
Planning in The Context of

an Intelligent Assistant�

M� E� Connell� K� E� Hu�� V� R� Lesser

Computer and Information Science Department
University of Massachusetts

COINS Technical Report �����
May ����

Abstract� This paper describes an intelligent assistant that works cooperatively
with a user� incrementally recognizing user plans and planning for him when needed�
The system integrates planning and plan recognition� This paper concentrates on
the assistant�s planning component� We have developed methods to control search
using tests on constraints embedded in the hierarchical domain operators and using
heuristic rules to focus the assistant on plausible interpretations and reasonable plans�
Although the system is domain independent we have applied it speci	cally to software
developement�

�This work was supported by University Research Initiative grant number N���������k�����	



�� Introduction

A person who is solving a problem with the help of an assistant expects to be able
to take the initiative� to have mistakes corrected� and to get good advice� An intel�
ligent system which can assist a user in these ways is a valuable assistant� E
ective
cooperation comes about when an assistant can recognize user plans and can plan for
him as needed� The intelligent assistant is an integrated system of planning and plan
recognition�

In order for the assistant to understand the rationale for user actions it must have
access to domain knowledge� This knowledge is stored in hierarchical domain opera�
tors and in a set of predicates� representing the state of the world� This knowledge
may not completely describe the world� The system therefore includes supplemental
information� consisting of assumptions about the world derived from experience�

This paper presents a system which incrementally builds a model that explains
user actions� enabling it to critique further actions� summarize work that has been
done� establish agendas of tasks to do� and plan automatically� The di�culty in doing
this is that there may be many competing ways to interpret actions and satisfy goals�
We have developed methods to control search using tests on constraints embedded
in the hierarchical domain operators and using heuristic rules to focus the system on
plausible interpretations and reasonable plans� This paper concentrates primarily on
the system�s planning component�

The recognition component of the system gives assistance by responding to user
actions� Because a person usually prefers to decide for himself whether or not he
needs help� the user is given the choice of proposing an action or of deferring to the
assistant� When the user takes the initiative� the recognizer looks for errors and gives
advice when it 	nds them� This requires incrementally building interpretations for
actions in the order that they occur which makes it possible to determine the possible
goals of the user� Having identi	ed the rationale of the proposed action� the system
gives advice using its picture of what the user is intending to do� In the case where
a proposed action would not be consistent with either the existing state of the world
or with previously executed actions� the user is advised of the problem� When there
are many possible interpretations for the proposed action� heuristic rules recommend
one�

The planning component of the system gives assistance by proposing actions to
the user� When the user defers to the assistant� the system generates actions which
will eventually complete user�speci	ed goals� Obviously to work e
ectively with the
assistant the user must be familiar with the operator de	nitions and understand for�
mulated goals� A user� informed to this extent� can employ the assistant to determine
the status of goals and can then indicate the goal or goals he wants satis	ed� The
system then can plan�

The key problem in both planning and recognition is that computation can become
expensive� In plan recognition a large number of plan derivations follow from even
a few actions� Deriving all the possible meanings of a particular action� given the

�



context of previous actions� can lead to an explosion of competing interpretations�
Similar problems occur in planning� There may be many possible ways to complete
a goal� many alternative action bindings and action sequences� A set of techniques
used to select viable interpretations during recognition is described in earlier work
Hu
� ����� and Hu
� ����a�� In this paper we extend these techniques and develop
a set of heuristics for choosing appropriate operators and variable bindings� allowing
the intelligent assistant to plan e�ciently�

The ideas are implemented in a system called GRAPPLE Hu
� ������ Hu
�
����a�� Originally it was an incremental hierarchical plan recognition system� tested
in the blocks�world and software developement domain� Mechanisms for controlling
the number of possible interpretations and choosing the most viable are described
in earlier papers Connell�Hu
�Lesser� ����� Hu
� ����a�� Here� we extend the im�
plementation of GRAPPLE to include incremental planning and discuss the issues
involved�

In other work where planning and plan recognition have been used to provide
automatic assistance there has been emphasis on analyzing misconceptions or bugs in
the user�s plan Genesereth� ����� Miller and Goldstein ����� Croft� ������ When a
user�s action fails to meet the planner�s expectations� in these systems� the reason for
failure is investigated� a library of errors or bug types is consulted or an exception is
classi	ed and repair is suggested� A particular example is POLYMER Croft� ������
another interactive planning system which works in cooperation with the user� In
this system the expansion of a goal� speci	ed by a user� leads to the construction of a
procedural net and a set of expectations for the next step in the plan� When the user�s
action doesn�t match the system�s expectations the user and the system can negotiate�
One of the options at this point is to backtrack and try an alternate expansion� Search
is limited by built in temporal orderings on goals� tasks and actions� In comparison�
it is the recognizer in GRAPPLE that 	nds errors� the user can�t negotiate� The
planner in GRAPPLE is invoked only when the user asks for help in which case all
possible next plan actions are derived and ranked� The best action is suggested to
the user� POLYMER allows the user to have more control over the development of
the plan than GRAPPLE does� This may require more thinking on the part of the
user�

The intelligent assistant� presented in this paper� detects user mistakes� However�
no e
ort is expended in analyzing� classifying or understanding them� One can retract
the proposed� mistaken� action and either take a new one or ask the assistant to do
so� Automatic planning in GRAPPLE can be invoked anytime when help is needed�
in response to a detected error and in rescuing a muddled user�

The paper is organized as follows� Section � presents an overview of the system�
section � discusses the issues involved in controlling search� and section � describes
the domain knowledge and operator de	nitions� The following sections� �� �� and ��
present the contributions of three kinds of knowledge �domain knowledge� empirical
knowledge and heuristic knowledge� to the control of search� Section � describes an
example session with the assistant and section � concludes�

�



�� Overview of the System

The extended GRAPPLE system has been tested with several sets of operators and
state schema in the software developement domain� For instance in one example the
assistant supports the user in building� testing and archiving a system by providing
independent judgment on user actions� summarizing what has gone on� and suggesting
actions� �The operators relevant to this world are given in the appendix�� This
automatic assistance is particularly helpful in complex domains where humans are
prone to making mistakes on details�

If the user takes the initiative and proposes an action� the system builds interpre�
tations for the action and� using a set of heuristics� focuses on one as preferred� When
no interpretations are found� the user is advised to take another action� If the user
wants help� he can 	nd out from the assistant the state of the world and the state
of goals within the current context� This information allows him to work with the
assistant� he can specify a goal and the system will determine the �best� action or
sequence of actions which achieve that goal� he can specify a number of goals and the
system will determine the �best� goal to satisfy and the �best� action that achieves
it� Interaction between assistant and user is illustrated in an example session shown
in Section �� In this session the user�s task is to build a system from the existing
baseline� At the point where he proposes to archive the system without running the
existing tests� he is advised to take another action� As a result he asks for help and
the assistant suggests that a relevant test case be run� After a proposed action is
taken the state of the world and the interpretation are updated� The user can then
choose to propose a new action or specify another goal�

It should be emphasized that GRAPPLE demonstrates the intelligent assistant in
a simulated world� The issues involved in incorporating the system into a working
environment are not investigated in this work�

�� Controlling Search in Incremental Planning

The overall objective in planning is to 	nd a credible� correct and short sequence of
actions to achieve the user�speci	ed goals� When there is no predetermined commit�
ment to the ordering of actions� it may be necessary to test the correctness of many
alternatives� Finding a solution by simulating the e
ects of actions� predicting future
states of the world� and re�ecting on these successive world states is time�consuming
and computationally expensive� We have developed a set of techniques for ordering
goals� and for choosing actions and action bindings which address these problems�

Ideally� a planner should determine a successful and simple plan in a short amount
of time� To do this� search should be e�cient� GRAPPLE exploits three kinds of
knowledge to control search�

The 	rst kind of knowledge is domain knowledge embedded in the hierarchical
operator de	nitions� The system uses the hierarchy to build� incrementally� an in�
terpretation for a partial sequence of actions� �An interpretation for an action or
sequence of actions is a tree of instantiated operators where top�level goals are linked

�



along a path to primitive actions�� An evolving picture of the rationale for actions
already tested guides the planner�s search for new actions� Syntactic rules govern
allowable actions while variable bindings are determined through ongoing checks of
operator constraints� With each new action the interpretation is expanded� the new
interpretation can then be used to guide search for the next action� This phenomenon
is illustrated in the example�

The second kind of knowledge is empirical� explicitly represented in the system�
It is used to make inferences about non�observable conditions in the world� Actions
which are consistent with what is known about the state of the world as well as
consistent with what is assumed about the state of the world are preferred actions�
For instance one would rather run a test case that is assumed to be applicable to the
system than run a case that is assumed not to be� Further one would prefer to run
the case that is known to be relevant than one that is assumed to be�

The third kind of knowledge is contained in a set of heuristic rules� These are used
to narrow search by making choices among goals and actions� Once a user designates
a condition �this may be a precondition or subgoal of an incomplete higher level
operator� or set of conditions he wishes to complete� the planner searches for the
actions which satisfy or start to satisfy the conditions� It returns a list of all possible
primitive actions along with variable bindings� Each either satis	es the goal or is the
	rst in a sequence of actions that satis	es the goal� The heuristic rules are used for
choosing the best action and variable bindings from this list� One rule�for example�
states that a chosen action should either directly satisfy a goal or reach it in a small
number of path links� The purpose of these rules is to keep the plan simple and
credible and to avoid mistakes and replanning�

�� Domain Knowledge in Operator de�nitions

Domain knowledge in GRAPPLE is contained in the set of hierarchical operator
de	nitions and associated state schema� the language used for these de	nitions is
based on classical planning formalisms Sacerdoti� ����� Wilkins� ������ The state of
the world is represented by objects and axioms involving these objects� The planning
and plan recognition algorithms themselves are domain�independent� Therefore in
order to consider a new or changed domain only the set of operators and state schema
need to be changed�

An operator is composed of a goal� preconditions� subgoals� constraints and e
ects�
Operators are either primitive or complex� A primitive operator is an explicit action�
it has no subgoals� A complex operator has subgoals and is not an explicit action�
GRAPPLE uses the hierarchy to build interpretations through linking of operators�
goals of some match subgoals or preconditions of others� In the appendix there is an
example of a set of operators� The operator build is complex and the operator archive
is primitive �see Figure ���

The preconditions of an operator de	ne the state from which it can legally be
executed� All preconditions of an action must be true simultaneously before it can

�



be executed� The preconditions of a complex operator must all be true before any
primitive action in the expansion of one of its subgoals begins� There are two kinds
of preconditions� A normal ��notstatic�� precondition can intentionally be satis	ed by
taking actions while a static precondition can not� When not all the preconditions of
an operator are satis	ed� those that are are protected�

By using subgoals a complex operator is decomposed into subproblems� each of
which must be satis	ed before the e
ects of the operator are posted� In the case
when an operator has more than one subgoal� the order in which subgoals should be
satis	ed is determined solely by the state of the world and the preconditions of the
operators being used to satisfy the subgoals� A subgoal of an operator is protected
when it has been satis	ed and some other subgoals of the operator are waiting to be
satis	ed�

Constraints restrict the bindings in the operator� They must not be violated from
the time the operator�s preconditions are true until the time its e
ects are posted�
E
ects are the changes to the data base �the �world�� which result from executing an
action or from completing a complex operator� New objects can be created� attribute
values can be set� new predicates can be added� and old ones deleted� Not only do
the e
ects of an operator cause its goal to be satis	ed� but often additional changes
are made in the state of the world� These are side e
ects�

The goal of an operator is the main purpose of the operator�s execution� The plan
network which is built by matching operator goals to subgoals and normal precon�
ditions of other operators is� as already described� central to the planning process�
Figure � shows the links between operators in the example plan library� In particu�
lar� the purpose of carrying out an operator might be the achievement of a subgoal
of a second operator which might in turn be satisfying the precondition of another
operator� The reason for taking a series of actions can be to satisfy the goal of some
top�level operator� a top�level operator is one whose goal does not satisfy a precondi�
tion or subgoal of any other operator�

�



Figure � The Plan Library

�build�system��������������������

aaaaaaaaaaaaaaaaaaaprecond sys�constr subg testing�done subg protected

�make

� �

�test

�

�archive
�
�
�
�
�
�
��precond baseline�blt

A
A
A
A
A
A
AAsubg tests�accomp

�
�

�
�

�
�

�� subg code�studied

D
D
D
D
D
D
DDprecond testing�done

�

�run�cases

�

�study�code

subg run�single�case LEGEND
� operator

subgoal or precond

�

�run�test�case

precond case�is�apropo

Consider the top�level operator build� given in the appendix� It is complex
with two subgoals� testing�done and status�protected� and a nonstatic precondition� sys�

constructed� For this particular operator there are no constraints�

�� Empirical Knowledge

The intelligent assistant does not assume that information contained in the oper�
ator de	nitions is complete� The system allows assumptions to be made about the
state of the world� Inferences about non�observable conditions are made on the basis
of empirical knowledge and on the basis of what can be observed� This empirical
knowledge is expressed as rules in a Truth Maintenance System �TMS� Doyle� ������

�



It is fully described in Hu
� ����b�� These inferred conditions are given values� either
true for certain� true by assumption� false for certain� or false by assumption� The
value is the result of evaluating a TMS rule with a set of action�variable bindings� A
static precondition� constraint� or subgoal of an operator can be based on inferences
from the observable world� For instance the action run�test�case has a static precon�
dition that the case is applicable to the system� The state of this precondition is not
observed directly� it is inferred� The use of assumptions about non�observable condi�
tions makes some actions and variable bindings more credible than others� An action
which can be interpreted without making any assumptions about conditions in the
world is preferred� An action which can be interpreted without changing assumptions
about the world is a better alternative than one which causes current assumptions
to be violated or altered� A good plan doesn�t force the system to keep changing
suppositions about the state of the world�

�� Using Domain Knowledge to Control Search

At any time during planning there are subgoals and normal preconditions which
are not yet satis	ed and there are operators with variables only partially bound� The
planner uses these unsatis	ed conditions in its search for viable actions and variable
bindings� It may happen that a condition is true in the current data�base state� In
this case variable bindings are the values for which the condition holds� Otherwise
actions linked to the condition either directly or indirectly are considered� Finding
the values for the action variables that allow the action to be legally executed in
a current state can be computationally expensive� Clearly� testing every possible
combination of variable bindings would be ine�cient� In order to control the search
for bindings� domain knowledge which is already available in the operator de	nitions
is fully exploited� Syntactic and semantic checks on expressions �preconditions� goals�
constraints� are used to prune out nonviable bindings�

Every action that leads to a speci	ed condition through a path mapping operator
goals to subgoals or preconditions is a possible 	rst action in satisfying the condition�
Once a candidate action is found� its variable bindings are determined as described
below�

� Bindings can be found directly from the condition� When the condition is found
to be true in the current world state� candidate bindings are picked up directly
from the data base� �There can be more than one set of bindings�� For example�
a precondition of build is created�from
system�baseline�� If there is a system in
the data base� say system�� which has been created from a baseline� sys�� a
candidate binding for the variable� system� is system� and for the variable�
baseline� is sys��

� Bindings can be found from operator preconditions which must be true� Since
the preconditions of the proposed action must be true� the set or sets of variable
bindings can be determined by querying the data base� If the query results in
all variables in the precondition being bound� the precondition is true� Again�

�



there may be more than one set of bindings that make the precondition true�
New variable bindings can be added to sets and sets of bindings can be discarded
as tests are done on action variables propagated up through the path link via
mappings� If an operator is linked either directly or indirectly to the action
through one of its subgoals� then all of its preconditions must be true� Therefore
a proposed set of action bindings can be extended or discarded by querying the
data base with such a precondition which must be true� For example the action
make satis	es the precondition of build� In order for the action� make� to be
legally executed its precondition must be true� If sys� is a built system in the
data base� then sys� is a candidate binding for the variable� baseline�

� Bindings are found from operator constraints which must hold� tests on operator
constraints limit the viable alternatives for action bindings� If a set of bindings
causes a constraint to be violated� then that set of bindings is discarded�

� Goal clauses are used to limit sets of bindings� If the goal of an operator on
the path from an action to a condition is found to be true in the current state
�with all of its parameter values bound from a proposed set of action bindings��
then the binding set used is discarded� Posting the e
ects of the action in such
a case would serve no purpose�

The above ways of narrowing search for the possible bindings of an action are the
planning analogs of narrowing the search for possible interpretations in plan recogni�
tion�

Not all the action parameters are necessarily bound while applying the above
rules� An action can have a parameter whose value is a new object or an attribute
chosen from a predetermined list of attributes� The values for these variables are
generated when the e
ects of the action are simulated�

An action and its bindings are further tested by simulating e
ects� If the con�
straints of any operator in the current interpretation are violated by side e
ects� the
set of bindings is thrown out� The violation of a protected� satis	ed condition may
also become evident when an action is simulated�

Action credibility is determined during the search for bindings� Those operator
conditions which are assumptions rather than certainties are also evaluated while
testing bindings� The tested bindings of an action can cause a logical expression
to be true for certain� true by assumption� false by assumption or false for certain�
Looking at the operator de	nitions� the precondition� applicable�case�system�� of run�
test�case could be false by assumption for a given set of action variable�bindings in
which case the credibility of the action taken with these bindings is low�

When no credible �not false for certain� bindings can be found for action pa�
rameters� the proposed action is not a viable alternative for satisfying the speci	ed
condition�

�



	� Using Heuristic Knowledge to Control Search

There are two ways that the user can work in planning with the assistant� heuris�
tics in�uence both� First the user can control the agenda and specify a single unsat�
is	ed goal� The system will return with a proposed action and bindings� Secondly�
the user can specify any number of unsatis	ed goals and GRAPPLE will prioritize
goals and actions� It will choose� using heuristics� the �best� goal to be achieved and
the �best� 	rst action to satisfy it�

Ideally the planning system should choose goals and actions that are likely to lead
to success quickly� In order to do this the GRAPPLE planning system uses heuristics
in incrementally selecting goals and actions from a pool of candidates� When the user
speci	es more than one goal� only those goals which can be achieved in the current
world state are considered as candidates�

The heuristics for choosing a best� 	rst action to satisfy a speci	ed goal are�

� A desirable action should not violate an already satis	ed� protected condition
and thus impose the necessity to replan�

� A desirable action should be credible and thus be consistent with current as�
sumptions about the state of the world� An action which partially or totally
satis	es a goal and is not based on any assumptions is most desirable�

� A desirable action either directly satis	es the condition or reaches it within a
small number of path links� A shorter number of path links often corresponds to
fewer actions in a plan and few actions means a simple plan which is preferred�
What�s more� it takes less time to generate a short plan and less time to execute
it�

Actions are grouped by the goal that they achieve� When the user speci	es more
than one goal to be satis	ed and wants the planner to achieve the most promising
goal 	rst� two heuristics are used� They are�

� Choose the goal which can be achieved by the action with the highest credibility�

� When it is impossible to 	nd a single goal with the 	rst heuristic� choose the
goal which has the smallest number of possible credible 	rst actions� This rule is
founded on the premise that if there are many ways to satisfy a condition� many
possible 	rst actions� then probably options will remain in a slightly altered
world state� whereas if there is only one alternative to satisfy a condition it
might disappear once another action is taken� In other words it is best to 	rst
consider goals that look highly constrained�

The implementation works in the following way� A list of all possible 	rst actions
is associated with each unsatis	ed condition� speci	ed by the user� Associated with
each action is�

��



� A credibility rating�

� The length of the path from the action to the condition�

� A �ag indicating whether or not a previously satis	ed� protected condition will
be violated by taking the action� making replanning necessary�

� A branching factor� The branching factor is the number of all possible 	rst
actions which lead to the speci	ed goal�

The properties of possible actions� listed above� are used by heuristic rules to
choose the �best� action associated with each user�speci	ed goal� Actions which do
not violate a protected condition and which have the highest credibility are deter�
mined� From these� the one or ones with the shortest path are selected� If more than
one action meets the above criteria� all are proposed to the user�

When more than one goal is speci	ed by the user� the system generates a �best�
action for each goal� It then selects a goal� the one whose associated action has the
highest credibility� and if there are ties� the one with the lowest branching factor�
The chosen action is proposed and interpreted in the current world state� its e
ects
are posted� and the state of the world is updated�

Obviously in any implementation where execution occurs before planning is com�
pleted� it is possible that a commitment can be made to a plan that is less than
optimal� This can happen if goals are achieved in their improper order� One way
that has been used to solve the problem is to get additional information about goals
that allows planning to be delayed Wilkins� ������ An enhancement to our system
would be to test the proposed action by making sure that it can eventually lead to
the satisfaction of the speci	ed goal� This search might� however� be expensive� In�
terleaving execution with planning is de	nitely something one wants to do when the
outcome of actions is uncertain which is true for the domains of interest to us� How�
ever� there are not yet good solutions to the problem of committing to an ine�cient
plan� More work can be done in this area�


� Example

In order to illustrate how the assistant functions an example of a session between a
user and the intelligent assistant follows� The world contains operators �see appendix�
for building� testing and archiving a system� In addition to these operator de	nitions
there is a set of predicates and default rules� used to evaluate the world state�

The goal of the top�level operator is to build a new system from a baseline system�
In the initial world state� given to GRAPPLE� a baseline system�sys�� is already built�
but no system has yet been created from it� Two test cases which are applicable to
sys�� a normal case� normalcase�� and a base case� basecase�� are also part of the
initial world�

THE FIRST ACTION

��



The user chooses not to take the initiative in proposing the 	rst action toward
building a system and defers to the assistant� In response GRAPPLE expands the
top�level operator� build� into preconditions and subgoals and displays them� The
user can then specify a condition or a number of conditions� He speci	es all three
conditions� not knowing where to begin�

build
toplevel�

precond� sys�constructed
notstatic�created�from
system�baseline��

subgoal� testing�done
tested
system��

subgoal� status�protected
or
archived
system��archive�waived
system���

All actions which either satisfy or lead to the speci	ed conditions are generated
along with their variable bindings� Syntactic rules narrow the search here� The sub�
goals can not be considered because the precondition which must be satis	ed 	rst
does not hold in the current state � no constructed system created from the baseline
already exists� The only possible 	rst actions must satisfy the nonstatic precondition
sys�constructed of the operator build� There are two of them and both make a new
system from the baseline� One makes additions to the code and the other makes
cosmetic changes �changes in comments or variable names� to the baseline system�
The proposed actions are�
make with variable values 
system�system���
baseline�sys���
ext�big��
type�new�� 
target�global�

make with variable values 
system�system���
baseline�sys���
ext�big��
type�cosmetic�� 
target�global�

Either action is permissible in the current state because the precondition �that
the baseline is built� of make is satis	ed when the variable� baseline� is bound to the
object sys�� The value of the variable� baseline� is actually found by querying the
data base with the precondition of make� The value of system� system�� is a generated
new object and the values of the other variables are chosen from a predetermined list
of attributes�

Both actions have high credibility �true for certain� and both directly satisfy pre�

cond�� Therefore both actions are equally desirable� The intelligent assistant proposes
both actions to the user� The user chooses the 	rst� to make a new system with new
changes� The action is interpreted by the recognizer� The only interpretations of the
proposed action of interest are the ones in which the action leads to the originally
speci	ed condition� The action is interpreted� its e
ects are posted and the world
state is updated� As a result of action e
ects being posted� assumptions about the
world might be altered� For instance when a new system is made from the base�
line� the test on the base case that was applicable to the baseline system becomes
applicable to the new system by assumption�

SECOND ACTION

The user again wants the assistant to plan for him and he wants an explanation
of what has happened� the extended interpretation is displayed�
 build�
toplevel� status� precond�satis�ed

pre�inst��sys�constructed status� satis�ed and protected

 make� status� completed EXPLICIT ACTION

��



sub�inst��testing�done

sub�inst��status�protected

� explanation� Operators are starred� the operator listed beneath a condition is the one

that achieves it� The expansion of an operator is indicated by indentation��

This time the user again wants help in choosing the goal and the action� He spec�
i	es both subgoals� All actions which lead to sub�inst� and sub�inst� are generated�
Three primitive actions lead to sub�inst�� none of them directly� They are�
study with variable values 
system system��� credibility �true for certain�� and path length �	

run�test�case with variable values 
system�system�� 
case�basecase�� 
tr�tr�� 
compl�compl� 
de�

bug none�� credibility �true by assumption�� and path length of �	

run�test�casewith variable values 
system�system�� 
case�normalcase�� 
tr�tr�� 
compl�compl� 
de�

bug�none�� credibility �true by assumption�� and path length of �	

The credibility of both actions which run a test case is �true by assumption� because
the precondition of each �that the test is applicable to system�� is presumed true once
the e
ects of the 	rst action� making a new system from a baseline� are posted and
the extended world state is updated � It is an empirical assumption� represented in
default rules� that a test case which is applicable to the baseline system is also appli�
cable to a changed system� created from it� As before the variable bindings are picked
up from a data�base query with the precondition predicate which must be true� These
two actions both have a path length of three� This follows from the observation that
the goal of run�test�case satis	es the subgoal of the operator run�cases which satis	es
the subgoal of the operator test�

Of the three actions the �best action� associated with sub�inst� is study because it
has the highest credibility� �true for certain�� and the shortest path� The branching
factor is three� since it is one of three possible 	rst actions which lead to sub�inst��

The subgoal� sub�inst�� could be satis	ed directly from the current data�base state
by changing existing assumptions about the state of the world� The expression for
sub�inst� has a credibility rating of �false by assumption�� Although archiving should
not be waived since the changes made were not cosmetic� the TMS predicate� archive�
waived
system� can be made true by revising the current world assumptions� but it is
preferable not to have to do this� The only option for satisfying sub�inst� is to change
assumptions�

The intelligent assistant determines that sub�inst� is the more desirable goal to
complete and� using heuristics� proposes the most credible action� study� The action
is interpreted in the current world state� its e
ects are posted and the data base is
updated�

THIRD ACTION

The user now wishes to take an action on his own and proposes to archive the
system� The recognition system can not 	nd a viable interpretation for this action
since no testing has been done� The user is so advised� He needs help and uses the
assistant�s summary of work that has been done�
 build�
toplevel� status� precond�satis�ed

��



pre�inst��sys�constructed status� satis�ed and protected

 make� status� completed EXPLICIT ACTION

sub�inst�� testing�done

 test� status� waiting�on�subgoals

sub�inst��tests�acomplished

sub�inst��code�studied status� satis�ed and protected

 study� status� completed EXPLICIT ACTION

sub�inst��status�protected

The user speci	es Sub�inst��tests�accomplished� Sub�inst� cannot be considered since
it is already decomposed into subgoals� There are two possible actions leading to
sub�inst�� each with credibility �true by assumption� and with path�length �� They
are�
run�test�casewith variable values 
system�system�� 
case�normalcase�� 
tr�tr�� 
compl�compl� 
de�

bug�none� �credibility �true by assumption�� path length �� and branching factor �	

run�test�case with variable values 
system�system�� 
case�basecase�� 
tr�tr�� 
compl�compl� 
de�

bug none�� credibility �true by assumption�� and path length of �� and branching factor �	

Both are proposed and the user chooses the 	rst� This action is interpreted� its e
ects
are posted and a future world state is generated� It should be noted that if the 	rst
action had been to make cosmetic rather than new changes to the baseline system�
the base case would be applicable to system�� by assumption� but the normal case
would not� This is because normal tests are not necessary when only cosmetic changes
are make to a system� In this event the credibility of the 	rst action above would be
�false by assumption� and the assistant would propose only the second action to the
user�

FOURTH ACTION

The user proposes the next action�
run�test�case with variable values 
system�system�� 
case�basecase�� 
tr�tr�� 
compl�compl� 
de�

bug�none�	

It is accepted and the extended interpretation becomes�
 build�
toplevel� status� waiting�on�subgoals

pre�inst��sys�constructed status� satis�ed

 make� status� completed EXPLICIT ACTION

sub�inst��testing�done status� satis�ed and protected

 test� status� completed

sub�inst��tests�acomplished status� satis�ed

 run�cases�
iterated� status� completed

sub�inst��single�case�run status�satis�ed

 run�test�case� status� completed EXPLICIT ACTION

 run�cases�
iterated� status� completed

sub�inst��single�case�run status� satis�ed

 run�test�case� status� completed EXPLICIT ACTION

sub�inst��code�studied status� satis�ed

 study� status� completed EXPLICIT ACTION

��



sub�inst��status�protected

FIFTH ACTION

There is one subgoal� sub�inst�� remaining to be satis	ed� The user feels con	dent
enough to propose archiving the system� Because the system has now been tested
it can be archived� With this action the top�level goal is satis	ed and the plan is
completed�
 build�
toplevel� status� completed

pre�inst��sys�constructed status� satis�ed

 make� status� completed EXPLICIT ACTION

sub�inst��testing�done status� satis�ed

 test� status� completed

sub�inst��tests�acomplished status� satis�ed

 run�cases�
iterated� status completed

sub�inst��single�case�run status� satis�ed

 run�test�case� status� completed EXPLICIT ACTION

 run�cases�
iterated� status� completed

sub�inst��single�case�run status� satis�ed

 run�test�case� status� completed EXPLICIT ACTION

sub�inst�� code�studied status� satis�ed

 study� status� completed EXPLICIT ACTION

sub�inst��status�protected status� satis�ed

 archive� status� completed EXPLICIT ACTION

Credibility was the determining heuristic used in choosing actions in the above
example� In another example where the goal is to construct a new system� both
the value of the action�s branching factor and the length of an action�s path guide
the generation of a correct plan� In the interest of clarity the example is simple�
However� the techniques described here are applicable to larger sets of operators and
more complex worlds� In a more complicated situation the advice of an automated
intelligent assistant might be truly bene	cial to the user� GRAPPLE does depend on
domain knowledge being represented in a set of hierarchical operators� In a complex
world determining the operators and default rules is di�cult and requires expertise�

�� Conclusions

We have described an intelligent� domain independent assistant which works coop�
eratively with a user� recognizing his plan and planning for him� An advantage of this
system is that planning can occur anytime help is desired� The plan hierarchy con�
trols the development of an ongoing interpretation of actions and thus directs search�
Knowledge embedded in operator de	nitions is continually checked against the cur�
rent world state in order to bind variables to values that satisfy constraints� Empirical
knowledge allows the planner to determine credible actions and the recognizer to de�
termine credible interpretations� Heuristic rules allow the assistant to propose the
best choices of new actions based on credibility� path length� and branching factors�
The intended e
ect of the heuristics is to keep the plan simple and credible� to avoid

