
Control Heuristics for Scheduling in a Parallel
Blackboard System

Keith Decker, Alan Garvey, Marty Humphrey and Victor Lesser 1

Department of Computer Science
University of Massachusetts

Amherst, MA 01003
Phone: (413)545-3444

Fax: (413)545-1249
Email: DECKER@CS.UMASS.EDU

Keywords: Blackboard Systems, Parallelism, Control Knowledge

March 11, 1993

Abstract

This paper investigates the effects of parallelism on blackboard system scheduling heuristics.
A parallel blackboard system is described that allows multiple knowledge source instantiations
(KSIs) to execute in parallel using a shared-memory blackboard approach. New classes of control
knowledge are defined that order the agenda by using information about the relationships
between the goals of the KSIs. This control knowledge is implemented and tested in the
DVMT application on a Sequent multiprocessor using BB1-style control heuristics. The
usefulness of the heuristics is examined by comparing the effectiveness of problem-solving with
and without the heuristics (as a group and individually). Problem solving with the new control
knowledge results in improved system performance.

1The authors are listed in alphabetical order. This work was partly supported by the Office of Naval Research
under a University Research Initiative grant number N00014-86-K-0764, NSF contract CDA 8922572, ONR
contract N00014-89-J-1877, and a gift from Texas Instruments. The content of the information does not
necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred.



1 Introduction

From the beginning the blackboard paradigm has been developed with parallelism in mind
[21]. The concept of independent Knowledge Sources (KSs) that communicate only through
a shared blackboard is a model that inherently encourages parallel execution.

There are many alternatives for parallelizing a blackboard system at the knowledge source
execution level. Corkill [4] analyzes three (see Figure 1): a distributed blackboard approach with
multiple Knowledge Source Instantiation (KSI) queues and multiple blackboards, a blackboard
server approach with multiple KSI queues and a single blackboard located at one processor,
and a shared memory approach, with all processors sharing a single blackboard and a single
KSI execution queue.

 

KSI 
QUEUE

BLACKBOARDS

KSI 
QUEUE

BLACKBOARDS

KSI 
QUEUE

BLACKBOARDS

KSI 
QUEUE

Processor

KSI 
QUEUE

Processor

BLACKBOARDS

KSI 
QUEUE

Processor

Blackboard Server Approach

Distributed Blackboard Approach

Shared Memory 
Blackboard Approach

ProcessorProcessor Processor KSI
QUEUE

BLACKBOARDS

Processor Processor Processor

Figure 1: Three Design Alternatives for KS-level Parallelism

The focus of this work is knowledge source parallelism using the shared memory blackboard
approach, which has been discussed in several places in the literature. Early work by Fennell
and Lesser [16] studied the effects of parallelism on the Hearsay II speech understanding system
[15]. One major contribution of that project is a detailed study of blackboard locking mecha-
nisms. More recently, the CAGE architecture has been developed that takes the existing AGE
blackboard architecture and extends it to execute concurrently at several different granularities,
including that of knowledge source parallelism [25]. Another similar parallel blackboard system
was built by Velthuijsen, et al. [27].

One distinguishing feature of these studies of parallelism in blackboard systems is that they
used simulated parallelism. Concurrently executing processes and interprocess communication
were simulated using models of parallel environments. This was the case primarily because
of the primitive nature of existing parallel hardware and the lack of sophisticated software
development environments. Only recently have hardware and software capabilities come
together to allow the actual implementation of parallel blackboard systems [2]. Useful parallel

1



programming environments now exist, including parallel implementations of Lisp. The work
described in this paper was done on a Sequent multiprocessor using Top Level Common Lisp1

(a version of Lisp that supports concurrent processing) and a specially-created version of GBB
2.02 (Generic BlackBoard) that supports parallelism.

Along with our actual use of parallel hardware, a major difference between our work
and previous research is our focus–while previous research was directed at merely obtaining
parallelism in the blackboard model, we are interested in creating and controlling a blackboard
system that has multiple knowledge sources executing in parallel. The essential problem is:
which KSI should a processor select when it next becomes free, given that (1) knowledge sources
naturally interact with each other through shared data structures and (2) knowledge sources
have ordering constraints among them that suggest that certain pairs or groups should not be
executed in parallel. The goal of this research is to define and use control knowledge that
improves system performance. As we show, it is not enough to simply parallelize a sequential
blackboard system by adding locks to the appropriate data structures, and control the system
by making each processor select the first KSI on the queue as ordered by the control heuristics
of the previously-uniprocessor system, irrespective of which KSIs are executing on the other
processors. New control heuristics need to be added for effective parallelism.

Early work on Partial Global Planning[13] showed that constructing schedules using a
high-level view of the solution space (derived by distributed agents from task relationships)
improved the utilization and effectiveness of distributed processors. This leads to the intuition
that task relationships may be helpful for scheduling in a single agent, parallel-processing
environment.

In focusing on the control of a blackboard system, we address the larger issue of how to
control parallel search in an environment that consists of multiple, interrelated subproblems,
where not all subproblems must be completed in order for the system to terminate. The
completion of one subproblem could change the requirements for the successful completion
of subsequent subproblems. Knowledge about the dynamic, projected utility of a subproblem,
along with relationships among subproblems, can be used to order the execution of these
subproblems to achieve effective parallelism. The desired effect of a control component in
a parallel search is thus not discussed in terms of processor utilization but rather in terms of
the processors’ contributions to system termination. A coordinated scheduling of activities on
processors should result in an efficient, effective search.

The next section discusses the details of our parallel architecture. Section 3 describes the
new kinds of control knowledge that are useful in a parallel environment and identifies the
kinds of data that are required to implement those new kinds of knowledge. Section 4 briefly
introduces the Distributed Vehicle Monitoring Testbed, the application that motivates this
work, and describes the new heuristics that were added for parallelism. In this section we also
present and discuss the results of the experiments we performed on the system, including the
performance of the implementation and the effect of the added control heuristics. The final
section summarizes the work and describes future research directions.

1Top Level Common Lisp is a trademark of Top Level, Inc.
2GBB 2.0 is a trademark of Blackboard Technologies, Inc.

