Reasoning about Remote Data in CDPS with
Distributed Bayesian Networks *

Jiaying Shen', Victor Lesser', and Norman Carver?

! 140 Governor’s Drive, Department of Computer Science,
University of Massachusetts, Amherst, MA 01003-4610, USA
{jyshen, lesser}@Qcs.umass.edu
2 Computer Science Department, Southern Illinois University, mailcode 4511,
Carbondale, IL 62901, USA
carver@cs.siu.edu

Abstract. Existing Cooperative Distributed Problem Solving systems
frequently employ fixed coordination strategies to achieve global consis-
tency or global optimality. However, these strategies generally do not
exploit the characteristics of the particular problem they are used on. In
this paper we propose an algorithm that given a problem formulated as a
Distributed Bayesian Network, finds a coordination strategy which min-
imizes the communication costs while achieving the desired confidence
level of the global solution. We develop a system based on this algorithm
which models the communication decision process for any given problem
structure as a Markov Decision Process and use dynamic programming
to produce the optimal communication strategy.

1 Introduction

Cooperative Distributed Problem Solving (CDPS) is a major focus of research
in Multi-Agent Systems (MAS). CDPS studies how large scale problems can
be solved using a group of agents working together. Local solutions are merged
together to form a global solution by mainly communicating the high level infor-
mation [2]. However, if the local solutions are not consistent or not sufficiently
credible, further communication is needed to resolve the conflict. As a result,
one of the key issues is to design an algorithm that manages the agent commu-
nication to achieve the desired global solution quality. By solution quality we
mean the likelihood that a solution will be the same as what we will get from a
centralized system where all information is available.

Most approaches to managing communication trade off solution quality for
reducing communication, but only from a statistical view. The behavior of the
algorithms are often analyzed over an ensemble of problems to say that p percent
of the time they will get the required solution quality ¢ with an average amount
of communication ¢ [1].
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We would like to take this satisfaction approach to the next step by seeing
whether we can design a parameterized algorithm where we can predict, for a
fixed amount of communication, the maximum level of confidence we expect
in the final solution. Or conversely, given a desired confidence level in the final
solution how much communication the agents need. Finally, the algorithm should
produce a communication strategy that will require only the minimum amount
of communication to still achieve the desired solution quality.

We will study these issues in terms of Distributed Bayesian Networks (DBN).
Recent work includes algorithms such as in Xiang [3] that produce the same final
solution in CDPS as that is generated by a centralized problem solving system.
However, this approach can potentially require significant communcation.

In our research, we use two-layer DBN to represent the underlying structure
of the problem that needs to be solved [1]. For our problem, we make the following
assumptions:

(1) There are two agents in the system.

(2) Every agent has access to the complete DBN.

(3) Evidence is distributed among the agents.

(4) Each agent knows what evidence the other agent has access to.

Bayesian Networks are a powerful tool to calculate conditional probabilities,
and we have developed an algorithm that can reason about remote data using
DBNs. Without exchanging any information at all, an agent can use our algo-
rithm to compute the likelihood of a hypothesis H being the globally optimal
solution based on its local data and direct the agent to ask for critical informa-
tion from the remote agent in order to reach a higher level of confidence in the
global solution. On the simple examples we constructed, the algorithm works
well in reducing the communication cost.

We are now implementing a system based on this algorithm. With this sys-
tem, given any DBN problem structure an agent will be able to dynamically
construct a Markov Decision Process (MDP) and learn the optimal policy in
terms of what data to ask for from the remote agent and in what order. With
the smart conversation thus carried out by the agents, we expect the communi-
cation cost of the system to be significantly reduced.

2 Reasoning about Remote Data

In CDPS systems, a problem is decomposed into a set of subproblems and each
subproblem is distributed to an agent who will be responsible for solving the sub-
problem. The existence of interactions between subproblems means that CDPS
agents cannot simply solve the subproblems individually and then combine local
solutions together. To ensure that the local solutions are globally consistent they
must communicate during the problem solving process. A coordination strategy
is needed to specify how agents will interact: when they will communicate, and
what information they will send or request.