��



mistakes and dead ends� and consequently to avoid the necessity of replanning� By
integrating various kinds of knowledge� search can be controlled� The result is that
the user and the assistant can work together interactively and e
ectively accomplish
goals�

��



Appendix

Example Software Development Operators

build

operator
 build
system�baseline��
goal
 built
system� ��
preconds
 sys�constructed
notstatic� created�from
system�baseline�� ��
subgoals
 testing�done
tested
system���

status�protected

or
archived
system�� archive�waived
system�� � ��

e�ects
 add
built
system���	

make

operator
 make
system�baseline�ext�type�target��
goal
 created�from
system�baseline� ��
preconds
 baseline�built
static� built
baseline�� ��
e�ects
 new
system�system��

add
created�from
system�baseline���
add
percent�change
system�ext���
add
type�change
system�type���
add
target�of�change
system�target�� � �	

archive

operator
 archive
system��
goal
 archived
system� ��
preconds
 testing�done
static� tested
system����
e�ects
 add
archived
system�� � �	

test

operator
 test
system��
goal
 tested
system� ��
subgoals
 tests�acomplished
cases�run
system���

code�studied
studied
system�� ��
e�ects
 add
tested
system�� � �	

run�cases

operator
 run�cases
system�case�tr��
keywords
 iterated�until
testing�done
system�� ��
goal
 cases�run
system� ��
subgoals
 single�case�run
testevent
system�case�tr����
e�ects
 add
cases�run
system�� � �	

run�test�case

operator
 run�test�case
system�case�tr�compl�debug��
goal
 testevent
system�case�tr� ��
preconds
 case�is�appropo
static� applicable
case�system�� ��
e�ects
 new
testresult�tr��

add
testevent
system�case�tr���
add
case�on�system
case�system���
add
completion
tr�compl���
add
debug�usage
tr�debug�� � �	

study

��



operator
 study
system�view��

goal
 studied
system� ��

e�ects
 add
studied
system�� � �	 	

In addition to these operator de	nitions there is a set of predicates and default
rules� used to evaluate assumptions about the world state� They are not shown here�

Connell� M�E�� Hu
� K�E�� and Lesser� V�R�� Implementing an Incremental Hierar�

chical Plan Recognition System COINS Technical Report ������ University of
Massachusetts� Amherst� MA� September �����

Croft�W�B�and Lefkowitz�L�S� �Using a Planner to Support O�ce Work� in Proceed�

ings of the ACM Conference on O�ce Information Systems� March� �����

Doyle� J� �A Truth Maintenance System�� Arti�cial Intelligence� �����������������

Genesereth� M�R� �The Role of Plans in Automated Consultation�� in Proceedings

IJCAI�	
� Palo Alto� CA� Morgan Kaufmann� �������������

Hu
� K�E� and Lesser V�R� �A Plan�based Intelligent Assistant That Supports the
Software Development Process� in Proceedings of the Third Symposium on Soft�

ware Development Environments ACM� Boston� November� �����

Hu
� K�E� and Lesser� V�R� The GRAPPLE Plan Formalism COINS Technical Re�
port ������ University of Massachusetts� Amherst� MA� �����

Hu
� K�E� and Lesser� V�R� Plan Recognition in Open Worlds COINS Technical
Report ������ University of Massachusetts� Amherst� MA� Dec�� �����

Hu
� K�E� Plan�based Intelligent Assistance� An Approach to Supporting the Software

Development Process Ph�D dissertation� University of Massachusetts� September�
�����

Miller� M�L� and Goldstein� I�P� �Structured Planning and Debugging� Proceedings

IJCAI�		

Sacerdoti� E� D� A Structure for Plans and Behavior� New York� Elsevier�North
Holland� �����

Sacerdoti� E� D� �Problem Solving Tactics�� Proceedings of IJCAI�	
� Tokyo�
Japan�pp� ���������� �����

Swartout� W�� editor� �Santa Cruz Workshop on Planning�� AI Magazine vol� � no�
�� ������� pp� ��������

Wilkins� D�E� �Domain�Independent Planning� Representation and Plan Generation��
Arti	cial Intelligence� �� ������� ��������

Wilkins� D�E� Practical Planning� San Mateo� CA� Morgan Kaufmann������

��


