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Abstract—This paper considers various factors affecting sys-
tem organization for speech understanding research. The struc-
ture of the Hearsay system based on a set of cooperating, inde-
pendent processes using the hypothesize-and-test paradigm is
presented. Design considerations for the effective use of multip-
rocessor and network achitectures in speech understanding sys-
tems are presented: control of processes, interprocess communi-
cation and data sharing, resource allocation, and debugging are
discussed.!

Index Terms—Hardware for AI, multiprocessors, networks,
parallel processing, real-time systems, software for Al, speech
recognition, speech understanding, system organization.

INTRODUCTION

YSTEM organizations for speech understanding
systems must address many problems: effective use
of multiple sources of knowledge, anticipation and goal-
direction in the analysis of the incoming utterance, real-
time response, continuous monitoring of input de-
vice(s), errorful nature of the recognition process, expo-
nential increase of processing requirements with the in-
crease of desired accuracy, and so on. A particular
model of speech perception [20] which attempts to solve
the above problems involves the use of cooperating in-
dependent processes using a hypothesize-and-test para-
digm. This paper examines the effect of the problem
constraints and the model on system organizations, pre-
sents the structure of a system currently operational on
a PDP-10 computer and discusses the implications of
multiprocessor and network architectures.
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Unlike many other problems in artificial intelligence
(AI), speech understanding systems are characterized
by the availability of diverse sources of knowledge, e.g.,
acoustic-phonetic rules, phonological rules, articulatory
models of speech production, vocabulary and syntactic
constraints, semantics of the task domain, user models,
and so on. A major problem, then, is to develop para-
digms which can make use of all the available sources of
knowledge in the problem solution. At the same time,
absence of one or more sources of knowledge should not
cripple the system. Suppose each source of knowledge is
represented within the system as a process. In order to
remove or add sources of knowledge, each process must
be independent, i.e., it must not require the presence of
other processes in the system. But at the same time
each process must cooperate with the other processes,
i.e., it must be able to effectively use the information
gathered by them about the incoming utterance. Thus,
a major design step is to establish what information is to
be shared among processes and how this information is
to be communicated so as to maintain the independence
of individual processes while still allowing for necessary
process cooperation.

Knowledge available in the acoustic signal represents
only one part of the total knowledge that is brought to
bear in understanding a conversation. A good example
of this is when one is interrupted by an appropriate re-
sponse from the listener to a question that is as yet in-
complete. In general, a human listener can tolerate a
great deal of sloppiness and variability in speech be-
cause his knowledge base permits him to eliminate most
of the possibilities even as he hears the first few words
of the utterance (if not before!). We feel that this notion
of anticipation, prediction, and hypothesis generation is
essential for machine perception systems as well. In
general, we expect every source of knowledge to be able
to generate hypotheses in a given context, or verify hy-
potheses generated by others using different represen-
tations of knowledge, if necessary. The implication is
that knowledge processes be organized within the sys-
tem so as to reduce the problem of recognition and un-
derstanding to one of prediction and verification.
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In tasks such as chess and theorem proving, the
human has sufficient trouble himself so as to make rea-
sonably crude computer programs of interest. But, be-
cause humans seem to perform effortlessly (and with
only modest error) in speech (and visual) perception
tasks, similar performance is expected from machines,
i.e., one expects an immediate response and will not tol-
erate any errors. To equal human performance, a speech
understanding system must be able to understand trivi-
al questions as soon- as they are uttered. This implies
that various processes within the system should be al-
lowed to operate as soon as there is sufficient incoming
data, without waiting for the completion of the whole
utterance. If the processes within the system are inde-
pendent and unaware of the existence of each other,
then the system must provide facilities for activation,
termination, and resource allocation for each of the pro-
cesses. Further, if a process can be deactivated before it
reaches a natural termination point, provision must be
made to preserve the state of the process until it is reac-
tivated. Also, it is necessary to provide interlocks on the
data that are shared among many processes.

