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Abstract

In this paper we investigate issues of agent coordination in a distributed
job-shop scheduling system in which agents schedule potentially contentious
activities asynchronously in parallel. Agents in such a system will in gen-
eral have a limited view of the global state of resources and must exchange
appropriate state information with other agents in order to schedule effec-
tively. However, even given perfect instantaneous knowledge of other agents’
resource requirements, agents may still not be able schedule effectively if
they do not also model the possible actions of other agents and the effects
of their own actions. We describe two types of agent behaviors, poaching
and distraction, arising from the asynchronous nature of distributed systems
that decrease scheduling effectiveness and present the results of experiments
testing new coordination mechanisms for preventing such behaviors.

1 Introduction

The scheduling of resources and activities is known to be an extremely diffi-
cult problem [4, 3, 9, 10]. In a distributed scheduling system, the complexity
increases due to the possibility of interactions between scheduling agents such
as when agents are allowed to borrow resources from each other to satisfy
local goals. Examples of distributed scheduling applications include schedul-
ing of machines in factory floor manufacturing, scheduling of airline ground
services in an airport, and scheduling transportation of goods.

In this paper, we explore issues of agent coordination in distributed
scheduling. In particular, we study the behavior of agents in an environ-
ment in which agents develop schedules simultaneously in batch mode, are
cooperative, and agree to share resources.

In previous work, Neiman, et. al. [7] have investigated the questions of
what types of meta-level information to communicate and how that infor-
mation is to be used to schedule more effectively. We extend that work
by investigating the lack of coordination among agents that can exist even
when agents are able to model the global state of resources. We show that
when agents are not able to model the state and possible future activities of
other agents, they cannot schedule effectively [2]. We investigate two types of
behavior resulting from this lack of coordination: poaching and distraction.

In the following section, we give a brief overview of our experimental sys-



tem, the Distributed Dynamic Scheduling System (Dis-DSS) and our problem
domain, airport ground service scheduling. In section 3, we discuss in detail
the agent coordination issues and agent behaviors on which we have focused
in our most recent experiments with the Dis-DSS. In section 4, we present
coordination mechanisms that we have added to our system and the results
of experiments indicating that the quality of scheduling can be significantly
improved by judicious synchronization of agent activities with no appreciable
increase in run time. Finally, in section 5, we conclude and present directions
for further study.

2 Experimental System

Our experimental system for investigating resource-constrained scheduling
problems is a distributed version of the Dynamic Scheduling System (DSS)
[5]. The DSS is a micro-opportunistic scheduler based on a blackboard archi-
tecture. A problem instance consists of a set of orders and a set of resources.
Each order is represented as a set of tasks and subtasks, and each subtask
requiring a resource is assigned a service goal. Service goals are continu-
ally re-rated based on the tightness of constraints on the particular task
and required resource. The system decides which task to schedule based
on a “most-constrained variable” heuristic. At each time step, the system
attempts to reserve resources for those goals that are deemed to be most con-
strained. Service goals are satisfied by attempting three progressively costly
methods:

Assignment An assignment simply reserves an available resource to satisfy
a service goal.

Preemption A preemption cancels an existing reservation so that the re-
source can be reserved for a more constrained service goal. It is a
limited form of backtracking.

Right-shift A right-shift forcibly relaxes the latest-finish-time constraint in
order to satisfy a service goal that would otherwise go unsatisfied. In
other words, the time interval of the reservation is shifted later than
the service goal’s allowable finish time. This almost always causes
decreased solution quality in the form of late orders and is a method
of last resort.



The Distributed Dynamic Scheduling System (Dis-DSS) [7] extends the
DSS by partitioning the order and resource sets and distributing the parti-
tions among several agents. Dis-DSS is a cooperative environment. When
unable to satisfy a service goal locally, agents can generate requests in which
they ask another agent to satisfy the goal. Agents operate asynchronously,
simultaneously developing schedules for their respective order sets.