2



2 Architecture

This section presents the basic architecture of our uniprocessor system in Section 2.1. In
Section 2.2 we discuss how the uniprocessor architecture was made into a multiprocessor
architecture. Section 2.3 presents details of the blackboard locking mechanisms.

2.1 Uniprocessor Architecture

The low-level control loop of our uniprocessor blackboard architecture is depicted in Figure 2
and described in more detail in [7, 11]. In this architecture the processor selects the currently

KSI agenda

Hyp blackboard

Goal blackboard

Subgoaling

Hyp-to-goal mapping

Goal-to-KS
mapping

KSI Execution

Run
Preconditions

Goal Merging

Hypothesis Filter
Goal Filter

KSI Merging

Figure 2: The Parameterized Low-level Control Loop

top rated KSI from the executable agenda and executes the KSI action, which creates and
modifies blackboard hypotheses. These hypotheses stimulate goals, which trigger new KSs for
execution. A scheduler orders the executable agenda and the loop begins again. Within the
low-level control loop, there is a hypothesis filter that is used to select which hypotheses will
be used to create goals via the hypothesis-to-goal mapping. Similarly, there is a goal filter to
control which goals will be used to trigger new KSs. Each step of this low-level control loop is
highly parameterized, which allows for a variety of problem solving strategies. For example, the
hypothesis filter can be set to pass only a few hypotheses for a very restricted, expectation-driven
style of processing, or it can allow passage of all hypotheses.

In our system, problem solving consists of a number of different styles, or phases. A phase
is defined as a period of domain processing in which no major changes to the low-level control
loop parameters have been made. At the end of one phase, a phase change occurs when the
normally dormant control KSs activate to complete the processing of the phase, establish the
initial work of the next phase, and set the parameter values in accordance with the style of the
next phase. Often in a phase, there is potential work, in the form of unexecuted KSIs, filtered
goals, filtered hypotheses, etc., that is not performed because it is inappropriate for that phase.
The initial work of the next phase is generally created from this potential work—unexecuted
KSIs are selected for the initial agenda, certain filtered hypotheses are passed through a new
hypothesis-to-goal mapping to create goals which create new KSIs, etc. As an example of a
phase and a phase change, a typical first phase is to process all of the data roughly to obtain a

3



high-level view of the data (if all of the data is present before the system runs, in contrast to
a real-time interpretation situation). When all of the data is coarsely interpreted, control KSs
execute to determine which data is more important and should be the focus of the next phase.
The control KSs then set the parameters of the low-level control loop accordingly and create
the initial work of the next phase by re-passing certain low-level input data back through the
hypothesis-to-goal mapping, generating a different set of goals than those generated as part of
the coarse processing. These goals generate new KSIs as well. The next phase commences with
the execution of the highest-rated KSI on the new agenda.

The values of the parameters of the low-level control loop are set by BB1-style control
knowledge sources[18]. The control KSs can conceptually run asynchronously with the do-
main processing—it could exist as a separate process running concurrently with the domain
processing, or it could be activated at a particular point in the low-level control loop. For sim-
plicity, we make the latter choice. We choose to schedule and run the control KSs immediately
before rating and selecting the next domain KS for execution. By doing so, there is minimal
latency between the establishment of a new problem solving style and KSI-selection based on
the new criteria.

2.2 Multiprocessor Architecture

Our parallel implementation of this blackboard architecture uses a shared memory approach in
which several processors are concurrently and asynchronously executing the low-level control
loop (Figure 3). As part of this control loop, each processor is responsible for selecting and
executing domain KSIs. The agenda, the blackboard, and the values of the parameters of the
low-level control loop are the only shared data structures. This basic architecture is similar
to the architecture of the Cage simulation that utilized KS-level parallelism and asynchronous
control [26].

In our implementation of the meta-control for the application described later, there was
generally only one control knowledge source on the agenda at any one time. Due to this fact and
the difficulty of redoing the underlying implementation of the BB1-style control architecture
to permit concurrent execution, it was decided that there was not much to be gained from
running control KSs in parallel. However, in order not to cause this sequential meta-control to
be a major bottleneck to processing, we did explore intra-KS parallelism in the control KSs in
order to speed up the meta-control. That is, certain control KSs were re-written to divide up
their work into sections that could be executed in parallel with each other. As will be discussed
in future research, we believe that in more sophisticated meta-control applications, there is
potential for extensive parallelism.

2.3 Blackboard Locking

Various schemes for blackboard locking appear in the literature. The most detailed is that
presented by Fennell and Lesser, who describe a method for locking blackboards that assures
data integrity [16]. Their method provides two kinds of mechanisms for accomplishing this:
various locking mechanisms that provide exclusive access to blackboard objects and regions, and
a data-tagging facility that allows processors to state their assumptions about data values and
receive messages when those assumptions are violated. When a KS is triggered, all hypotheses

4



Domain
Blackboard

and Agenda

KSI agenda

Hyp blackboard

Goal blackboard

Subgoaling

Hyp-to-goal mapping

Goal-to-KS
mapping

KSI Execution

Run
Preconditions

Goal Merging

Hypothesis Filter
Goal Filter

KSI Merging

KSI agenda

Hyp blackboard

Goal blackboard

Subgoaling

Hyp-to-goal mapping

Goal-to-KS
mapping

KSI Execution

Run
Preconditions

Goal Merging

Hypothesis Filter
Goal Filter

KSI Merging

KSI agenda

Hyp blackboard

Goal blackboard

Subgoaling

Hyp-to-goal mapping

Goal-to-KS
mapping

KSI Execution

Run
Preconditions

Goal Merging

Hypothesis Filter
Goal Filter

KSI Merging

Control
Blackboard

Processor 1 Processor 2 Processor n

...

Figure 3: Running the Low-level Control Loop in Parallel

5



that contributed to the triggering are either locked or tagged. The regions3 of the blackboard
that the KSI expects to output to are also locked. This assures that a KSI will have exclusive
access to the parts of the blackboard that it needs in order to execute. An alternative method
for enforcing data consistency is the use of transactions as described by Ensor and Gabbe [14].