This has several implications for system organization.
The system must monitor the input device continuously
to determine whether speech is present; this requires
nontrivial processing. If the system is unable to process
the incoming data, automatic buffering must be provid-
ed. If the system is to run on a time-sharing system,
provision must be made to ensure that no data are lost
because the program is swapped out for a period of
time, If the speech understanding system is to consist of
a set of cooperating independent processes, jt is further
necessary that they be able to be interrupted at un-
preprogrammed points—if the microphone monitoring
program is not activated in time to process the incoming
utterance, it could lead to irrevocable loss of data.
These considerations lead to two additional require-
ments that are not commonly available on existing
time-sharing systems, viz., process-generated interrupts
of other processes and user seryicing of interrupts.

One of the characteristics of speech understanding
systems is the presence of error at every level of analy-
sis. To control such errors and permit recycling with im-
proved definitions of the situation, one uses techniques
such as feedforward, feedback, and probabalistic back-
tracking. If such facilities do not exist within the sys-
tem, they must be programmed explicitly.

Speech, by its nature, appears to be computer inten-
sive. A substantially unrestncted system capable of reli-
ably understanding connected speech of many speakers
using a large vocabulary is likely to require systems of
the order of a proposed AI machine [3], i.e., processing
power of 10 to 100 million instructions per second and
memory of 100 to 1000 million bits.? To obtain such

2 Smaller and substantlally cheaper systems can be bullt to perform
useful but restricted speech understandmg task;
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processing power, it appears necessary to consider mul-
tiprocessor architectures. Decomposition of speech pro-
cessing systems to effectively use distributed processing
power requires careful consideration even with primi-
tive systems. Our model of cooperating independent
processes, each representing a source of knowledge,
leads to a natural decomposition of the algorithms for
such machine architectures.

THE CURRENT HEARSAY SYSTEM

In this section we briefly describe the Hearsay speech
understanding system as it now exists at Carnegie-Mel-
lon University. (More detailed descriptions of the sys-
tem are given in [20], [21], [6], [16].) We shall stress
those aspects of its organization which are responsive to
the constraints and model outlined above. This system
represents a first attempt to solve those problems; thus,
some of the constraints are only partially or poorly met,
while others are satisfied in a more constricted way than
necessary. We shall point out these limitations as they
are described; later sections on closely coupled and
loosely coupled processor network architectures de-
scribe posmble corrections and improvements of the sys—
tem.

The Hearsay system is implemented as a small num-
ber of parallel coroutines (see Fig. 1). Each coroutine
(module) is realized as a separate job in the PDP-10
time-sharing system; thus the time-sharing monitor is
the primary scheduler for the modules. In general, the
modules may achieve a high degree of (pseudo) parallel
activity (through the use of shared memory and a flexi-
ble interprocess message system?), but, in practice, we
limit the parallelism to a very modest amount. This lim-
itation is imposed for two reasons: first, since the PDP-
10 is a uniprocessor system, there is nothing to be
gained (in the time domain) by increasing the parallel-
ism; and, second, the greater the amount of parallelism,
the more difficult it is to control and debug the pro-
grams within a time-sharing system that is not designed
for cooperating processes (jobs).

The model of recognition specifies that there be sepa-
rate processes, each representing a different domain of
knowledge. We have chosen three major domains of
knowledge: acoustic-phonetics, syntax, and semantics.

1) The acoustic—-phonetic domain, which we refer to
as just acoustics, deals with the sounds of the language
and how they relate to the speech signal produced by
the speaker. This domain of knowledge has traditionally
been the only one used in most previous attempts at
speech recognition.

2) The syntax domain deals with the ordering of
words in the utterance according to the grammar of the
input language.

3) The semantic domain considers the meaning of the

3 The facilities provided for inter-job control and communication
are similar to those developed for the Stanford Hand-Eye system [8].
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Fig. 1. Decomposition of processes in the current Hearsay system.

utterances of the language, in the context of the task
that is specified for the speech understanding system.