Each agent is essentially a DSS scheduling agent but uses additional con-
trol heuristics to account explicitly for the fact that it is operating in a
multi-agent system where other agents are reserving resources at the same
time. Heuristics from the single agent DSS system cannot be applied un-
changed to a multi-agent system, an observation also made by Decker, et.
al. in their work on developing control paradigms for a parallel blackboard
system [1].

Our test-bed system built on top of Dis-DSS is the Distributed Airport
Resource Management (Dis-ARM) system. Dis-ARM solves airport ground
service scheduling (AGSS) problems. Each agent is assigned a set of or-
ders, which in the AGSS domain are flights requiring ground service such as
loading/unloading baggage, cleaning, refueling, etc. Agents are responsible
for scheduling ground service so that its flights are able to meet arrival and
departure deadlines.

Each agent also owns a set of resources such as gates, baggage trucks,
cleaning trucks, fuel trucks, etc. In general, the reservation of a resource for
a given task must account for setup and travel times of resources as well as
the actual servicing times. These times are dependent upon the type and
location of individual resources. Individual resources of the same type are
not considered interchangeable. Only the agent owning a particular resource
will have exact information regarding the time needed for setup and travel.
In addition, because of communication delays, an agent can more readily
access it own individual resources than resources owned by another agent.

The search space of alternatives available to the scheduler is quite large
due to the number of possible resources, the number of tasks to be scheduled,
and the number of constraints between subtasks. Moreover, the search space
is dynamic because requests for resources may arrive from other agents at
any point during scheduling.



3 Coordination in Distributed Scheduling

In a distributed system, scheduling agents may not have a complete view of
global resource availability and demand. To enable more effective schedul-
ing, Dis-DSS agents exchange meta-level control information in the form of
texture measures [11], abstract representations of an agent’s resource avail-
ability, current resource usage, and estimated future demand. By obtaining
texture measures from other agents, an agent can build a more global view
of the status of resources. Agents use this information to make decisions
regarding what service goals to schedule next (based on which are most con-
strained) and how to satisfy service goals (whether to use a local resource
or request a resource from another agent). Agents can also use the informa-
tion to determine which agents are likely to have a surplus of a given type
of resource and thus are good candidates from which to request resources.
However, even with complete information about the state of resource avail-
ability, agents may not be able to schedule in a globally optimal manner if
they do not explicitly account for the possible actions of other agents in the
system [2].

In the following sections, we describe two agent behaviors, poaching and
distraction, that may decrease scheduling performance. We use the following
notation for describing the conditions under which these behaviors can occur.
Let g7 ; denote service goal i for agent a requiring resource type x, (where a
resource type is the set of resources that can satisfy the service goal). Let
R(g7;,t) denote the rating at time ¢ of service goal g7; and E(gj ;) denote
its execution time, i.e. the time when agent a attempts to reserve a resource
of type x for service goal i.

The best-first heuristic used by each scheduling agent can then be ex-

pressed as
E(gg,i) =t & VyVj#i R(gg,iat) > R(gg,jat) (1)

This simply states that agent a will execute service goal 7 at time ¢ if and
only if it is the most highly rated of agent a’s goals at time ¢.

3.1 Poaching

We define a poaching event as one in which an agent reserves a resource,
thereby preventing another agent with a more constrained or critical goal
from securing that resource. Poaching activity arises due to the fact that



there are multiple agents scheduling asynchronously using a best-first heuris-
tic. An agent may make a locally correct decision by satisfying its most
highly rated service goal, but this may not be the appropriate action in a
global context — another agent may have a more highly rated goal that over-
laps this goal and could be satisfied by the same resource. Poaching activity
leads to decreased solution quality when the “poached” goal can no longer be
satisfied without expensive constraint relaxation or backtracking activities.

Note that poaching can still be a problem even if two goals requiring the
same resource type do not directly overlap temporally. When the resources
involved become highly constrained (they are globally scarce or need to be
reserved for long periods of time), service goals that normally do not overlap
directly will begin to feel the effects of poaching activity due to reduced
flexibility in the schedule and the reduced ability of the scheduler to exploit
slack in the schedules.

We have defined two general classes of poaching activity.

