Behavior, 1993.

10. K. Decker and V. Lesser, “Designing a Family of Coordination Algorithms,” Proceedings
of the First International Conference on Multi-Agent Systems, San Francisco: AAAI Press,
pp. 73–80, 1995.

38

11. Keith S. Decker, “Environment Centered Analysis and Design of Coordination
Mechanisms,” Ph.D. thesis, University of Massachusetts/Amherst, 1995.

12. Keith S. Decker, “Task Environment Centered Simulation,” in Simulating Organizations:
Computational Models of Institutions and Groups (M. Prietula, K. Carley, and L. Gasser,
editors), AAAI Press/MIT Press, 1997.

13. K. Decker, M. Williamson, and K. Sycara, “Intelligent Adaptive Information Agents,”
Journal of Intelligent Information Systems, 9:239-260, 1997.

14. K. Decker and J. Li, “Coordinating Mutually Exclusive Resources Using GPGP,”
Autonomous Agents and Multi-Agent Systems, Special Issue: Best of ICMAS’98 – Part II,
Volume 3(2): 133–158, 2000.

15. E.H. Durfee and V.R. Lesser, “Negotiating Task Decomposition and Allocation Using
Partial Global Planning,” Distributed Artificial Intelligence (M. Huhns and L. Gasser, eds.),
Vol. 2, Pitman Publishing Ltd.: London, pp. 229–244, 1989.

16. E.H. Durfee and V.R. Lesser, “Partial Global Planning: A Coordination Framework for
Distributed Hypothesis Formation,” IEEE Transactions on Systems, Man, and Cybernetics,
21(5): 1167–1183, 1991.

17. S. Fujita and V.R. Lesser, “Centralized Task Distribution in the Presence of Uncertainty and
Time Deadlines,” Proceedings of the Second International Conference on Multi-Agent
Systems, AAAI Press: CA, pp. 87–94, 1996.

18. A. Garvey, K.S. Decker and V.R. Lesser, “A Negotiation-based Interface Between a Real-
time Scheduler and a Decision-Maker,” Proceedings of Workshop on Models of Conflict
Management in Cooperative Problem Solving, Seattle: AAAI Press, 1994.

19. A. Garvey and V.R. Lesser, “Design-to-time Scheduling and Anytime Algorithms,” SIGART
Bulletin, Vol. 7, No. 3, 1996.

20. J. Graham and K.S. Decker, “Towards a Distributed, Environment-Centered Agent
Framework,” in Intelligent Agents VI: Agent Theories, Architectures, and Languages (N.
Jennings and Y. Lesperance, editors), LNAI #1757, Springer, pp. 290–304, 2000.

21. J. Graham, D. McHugh, M. Mersic, F. McGeary, M. Windley, D. Cleaver, K.S. Decker,
“Tools for Developing and Monitoring Agents in Distributed Multi-Agent Systems,” in
Infrastructure for Agents, Multi-Agent Systems, and Scalable Multi-Agent Systems. Lecture
Notes in Computer Science #1887, (T. Wagner and O. Rana, eds.), Springer, 2001.

22. J. Graham, “Real-Time Scheduling in Distributed Multi-Agent Systems,” Ph.D.
Dissertation, University of Delaware, January 2001.

23. J. Graham, K.S. Decker, and M. Mersic, “DECAF: A Flexible Multi-Agent System
Architecture,” Autonomous Agents and Multi-Agent Systems. Accepted for publication.

24. B.J. Grosz and S. Kraus, “Collaborative Plans for Complex Group Action,” Artificial
Intelligence, 86(2): 269–357, 1996.

25. Bryan Horling, et al. “The TÆMS White Paper,” Technical Notes of Multi-Agent Systems
Lab, Department of Computer Science, University of Massachusetts, 1999.

26. B. Horling, R. Vincent, R. Mailler, J. Shen, R. Becker, K. Rawlins, V.R. Lesser, “Distributed
Sensor Network for Real-Time Tracking,” Proceedings of the Fifth International Conference
on Autonomous Agents, Montreal, pp. 417-424, 2001.

27. B. Horling, B. Benyo, V.R. Lesser, “Using Self-Diagnosis to Adapt Organizational
Structures,” Proceedings of the Fifth International Conference on Autonomous Agents,
Montreal, pp. 529–536, 2001.