We have found that a much simpler locking mechanism is sufficient for our system. The
only locking mechanism we provide is atomic read/write locks for blackboard writes. This
mechanism is invoked when a blackboard write is done. It executes a read to see if the object
to be written already exists. If it does, then the new object is merged with the existing object,
otherwise the new object is written. Knowledge sources are designed so that they create
hypotheses one at a time. Thus, no KSI will have to wait for very long. Since only one lock
is ever acquired at a time, deadlock is impossible. The operating system scheduler prevents
starvation.

This simple mechanism is sufficient because the system can build several, possibly conflict-
ing, partial solutions to a problem [22]. It does not require exactly one consistent working
solution, so it does not return to and delete objects that cause inconsistencies. Because hy-
potheses are never deleted, the structure of the hypotheses on the blackboard never changes;
only the beliefs in existing hypotheses may change. Changes in belief can be recognized and
propagated by a separate knowledge source. If new hypotheses are created that would produce
different results, then their creation will trigger new knowledge source instantiations that may
be scheduled. We believe that other systems that share this characteristic will find that simple
locking mechanisms are adequate. For example, the AGORA system uses “write-once” memory
management where a blackboard element cannot be updated in place, but rather a copy is made
[2].

Several types of locks were used in the implementation. Each blackboard level (space) is
divided into a set of buckets. A blackboard data unit is stored in a small number of buckets
based on its characteristics. Each bucket is given its own lock. Thus two KSIs can always
write to different blackboard levels in parallel but one might block if they both write to the
same bucket. Locks also control access to the KSI agenda and other internal data structures
associated with the low-level control loop.

Two locks control access to the list of KSIs pending execution (the agenda), and to the list
of KSIs that have finished execution. Access is controlled to the list of hypotheses that did not
make it through the hypothesis filter. These hypotheses can be refiltered when the hypotheses
filter changes, typically between phases. Access to the list of filtered goals is similarly controlled.

3 New Classes of Control Knowledge for Parallelism

Control knowledge in a sequential environment rates a KSI based on knowledge such as the
belief of its input data, the potential belief in the output data, the significance of the output data
given the current system goals, and the knowledge source’s efficiency or reliability. In addition
to these kinds of control knowledge there are several general classes of control knowledge that
can be added to more effectively execute KSIs in parallel. These general classes of control
knowledge include, but are not limited to:

3A region is a part of a blackboard level, such that objects within a region are similar along a particular
dimension or attribute.

6



Access Collisions: To avoid excessive conflicts for blackboard access, do not schedule two KSIs
to work in the same part of the search space at the same time. For example, if KSI A
and KSI B both write to a particular level of the blackboard, then they should not be
scheduled for execution at the same time, because one of them may have to wait for the
other to relinquish blackboard locks.

KSI Ordering: KSIs may have absolute, unchangeable orderings (meaning they cannot be
scheduled to execute in parallel at all), or there may be interdependence among KSIs
that lead to ordering preferences (one KSI provides data that will significantly affect the
speed or quality of the result of another KSI.) For example, KSI A may produce a result
that makes the performance of KSI B much faster. If so, KSI A should be scheduled
before KSI B.

KSI Bottlenecking: Executing certain KSIs earlier in problem-solving may reduce future se-
quential bottlenecks. In general it is preferable to execute KSIs that will allow more
parallel options later. For example, there may be an absolute KSI ordering that requires
that KSI A be performed before KSIs B, C, and D, which can then be performed in
parallel. KSI A should be performed as soon as possible, because it will allow more
parallelism later.

KSI Invalidation: This is based on the “Competition Principle” in Hearsay-II [19]: the results
of some KSIs may completely remove the need to execute other KSIs. A KSI should not
be selected for immediate execution if it will be obviated by the successful completion
of a currently-executing KSI. For example, KSI A and KSI B may perform the same
operation, and produce the same result, in different ways. If KSI A has been scheduled,
then KSI B should not be immediately scheduled, because it will be obviated if KSI A
completes successfully.

These classes of control knowledge can be obtained from an analysis of the domain KSIs.
For example, avoiding access collisions requiresknowledge about the input/output characteristics
of a KSI (i.e., what parts of the blackboard it accesses and modifies.) KSI ordering requires
knowledge about KSI interactions. Often this knowledge is best captured through relationships
among the goals of particular KSIs [5, 24]. Avoiding KSI bottlenecking requires knowledge
about the probable outcomes of KSIs, again often expressed through goal relationships. KSI
invalidation uses knowledge about supergoal and subgoal relationships to understand the effect
of KSI executions on other KSIs’ goals.

There are four general categories of goal relationships that can be used (via KSI rating
heuristic functions) to schedule domain KSIs [9]:

Domain Relations: This set of relations is generic in that they apply to multiple domains
and domain dependent in that they can be evaluated only with respect to a particular
domain. Examples of domain relations include inhibits, cancels, constrains, facilitates,
causes, enables, and supergoal/subgoal (from which many useful graph relations can be
computed, as shown below). These relations provide KSI ordering constraints, repre-
sented by temporal relations on the goals (see below).

7



A

B

C

D

E

F

G

H

or
KSI G

KSI H

KSI F

Figure 4: An abstracted goal relation graph

Graph Relations: Some generic goal relations can be derived from the supergoal/subgoal graph-
ical structure of goals and subgoals, e.g., overlaps, necessary, sufficient, extends, subsumes,
competes. The competes relation is used to produce KSI invalidation constraints. These
relations also produce KSI bottlenecking information.

Temporal Relations: From Allen [1], these include before, equal, meets, overlaps, during,
starts, finishes, and their inverses. They can arise from domain relations, or depend on
the scheduled timing of goals — their start and finish times, estimates of these, and real
and estimated durations.

Non-computational Resource Constraints: A final type of relation is the use of physical, non-
computational resources. Two KSIs that both use a single exclusive resource cannot
execute in parallel. For example, if two KSIs require that a single sensor be aimed or
tuned differently, they cannot execute in parallel.

For example, examine the goal structure in Figure 4 (abstracted from an actual domain goal
relation graph). The arcs in the graph represent the goal/subgoal domain relation on the goals4.
From only this one domain relation, we can tell for example that F and G are necessary for D,
D is necessary for B and C , and B is sufficient for A. F and G extend5 one another, as do D
and H . Goal B competes with C .