These processes, according to the model, are to be in-
dependent and removable; therefore the functioning
(and very existence) of each must not be necessary or
crucial to the others. On the other hand, the model also
requires that the processes cooperate and that the rec-
ognition should run efficiently and with good error re-
covery; these dictates imply that there be a great deal of
interaction among the processes. Thus we seem to have
opposing requirements for the system. These opposing
requirements led to the design of the following struc-
ture:

Each process interfaces externally in a uniform way
that is identical across processes; no process knows
what or how many other recognition processes exist.

A mediator, ROVER (Recognition OVERlord), handles
the interface to each of the processes and thus serves
as the linkage connecting the processes; the processes
are called ROVER’s “‘sons.”

The interface is implemented as a global data struc-
ture which is maintained by ROVER. Each of ROVER’s
sons puts information into this data structure in a uni-
form way. Each may access information submitted by
its brothers, but in a manner which leaves the source of
that information anonymous. This mechanism is analo-
gous to a bulletin board on which messages can be left
by several people and for which there is a monitor who
accepts the message and arranges them in appropriate
places on the board for others to react.

This anonymous interface structure is appropriate
only if the global data structure can be designed in such
a way as to allow the processes to communicate mean-
ingfully, i.e., there must be a common language which
allows them to transmit the kind of information they
need to help each other to work on the problem. We re-
solve this problem by using the word as the basic unit of
discourse among the processes.

The basic element of the global data structure is the

word hypothesis which represents an assertion that a
particulat word (of the input language lexicon) occurs in
a specified position in the spoken input. A sentence hy-
pothesis is an ordered linear sequence of word hypothe-
ses; it represents an assertion that the words occur in
the sentence in the order that the word hypotheses ap-
pear in the sentence hypothesis. In addition, the unique
“word” FILLER may appear as a word hypothesis; this is
a placeholder and represents the assertion that zero or
more as yet unspecified words occur in this position in
the spoken senteénce. In general, there may be any num-
ber of sentence hypotheses existing at any one time.

The interactions among the source-of-knowledge pro-
cesses are carried out using the hypothesize-and-test
paradigm prescribed by the model. In general, any pro-
cess may make a set of hypotheses about the utterance;
all the processes (including the hypothesizer) may then
verify (i.e. reject, accept, or reorder) these hypotheses.
In particular, hypothesization occurs when a recognition
process {acoustics, ‘syhitax; or semantics) chooses a FILL-
ER word from a sentence hypothesis and associates with
it one or more option words, each of which it asserts is a
candidate to replace all or part of the FILLER. Verifica-
tion consists of each process examining the option
words and rating them in the context of the rest of the
sentence hypothesis.

Several restrictions have been placed on the imple-
mentation of this general scheme. First, at any time
only one part of the shared, global data structure (i.e.,
one sentence hypothesis) is accessible to the processes
for hypothesization and verification. Second, the pro-
cesses go through the hypothesization and verification
stages (and several other subsidiary stages) in a syn-
chronized and noninterruptable manner. Finally, only
one process is allowed to hypothesize at any one time.
Again, these restrictions were imposed both because
parallelism on a uniprocessor does not accomplish any
throughput inctease and because the available program-
ming and operating systems make a more general imple-
mertation difficult to specify, debug, and instrument.
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These restrictions are mitigated somewhat by carefully
adjusting the time grain of the processing so that each
noninterruptable phase is not “excessively large.”

Each sentence hypothesis has a confidence rating as-
sociated with it which is an estimate of how well it de-
scribes the spoken utterance. This rating is calculated
by ROVER, based on information supplied by the recog-
nition processes. Errors in processing become evident
when the overall rating given to a sentence hypothesis
begins to drop; at that point, attention is focused on
some other sentence hypothesis with a higher rating.
This switching of focus is the mechanism that provides
the error recovery and backtracking that is necessary in
any speech understanding system.