Type-1 Poaching At time ¢, agent A and agent B both have as their most
highly rated service goals, goals requiring the same resource type X.
However, agent B’s rating is much lower than agent A’s indicating that
agent B’s goal is less constrained. Because the service goal requiring
resource type X is agent B’s highest priority, agent B can still reserve
the required resource before agent A, despite the lower rating of agent
B’s service goal. Figure 1(a) shows an example of such a poaching
situation.

Formally, we express the situation as

Va Vk 7é i R(gi(,ia t) > R(gﬁ,ka t) (2)
VoVl #j R(gg;t) > Rlght) (3)
R gA,ia t) > R(gg,]a t) (4)

From equations 1, 2, and 3 we obtain

E(gil(,i) = E(gg,j) =t (5)
and combining equation 5 with equation 4 we have the following con-
dition:

R(ghst) > Rigp;nt) N Elgi;) = E(ghy) (6)



Goal Ratings for Agent 2 at Time 51
GOAL-#177 (5024 5051) BAGGAGE-TRUCK 1353 22
GOAL-#213 (5008 5050) BAGGAGE-TRUCK 1180 25
GOAL-#212 (5029 5056) BAGGAGE-TRUCK 666 30
( )
( )

Goal Ratings for Agent 2 at Time 868

GOAL-#157 (4853 4882) CLEANING-TRUCK 5994
GOAL-#194 (4863 4887) CLEANING-TRUCK 4716
GOAL-#187 (4865 4887) CLEANING-TRUCK 4689
GOAL-#188 (4865 4887) FUEL-TRUCK 4231
GOAL-#130 (4860 4885) FUEL-TRUCK 3915
GOAL-#90 (4857 4880) CLEANING-TRUCK 3907

GOAL-#104 (5015 5031) CLEANING-TRUCK 148 43
GOAL-#98 5014 5032) FUEL-TRUCK 146 45

oM wN R o

Goal Ratings for Agent 1 at Time 51
GOAL-#173 (5027 5050) BAGGAGE-TRUCK 3570 5
GOAL-#184 (5024 5050) BAGGAGE-TRUCK 3537 8
GOAL-#191 (5024 5050) BAGGAGE-TRUCK 3537 7
( ) 9
( ) 2

Goal Ratings for Agent 1 at Time 868

GOAL-#6 (4847 4868) CLEANING-TRUCK 3993 4
GOAL-#224 (4865 4892) CLEANING-TRUCK 2537 15
GOAL-#177 (4871 4896) BAGGAGE-TRUCK 1272 41
GOAL-#201 (4852 4890) CLEANING-TRUCK 1272 40
GOAL-#65 (4847 4880) SERVICE-TRUCK 1213 44

GOAL-#159 (4997 5033) BAGGAGE-TRUCK 3336
GOAL-#123 (5019 5046) BAGGAGE-TRUCK 2659 1

Goal Ratings for Agent 0 at Time 51 GOAL-#51 (4848 4880) SERVICE-TRUCK 1196 48

GOAL-#45 (5009 5035) BAGGAGE-TRUCK 7103 0

GOAL-#38 (5009 5036) BAGGAGE-TRUCK 5283 1 Goal Ratings for Agent 0 at Time 868

GOAL-#84 (5016 5041) BAGGAGE-TRUCK 3945 2 GOAL-#118 (4858 4891) SERVICE-TRUCK 232 99

GOAL-#59 (5009 5036) BAGGAGE-TRUCK 3877 3 GOAL-#160 (4823 4891) SERVICE-TRUCK 120 107

GOAL-#73 (5009 5036) BAGGAGE-TRUCK 3877 4 GOAL-#36 (4851 4876) CATERING-TRUCK 75 111
GOAL-#59 (4848 4880) CATERING-TRUCK 73 116
GOAL-#179 (4872 4895) CATERING-TRUCK 61 125
GOAL-#140 (4855 4891) CATERING-TRUCK 55 133

(a) An example of a type-1 poaching (b) An example of a type-2 poaching

situation. Agent 2 is able to reserve situation. Agent 0 is able to reserve
a baggage truck for goal #177 even a service truck for goal #118 before
though is has a much lower rating agent 1 is able to process goal #65
than agent 0’s top-rated goal #45. which is much more highly rated.