Assume the following system state when a processor becomes free to select its next KSI:
KSIF is executing on a different processor, and KSIG and KSIH are available for execution. A
KSI invalidation heuristic would avoid scheduling a KSI that achieves goal B in parallel with
one that achieves goal C . A KSI bottleneck heuristic would prefer to schedule a KSI to satisfy
G, which will allow work on goals D and H in the future, over a KSI to satisfy H , which
would allow only work on goal G in the future. Of course, KSIs may accomplish multiple
goals, a fact that is simplified in this example. A KSI ordering heuristic would not find any
temporal relations in this example; they are induced by domain relations where goals constrain
or facilitate others.

4While it looks similar, this is different from a typical data dependency diagram both in granularity and in the
fact that it would be constructed dynamically during problem solving. At the present time we constructed one by
hand to develop possible parallel heuristics for our domain.

5Goal 1 extends goal 2 if there exists a supergoal, goal 3, such that goals 1 and 2 are in the same AND conjunct.

8



4 Experiments

Experiments were performed in the Distributed Vehicle Monitoring Testbed (DVMT)[23], a
knowledge-based signal interpretation system. The input to the DVMT is a representation of
the sounds made by a set of vehicles moving through a two-dimensional space. The goal of
the DVMT is to identify, locate, and track patterns of vehicles. The four blackboard levels
are: signal (for processing of signal data), group (for collections of signals attributed to a single
vehicle), vehicle (for collections of groups that correspond to a single vehicle), and pattern (for
collections of vehicles acting in a coordinated manner).

There are two classes of DVMT domain KSs: synthesis and track extension. Synthesis KSs
combine one or more related hypotheses at one level of the blackboard into a new hypothesis
at the next higher level. Track extension KSs output track hypotheses, where a track is a list of
sequential time-location positions of the vehicle. The control KSs can also be divided into two
main classes: those that implement phases (and phase changes) and those that were specifically
added to exploit parallelism.

For the experiments described in this paper, the input data consisted of four possible vehicle
types with some signals and groups of signals shared by multiple vehicles. One type of primary
pattern and two types of secondary patterns are defined. Twelve vehicles are included, from
which there are seven possible instances of the primary pattern class. This is a relatively large
data set for the DVMT.

For these experiments, the DVMT processes the input data in three phases. In the first
phase (find initial vehicles), the DVMT performs a thorough data-directed analysis of all data
at time 1 to identify the class and initial position of all vehicles that will be tracked in the
experiment6. When the processing of the initial data is complete, control KSs trigger and
execute the first phase change. Since the major work of a phase change is to select which
potential work from the previous phase should be taken into the new phase, this phase change
is relatively short, because most work generated in this phase was performed as part of its
detailed, complete processing. In the second phase (approximate short tracks), the DVMT
performs quick, approximate processing to determine the likely tracks and patterns of the
vehicles. Blackboard level hopping is used to approximate vehicle level data directly from signal
level data. This will result in conflicting interpretations for some of the data. This phase ends
when control KSs recognize that the DVMT has established a pattern (or explanation) for all the
vehicles, though the patterns may be uncertain. We defined the necessary vehicle explanation
as containing at least four time-location points–thus, this phase ended after processing the time
4 data. At this point, control KSs execute to assign new values to system parameters and select
work from the remaining potential work of the phase. In the third phase (perform pattern-
directed processing), the DVMT devotes most of its processing to tracking vehicles involved
in primary patterns, while performing cursory processing on vehicles involved in secondary
patterns. This phase continues until all data in the input file has been processed. In these
experiments, we included data until time 9.

6We have restricted these experiments such that every vehicle appears in the first set of acoustic samples, in
order to simplify processing.

9



Phase 1 1–2 Phase 2 2–3 Phase 3 Total
Real Time (seconds) 5224 1066 2118 1796 5656 15860
Percent of Total 33.0% 6.7% 13.3% 11.3% 35.7% 100%

Table 1: Results of Uniprocessor System

Phase 1 1–2 Phase 2 2–3 Phase 3 Total
Real Time (seconds) 1453 314 481 462 1433 4143
Speedup over 1 processor 3.6 3.4 4.4 3.9 3.9 3.8

Table 2: Results of Five-Processor System without Parallel Heuristics

4.1 Examining the Basic Parallel Architecture

The first set of experiments were conducted to collect statistics on the basic parallel architecture
without any added heuristics to take advantage of the parallelism. These experiments demon-
strate that the locking system works, that the basic architecture provides for a good utilization of
processors, and that the combination of the domain and our problem-solving method provide
inherent parallelism.

Data for runs of the environment on 1 processor with no special parallel heuristics are
summarized in Table 1. This table shows the time (absolute and percent of total) the single
processor uses in each phase and phase change. This data is used in comparisons to the other
experiments described later. In this and all later experiments, data was collected with the locking
and metering mechanisms enabled. The locking mechanism itself had almost no overhead, and
as much of the metering as possible is done on a separate processor, completely outside of the
processors being used for the experiment. (In each of the parallel experiments, each processor
spent less than 2% of its time in locks.) The data collected by the metering processor did not
involve locking any of the target processors. All of the experiments were conducted on a 16
processor Sequent Symmetry, and all of the experiments used less than 16 available processors
(so no KSIs were swapped off a processor).

Table 2 shows the speedup resulting from 5 processors and no parallel heuristics. The
overall speedup of 3.8 affirms the intuition behind the design of our parallel architecture. By
running the low-level control loop in parallel we avoided the control bottleneck observed by
Rice et al. in their first Cage experiment, where a set of KSs was executed synchronously by
the controller [26]. The most important numbers in the table are the speedups in the phases
(the speedups in the phase changes are included only for completeness). Phase 1 showed a
speedup of 3.6, primarily due to data parallelism. That is, part of this phase is to accept all of
the data from the sensors, which is from time 1 through time 9. The data from each time can
be processed in parallel, with the minimal amount of blocking from the other processors. The
speedup in phase 1 was also due to the exhaustive nature of the time 1 data processing—most
KSIs that were generated had to be executed. This was also the case in phase 2 (most KSIs that
were generated in phase 2 also had to be executed). In fact, phase 2 showed the highest amount

10



of inherent parallelism, because it was tightly controlled—phase 2 consisted of working on
each of the tracks in a well-defined process, and none of the tracks interacted with each other.
Phase 3 was the most complicated phase, because of many track interactions. Note however
that phase 3 still showed a speedup of 3.9.

4.2 Examining the Parallel Heuristics

By simply allowing KSIs to run in parallel, we achieved a significant improvement in the
DVMT performance. However, from the discussion in Section 3 we should be able to do
better than just taking the top (single processor) rated KSI off of the agenda. Four new
scheduling heuristics were added to incorporate knowledge of parallelism. In our system, a
BB1-style controller [18] rates each KSI with a set of active heuristics. In the parallel system,
we defined two types of heuristics—numeric and pass/fail. Numeric heuristics are summed
to produce a rating; pass/fail heuristics must pass a KSI or it will not be executed. All the
previous non-parallel domain heuristics were numeric but some of the new parallel heuristics
are pass/fail.

Pass Non-obviated Outputs. Don’t schedule a KSI that is expected to produce the same results
as a currently-executing KSI, because, if the currently-executing KSI terminates successfully,
there is no reason to run the KSI in question (it will be obviated). This heuristic implements
the KSI invalidation criteria described in Section 3. The usefulness of this heuristic is tied to the
success rate of the KSIs in question—if the KSI currently executing is likely to finish successfully,
then the heuristic will be likely to avoid duplicate work. This is a pass/fail heuristic—if there
are no KSIs available that will not be obviated by existing KSIs, then the processor will wait.
This heuristic is not needed in the single processor case because when a KSI completes its
action, all KSIs that it obviates are removed from the agenda before the next KSI is chosen.

Pass Primary Patterns. The single-processor DVMT has a heuristic that rates primary pattern
KSIs numerically higher than secondary or unknown pattern KSIs (a KSI can be classified
as such through an analysis of its goals)7. In the parallel DVMT, a numeric version of this
heuristic would not necessarily produce the desired effects. When primary pattern KSIs are
being executed by one or more processors and there are no primary pattern KSIs on the agenda,
a processor using the numeric heuristic would select a secondary pattern KSI. Because primary
pattern KSIs usually generate more primary pattern KSIs, a better behavior from the processor
would be to wait until the completion of all executing primary pattern KSIs before resorting
to executing a secondary pattern KSI. While the numeric heuristic would result in the single
processor system only running primary pattern KSIs, only a pass/fail heuristic could achieve
this in a parallel system. This heuristic is an example of a KSI ordering heuristic as described in
Section 3. An implicit assumption of this heuristic is that KSs are not interruptible; so, when
low priority KSIs are started, later arriving higher priority KSIs may not get a processor.

7We did not avoid the creation of secondary pattern KSIs in either the single or multiprocessor case because
in the future we may wish to run the system, for instance, in a less time-constrained situation. In such a situation,
the system would prefer to execute primary pattern KSIs, though it would execute secondary pattern KSIs if it
had time.

11



Phase 1 1–2 Phase 2 2–3 Phase 3 Total
Real Time (seconds) 1425 313 476 445 1181 3840
Speedup over 1 processor 3.7 3.4 4.5 4.0 4.8 4.1
Percent faster than 5 pro-
cessors without heuristics

2.0% 0.3% 1.1% 3.8% 21.3% 7.9%

Table 3: Summary of results with 5 processors and parallel heuristics

Prefer Outputs on Different Regions. Schedule KSIs that do not access the same blackboard
regions as the currently executing KSIs. This heuristic implements the general access collision
control knowledge described in Section 3. In our case, only blackboard write operations need
to be locked. This heuristic will be more applicable in systems such as those described by
[16] that do more elaborate locking. This is a numeric preference heuristic. Obviously this
heuristic is not needed in the single processor case because only one KSI is being executed, so
there cannot be any blackboard access collisions.

Prefer Many Output Hypotheses. Schedule KSIs that expect to produce many output hypotheses
before those that expect to produce fewer output hypotheses. This heuristic implements the
KSI bottleneck avoidance class of heuristics described above. By preferring to produce many
outputs, more possible KSIs may be enabled in the future. This is a weak numeric preference
heuristic. This heuristic is not needed in the single processor case in the DVMT because the
single processor will still have to execute all of the (non-obviated) KSIs, no matter how long
the agenda is. The purpose of this heuristic is merely to get the queue to a long length quickly,
improving multiple processor performance.

To test these heuristics, we ran a 5 processor system with the parallel scheduling heuristics.
Figure 5 shows how the KSI queue length varied over time, and how the utilization of processors
(with respect to domain processing and the low level control loop, not meta-control) varied
with time. Phase 1 consists of three distinct sub-phases. In the first, data for all time points
are input in parallel. The agenda slowly shrinks until eventually it increased sharply as KSIs
associated with the time 1 data are generated. In the second, KSIs for time 1 are removed
and executed (possibly spawning more KSIs for time 1) until all there are no more KSIs on
the queue. In the third, processor utilization decreases to zero, at which point the control KSs
change phase. During the phase changes, utilization is zero (utilization here is defined as in
terms of domain work, not control work) as the agenda grows. Phase two consists of processing
a relatively large initial agenda (36 KSIs) and KSIs spawned from the initial agenda until the
agenda is empty. In the second phase change, the agenda grows to a high number (61). Finally,
in phase 3 the agenda size remains relatively large.

Table 3 is a comparison of the system with the 5 processors and the four heuristics with
the 1 processor and 5 processor systems without the four heuristics. While 2.0% and 1.1%
speedup in phase 1 and phase 2, respectively, is insignificant speedup, it was not unexpected
after running the system with 5 processors and no parallel heuristics. The primary cause for
the lack of any significant speedup in these phases is that the parallel version without heuristics
was developed to run as fast and as efficiently as possible, irrespective of our intent to perform

12



100%

P
rocessor U

tilization

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000 2500 3000 3500 4000

20%

30%

40%

50%

60%

70%

80%

90%

10%

Time in seconds

N
u

m
be

r 
of

 K
S

Is
 o

n
 A

ge
n

da

Number of KSIs on Agenda

Processor Utilization

Phase 1 1-2 Ph. 2 2-3 Phase 3

Problem-Solving Phases

Figure 5: KSI Queue Length and Processor Utilization vs. Time: 5 processors with heuristics.

parallel scheduling experiments. The phases were defined as single-processor control plans, and
as such, the low-level control loop allows very few KSIs through that should not be executed
(i.e., very little search). This hampers the heuristics especially in phases 1 and 2, because the
heuristics are designed to order or otherwise prune a large search.

