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Abstract

Effective control in a multilevel, cooperating knowledge source problem-solving
system (such as Hearsay-II) requires the system to reason about the relationships
among competing and cooperating knowledge-source (KS) instantiations (both
past and potential) that are working on different aspects and levels of the prob-
lem. Such reasoning is needed to assess the current state of problem solving
and to develop plans for using the system’s limited processing resources to the
best advantage. The relationships among KS instantiations can be naturally rep-
resented when KS activity is viewed simultaneously from a data-directed and a
goal-directed perspective. In this paper we show how data- and goal-directed
control can be integrated into a single, uniform framework, and we present an
example and experiment using this framework.

1 Introduction

The multilevel, cooperating knowledge source model of problem solving, as
posited by the Hearsay-II architecture, poses interesting control problems. Effective
control using such a problem solving approach requires the control component
to reason about the relationships among competing and cooperating knowledge
source (KS) activities (both past and potential) and among KS activities working
on different aspects and levels of the problem. Such reasoning is required in order
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to assess the current state of problem solving and to determine how the system
should use its limited processing resources to the best advantage.

For example, the control component needs to develop and reason about
sequences of KS activities relating to a particular approach to one aspect of the
problem. This allows these activities to be scheduled as a coherent unit and to be
eliminated as a unit if the approach proves unproductive. A second example is the
implementation of an opportunistic scheduling strategy where the partial solution
of a high-level problem is used to focus the system on low-level activities required
to solve the remainder of the problem (focus of attention through subgoaling).
Other examples are selecting a specialized KS to resolve the system’s confusion
over competing partial solutions and instantiating activities to produce input data
necessary for performing an important activity (precondition-action backchaining).
All of these examples rely on the control component’s ability to evaluate the
potential effects of KS activities from a non-local context.

The data-directed and instantaneous scheduling mechanisms developed for the
Hearsay-II speech understanding system could reason about KS relationships in
only a rudimentary way [1]. That level of reasoning was sufficient for the KSs
used in the final configuration of that speech system [2]. However, the limitations
of this rudimentary control have become increasingly apparent to us and others as
the multilevel cooperating KS model has been applied to different task domains
[3].

Nii and Feigenbaum with SU/X [4], Engelmore and Nii with SU/P [5], and
Erman, et al., with Hearsay-III [6] recognized these limitations and consequently
have developed systems with enhanced control capabilities. These enhancements
permit more sophisticated control over scheduling by allowing the KS scheduling
queues to be manipulated under program control. However, these modifications
do not explicitly formalize the relationship among KS activities. Such relationships
are left to the user to build. We feel these relationships need to be explicitly
formalized if domain-independent control strategies are to be developed. The
premise of this paper is that these relationships become apparent in a control
framework in which KS activity can be viewed simultaneously from a data-directed
and a goal-directed perspective.

In this paper, we first review the data-directed scheduling mechanisms of
Hearsay-II. Next, we indicate how data-directed and goal-directed control can be
integrated into a single, uniform framework through the generation of goals from
data-directed events and we show the structural relationships among KS activities
that this framework creates. We show an example of this framework performing
sophisticated focusing of KS activity and present experimental results that show
the advantages of the unified approach over a purely data-directed approach to
control.

2 Data-Directed Hearsay-II Scheduling

Figure 1 presents a high-level schematic for data-directed control in Hearsay-II.
KSs are invoked in response to particular kinds of changes on the blackboard,
called blackboard events. The blackboard monitor knows which events at which
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Figure 1: Data-Directed Hearsay-II Architecture

levels interest each KS. The occurrence of a blackboard event does not guarantee
that there is, in fact, sufficient information on the blackboard for a KS to be
executed. The blackboard monitor executes a precondition procedure for each
interested KS to make a more detailed examination and, if sufficient information
is found, a KS instantiation (KSI) is created and placed onto the scheduling queue.
The scheduler calculates a priority rating for each KSI on the scheduling queue,
selecting for execution the one with the highest rating. Execution of the KSI
causes changes to the blackboard which trigger additional blackboard events, and
the process continues.