One of the common coordination strategies used in CDPS systems is Consis-
tent Local Solutions Strategy (CLSS) [2]. According to this strategy, agents first
independently solve their local subproblems and then transmit their local solu-
tions to all other agents. If these agents’ local solutions are consistent with each
other, they are merged without further verification of what the globally optimal
solution is. If the local solutions are not consistent, lower level results/data is
transferred to ensure that the local solution chosen are consistent.

There are several key problems with CLSS. First, there is no way to ensure
that the solution chosen is the globally optimal solution or that it has reached
the desired confidence level. Secondly, there can be significant delays in problem
solving when agents require substantial amounts of raw data from other agents.
Hence, we propose the idea of transmitting data incrementally until sufficient
confidence in the current best solution is reached. By “incrementally” we mean
that not all of the local raw data is transferred at once. Instead, it is transmitted
as needed until global consistency is achieved. This raises another question: in
what order should the raw data be transmitted when it is necessary?

Instead of giving a one-size-fits-all strategy, we are trying to design an algo-
rithm that can produce a strategy for any given problem structure that requires
as little communication cost as possible to achieve the desired confidence level
of the final global solution.

Fig. 1. An example of DBN problem structure. There are two events F; and E». Data
di, d2 and ds are distributed to two agents. A; has access to di and d2, while A> can
only see ds. The objective is for A; and As to figure out what E; and E» are without
too much communication.

We use a two-layer Bayesian Network to represent the problem structure
(Figure 1). The top level nodes are the events that are the cause of the observed
data, while the leaves are the raw data gathered, which are distributed to various
agents. The objective of the CDPS system is to figure out the likelihood of events
FE, and E> without significant communication.

Notation 1 Agent A;. In Figure 1, there are two agents {A;|i = 1,2}.



Notation 2 Event E;. The possible events in the environment which caused the
observed data. For example, in Figure 1 there are two possible events {E;|i =
1,2}.

Notation 3 Data d;. The data observed by agents. In Figure 1, we have 3 data
{1 <i<3}.

Notation 4 Hypothesis H;. The possible hypotheses the agents might draw from
the data. Normally they are possible configurations of the events. For example,
in Figure 1 we have four possible hypotheses {H;|1 < i < 4}, as shown in (1).

H, H, H3 H,
E,1 100 (1)
Exy 1 0 1 0

Notation 5 FEwvidence €;. The data set possibly observed by one agent. They are
possible configurations of the data set of the agent. For example, in Figure 1
agent Ay has four possible evidence configuration {€;|1 < i < 4}, as shown in

(2).
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Notation 6 Actual evidence €4,. Every agent can only observe one data value
configuration from the possible evidence set. In Figure 1, Ay can only observe
€4, € {e]l <i <4}

Notation 7 Confidence C4,. Based on the evidence observed, an agent can cal-
culate the conditional probabilities of every hypothesis based on the evidence, i.e.,
CAi (H) = P(H|€Ai)'

Let us now assume that A has not received any information from 4;. With
the knowledge of its own data and the Bayesian Network structure, A can still
do some reasoning to decide what information it needs to determine the globally
best hypothesis. We illustrate this with an example.

In our example, A has access only to d3 = 0 and the BN structure shown in
Figure 1. Does A; need to send all the data? What information should A, request
from A;? Can A save communication cost by requesting only the necessary
data? Naturally, As will put itself in the place of A; to reason about A;’s data.
It calculates the probabilities of the four possible evidence of A; given d3 = 0 as
follows:

P(e1]ds = 0) = 0.0679, P(e2|ds = 0) = 0.0987
P(es|ds = 0) = 0.1632, P(eq]ds = 0) = 0.6701. (3)

As can also calculate the probabilities of the four hypotheses assuming the evi-
dence of Ay, i.e. P(H;lej Ad3 =0),1<i<4,1<j<4asin Table 1.