For example, the KSI obviation heuristic finds very few KSIs to obviate. This is because we
try to identify and filter out or merge hypotheses and goals that might create redundant KSIs
as early as possible (before they trigger KSs to form KSIs). However, this may not always be
the best course to take—even our own system is being expanded to include multiple methods
of achieving the same result by trading off some of the characteristics (such as precision and
certainty) for time [11]. This may result in more potentially obviatable KSIs on the agenda.
We test this hypothesis in Section 4.2.1.

The access collision heuristic is also relatively weak. This is because, as we have previously
stated, KSIs seldom block on writing to the same area of a blackboard level, and may read in
parallel. Access collision avoidance may be more important in systems that must lock objects
for a long time to modify them. We tested this hypothesis in Section 4.2.2. Another problem
stems from the prefer many output hypotheses heuristic; the DVMT tends to already work this
way as a side effect of the domain heuristics, therefore the heuristic will not show an appreciable
improvement when present.

As stated previously, the agendas in phases 1 and 2 were tightly regulated—the execution of
a KSI on the agenda was generally necessary for overall problem solving progress. KSIs were not
likely to be obviated by other KSIs, and most KSIs were involved in “good” work. However,
this was not the case in phase 3. KSIs were created whose output would often be subsumed by

13



the output of another KSI if this other KSI were given an opportunity to run (the first KSI is a
candidate for obviation), and a fair number of secondary pattern KSIs existed on the agenda at
any point in time. Given these characteristics of the agenda in phase 3, 21.3% speedup over the
5 processor system (4.8 times speedup over 1 processor) was achieved. The parallel heuristics
allowed processors to make intelligent decisions regarding the next KSI to execute. As a result
of the parallel heuristics, more KSIs were obviated, and processors often delayed executing the
next KSI if none of the KSIs on the agenda appeared productive, relative to the system goals.

Figure 6 shows the KSI queue length and processor utilization for a 10 processor run, and

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500

20%

30%

40%

50%

60%

70%

80%

90%

100%

Time in seconds

N
u

m
be

r 
of

 K
S

Is
 o

n
 A

ge
n

da P
rocessor U

tilization

10%

Phase 1 1-2 Ph. 2 2-3 Phase 3

Problem-Solving Phases

Number of KSIs on Agenda

Processor Utilization

Figure 6: KSI Queue Length and Processor Utilization vs. Time: 10 processors with heuristics.

Table 4 shows a comparison of timing information against the single processor case. Phase 1

1 1–2 2 2–3 3 Tot
Time 1330 217 275 301 1074 3197
S–up 3.9 4.9 7.7 6.0 5.3 5.0

Table 4: Summary of results with 10 procs, parallel heuristics

achieved a speedup of only 3.9 because (as seen in Figure 6) processor utilization was below
40% for about half of the phase–there was no available work to perform. Phase 2 was a speedup
of 7.7–processor utilization was near 100% for most of the phase, with processors involved
with KSIs that were necessary for the completion of the phase. Phase 3 is the most interesting
phase, because utilization was high (it briefly dropped to 80% twice), but speedup was only

14



Phase 1 1–2 Phase 2 2–3 Phase 3 Total
Real Time Without
Heuristic (seconds)

1474 555 755 455 1504 4743

Real Time With Heuristic
(seconds)

1348 557 587 459 1436 4387

Percent Faster 8.5% 0.0% 22.2% -0.8% 4.5% 7.5%

Table 5: Summary of results with and without the KSI Obviation heuristic on 5 processors
running a modified system

5.3. This was because frequently KSIs were being grabbed from the agenda as soon as they
arrived. This is unlike the uniprocessor system, where they would remain on the agenda long
enough for later-arriving KSIs to merge into them. In the multiprocessor system, this often
resulted in similar, but nonobviated, KSIs being executed at the same time.

Because our basic parallel architecture showed an impressive speedup without the parallel
heuristics, the effects of the parallel heuristics outside of phase 3 were not significant. To test
the merit of the parallel heuristics, we decided to reconfigure our system, removing certain
properties that we believed were causing the parallel heuristics to appear unimportant. While
these modifications do not make sense as stand-alone changes (i.e., we would probably not run
our system this way), they are effective in simulating a blackboard system environment that
does not contain the properties in question. It is in these environments that we are testing
the usefulness of the parallel heuristics. Section 4.2.1 tests the KSI obviation heuristic, and
Section 4.2.2 tests the access collision heuristic.

4.2.1 Testing the KSI Obviation Heuristic

To test the KSI obviation parallel heuristic, we disabled the KSI-merging feature. This results
in many KSIs, triggered by different data but intending to satisfy identical or similar goals,
being placed on the agenda8. The scenario was run with five processors without any parallel
heuristics, and then with the addition of the single KSI obviation heuristic. The results are
shown in Table 5. Speedup was achieved particularly in phase two, when the addition of the
KSI obviation heuristic caused a significant number of KSIs to be obviated. This is because
KSIs were executed in a data-directed manner and were apt to obviate other data-directed KSIs
upon completion. (Different low-level data often merges into the same, high-level, abstracted
data structure.)

4.2.2 Testing the Access Collision Heuristic

To test the access collision parallel heuristic, we configured the DVMT to allow higher potential
contention for system locks, without otherwise handicapping the system. This was imple-
mented by two modifications: disabling the KSI-merging feature and artificially lengthening
the time processors spend in the blackboard bucket locks. The first modification forces the

8A similar effect might have been achieved by activating multiple approximate processing methods, in addition
to the normal precise methods, for each goal.