Although this data-directed Hearsay-II architecture has many advantages, it
is severely limited in its ability to plan its interpretation activities. Scheduling
is instantaneous—only the immediate effects on the state of problem solving
are considered. There is no inference process used to determine the effects
of executing a KS beyond its immediate effects on the system state. Another
limitation of this scheduling approach occurs when the precondition procedure
cannot find sufficient information for the KS to be instantiated. The scheduler
does not record which information is missing and has no way of re-evaluating
the priorities of a pending KS that can generate the missing information or
instantiating the KS if it is not already present. In the data-directed architecture
it is assumed that if the information is really important, it will eventually be
generated based on normal scheduling considerations.
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Figure 2: Goal-Directed Hearsay-II Architecture

To remedy these control limitations within the basic Hearsay-II architecture, we
next present an augmented version of the architecture that integrates data- and
goal-directed control of KS activity via the generation of goals from blackboard
events. Within this augmented architecture, a wide range of scheduling paradigms
can be implemented efficiently: from those based on an instantaneous, statistical
and data-directed approach to those based on complex planning of goal-directed
activity. In this way, the system developer can tailor the control to the specifics of
the task domain and KS configuration.

3 Goal-Directed Hearsay-II Scheduling

Figure 2 presents a high-level schematic of Hearsay-II as augmented to accommo-
date goal-directed scheduling. A second blackboard, the goal blackboard, is added
that mirrors the original (data) blackboard in dimensionality. The goal blackboard
contains goals, each representing a request to create a particular state of hypothe-
ses on the data blackboard in the (corresponding) area covered by the goal. For
example, a simple goal would be a request for the creation of a hypothesis with
specific attributes above a given belief in a particular area of the data blackboard.

The integration of data-directed and goal-directed control into a single, uniform
framework is based on the following observation:

The stimulation of a precondition process in the data-directed architec-
ture not only indicates that it may be possible to execute the knowl-
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Figure 3: An Example

edge source, but that it may be desirable to do so in order to achieve
the goal implicit in the output of the KS.

In order to make these implicit goals explicit, the event-to-KS mapping contained
in the blackboard event table is split into two steps: event-to-goals and goals-to-
KSs. The blackboard monitor watches for the occurrence of a data blackboard
event, but instead of placing KSIs on the scheduling queue, it uses the event-
to-goals mapping to determine the appropriate goals to generate from the event
and inserts them onto the goal blackboard. Goals may also be placed on the
goal blackboard from external sources. Placing a high-level goal onto the goal
blackboard can effectively bias the system toward developing a solution in a
particular way.

A new control component, the planner, is also added to the architecture. The
planner responds to the creation of goals on the goal blackboard by developing
plans for their achievement. In their simplest form these plans consist of goal/KSI
relationships which specify one or more KSs which can potentially satisfy the
created goals. The planner uses the goal-to-KS mapping to create these KSIs. More
sophisticated planning activities consist of building goal/subgoal, precondition
goal/KSI, and overlapping goal relationships. The scheduler uses the relationships
between the KSIs and the goals on the goal blackboard as a basis for its scheduling
decisions.

We have implemented a version of the goal-directed Hearsay-II architecture
in a distributed interpretation system which produces a dynamic map of vehicles
moving through a geographical area [7]. Figure 3 shows how goal-directed
focusing can be used in this application to increase the priority rating of low-level
KSI based on the creation of a high-level hypothesis. The processing levels in
order of increasing abstraction are: signal location (SL), group location (GL),
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vehicle location (VL), and vehicle track (VT).1

The creation of SL hypothesis H:SL:01 on the data blackboard causes the
planner to create GL goal G:GL:01 on the goal blackboard. This goal indicates that
the system should attempt to form a GL hypothesis using H:SL:01. The planner
next instantiates KSI S:SL:GL:01 to try to achieve this goal. The rating of a KSI
is a function of the belief of its stimulus hypotheses and the priority rating of its
stimulus goals (if any). The priority of a goal is a function of the belief of its
stimulus hypotheses, its level on the blackboard, and its relationships with other
goals. Assume that H:SL:01 is weakly believed and consequently S:SL:GL:01 is
given a low execution rating. Processing continues with other SL hypotheses and
eventually creates a VT hypothesis H:VT:01 with a moderately high belief. The
creation of this hypothesis causes a number of goals to be created, including the
goal shown in the figure, G:VT:02. This goal indicates that the system should
attempt to extend H:VT:01.

The planner uses domain knowledge in the form of a goal-to-subgoal mapping
for decomposing this high-level goal into a SL level subgoal, G:SL:03. This
subgoal indicates in what area is necessary to have SL hypotheses in order to
eventually extend the VT hypothesis. Subgoal G:SL:03 is given the same priority
rating as its parent goal G:VT:02. The planner finds that H:SL:01 has already
been created in this area and can satisfy G:SL:03. The planner then creates
subgoal G:GL:04 and finds that goal G:GL:01 overlaps with it. The planner adds
G:GL:04 as a second stimulus goal of the low-rated KSI S:SL:GL:01. The addition
of the higher priority goal causes the rating of the KSI to be increased based on its
potential contribution to the track extension goal G:VT:02.