39

28. F.F. Ingrand, M.P. Georgeff, A.S. Rao, “An Architecture for Real-Time Reasoning and
System Control,” IEEE Expert, 7(6), 1992.

29. N. Jennings, “Commitments and Conventions: The foundation of coordination in multi-agent
systems,” The Knowledge Engineering Review, Vol. 8(3), pp. 223–250, 1993.

30. N. Jennings, “Controlling Cooperative Problem Solving in Industrial Multi-Agent Systems
Using Joint Intentions,” Artificial Intelligence, Vol. 75, No. 2, 1995.

31. D. Jensen, M. Atighetchi, R. Vincent, V.R. Lesser, “Learning Quantitative Knowledge for
Multiagent Coordination,” in Proceedings of the Sixteenth National Conference on Artificial
Intelligence, 1999.

32. K. Kuwabara, T. Ishida, N. Osato, “AgentTalk: Coordination Protocol Description for
Multiagent Systems,” in Proceedings of the First International Conference on Multi-Agent
Systems, Menlo Park, CA: AAAI Press, pp. 455, 1995.

33. B. Lâasri, H. Lâasri, S. Lander, and V.R. Lesser, “A Generic Model for Intelligent
Negotiating Agents,” International Journal on Intelligent Cooperative Information Systems,
1(2): 291-317, 1992.

34. S. Lander and V.R. Lesser, “Sharing Meta-Information to Guide Cooperative Search among
Heterogeneous Reusable Agents,” in IEEE Transactions on Knowledge and Data
Engineering, 9(2), pp. 193-208, 1997.

35. V.R. Lesser and D.D. Corkill, “The Distributed Vehicle Monitoring Testbed: A Tool for
Investigating Distributed Problem-solving Networks,” AI Magazine, 4(3), pp. 15–33, 1983.

36. V.R. Lesser (1991). “A Retrospective View of FA/C Distributed Problem Solving,” IEEE
Transactions on Systems, Man, and Cybernetics, 21(6): 1347–1362, 1983.

37. V.R. Lesser, “Reflections on the Nature of Multi-Agent Coordination and Its Implications for
an Agent Architecture,” in Autonomous Agents and Multi-Agent Systems, Volume 1, pp. 89-
111, Kluwer Academic Publishers, 1998.

38. V.R. Lesser, K.S. Decker, N. Carver, A. Garvey, D. Neiman, M. Nagendra Prasad, and T.
Wagner, “Evolution of the GPGP Domain-Independent Coordination Framework,” in
University of Massachusetts/Amherst CMPSCI Technical Report 98-05, 1998.

39. V.R. Lesser, M. Atighetchi, B. Benyo, B. Horling, A. Raja, R. Vincent, T. Wagner, P. Xuan,
and S.X.Q. Zhang, “The Intelligent Home Testbed,” Proceedings of the Autonomy Control
Software Workshop (Autonomous Agent Workshop), 1999.

40. V.R. Lesser, M. Atighetchi, B. Benyo, B. Horling, A. Raja, R. Vincent, T. Wagner, P. Xuan,
and S.X.Q. Zhang, “A Multi-Agent System for Intelligent Environment Control.”
Proceedings of the Third International Conference on Autonomous Agents, ACM Press:
New York, NY, pp. 291-298, 1999.

41. V.R. Lesser, B. Horling, F. Klassner, A. Raja, T. Wagner, S.X.Q. Zhang, “BIG: An Agent for
Resource-Bounded Information Gathering and Decision Making,” in Artificial Intelligence,
Special Issue on Internet Information Agents, 118(1-2), Elsevier Science, pp. 197-244, 2000.

42. H.J. Levesque, P.R. Cohen, and H. T. Nunes, “On Acting Together,” in Proceedings of the
Eighth National Conference on Artificial Intelligence, pp. 94–99, 1990.

43. R. Mailler, R. Vincent, V.R. Lesser, T. Middelkoop, and J. Shen, “Soft Real-Time,
Cooperative Negotiation for Distributed Resource Allocation,” in AAAI Fall Symposium on
Negotiation Methods for Autonomous Cooperative Systems, 2001.