Figure 1: Trace listings showing the top-rated service goals for each agent in
a three-agent system. Each line reporting service goal information contains
the goal’s number, time interval for which a resource is needed, resource type
required, rating, and global ranking. Note that one agent may frequently
have the top N-ranked goals.

In this situation, poaching is possible because both agents execute their
service goals at the same time step, and therefore it is possible (due to
varying response times to remote requests for resources) that agent B
can obtain a resource reservation before agent A despite that fact that
agent B’s service goal has a much lower rating.

Type-2 Poaching At time ¢, agent A and agent B both have service goals
requiring the same resource type X. The ratings for agent A are higher
or the same as those for agent B. For agent B, these are its most highly
rated service goals. If agent A also has service goals requiring resource
type Y, and these are its most highly rated goals (and thus more highly
rated than its service goals requiring resource type X), then agent B



can reserve resources of type X while agent A is working on scheduling
resources of type Y. Figure 1(b) shows an example of such a situation.

Formally, we express the situation as

VeVk #i R(gh;t) > R(ghst) (7)
VeVl #j R(gy;,t) > R(gh,.t) (8)
R(gXmit) > Rlgp,t) (9)

From equations 1, 7, and 8 we obtain

E(gg,j) = E(g}g,i) =1 (10)

From equation 7, we know that

R(gh 1) > R(g4m: 1) (11)
and thus
E(gh;) < E(gim) (12)
Finally, combining equations 9, 10, and 12 we have the following con-
dition
R(giamt) = R(g,;:1) N E(g5;) < E(g4,m) (13)

In this situation, poaching is quite likely because agent B executes its
service goal earlier than agent A.

If the poaching activity continues and resource type X becomes con-
strained, then eventually agent A’s ratings for service goals requiring
resource type X will rise to be the most highly rated, and agent A will
begin competing with agent B for the same resources. Depending on
the global resource availability of that resource type and on the com-
munication delay for exchanging texture measures, the damage can be
done before agent A is able to respond. In fact, in some situations
we do not want agent A to respond at all because shifting agent A’s
attention away from resource type Y to compete for resources of type
X can have a detrimental effect on overall scheduling performance as
we will see in the next section.

Finally, an interesting phenomenon in a distributed system is that an
agent can actually “poach” on its own goals (that is, satisfy goals out of

8



order) due to the communication delays in dealing with remote requests. An
agent may execute service goals in order with respect to their ratings, but
the times at which the resources are actually reserved (which depend on the
actions of other agents) may not be in order.

3.2 Distraction

One effect of the use of texture measures combined with a most-constrained-
variable heuristic in a micro-opportunistic system is that agents tend to syn-
chronize their scheduling activities. As agents begin to reserve resources, a
particular type of resource becomes constrained and service goals requiring
that resource type become more highly rated causing agents to increasingly
focus on scheduling those service goals. This causes more reservations of the
given resource type causing the resource to become even more constrained.
This feedback process continues until eventually, all agents are focused on
scheduling the same type of resource, the globally most constrained type.

Synchronization can be an undesirable feature in some situations. Not
only does it promote poaching, the exchange of texture measures, by provid-
ing agents with a global view, allow agents to be distracted by the scheduling
activities of other agents. Distraction [6] occurs whenever an agent receives
information from another agent and based on this information pursues an
undesirable course of action. In our system, we have encountered an analog
to distraction in which an agent is prevented from executing important pre-
cursor activities by the increasing pressure of external events. Note that in
[6], distracting information had the connotation of being noisy or misleading
and the receiving agent had the responsibility of interpreting it as such and
pursuing more critical computations. Here, we present a situation in which
the communicated information is good, and the receiving agent is placed on
the horns of a dilemma; either it reacts to the incoming information, leav-
ing time critical processing unperformed, or it ignores the new information,
thereby failing to compete for critical resources. Unlike the original dis-
traction scenario encountered in HEARSAY, it is the distracting agent that
should act responsibly, either by working in a less globally sensitive area or
by simply idling until other agents are capable of synchronizing planning ac-
tivities. Such behavior is only possible if the distracting agent has enough
information to gauge the effects of its actions.