15



creation of a separate KSI for each output goal (rather than merging with a KSI that had similar
goals). Since KSIs that perform similar activities tend to get rated approximately the same,
this modification increases the probability that a processor will select a KSI for execution that
will create results that one or more other KSIs running at the same time should produce. The
effect of not allowing similar KSIs to merge thus is increased contention for blackboard regions,
because similar KSIs will be executing at the same time. The second modification simulates a
system that requires a larger context for KSI execution—one that keeps more of the blackboard
locked for longer times. The larger the context, the higher the probability of contention.

The scenario was run without any parallel heuristics, and then with the addition of the
single access collision heuristic. Both runs were with 5 processors. Adding the heuristic to
avoid regions that other processors are utilizing resulted in a significantly decreased amount
of time spent in locks—a processor in the run without the access collision heuristic spent an
average of 18.4% of its time in locks, while the addition of the access collision heuristic reduced
this time to 11.0%. While these particular numbers are not important (these percentages are
related to the added, artificial time spent after obtaining a lock), with the heuristic a processor
spent about 40% less time in locks.

5 Conclusions/Future Directions

In investigating control heuristics for scheduling in a parallel blackboard system, we have shown
significant speedup with a shared memory multiprocessor version of the DVMT application
that executes KSIs in parallel with each other. Most of this parallelism was due to our choice of
architecture–we have avoided synchronization and under-utilization by making each processor
run the low-level control loop as part of its basic execution cycle. Because of the specifics of the
application (i.e., its highly deterministic and efficient control), a comparison of the system with
and without parallel heuristics did not conclusively show the utility of the parallel heuristics
in all phases of problem solving. However, two heuristics were shown to be useful in separate
tests on a modified system.

One source of poor performance was the synchronization caused by system-wide phases
(and phase changes). At the end of a phase, performance was hindered when many processors
were waiting for one or two processors to finish executing their KSIs. This low-performance
situation is even more prominent when only one processor is executing a KSI, and this KSI
spawns another KSI, which spawns another, etc. This chain of KSIs theoretically can only be
executed by one processor. Obviously, making the other processors remain idle is wasteful.

Even in the uniprocessor version, system-wide phase changes limit the robustness of the
DVMT application. Whenever data (vehicles) arrive (are first detected) at different times, the
system cannot process all data in system-wide phases. That is, the first phase is to process all
the time 1 data in order to establish the initial identity and location of all vehicles. But what if
the vehicle does not appear until time 5? In this case, instead of processing all of the data in a
phase, we would like to establish channels for each vehicle (or, more abstractly, groups of data,
regions in the XY plane, etc.) [12]. Channels are created as vehicles appear and allow different
data to be in different phases of problem solving simultaneously. A channelized architecture
permits real-time problem solving, which often requires being able to separate and work on
certain KSIs to the exclusion of others. Unimportant channels can be ignored if deemed
necessary. A channelized version version of the uniprocessor DVMT was implemented and

16



used for experiments in real-time problem solving [6, 17].
Our intent is to eventually create a parallel version of this channelized architecture in

which one or more processors are devoted to each channel. The allocation of processors to
channels would be dynamic and controlled according to the system goals. Channels would
permit investigations into both data parallelism (vehicle being tracked in parallel) and search
parallelism (e.g., two channels that interact could be allocated processors in a coordinated
manner, and the same data could be interpreted by two different problem solving styles if there
were sufficient processors available). Of course, in a channelized architecture, our approach to
a parallel implementation of the meta-control would be changed since meta-control would be
performed on a channel-by-channel basis.

Although a channelized architecture presents the potential for added parallelism, a chan-
nelized architecture is of little value if the parallel control heuristics are ineffective. We believe
the limited effect of the parallel control heuristics as a whole was because the system performed
very little search. In each of the three phases, we exercised tight control over the potential
work (hypotheses, goals, and KSIs) that was generated. We could have artificially modified the
system to make it perform more search, but we believed that this would have resulted in an
illogical configuration for the DVMT. We could not justify the applicability and generality of
results gathered from such a system. It is our expectation that, as the amount of search and
interaction among search paths increases, the heuristics will become more important.

In addition to exercising tight control over the potential work generated, another reason
for the limited effect of the parallel control heuristics is the lack of a high-level understanding
of how each KSI relates to the termination of a problem solving phase. The system does not
possess an explicit representation of the connection between the individual KSIs and the goal
of the phase, so often a processor could not find a valid reason for not running a KSI. That is,
a processor often ran a KSI, not understanding that the KSI would probably not contribute
to the overall system goals. The only knowledge of this type that exists in the system is at
the lowest level–scheduling is essentially at the micro-level, in that the scheduling primarily
attempts to determine the best order of execution of the available KSIs. The scheduling process
is, in general, not trying to determine the overall importance of each KSI to system termination.

One of the reasons why the scheduler could not ascertain the importance of a KSI to the
termination of a phase is that the criteria for termination was not explicit and capable of being
reasoned about. Though this is most apparent in the final phase, it is also apparent in the
termination of phases 1 and 2. In each phase, termination procedures were triggered when a
certain event occurred. Unfortunately, there was no scheduling process that reasoned about how
to cause this event—processing simply proceeded according to some implicit, high-level criteria
without looking at explicit termination criteria. Without a fundamental representation of
termination criteria (and thus what each phase was attempting to achieve), nor a fundamental
understanding of how each KSI is expected to contribute to this termination, the system
made ill-advised scheduling choices. Without this more knowledgeable scheduler, the parallel
heuristics could not be more fully exploited.

The RESUN[3] architecture for interpretation problems possesses this high-level represen-
tation. Termination criteria are explicit, as is a complete representation of how the primitive
actions impact the termination criteria. We believe future work in a parallel version of this
architecture will provide valuable insights on a parallel scheduling theory.

Finally, we are attempting to formalize and generalize the results from these studies. The

17



results discussed in this paper are important though limited by a single-instance experimental
methodology. We are developing an abstract task generator capable of capturing all the
interactions of KSIs in any domain [10]. We have also worked on quantifying these interactions
(called coordination relationships) for distributed and parallel processing[8]. Work developing
a parallel scheduling theory in this abstract environment has begun [20] with the hopes of
providing general results with wider applicability.

Acknowledgments

We thank Kevin Q. Gallagher for his work in creating a shared memory parallel processing
version of GBB 2.0.