44. M.V. NagendraPrasad and V.R. Lesser, “Learning Situation Specific Coordination in
Cooperative Multi-Agent Systems,” Autonomous Agents and Multi-Agent Systems, Vol. 2,
Kluwer Academic Publishers, pp. 173-207, 1999.

40

45. M.V. NagendraPrasad, K.S. Decker, A. Garvey, V.R. Lesser, “Exploring Organizational
Designs with TÆMS: A case study of distributed data processing,” in Proceedings of the
Second International Conference on Multi-Agent Systems, 1997.

46. T. Oates, M.V. NagendraPrasad, V.R. Lesser, “Cooperative Information Gathering: A
Distributed Problem-Solving Approach,” in IEE Proceedings on Software Engineering,
Special Issue on Agent-based Systems, Volume 144, No. 1, 1997.

47. D. Pynadath and M. Tambe, “An Automated Teamwork Infrastructure for Heterogeneous
Software Agents and Humans,” Journal of Autonomous Agents and Multiagent Systems
(JAAMAS), 2002. (To appear.)

48. A. Raja, V.R. Lesser, T. Wagner, “Toward Robust Agent Control in Open Environments,” in
Proceedings of the Fourth International Conference on Autonomous Agents, Barcelona, pp.
84-92, 2000.

49. A. Raja and V. Lesser, “Towards Bounded-Rationality in Multi-Agent Systems:
Reinforcement-Learning-Based Approach,” in University of Massachusetts Computer
Science Technical Report, #2001-34, 2001.

50. A. Raja, T. Wagner, V.R. Lesser, “Reasoning about Uncertainty in Agent Control,” in
Proceedings of the 5th International Conference on Information Systems, Analysis, and
Synthesis, Computer Science and Engineering: Part 1, Volume VII, pp. 156-161, 2001.

51. A.S. Rao and M.P. Georgeff, “BDI agents: From theory to practice,” in Proceedings of the
First International Conference on Multi-Agent Systems, AAAI Press: San Francisco, pp.
312–319, 1995.

52. S. Rosenschein and G. Zlotkin, Rules of Encounter: Designing Conventions for Automated
Negotiation among Computers, MIT Press: Cambridge, MA, 1994.

53. Z. Rubinstein, “The Hurrier I Go, The Behinder I Get,” in Proceedings of Artificial
Intelligence and Manufacturing, IJCAI & AAAI, pp. 97–102, 2001.

54. R.G. Smith and R. Davis, “Frameworks for Cooperation in Distributed Problem Solving,”
IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-11, pp. 61–70, 1981.

55. T. Sugawara and V.R. Lesser, “Learning to Improve Coordinated Actions in Cooperative
Distributed Problem-Solving Environments,” in Machine Learning, Vol. 33, Nos. 2/3,
Kluwer Academic Publishers, 1998.

56. M. Tambe, “Agent Architectures for Flexible, Practical Teamwork,” in Proceedings of the
Fourteenth National Conference on Artificial Intelligence, 1997.

57. M. Tambe, “Towards Flexible Teamwork,” Journal of Artificial Intelligence Research,
Volume 7, pp. 83-124, 1997.

58. R. Vincent, B. Horling, V.R. Lesser, T. Wagner “Implementing Soft Real-Time Agent
Control,” Proceedings of the Fifth International Conference on Autonomous Agents, pp.
355–362, 2001.

59. T. Wagner and V.R. Lesser, “Design-to-Criteria Scheduling for Intermittent Processing,”
University of Massachusetts/Amherst Computer Science Technical Report 1996-81, 1996.

60. T. Wagner, A. Garvey, V.R. Lesser, “Complex Goal Criteria and Its Application in Design-
to-Criteria Scheduling,” in Proceedings of the Fourteenth National Conference on Artificial
Intelligence, 1997.

61. T. Wagner, A. Garvey, V.R. Lesser, “Leveraging Uncertainty in Design-to-Criteria
Scheduling,” UMass Computer Science Technical Report 1997-11, 1997.

41

62. T. Wagner, A. Garvey, V.R. Lesser, “Criteria Directed Task Scheduling,” International
Journal of Approximate Processing, Special Issue on Scheduling, 19:91-118, 1998.

63. T. Wagner, B. Benyo, V. Lesser, A. Raja, P. Xuan, and S. Zhang, “GPGP2: Supporting
situation specific coordination protocols,” UMASS Computer Science Technical Report #98-
042, 1998.