Distraction is particularly evident in our system in cases where agents
possess dramatically different loads. An agent who has very few orders to



Goal Ratings for Agent 2 at Time 76 Goal Ratings for Agent 2 at Time 116 Goal Ratings for Agent 2 at Time 138

GOAL-#50 (4844 4884) GATE 1376 2 GOAL-#50 (4844 4884) GATE 2376 2 GOAL-#55 (4854 4872) CLEANING-TRUCK 3002 3
GOAL-#64 (4843 4884) GATE 1340 4 GOAL-#99 (4850 4889) GATE 2332 3 GOAL-#69 (4853 4872) CLEANING-TRUCK 2891 4
GOAL-#99 (4850 4889) GATE 1144 7 GOAL-#64 (4843 4884) GATE 2287 4 GOAL-#99 (4850 4889) GATE 2598 6
GOAL-#106 (4846 4889) GATE 1122 8 GOAL-#106 (4846 4889) GATE 2145 7 GOAL-#50 (4844 4884) GATE 2556 8
GOAL-#92 (4850 4889) GATE 929 11 GOAL-#131 (4852 4894) GATE 2039 9 GOAL-#64 (4843 4884) GATE 2458 9
GOAL-#131 (4852 4894) GATE 906 12 GOAL-#92 (4850 4889) GATE 1895 11 GOAL-#106 (4846 4889) GATE 2375 10
Goal Ratings for Agent 1 at Time 76 Goal Ratings for Agent 1 at Time 116 Goal Ratings for Agent 1 at Time 138

GOAL-#43 (4845 4884) GATE 1413 0 GOAL-#43 (4845 4884) GATE 2471 0 GORL-#48 (4855 4872) CLEANING-TRUCK 3076 0
GOAL-#57 (4844 4884) GATE 1376 1 GOAL-#57 (4844 4884) GATE 2376 1 GOAL-#15 (4855 4872) CLEANING-TRUCK 3076 1
GOAL-#13 (4845 4874) GATE 1349 3 GOAL-#19 (4848 4877) GATE 2247 5 GOAL-#62 (4854 4872) CLEANING-TRUCK 3002 2
GOAL-#16 (4847 4876) GATE 1339 5 GOAL-#16 (4847 4876) GATE 2205 6 GOAL-#43 (4845 4884) GATE 2662 5
GOAL-#19 (4848 4877) GATE 1328 6 GOAL-#13 (4845 4874) GATE 2105 8 GOAL-#57 (4844 4884) GATE 2556 7
GOAL-#71 (4843 4884) GATE 1097 9 GOAL-#85 (4850 4889) GATE 1895 10 GOAL-#18 (4857 4874) CLEANING-TRUCK 2296 12
Goal Ratings for Agent 0 at Time 76 Goal Ratings for Agent 0 at Time 116 Goal Ratings for Agent 0 at Time 138

GOAL-#174 (4870 4899) GATE 493 27 GOAL-#12 (4853 4870) CLEANING-TRUCK 93 52 GOAL-#83 (4848 4875) CLEANING-TRUCK 752 51
GOAL-#247 (4880 4909) GATE 185 40 GORL-#11 (4847 4870) BAGGAGE-TRUCK 91 61 GOAL-#11 (4847 4870) BAGGAGE-TRUCK 91 85
GOAL-#12 (4853 4870) CLEANING-TRUCK 93 51 GOAL-#84 (4848 4875) FUEL-TRUCK 87 74 GOAL-#84 (4848 4875) FUEL-TRUCK 87 90

GOAL-#84 (4848 4875) FUEL-TRUCK 87 73 GOAL-#83 (4848 4875) CLEANING-TRUCK 78 101 GOAL-#81 (4854 4881) BAGGAGE-TRUCK 70 141