References
[1] James F. Allen. Towards a general theory of action and time. Artificial Intelligence, 23:123–154,

1984.

[2] Roberto Bisiani and A. Forin. Parallelization of blackboard architectures and the Agora system. In
V. Jagannathan, Rajendra Dodhiawala, and Lawrence S. Baum, editors, Blackboard Architectures
and Applications. Academic Press, 1989.

[3] Norman Carver and Victor Lesser. A new framework for sensor interpretation: Planning to resolve
sources of uncertainty. In Proceedings of the Ninth National Conference on Artificial Intelligence,
pages 724–731, August 1991.

[4] Daniel D. Corkill. Design alternatives for parallel and distributed blackboard systems. In
V. Jagannathan, Rajendra Dodhiawala, and Lawrence S. Baum, editors, Blackboard Architectures
and Applications. Academic Press, 1989.

[5] Daniel D. Corkill, Victor R. Lesser, and Eva Hudlická. Unifying data-directed and goal-directed
control: An example and experiments. In Proceedings of the National Conference on Artificial
Intelligence, pages 143–147, Pittsburgh, Pennsylvania, August 1982.

[6] Keith S. Decker, Alan J. Garvey, Marty A. Humphrey, and Victor R. Lesser. A real-time control
architecture for an approximate processing blackboard system. International Journal of Pattern
Recognition and Artificial Intelligence, 7(2), 1993.

[7] Keith S. Decker, Marty A. Humphrey, and Victor R. Lesser. Experimenting with control in the
DVMT. In Proceedings of the Third Annual AAAI Workshop on Blackboard Systems, Detroit, August
1989. Also COINS TR-89-85.

[8] Keith S. Decker and Victor R. Lesser. Analyzing a quantitative coordination relationship. COINS
Technical Report 91–83, University of Massachusetts, November 1991. To appear in the journal
Group Decision and Negotiation, 1993.

[9] Keith S. Decker and Victor R. Lesser. Generalizing the partial global planning algorithm. Inter-
national Journal of Intelligent and Cooperative Information Systems, 1(2), June 1992.

18



[10] Keith S. Decker and Victor R. Lesser. Quantitative modeling of complex computational task envi-
ronments. In Proceedings of the Eleventh National Conference on Artificial Intelligence, Washington,
July 1993.

[11] Keith S. Decker, Victor R. Lesser, and Robert C. Whitehair. Extending a blackboard architecture
for approximate processing. The Journal of Real-Time Systems, 2(1/2):47–79, 1990.

[12] Rajendra T. Dodhiawala, N. S. Sridharan, and Cynthia Pickering. A real-time blackboard archi-
tecture. In V. Jagannathan, Rajendra Dodhiawala, and Lawrence S. Baum, editors, Blackboard
Architectures and Applications, pages 219–237. Academic Press, Inc., 1989.

[13] E.H. Durfee and V.R. Lesser. Partial global planning: A coordination framework for distributed
hypothesis formation. IEEE Transactions on Systems, Man, and Cybernetics, 21(5):1167–1183,
September 1991.

[14] J. Robert Ensor and John D. Gabbe. Transactional blackboards. In Proceedings of the Ninth
International Joint Conference on Artificial Intelligence, pages 340–344, August 1985. Also published
in Readings in Distributed Artificial Intelligence, Alan H. Bond and Les Gasser, editors, p. 557-
561, Morgan Kaufman, 1988.

[15] L. D. Erman, F. Hayes-Roth, V. R. Lesser, and D. R. Reddy. The Hearsay-II speech-understanding
system: Integrating knowledge to resolve uncertainty. Computing Surveys, 12(2):213–253, June
1980.

[16] R. D Fennell and V. R. Lesser. Parallelism in AI problem solving: A case study of Hearsay-II.
IEEE Transactions on Computers, C-26(2):98–111, February 1977.

[17] Alan Garvey and Victor Lesser. Design-to-time real-time scheduling. IEEE Transactions on Systems,
Man, and Cybernetics, 23(6), 1993. Special Issue on Scheduling, Planning, and Control.

[18] Barbara Hayes-Roth. A blackboard architecture for control. Artificial Intelligence, 26:251–321,
1985.

[19] Frederick Hayes-Roth and Victor R. Lesser. Focus of attention in the Hearsay-II speech under-
standing system. In Proceedings of the Fifth International Joint Conference on Artificial Intelligence,
pages 27–35, August 1977.

[20] Marty A. Humphrey and Victor R. Lesser. Parallel scheduling based on abstract task models.
Working Paper, Cooperative Distributed Problem Solving Laboratory, 1992.

[21] V. R. Lesser, R. D. Fennell, L. D. Erman, and D. R. Reddy. Organization of the HEARSAY
II speech understanding system. IEEE Transactions on Acoustics, Speech, and Signal Processing,
ASSP-23:11–23, February 1975.

[22] Victor R. Lesser and Daniel D. Corkill. Functionally accurate, cooperative distributed systems.
IEEE Transactions on Systems, Man, and Cybernetics, SMC-11(1):81–96, January 1981.

[23] Victor R. Lesser and Daniel D. Corkill. The distributed vehicle monitoring testbed. AI Magazine,
4(3):63–109, Fall 1983.

[24] Victor R. Lesser, Daniel D. Corkill, Robert C. Whitehair, and John A. Hernandez. Focus of
control through goal relationships. In Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence, Detroit, August 1989.

19



[25] H. Penny Nii, Nelleke Aiello, and James Rice. Experiments on Cage and Poligon: Measuring the
performance of parallel blackboard systems. In M. N. Huhns and L. Gasser, editors, Distributed
Artificial Intelligence, Vol. II. Morgan Kaufman Publishers, Inc., 1989.

[26] James Rice, Nelleke Aiello, and H. Penny Nii. See how they run... the architecture and performance
of two concurrent blackboard systems. In V. Jagannathan, Rajendra Dodhiawala, and Lawrence S.
Baum, editors, Blackboard Architectures and Applications. Academic Press, 1989.

[27] H. Velthuijsen, B.J. Lippolt, and J. C. Vonk. A parallel blackboard system for robot control. In
Proceedings of the Tenth International Joint Conference on Artificial Intelligence, pages 1157–1159,
August 1987.

20


