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Abstract

We report on the design and implementation
of intelligent interface that assists users perform-
ing computer-based professional work by recogniz-
ing sequences of actions that are globally consistent
and meet desired goals. Our approach is based on
hierarchical plans that represent user tasks. Recog-
nition of instantiations of these plans occurs by pre-
dicting future actions from past events and then
matching new actions to these predictions. The
intelligent interface GRAPPLE (Goal Recognition
and Planning Environment) extends a previous sys-
tem primarily through a reformulation of the plans,
incorporating more knowledge about the plans and
the domain. We present this new formalism, which
lays the groundwork for the development of meta-
plans and reasoning from first-principles.

1 Introduction

In complex domains of computer-based professional work,
there is a need for intelligent interfaces which assist prac-
titioners (as opposed to novices) with sequences of actions
which meet desired goals and are consistent in their global
context. It is not a question of replacing the practitioner
with an expert system, but rather of cooperatively sup-
porting the work of the practitioner with an intelligent
assistant. This assistant would bridge the gap between
the practitioner’s perspective on problem-solving activities
and the computer system’s perspective on tool invocations
and resource usage.

Using predefined, hierarchical activity definitions (plans),
the intelligent interface can monitor the conversation be-
tween user and computer system, recognizing the com-
mands issued as instantiations of primitive plan definitions.
Predictions of expected user commands can be made as a
result of the successful integration of a primitive action
into a more abstract plan representation. The interface
can also operate in an alternate mode and automatically
generate sequences of primitive commands 11 response to
a user request for a high-level plan. Such an in telligent in-

863

terface would thus be a mixed-initiative system, combining
facilities for plan recognition and plan automation, with an
embedded planner used to extend the predefined plans as
needed. The assistance provided to users would include:

Detecting actual and potential errors, including er-
rors of global strategy;

Recovering from and correcting errors using context
and goal information;

Creating and managing agendas of work to be per-
formed;

Summarizing accomplishments of terminal sessions;

Automatically performing steps in a plan or complet-
ing a plan.

Realizing this type of intelligent interface will require
Al techniques for several reasons. During recognition, the
information needed for a definitive interpretation of a plan
may not be complete. Further, the plan definition may be
approximate and based, in part, on heuristic knowledge.
The interface will have to generate selected alternatives,
make choices, and be prepared to retract interpretations
at a later time. It will usually be too burdensome to write
predefined plans to cover all possible situations, so there
will be a need to generate new plans dynamically (either
to interpret user actions or to carry out some high-level
plan). An embedded planner will ensure robustness of the
interface over a wider range of activities. Finally, a deep
knowledge of the domain, together with appropriate auto-
mated reasoning techniques, will add to the power of all
aspects of the interface.

In this paper, we discuss a research effort to investi-
gate the role of plan recognition in the design of intelligent
interfaces. A first-generation system, called POISE (Pro-
cedure Oriented Interface for Supportive Environments) is
briefly presented as an intelligent interface which incor-
porates plan recognition viewed from an event-based per-
spective. The limitations of this approach are cited, and
a second-generation system is being designed and imple-
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mented to extend the earlier effort. This new goal-based
system, called GRAPPLE (Goal Recognition and Plan-
ning Environment), is presented in detail. Fundamental
changes and the resulting capabilities are highlighted. The
last section of this paper is devoted to a discussion of cur-
rent research directions, such as the incorporation of meta-
plans, and the representation and use of first principles
knowledge about the domain.

2 An Event-Based Intelligent
Interface

We have implemented an intelligent interface called POISE
(1,2,5] which performs simple plan recognition and plan
automation in the domain of office automation. POISE is
written in Common Lisp and is integrated with DEC FMS
office automation tools and VMS mail facilities.

The original POISE system successfully addresses the
goal of implementing a mixed-initiative intelligent inter-
face which recognizes and automates plans which are rep-
resented in a hierarchical plan library. The plans POISE
uses are behavioral (event-based) in nature; an abstract
plan is decomposed by specifying a combination of lower-
level plans, using grammar rules with temporal operators.
These temporal operators include the regular operators of
concatenation, alternation, and repetition, supplemented
with a few concurrency operators[4]. Thus, an ordering
of subplans is specified explicitly within the more complex
plan, and this ordering constitutes the skeletal definition
of the abstract plan.