( ) ( ) ( )
( ) ( ) ( )
GOAL-#11 (4847 4870) BAGGAGE-TRUCK 91 60 GORL-#82 (4844 4875) BAGGAGE-TRUCK 79 87 GORL-#82 (4844 4875) BAGGAGE-TRUCK 79 102
( ) ( ) ( )
GOAL-#82 (4844 4875) BAGGAGE-TRUCK 79 88 GOAL-#81 (4854 4881) BAGGAGE-TRUCK 70 132 GOAL-#79 (4844 4881) SERVICE-TRUCK 69 147

Figure 2: An example of distraction. Agent 0 has finished assigning gates
before the other two agents and has begun to assign cleaning trucks. This
forces agents 1 and 2 to begin competing for cleaning trucks instead of fin-
ishing their gate assignments.

schedule relative to other agents can begin scheduling certain resources well
before other agents. This may cause a resource to become constrained, which
in turn causes other agents to begin scheduling that resource instead of what
they were scheduling. This is a problem when the order in which resources
are scheduled is important. For example, in the AGSS domain, scheduling a
gate location for a flight allows the scheduler to better estimate travel times
for other resources such as baggage trucks and fuel trucks needed to service
that flight. Without a fixed gate assignment, the scheduler must assume the
maximum travel time when scheduling these other resources; this can cause
a task to appear more constrained than it really is. It is clearly beneficial for
agents to schedule gates early on in a scheduling episode. In the situation
with an unbalanced load among agents, one agent can distract other agents
from scheduling gates early. Figure 2 shows an example trace of such a
situation.
For the Dis-ARM system, we would like for the following to be true

vaa Za] vy 7é G E(gg,z) > E(gg:]) (14)

where G represents the gate resource type. That is, we would like each
agent to finish executing their service goals requiring gates before starting to
execute other service goals.

If the order distribution is not balanced evenly among agents we have the
possibility that an agent (say B) may begin to schedule at time ¢; a non-

10



gate resource type Y # G before another agent A has finished all of its gate
assignments:

Y G

E(gB,z') = E(gA,j) =1t (15)
This creates a possible increase in agent A’s rating of goals requiring resource
type Y, and at some time ¢, > ¢; we may have

R(g}g,ka tZ) > R(gg,la tZ) (16)

and thus
E(g}g,k) < E(gil) (17)

which violates our desired condition that all agents schedule gates before any
other resource type.

In the next section we present coordination mechanisms for addressing
the problems of poaching and distraction and the results of experiments for
testing their effectiveness.

4 Discussion of Experimental Results

In the following sections, we present coordination mechanisms for addressing
the problems of poaching and distraction, and we present the results of ex-
periments for testing their effectiveness. We show the effect of adding these
mechanisms to two reference systems: (1) a system in which agents only have
a local view of resource availability and demand (which we refer to as the
“local-view heuristic”) and (2) a system in which agents exchange texture
measures for building a global view of resources (which we refer to as the
“texture-based heuristic”).

Because of the complexity of interactions among scheduling agents, the
addition of our new coordination mechanisms does not guarantee an increase
in scheduling performance in all cases. For some individual runs, we observe
a decrease in performance, but on average, the system performance increased
significantly. Performance is measured in terms of the total tardiness in the
schedules of all agents (and thus, smaller numbers are better with zero tardi-
ness being the best). For each performance comparison we present the results
for each individual run as well as the average difference in performance. We
also present significance values (p-values) for the matched pair ¢-test.

Each set of experiments consists of 21 runs, grouped into five different
load distribution conditions (see table 1(a)). Each run within a condition

11



Number of resources:
Number of orders: Resource type Agent Agent Agent
Run # | Agent Agent Agent yp gO gl g2
0 1 2
5 16 16 7 Gates 17 16 16
Fuel trucks 6 6 6
6-10 10 16 23 .
Catering trucks 4 4 4
11-15 10 10 23 .
Service trucks 1 2 2
16-20 ) 22 22
91 0 0 49 Baggage trucks 11 11 11
Cleaning trucks 3 3 2

(a) Order distribution for each set

of experiments (b) Resource distribution for all experi-

ments.