64. T. Wagner and V.R. Lesser, “Relating Quantified Motivations for Organizationally Situated
Agents,” in Intelligent Agents VI: Agent Theories, Architectures, and Languages (N.R.
Jennings & Y. Lesperance, eds.), Springer Verlag, Volume 1757, pp. 334–349, 2000.

65. T. Wagner, B. Benyo, V.R. Lesser, P. Xuan, “Investigating Interactions Between Agent
Conversations and Agent Control Components,” in Issues in Agent Communication, F.
Dignum & M. Greaves (eds.), Springer-Verlag, Vol. 1916, pp. 314–331, 2000.

66. T. Wagner and V.R. Lesser, “Toward Soft Real-Time Agent Control,” Lecture Notes in
Computer Science: Infrastructure for Large-Scale Multi-Agent Systems (Wagner/Rana,
editors), Springer-Verlag, 2001.

67. T. Wagner and V.R. Lesser, “Evolving Real-Time Local Agent Control for Large-Scale
Multi-Agent Systems,” in Intelligent Agents VIII: Agent Theories, Architectures, and
Languages (J-J. Meyer & M. Tambe, eds.), Springer-Verlag, 2002. (To appear.)

68. M. Wellman and J. Doyle, “Modular Utility Representation for Decision-Theoretic
Planning,” in Proceedings of the First International Conference on Artificial Intelligence
Planning Systems, pp. 236–242, 1992.

69. A. Wise, A.G. Cass, B. Staudt-Lerner, E.K. McCall, L.J. Osterweil, and S.M. Sutton, Jr.,
“Using Little-JIL to Coordinate Agents in Software Engineering,” in Proceedings of the
Automated Software Engineering Conference (ASE 2000), pp. 155-163, 2000.

70. P. Xuan and V.R. Lesser, “Incorporating Uncertainty in Agent Commitments,” in Intelligent
Agents VI: Agent Theories, Architectures, and Languages (N.R. Jennings & Y. Lesperance,
eds.), Springer Verlag, Volume 1757, pp. 57–70, 2000.

71. P. Xuan, V.R. Lesser, and S. Zilberstein, “Communication Decisions in Multi-Agent
Cooperation: Model and Experiments,” Proceedings of the Fifth International Conference on
Autonomous Agents, pp. 616–623, 2001.

72. P. Xuan and V.R. Lesser, “Multi-Agent Policies: From Centralized Ones to Decentralized
Ones,” University of Massachusetts/Amherst Computer Science Technical Report 2001-48,
2001. (Also submitted to AAMAS 2002.)

73. X.Q. Zhang, R. Podorozhny, and V.R. Lesser, “Cooperative, MultiStep Negotiation Over a
Multi-Dimensional Utility Function,” in Proceedings of the IASTED International
Conference, Artificial Intelligence and Soft Computing (ASC 2000), IASTED/ACTA Press,
pp. 136-142, 2000.

74. X.Q. Zhang, V.R. Lesser, T. Wagner, “A Proposed Approach to Sophisticated Negotiation,”
AAAI Fall Symposium on Negotiation Methods for Autonomous Cooperative Systems, 2001.
(See also X.Q. Zhang and V.R. Lesser, University of Massachusetts/Amherst Computer
Science Technical Report 2000-057, 2000.)

75. X.Q. Zhang, A. Raja, B. Lerner, V.R. Lesser, L.J. Osterweil and T. Wagner, “Integrating
High-Level and Detailed Agent Coordination into a Layered Architecture,” in Lecture Notes
in Artificial Intelligence 1887: Infrastructure for Agents, Multi-Agent Systems, and Scalable
Multi-Agent Systems (Wagner & Rana, eds.), Springer, pp. 72–79, 2001.

42

76. E. Durfee and V.R. Lesser, “Predictability versus Responsiveness: Coordinating Problem
Solvers in Dynamic Domains,” Proceedings of the Seventh National Conference on Artificial
Intelligence, pp. 66-71, 1988.

77. A. Raja, V.R. Lesser, T. Wagner, “Toward Robust Agent Control in Open Environments,” in
Proceedings of the Fourth International Conference on Autonomous Agents, pp. 84-92,
2000.