€1 €2 €3 €4
H.|0.872(0.576(0.346|0.061
H>|0.065(0.364|0.625(0.932
H3|0.063(0.059]0.029{0.007
Hy 0 0 0 0

Table 1. Reasoning about what to request: P(H;le; A d3 = 0)

Notation 8 Compound Probability CP(e;lea) is a pair (P(e;lea), Hj), where
Jj = mazarg;P(Hj|e; A €a). It indicates that given the local evidence e, with
probability of P(e;|ea), H; is the best hypothesis, where €; are all the possible
evidence of the remote agent.

In our example, from (3) and table 1, Ay has the compound probabilities of
the four possible remote evidence as follows:

CP(e |ds = 0) = (0.0679, H,), CP(es|ds = 0) = (0.0987, Hy)

It is obvious that based on Ay’s data, Hs is the most probable hypothesis.
However, from (4), we can see that for €; and ez, H; is the best hypothesis,
while for e3 and €4, H» is. The conclusion is thus: with probability of P(e;|ds =
0) + P(e2|ds = 0) = 0.1666, H; is the globally optimal hypothesis, and with
probability of P(es|ds = 0) + P(e4|d3 = 0) = 0.8333, H is the globally optimal
hypothesis. So, we are able to collapse (4) into:

CP(e; V €]ds = 0) = (0.1666, H,)

CP(e3 V es|ds = 0) = (0.8333, Ha). (5)
If we collapse (2) into:
d
€1 \ €2 1 5 (6)
€3 V €y 0

it is easy to see that what makes the difference of choosing H; or H, as the
globally optimal hypothesis is d;. Consequently, As will be able to determine
the globally optimal hypothesis if A; sends it the observed data d;. Based on
this knowledge, A, only needs to ask A; for d; instead of both d; and dy. This
saves communication cost.

What is more, from (5), we can see that with probability of 0.8333, H, is
the globally best hypothesis. As a result, if we only need to reach the confidence
level of 80%, As does not even need to request A; to send it data d;. Only
when the confidence requirement is above 83%, data request is needed. The
compound probabilities enables us to see what data to request to reach the
desired confidence level and only communicate as little as needed.

Now we can summarize the algorithm as follows:



Algorithm 1 1. Calculate the probabilities of the possible evidence of the remote

agent A, based on the local data, i.e. P(€ilea,).

2. Calculate the probabilities of the hypothesis of assuming the remote evidence,
P(Hi|6j A €A2).

3. Calculate and collapse the compound probabilities.

4. Group the evidence according to the most probable optimal hypothesis, and col-
lapse the evidence table.

5. Request data according to the collapsed evidence table and the required confidence
level of the final solution.

The advantage of Algorithm 1 is evident. With CLSS, A; will have to trans-
mit both raw data d; and d, to get a globally consistent solution, while using
Algorithm 1, we need to transmit only d; to ensure the globally optimal solution
and there is no communication at all to reach the confidence level of 80%.

One thing worth noting is that we are assuming that only A, is doing the
reasoning in our algorithm. This is reasonable since there will often be one agent
who is responsible for assembling the global solution. A more interesting case is
when A; is simutaneously reasoning about what data it should provide to As.

3 Communication Strategy System

Algorithm 1 has answered the question of what to request (communicate). Now,
we have another equally important question to answer: if there is more than
one piece of critical data, in what order and combination the data should be
transmitted to minimize the communication cost. This is essentially a solution
to step 5 of the algorithm.

To answer this question we frame the problem as an MDP and use dynamic
programming to find the optimal communication strategy. Each state of the
MDP includes the current known remote data set, the current best solution and
its compound probability, i.e.,

S : Dknawnfremote;Op(eunknawnfremote|6known7remote A 6local)

= Dinown—remotes (P(eunknown—remote |€known—remote A elocal)a H) (7)

where Dgnown—remote 18 the known remote data set, €ynknown—remote 1S the
unknown remote evidence with the highest P(€unknown—remote|€known—remote N
€local), and H is the corresponding hypothesis and hence the current best solu-
tion. The action set of the MDP is all the possible combinations of the critical
data. The cost of each state-action pair is the amount of communication needed
to take this action in this state. We assume that the cost of a request message
is 1 no matter how many data are requested, and each data transmitted costs
1. The MDP starts at the state where no remote data is known and the best
global solution is based on its own local information. It stops when the desired
confidence level is reached.