Table 1: Order and resource distributions among agents.

has a different order distribution among three agents (orders were assigned
randomly). Orders are taken from a set of 49 actual Northwest Airlines
flights requiring service at Detroit International Airport during a one hour
period.

Resources are distributed more or less evenly among the agents for all
The total number of resources is set to be minimally sufficient for
Table 1(b) gives the exact

runs.
satisfying the requirements of the 49 orders.
resource distribution among the three agents.
We include one order distribution that assigns all 49 orders to a single
agent in order to approximate a centralized scheduler. It is an approximation
in that one agent must schedule all of the orders but it does not own all the
resources and will need to request resources from other agents. Because the
other agents do not have any orders of their own to schedule, these requests
will be handled promptly. This “centralized” scenario produced very good
results indicating that the tardiness we encounter during scheduling is, in
fact, an artifact of the asynchronous and distributed nature of the system.

4.1 Anti-poaching Mechanism

We hypothesize that in order to prevent poaching, agents need to commu-
nicate goal ratings for their top n service goals in addition to information
about resource supply and usage in the texture measures. By exchanging
this information agents can determine whether their top priority scheduling

12
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Local-view heuristic + anti-poaching mech. +— ] Texture-based heuristic + anti-poaching mech. — |
Local-view heuristic only —+-- | Texture-based heuristic only —+— |

Total Tardiness
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3
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(a) Local-view heuristic. =~ Average (b) Texture-based heuristic. Average
change in total tardiness is -17.1 (stan- change in total tardiness is -11.3 (stan-
dard error = 4.9, p-value = 0.0011). dard error = 5.8, p-value = 0.033).

Figure 3: Change in performance due to the anti-poaching mechanism.

activities would poach on another agent’s activities. Our anti-poaching mech-
anism works as follows: Before scheduling a service goal, each agent checks
whether the goal is rated above a given threshold and therefore accessing a
highly contested resource. It then checks whether any other agent has a ser-
vice goal that is rated much more highly (where “much” is a parameterized
value) than its own, and if so the agent will not schedule its service goal but
instead idle to avoid a possible poaching activity.

Both heuristics show a significant performance increase with the addition
of the anti-poaching coordination mechanism. Figures 3(a) and 3(b) show
the change in total tardiness observed in our experiments.

It is interesting to note that the anti-poaching mechanism improves per-
formance for the local heuristic as well as the texture heuristic. Our mech-
anism is based on exchanging information about agents’ goal ratings and
assumes that these goal ratings are comparable so that the decision about
which agent has the more constrained goal is correct. With the texture-based
heuristic, agents are able to build a view of global resource constraints and
thus ratings are comparable. With the local-view heuristic, it is not immedi-

13
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Local-view heuristic + gate coord. mech. +— | Texture-based heuristic + gate coord. mech. +— ]
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(a) Local-view heuristic. =~ Average (b) Texture-based heuristic. Average
change in total tardiness is -11.6 (stan- change in total tardiness is -11.7 (stan-
dard error = 6.2, p-value = 0.038). dard error = 5.2, p-value = 0.033).

Figure 4: Change in performance due to the gate coordination mechanism.

ately obvious that ratings are comparable. However, an agent with a locally
highly constrained resource (and corresponding highly rated goal) will bene-
fit from the opportunity to rapidly transmit requests regarding that resource
to other agents.

4.2 Gate Coordination Mechanism

In our AGSS domain, distraction is primarily a problem when agents are
distracted from scheduling gates early on in a scheduling episode. To prevent
this distraction effect, we have added a gate coordination mechanism to Dis-
ARM which simply disallows scheduling of resources other than gates until all
agents have finished their gate assignments. Obviously, a similar heuristic can
be developed for any sufficiently critical prerequisite operation in a scheduling
or planning environment.