Subgoaling can reduce the combinatorics often associated with the top-down
elaboration of hypotheses. Top-down elaboration is generally used for two dif-
ferent activities: the generation of the lower-level structure of a hypothesis (to
discover details) and the determination of which existing low-level hypotheses
should be driven-up to create or verify a high level hypothesis based on expec-
tations (for focusing). Top-down elaboration of hypotheses is best suited only
to the first activity—subgoaling on the goal blackboard is a more effective way
to perform expectation-based focusing. When hypothesis elaboration is used as
a focusing technique, the elaboration process has to be conservative in order
to reduce the number of hypotheses generated and to reduce the possibility of
generated low-level hypotheses being used as “real data” by knowledge sources
in other contexts. Because subgoals are distinct from hypotheses, they can be
liberally abstracted (such as supplying a range of values for an attribute) and
underspecified (such as supplying a “don’t care” attribute). Therefore, subgoaling
the high-level goal of generating the expectation-based hypothesis (including the
use of “level-hopping”) avoids the combinatorial and context confusion problems
associated with the use of top-down hypothesis elaboration for focusing.

Planning operations, such as subgoaling and precondition goal/KSI chain-
ing, permit sophisticated opportunistic focusing to be performed by the planner
and scheduler. Highly rated low-level hypotheses can be driven up in a data-
directed fashion while high-level goals generated from strong expectations can

1Additional processing levels used in the system are omitted here.
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be subgoaled downward to control low-level synthesis activities (as in the above
example). Similarly, processing in low rated areas can be stimulated if a highly
rated knowledge source requires the creation of a precondition goal in that area.

4 Subgoaling Focus-of-Attention Experiments

We are beginning to experiment with the use of subgoaling as a focus of attention
mechanism. Our goal is a set of rigorous experiments that quantify those situa-
tions in which subgoaling outperforms a simpler, purely data-directed approach.
The characteristics we are varying include the confusability of the input data and
the power of the KSs to resolve this confusability and to make effective predic-
tions. To vary the power of KSs we are using a semi-formal model for simulating
KSs of different power through the use of an oracle [8, 7]. We also plan to vary
the weighting factor used by the scheduler for evaluating KSIs. This weighting
determines, in part, the balance between data-directed and goal-directed focusing
by adjusting the relative contributions of the priority of goals that are potentially
satisfied by a KSI and the predicted quality of the hypotheses produced by the KSI.

Figure 4 illustrates a simple scenario in which subgoaling high-level expecta-
tions effectively reduces the amount of processing required to generate the correct
answer. In this figure, there are two tracks: one representing the signals from an
actual vehicle and the other a false ghost vehicle. The actual track data consists
of a sequence of high belief SL hypotheses surrounding an area of low belief SL
hypotheses. The ghost track consists of a uniform sequence of medium belief SL
hypotheses. The two tracks are sufficiently close that the system can produce track
hypotheses composed of locations from both the actual and the ghost track. For
simplicity, each vehicle is assumed to emit a single signal frequency.

Without focusing through the creation of subgoals, the system executes 54 KSIs
to completely generate the correct track. With subgoal focusing based on subgoal-
ing at the VT level the system requires 28 KSIs. This significant speedup comes
from the system avoiding considerable work in attempting to develop track hy-
potheses that integrate high belief data from the actual track with medium belief
false data and by interconnecting medium belief false data before extending high
belief actual data with low belief actual data. In purely data-directed scheduling
these activities seem reasonable from the scheduler’s local view of the effects of
KS activity. However, by affecting the decisions of the scheduler with subgoals
which represent predictions, much of the system work involved in processing data
that partially correlates with the actual track or that is of medium belief can be
avoided.

5 Conclusion

We have shown how data- and goal-directed control can be naturally integrated
into a single uniform control framework, permitting the development of a wide
range of different scheduling and planning strategies for controlling knowledge
source (KS) activity. This framework increases the number of task domains in
which the multilevel, cooperative KS model of problem-solving (used in the
Hearsay-II architecture) is an effective approach.
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Figure 4: The Experiment
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We have also presented an example and an experiment indicating the potential
advantages of a sophisticated focusing strategy based on subgoaling over a purely
data-directed strategy which does not construct complex relationships among KS
activities.
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