As an example, we will construct an MDP (Fig 2) for (8). Please note that
(8) is different from (4). In (8) the best hypothesis for ¢4 is Hs instead of Ho.



All the other assumptions are essentially the same as the previous example.
The existence of H3 makes our example sufficiently complex to illustrate the
algorithm.

CP(e|ds = 0) = (0.0679, Hy), CP(es|ds = 0) = (0.0987, Hy)
CP(es|ds = 0) = (0.1632, Hy), CP(e4|d3 = 0) = (0.6701, Hj). (8)

Without knowing any remote data, A, may determine that the best global
solution is H3 with the confidence of 0.67. Going through Algorithm 1, it decides
that the critical remote data set is {d;,d2}. As a result, the action set for A
is {(d1), (d2),(d1,d2)}. If it takes the action (di,ds), it will get the globally
optimal solution no matter what the reply is. If it asks for d;, with a probability
of 0.0679 + 0.0987 = 0.1666, d; = 1 and H; is the globally optimal solution
with confidence of 1. If d; = 0, the remote data can be either €3 or e4. As
a result, As can decide only that Hs3 is the best solution with confidence of
0.6701/(0.1632 4+ 0.6701) = 0.8042. If it still wants to improve its confidence
level, it will need to take further action, asking for d,, after which it can draw
the best conclusion with full confidence. The cost for path S0 — S3 is 3 and
for path SO — S1 is 2, while the cost for path SO — 52 — S3 is 4. Applying
Dynamic Programming to this MDP, to achieve confidence level of 80%, the best
strategy is for Ay to ask for only d;, while to achieve confidence level of 100%,
As should ask for both d; and d» at once.

s4: {d2}, (0.7061,H2)
(d1),0.1666

(d2),0.2311
(d1),0.8333
(a1) s2: {d1}, (0.8042,H3)
(a2)

(d1)

Fig. 2. Framework of the Communication Strategy System

(d2)
S5: (d2), (0.8715

We are now implementing a system to dynamically construct an MDP for
any given problem structure based on this algorithm. The general framework of
this system is illustrated in Figure 3. The input of the Communication Strategy
System is the problem structure represented in the form of a DBN, and the
output is the optimal communication strategy the agent should deploy. The BN
toolkit is used to calculate all the necessary conditional probabilities (steps 1-3
in Algorithm 1) and the decision tree data structure is employed to collapse the
truth table and find data critical to the globally optimal solution according to
Algorithm 1 (steps 3 and 4). The system then uses dynamic programming to



produce the optimal communication action sequence for the MDP constructed
this way(step 5).

Probabilitiesg Decision Tree

Problem Structure (DBN)

Critical data
(Action + reward)

BN toolkit

State Optimal policy

Fig. 3. Framework of the Communication Strategy System

4 Future Work

Once the system is implemented and data sets are collected from experiments,
we plan to compare the results with the data collected from a previous system
[1] without communication planning. Some formalization based on the statis-
tics result will also be done to predict the amount of information that needs to
be exchanged to reach a certain level of confidence. Furthermore, we will try
to apply some approximation techniques to reduce the computational complex-
ity inherent to Bayesian Networks. Dynamic programming will guarantee the
optimality of the solution, but it is also time consuming and computationally
expensive. We are considering applying some reinforcement learning techniques
such as Q-learning to approximate the optimal policy. We will also try to scale
our algorithm to larger DBNs, to more agents and to multi-level networks.

The reasoning about what data to request gives us some insight into the
relation between the confidence level in the hypothesis and the communication
needed. In Carver [1], we have seen some experimental results on this relation
in the context of different near-monotonicity levels. This work may help us ex-
plain those results. We are currently looking into the relation between the near
monotonicity measures used by Carver [1] and the method used here, in hopes
of finding such explanations.
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