CLOSELY COUPLED PROCESSOR SYSTEM
ORGANIZATIONS

As discussed in the Introduction, in order to do real-
time speech understanding a substantial amount of
computing power is required. Recent trends in technol-
ogy indicate that this computing power can be economi-
cally obtained through a closely coupled network of
“simple” processors, where these processors can be in-
terconnected to communicate in a variety of ways (e.g.,
directly with each other through a highly multiplexed
switch connected to a large shared memory [2] or
through a regular or irregular network of busses [4].
Howeéver, the major problem with this network ap-
proach to generating computing power is finding algo-
rithms which have the appropriate control and data
structures for exploiting the parallelism available in the
network. The model for a speech understanding system
as previously discussed, which is decomposed into a set
of independent processes cooperating through a hypoth-
esize-and-test paradigm, represents a natural structure
for exploiting this network parallelism.

There exist three major areas for exploitation of par-
allelism in the structure of this speech understanding
system: preprocessing, hypothesization and verification,
and the processing specific to each source of knowledge.
The preprocessing task involves the repetition of a se-
quence of simple transformations on the acoustic data,
e.g., detection of the beginning and end of speech, am-
plitude normalization, a simple phoneme-like labeling,
smoothing, etc. This sequence of transformations can be
structured as a pipeline computation in which each
transformation is a stage in the pipe. Thus, through this
pipeline decomposition of the preprocessing task, a lim-
ited amount (i.e., 4) of parallel activity is generated.

The hypothesize-and-test paradigm for sequencing
the activity of the different sources of knowledge can
also be structured so as to exhibit parallelism, but the
amount of parallelism is potentially much greater. This
parallel activity is generated by the simultaneous pro-
cessing of multiple sentence hypotheses and the simul-
taneous hypothesization and verification by all sources
of knowledge. The simultaneous processing of multiple
sentence hypotheses, rather than processing just the

currently most likely candidate, can conceptually intro-
duce unnecessary work. But in practice, because of the
errorful nature of the processing, there may be a consid-
erable amount of necessary backtracking to find the
best matching sentence hypothesis. It is appropriate to
quote a conjecture of Minsky and Papert [15, sect.
12.7.6] on this point.

[While for the exact match problem] relatively small
factors of redundancy in memory size yield very large
increases in speed, . .. [for the best match problem].
... for large data sets with long word lengths there
are no practical alternatives to large searches that in-
spect large parts of the memory.]

Thus, the parallel activity generated by simultaneous
processing of more than one sentence hypothesis can re-
sult in a proportional speed-up of the recognition pro-
cess.* Correspondingly, simultaneous hypothesization
and verification by all sources of knowledge also results
in a proportional speed-up of the recognition process
because each source of knowledge is independent and is
designed so that its knowledge contribution is additive.

Finally, the verification algorithm of each source of
knowledge can be decomposed into a set of parallel pro-
cesses in two ways. The first kind of decomposition is
based on the fact that verifications are performed on a
set of option words rather than a single word at a time.
Thus, for each source of knowledge there can be multi-
ple instantiations of its verification process, each oper-
ating on a different option word. The second kind of de-
composition involves the parallelizing of the verification
algorithms themselves; thus, each instantiation of a ver-
ification process may itself be composed of a set of par-
allel processes. However, this set of instantiations may
not be totally independent because the rating produced
by the verification process may be dependent on the
particular set of option words to be verified and also on
the local data base which is common to all the instantia-
tions. For example, the acoustic verification process is a
hierarchical series of progressively more sophisticated
tests. The first few levels of testing look only at the con-
text of a single option word, while the more sophisticat-
ed tests compare one option word against another.
Thus, only at the first few levels of tests can the acous-
tic verification algorithm be parallelized in a straight-
forward manner.