Both local and texture-based heuristics show a significant performance
increase with the addition of the gate coordination mechanism. Figures 4(a)
and 4(b) show the change in total tardiness observed in our experiments.
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Coordination mechanism | Avg. diff. in tardiness p-value
none -24.4 6.8
Anti-poaching -24.6 5.4
Gate -18.6 4.2

Table 2: Average difference in performance between the local heuristic and
the texture heuristic.

Heur/Mech Total KS p-value Preempt KS p-value
Local/Gate -77.5 0.002 -5.1 0.038
Local/Anti-poach 414 0.6 2.2 0.672
Texture/Gate -112.1 0.003 -7.8 0.004
Texture/Anti-poach -99.5 0.04 99 0.017

Table 3: Average change in total number of KS executions and the average
change in number of KS executions that are preemptions.

4.3 Effectiveness of Texture Measures

In previous work, Neiman et. al. have shown the effectiveness of using the
information contained in the communicated texture measures for scheduling
[7, 8]. Here, we present a similar comparison of scheduling performance with
and without the use of texture measures. The following data are the same
as those presented in the previous two sections, but are displayed so that the
texture-based heuristic and local heuristic are directly compared.

Figures 5, 6(a), and 6(b) show the difference in performance between the
local-view heuristic and the texture-based heuristic with and without the
additional coordination mechanisms. Even though the local heuristic does
gain by using the additional mechanisms, the texture-based heuristic still
performs significantly better when using the same coordination mechanisms.
Table 2 gives the average decrease in total tardiness and significance values
for the three cases.

4.4 Effect of Coordination Mechanisms on Parallelism

While our coordination mechanisms decrease total tardiness in flight sched-
ules, they also decrease parallelism which in turn may lead to increased run
times. We have found that on average, run times in fact do not increase
and in some cases even decrease. This is due to fewer backtracking episodes;
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Figure 5: Difference in performance between texture-based heuristic and
local-view heuristic with no additional coordination mechanisms.
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Figure 6: Difference in performance between the texture-based heuristic and
local-view heuristic with coordination mechanisms in place.
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by enforcing idleness in agents that may be about to poach or distract, the
mechanisms reduce the number of mistakes that must be undone later. The
amount of time spent idle is compensated by avoiding costly chains of back-
tracking.

Table 3 shows the average change (along with the p-value significance for
the paired ¢-test) in the number of knowledge source (KS) executions due
to the addition of our mechanisms. The table shows the average change in
the total number of KS executions (a measure of system run time) and the
average change in number of KS executions that are preemptions (a measure
of backtracking) for each mechanism and heuristic tested.

We see that in most cases, there is a decrease in system run time and in
the amount of backtracking performed. One exception was that the addition
of the anti-poaching mechanism to the local heuristic did not significantly
change the run time or amount of backtracking performed. This is not un-
expected because the anti-poaching mechanism is only truly effective if the
underlying system makes use of non-local information about goal ratings.

5 Conclusions and Future Work

In an attempt to understand better the issues involved in distributed schedul-
ing we have investigated in detail the dynamic behavior of the Dis-DSS sched-
uler. In doing so, we have observed poaching and distraction events affecting
the performance of the distributed scheduling system and have developed
simple mechanisms to reduce or eliminate such events. Our mechanisms sug-
gest that in addition to state information about resource availability, agents
need to model the likely future actions of other agents.

While our mechanisms have been shown to increase schedule quality, they
are also highly serializing. By enforcing idle time for agents that are about to
poach or distract, the mechanisms we have described reduce the parallelism
that is the raison d’étre for distributed systems. Although we have also
shown that this reduction in parallelism does not increase the system run
time, we hope to develop more sophisticated mechanisms that prevent agents
from poaching or distracting while allowing them to pursue other scheduling
activities that will not negatively affect other agents. One possible way to
do this is to consider higher level classes of activities rather than individual
service goals.

Finally, the complexity of a real-world domain such as the AGSS has lim-
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ited us to studying relatively small problem instances. A better understand-
ing of distributed systems may be gained by looking at problem instances
with many more orders and scheduling agents. In the near term, we plan to
continue testing our system on additional sets of orders to give us a better
understanding of the issues in distributed scheduling.
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