The parallelism generated by parallelizing the hy-
pothesize-and-test control structure and the verification
processes are multiplicative in their parallel activity
(i.e., performing in parallel the updating of n sentence
hypothesis where each hypothesis invokes m verifica-
tion processes and each verification process operates on
o option words leads to a potential parallelism of
n*m*o). This parallelism, together with the pipeline

4 Simulation studies are currently being carried out on evaluating
this speed-up factor. These studies are based on data generated from
the current version of the Hearsay system.
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parallelism of the preprocessing, leads to what appears
to be a large amount of potential parallelism to be ex-
ploited by a closely coupled network. However, it is still
not clear just how much potential parallel activity exists
over the entire recognition system; nor is it known how
much of this potential will be dissipated because of soft-
ware and hardware overhead.

In order to answer these questions, a parallel decom-
position of the Hearsay speech understanding system is
now being implemented on C.mmp, a closely coupled
network of PDP-11’s which communicate through a
large shared memory [2]. The C.mmp hardware configu-
ration can contain up to 16 PDP-11’s; the highly multi-
plexed switch that connects processors to memory per-
mits up to 16 simultaneous memory references if these
references are not to the same memory module. Thus, if
processors are referencing different memory modules,
then each processor can run at full speed. In addition,
C.mmp can be configured for a specific application (e.g.,
speech) by replacing a processor by a special purpose
hardware device which directly accesses memory (e.g., a
signal processor).

The Hydra software operating system [24], which is
associated with C.mmp, provides an appropriate kernel
set of facilities for implementing the parallel version of
the speech system. These facilities permit control of
real-time devices, convenient building of a tree of pro-
cesses, message queues, and shared data base communi-
cation among processes, user-defined scheduling strate-
gies, arbitrary interruption of running processes, and
dynamic creation of new processes. Building up from
this base, a debugging system will be constructed which,
in addition to the normal features, will permit the re-
cording of all communication among processes, the trac-
ing of all process activity, and the monitoring of global
variables (including a recording of which processes have
modified them). These additional capabilities are cru-
cial for isolating errors and understanding the dynamic
behavior patterns of the parallel system.

The major software problem to be investigated in this
parallel implementation of the Hearsay system is how to
efficiently map virtual parallelism (process activity)
into actual parallelism (processor activity). This map-
ping problem in turn centers on three design issues,
each of which relates to how processes interact:

1) the design of the interlock structure for a shared
data base;

2) the choice of the smallest computational grain at
which the system exhibits parallel activity; and

3) the techniques for scheduling a large number of
closely coupled processes.

The first design issue is important because in a close-
ly coupled process structure many processes may at-
tempt to access a shared data base at the same time. In
a uniprocessor system, the sequentialization of access to
this shared data base does not significantly affect per-
formance because there is only one process running at a
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time. In a multiprocessor system, however, if the inter-
lock structure for a shared data base is not properly de-
signed so as to permit as many noninterfering accesses
as possible, then access to the shared data base becomes
a significant bottleneck in the system’s performance
[14]. '

The second issue relates to how closely coupled pro-
cesses can interact. If the grain of decompositjon is such
that the overhead involved in process communication is
significant in relation to the amount of computation
done by the process, then the added virtual parallelism
achieved by a finer decomposition can decrease, rather
than increase, the performance of the system. Thus, un-
derstanding the relationship between the grain of de-
composition and the overhead of communication is an
important design parameter.

The third issue relates to a phenomenon called the
“control working set” [11]. This phenomenon predicts
that the execution of a closely coupled process structure
on a multiprocessor may result in a significant amount
of supervisory overhead caused by a large number of
process context switches. The reason for this high num-
ber of process context switches is analogous to the rea-
son for “thrashing” within a data working set [5]. For
example, in a uniprocessor system, if two parallel pro-
cesses closely interact with each other, then each time
one process is waiting for a communication from the
other it would have to be context switched so as to allow
the other process to execute. If these two processes com-
municate often, then there would be a large number of
context switches. However, if there were two processors,
each containing one of the processes, then there would
be no process switching.

The implications of this phenomenon on constructing
process structures are the following:

1) Processes should be formed into clusters where
communication among cluster members is closely cou-
pled whereas communication among clusters is loosely
coupled. This process structuring paradigm has also
been suggested as a model for the operation of complex
human and natural systems [22].

2) The size of a process cluster cannot be chosen inde-
pendent of the particular hardware configuration that
will be used to execute it. For example, a cluster size of
8 may be appropriate for a hardware system containing
16 processors while being inappropriate for a system
containing 6 processors.

3) The scheduler of a multiprocessor system should
use a strategy that schedules process clusters rather
than single processes. (This is analogous to the advan-
tage of preloading the data working set rather than dy-
namically constructing the working set at each context
swap.)

4) The use of process structures to implement inher-
ently sequential, though complex, control structures
(e.g., coroutines, etc.) may lead to inefficient scheduling
of process structures on a multiprocessor system (i.e.,
the scheduling strategy should be able to easily differ-



ERMAN et al.: SYSTEM ORGANIZATIONS FOR SPEECH UNDERSTANDING

entiate those processes that can go on in parallel from
those that are sequentialized).

NETWORK ORGANIZATIONS

The multiprocessor type organization described ear-
lier implies a closely coupled set of processes on a set of
closely coupled processors cooperating to accomplish
the common goal of utterance recognition. The key idea
in such a system is that both the processes and proces-
sors are closely coupled—that is, the cost of communi-
cation between processes Or processors is relatively
cheap with respect to the amount of computation to be
done by any individual process. Indeed, in the multipro-
cess system described earlier, much interprocess com-
munication and data sharing may be achieved by actu-
ally having shared physical address spaces. However,
such a system usually also implies a certain homogene-
ity or physical proximity of the processors and memory.

Consider now the task of integrating the knowledge of
many different research groups in various widespread
geographical locations, each with its own computing fa-
cilities and each with its own areas of specialization. In
an attempt to avoid unnecessary duplications of effort,
one would desire a scheme whereby each group could
develop pieces of a total recognition system (which piec-
es might represent new sources of knowledge, such as a
new and improved vowel classification algorithm) using
local computing resources (i.e., using an arbitrary ma-
chine configuration and program structure). Those piec-
es of the system would then be incorporated into a dis-
tributed “total recognition system” by appropriate
(hopefully minimal) linkage and protocol conventions
and their contributions to the entire system evaluated.
The geographical constraints suggest the use of a com-
puter network facility as a means by which one might
assemble this total recognition system. We are currently
undertaking the task of designing and implementing
such a system for use on the Advanced Research
Projects Agency (ARPA) network of computing facili-
ties [19]. The usefulness of such a network organization
for a speech understanding system lies in its potential
ability to combine and evaluate the various algorithms
and sources of knowledge of a wide variety of research
groups. In particular, the objective of the network orga-
nization is to create a research tool rather than to pro-
duce a highly efficient recognition system.

As an example, suppose a group wishes to add a new
source of knowledge (a new vowel classification algo-
rithm, for instance) to the network system. This knowl-
edge source is provided in the form of a process (or a set
of processes) running on a local computer connected to
the ARPA network. System integration is then achieved
by adding linking instructions to the process (perhaps
interactively) for notifying a centralized controlling pro-
cess of the set of preconditions (e.g., conditions relating
to the incoming speech wave or the current state of the
recognition) that must be met in order to activate this
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process [1], as well as the required inputs and created
outputs (and their formats). The,central controller is
then responsible for activating the new knowledge
source at appropriate times, supplying the requested in-
puts, and updating a global data base to reflect the re-
sults of the activated process. Knowledge source pro-
cesses may communicate with one another via a mes-
sage service facility provided by the central controller.
The marked increase of indirection with respect to com-
munication and data sharing as compared with a closely
coupled multiprocessor approach is a result of the goal
to serve a wide geographic region of users and to allow
cooperation between essentially autonomous knowledge
sources.

The problems that occur in this network concept are
of a nature different from that of those occurring in the
multiprocessor structure described previously. The
many sources of knowledge are no longer necessarily
closely coupled. In fact, we might term such a network
organization to be “loosely coupled” in the sense that
process communication and data base sharing must be
achieved by some form of message switching scheme
since the system is now operating on an indefinite num-
ber of (nonhomogeneous) computers. In particular,
there is no longer the ability for all processes to share -
data and communicate by -sharing physical address
spaces. The problems of data base sharing and shipping
now abound: one would like not to have multiple copies
of a given data structure due to updating synchroniza-
tion problems, but the message switching involved in
maintaining and updating a single, centralized data
structure may be overwhelmingly inefficient.

It is intended that, besides serving as a research tool
for testing various recognition algorithms and combina-
tions thereof, such a network organization will become
an interesting experiment in its own right. There re-
mains much investigation to be conducted regarding the
tradeoffs involved in passing and sharing data through
channels having low communication rates, as well as in-
vestigating the means of coordination of many autono-
mous knowledge sources. Points of interest for systems
design also exist in creating the appropriate interfaces
between any given group’s knowledge source process
and the central controlling process. Specification for
data base requirements and formats (for both input and
output) and specifications for determining the precon-
ditions upon which a process should be activated must
be easily specified far each new process to be added. In
particular, the new process should not need to know the
details of the global data structures it may need to ac-
cess—the linkage interface should take care of such de-
tails [17], [18].

Issues of user control over the entire system and the
human interface in general are considered vital, de-
manding much investigation for any system organiza-
tion which intends to run as a set of parallel cooperating
(whether closely or loosely coupled) processes. The user
must have the ultimate control over halting the entire
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recognition system or some subset of processes involved
therein and interrogating (and perhaps altering) the in-
stantaneous state of any given process. Protocols for de-
bugging and controlling any knowledge source process
should be provided via the interface linkage setup. Sys-
tems allowing the amount of user control that might be
desired are not easily achievable given the current state
of the art, primarily due to a general lack of experience
in multiprocess environments (however, see [23]). Given
a well-defined problem environment such as the speech
understanding task, which lends itself readily to a mul-
tiple-process decomposition, investigation into the
realms of multiprocess debugging and control might
now be given more definite aims. Indeed, the problems
involved in controlling a set of independent parallel
processes that are cooperating to solve a single problem
reach beyond the issues raised in the development of
present multiprogramming systems (e.g., monitoring
and controlling the interactions involving shared data
structures and process intercommunications demand
that new debugging systems and strategies be formulat-

ed).

SUMMARY

The main focus of this paper has been to illustrate
the issues of system organization that arise when one at-
tempts to build a general speech understanding system
which can equal human performance. In practice, how-
ever, one can finesse a large number of these issues by
working with prerecorded data and relaxing other re-
quirements, such as real-time response. However, unless
the system is organized with the eventual goals firmly in
mind, one is likely to end up with dead-end systems, ne-
cessitating a complete reformulation of the problem so-
lution. The complexity of the hardware and software
problems raised by real-time requirements explains why
there are very few systems which can accept or attempt
recognition of live connected speech.

Usually the term “parallel processing” is used as if it
will resolve all of one’s problems. The intent here is
mainly to indicate that speech understanding systems
naturally decompose into-a set of cooperating, indepen-
dent processes. Whether one uses a single processor (as
we now do) or many processors (as we propose to do),
the program structure and organization tends to be sim-
ilar. The main question, then, is how much computa-
tional power is available on the system to attempt real-
time recognition of connected speech. The multiproces-
sor and network organizations provide an opportunity
to study and evaluate relative merits of various comput-
er architectures in this context.

Finally, we believe that the issues of system organiza-
tion raised here are relevant to a large class of current
problems in Al e.g., vision, robotics, chess, chemistry,
etc., where performance is the main criterion for accept-
ability and where many sources of knowledge are avail-
able. In particular, the notions of hypothesize-and-test
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and cooperating independent processes seem equally
applicable to these areas as well.
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