A semantic database is accessed by the POISE inter-
face to model all domain objects being manipulated by
the plans. Objects are represented using a frame-based
language(1], exploiting the inheritance feature for ease of
specification, and including facilities to represent semantic
constraints within and between objects.

The POISE system provides solutions to the problems

of incomplete information and search complexity through
its focusing mechanisms. A set of heuristics is used to
limit the generation of alternatives when ambiguity arises,
and truth-maintenance techniques are applied to retract
_incorrect interpretations [2]. Constraints from both the
semantic database and within the plans are propagated
statically and dynamically throughout the active instanti-
ation network. Constraint propagation results in further
pruning of predicted user actions, a limited capacity for
error detection, and an ability to automate the completion
of a partially instantiated plan.
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2.1 Limitations in the First GeneratiOn
System

POISE is limited in the types of reasoning which cap be
performed about relationships among plans. The behay.
ioral plan definitions specify decomposition solely in terms
of temporally ordered subplans and do not represent pla,
preconditions or goals. This characterization of a play jg
insufficient for a planner whose role is to synthesize pey
plans, since there is no representation of the reasons be.
hind the substeps, and little knowledge is available abouyt
the relationships between different plans. For example, 5
POISE plan may require that subplan B follow subplan 4,
but it does not describe the semantic database state estab-
lished by subplan A and required by subplan B. Also, the
temporally-ordered substep form of Plan decompositiog is
rigid and lacks the modularity needed to easily integrate
new plans into the plan library. Since environments cay
be arbitrarily complex and dynamic, limitations impnsed
by a purely event-based representation are significant.

Also, without explicit goals, there is no way to note
that an action may be omitted because its goal has ).
ready been met. Nor is there enough knowledge to support
a robust approach to recognition and recovery from plag
failure. With an event-based approach, recovery must be
built into the plan rules, making the rules unwieldy ap.
complex and discouraging deeper reasoning about fajlyre
and recovery. Since in most semi-structured enviroonments,
the “main-line” or standard definition of a plan is actual!,
less common than the variations and exceptions which o
cur [7], a serious attempt to overcome these limitations
imposed by the event-based approach should be made.

Another limitation of POISE is inherent in the way the
various types of knowledge are represented. In POISE, the
domain knowledge is expressed using a frame-like model
of domain objects, while the plan knowledge is represented
using a completely different formalism and underlying rep-
resentation tool. The use of a uniform representation for
both domain plans and domain objects would allow th.
system designer to tie together constraints related 1 !. th
plans and objects, and provide greater coherency{l' |-
addition, general domain knowledge that is not diret:
related to either a plan or object definition is not repre-
sented in POISE. Thus the knowledge needed for a decpwr
model of the domain is lacking, seriously limiting rea~ »
ing that can be done about plan failure or while handling
exceptions that arise during plan recognition.

3 A Second Generation System

We are currently designing and implementing a succrwe
to POISE called GRAPPLE. This system is being Jes«
oped in order to address shortcomings inherent in the cre



inal POISE system, and to pursue further problems which
arise when performing plan recognition in a largely un-
structured domain. We are particularly interested in ex-
ploring potential sources of deeper domain knowledge than
those exploited by POISE, thus motivating a reevaluation
of the characterization and interpretation of plans. As a
testbed for GRAPPLE, we are using the domain of soft-
ware development, which is a complex domain and offers
rich sources of knowledge, yet is relatively self-contained.

3.1 Fundamental Changes

An overriding theme of the GRAPPLE plan formalism is
an expanded representation of knowledge about plans and
their interrelationships. The goal of a plan and the effects
of a plan on the domain model are explicitly represented, as
are preconditions, which must be satisfied before the plan
can be executed. A deeper representation of the plan in-
creases the capacity for reasoning during plan recognition
and automated planning and affords the system a much
richer knowledge base from which to reason about plan
failure. The system also has a larger store of semantic
knowledge which it can use to “understand” and accomo-
date exceptional scenarios during plan recognition.

The use of a state-based, goal-oriented perspective in
GRAPPLE is in contrast to the POISE event-based sub-
step plan characterization and follows the classical plan-
ning formalism. A goal is specified as a partial state of
the semantic database. A goal can be decomposed into
subgoals, each of which also is expressed as a semantic
database state specification. Achievement of all the sub-
goals, along with the posting of the effects of the plan,
should lead to satisfaction of the goal of the plan. Effects
can be expressed in high-level as well as primitive plans,
allowing for the expression of complex semantic changes to
the semantic database.

A state-based approach to plan representation provides
the system more modularity. For example, if one of the
subgoals for a plan is to have-more-disk-space, a number
of plans may be retrieved that achieve this subgoal; for in-
stance: delete-a-file, purge-directory, and increase-quota.
The multiple possible plans need not be specified statically;
they can be determined dynamically in order to exploit the
rich sources of contextual knowledge at runtime. Repre-
senting goals as states in GRAPPLE also allows the inter-
face to avoid a potentially redundant execution of a plan.
If a plan has a subgoal which is already satisfied, then no
plan need be executed to achieve the subgoal. The overall
ordering of the plans that can achieve subgoals of a com-
plex plan is determined dynamically by monitoring the sat-
isfaction of preconditions. The state-based approach thus
allows for the easy addition and removal of plan definitions
from the plan library, without necessitating a recompiling
of all the plans and their subgoals. In P'OISE, the event-
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based plan specification is “hard-coded,” thus rendering
the plan library inflexible to dynamic modifications.

GRAPPLE also attempts to overcome limitations im-
posed by POISE’s nonuniform representations. In GRAP-
PLE, plans are represented with the same knowledge rep-
resentation tool/language as domain objects. Therefore re-
lationships between certain plans and objects can be easily
recorded and constraints relating to both plans and associ-
ated domain objects are uniformly specified. The ground-
work is thus laid for a more powerful object representation
language and more powerful reasoning capabilities.

In order to provide complete coverage of relevant activ-
ities, GRAPPLE also models objects and processes which
are not directly monitorable. Certain actions, such as deci-
sion making by the user, always occur “offline.” Other ac-
tions, such as communication, may occur “online” through
mail facilities or “offline” via phone or in person. Even
when “offline,” these actions cannot be ignored in con-
structing a total picture of the user’s activities; for ex-
ample, such actions may satisfy the preconditions of later
actions. To handle this, any plan can be denoted “offline”,
in which case GRAPPLE must deduce when its execution
has occurred and when its effects should be posted to the
semantic database.

3.2 GRAPPLE Plan Formalism

A plan definition in GRAPPLE consists of a set of clauses:
Plan-name, Goal. Plan-Vars, Builtin-Vars, Precondilion,
Subgoals, Constraints, and Effects. Plans may be either
“builtin” or “complex”. “Builtin” plans are those plans
which map directly to primitive commands that may be
issued by the user in the programming environment and
will have a Builtin-vars clause but will never have a Sub-
goals clause. “Complex” plans, by definition, require mul-
tiple subplans to achieve their goals. Each intermediate
step corresponds to a subgoal in the Subgoals clause. Plan
may also be “offline” if they model user decision-making
or some other non-monitorable activity. All types of plans
have a Goal clause, but the other clauses do not have to
be present in the plan definition, except where just men-
tioned.

The Goal clause identifies a state! of the semantic database

that is achieved by the successful completion of the asso-
ciated plan. The goal is expressed as a predicate calculus
proposition whose truth can be determined by querying the
semantic database. The Goal of a plan is distinct from its
more abstract purpose, which is determined dynamically
by the integration of an instantiation of this plan into a

10bviously, this as well as other semantic database state specifica-
tions are partial states of the semantic database, since it deals with
only a few aspects of the entire state, which is the conjunction of every
fact in the semantic database.



hierachical interpretation at runtime.

The Builtin-vars clause is present only for “busltin”
plans, and defines the primitive values that are determined
by the filter program®. The Plan-vars clause defines the
names and types of the input and output parameters of the
plan. The directional flow of the parameters is determined
by the goal statement; those parameters which are bound
in the Goal are the output parameters.

The Precondition clause defines the initial state of the
semantic database that must hold in order for the plan to
be allowed to begin. It is expressed as a proposition in
predicate calculus. The precondition may be “locked,” in
which case, once it is achieved, it cannot be negated until
the plan actually begins®.

The Subgoal clause is present for “complez” plans, and
consists of a set of semantic database states, again ex-
pressed as predicate calculus propositions. The Subgoals
represent the decomposition of the plan Goal. Thus, com-

plex plans are not defined in terms of other plans, but -

indirectly through states of the semantic database which
may be achieved by other plans. Individual subgoals in
the Subgoals clause may also be “locked,” which indicates
that once achieved, a subgoal must persist until the com-
pletion of the entire plan. In general, though, it is not
required that all subgoals be true at the completion of a
plan. The order in which subgoals are to be achieved is
determined dynamically, dictated by the preconditions of
the plans chosen to accomplish them. A notation is pro-
vided for denoting “iterated subgoals”, indicating that a
subgoal may be achieved repeatedly with different variable
bindings while completing the plan.

The Constraints clause specifies constraints that must
hold within and between variables used by any of the clauses
of the plan. They are expressed as predicates on the se-
mantic database.

The Effects clause specifies modifications that are to
be made to the semantic database upon completion of the
plan. New objects can be created, and attributes and enti-
ties can be added or deleted. Additions and deletions from
the semantic database are specified as predicates and qual-
ified by the type of modification (ADD or DELETE). New
entities are specified with the NEW qualifier. All types of
plans may have an Effects clause, allowing the expression
of a complex, high-level change to the semantic database.

The semantic database, used in POISE to model the
world of the user, serves the additional role in GRAPPLE
as the state description of a classical planning system. It

2The flter program monitors user actions, and traps all command
issued by the user. It is responsible for determining the type of
“builtin® plan that corresponds to the command, and presenting the
primitive parameters of that invocation to the intelligent interface in
a standardized form.
" 3The start of a plan is defined by either the occurrence of a primitive
action which is integrated as a subpart of that plan or the occurrence
of the plan itself, if “builtin".
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is consulted to determine if a goal, precondition, subgOal'
or constraint is true. The effects clause serves as a nop.
procedural description of a state transition. The semap,.
tic database may be thought of as an entity-relationship
model, with entities, attributes of entities, and relatiop.
ships between entities. The usual translation to predicate
calculus notation-may be made, whereby the entities be.
come constants, the attributes map into functions, anq
the relationships map into predicates and (optionally) aq.
ditional functions[3]. These constructs are then used iy
the sentences of which the various plan clauses are com.
posed. An example GRAPPLE plan definition is given ip
Figure 1, and a portion of the semantic database, with
links and attributes corresponding to available predicates
and functions, is shown in Figure 2.

(PLAN-NAME edit IS-COMPLEX

PLAN-VARS: (t : text; ds : abstract-spec)
GOAL EXISTS (t) |
latest-realization(t, ds) AND consistent-with{t.ds)
PRECOND EXISTS (b: text) | baseline(b,ds)
SUBGOALS (NAME Accessible)

(VARS (f : file) {t : text))

(STMT (EXISTS (f) | stored-in(t.f)))

(NAME Created)

(VARS (nt, ot : text) (ds : abstract-spec))
(ITERATED)

(STMT (EXISTS (at) |

latest-realization(nt,ds) AND successor(nt,ot))j

(NAME Accepted)

(VARS (t:text) (ds : abstract-spec))
(COMPLETES Created)

(STMT (believed-to-be(t,ds))

{Accessible.t = Created|first].ot)
(Created[this|.nt = Created[next].ot)
(Created[any|.ds = ds)

(Accessible.t = b)

(ds = Accepted.ds)
(Created|final].nt = Accepted.t)

CONSTRAINTS

EFFECTS None-(accomplished by subgoals)

Figure 1: A GRAPPLE Plan Definition

3.3 Plan Recognition in GRAPPLE

The plan recognition component of GRAPPLE is currently
being designed and implemented. Basic mechanisms have
been established for predicting expected actions based on
occurrences already seen and for incorporating an occur-
rence of an action into an interpretation structure. An
ezpected-actions list is maintained for each top-level plan
to record the monitorable user actions predicted by the ia-
terface. A pending-condstions list is also associated with
each top-level plan to record those goals, subgoals, and pre-



is-a
- latest-realization
Text Abstract-spec
- consistent-with

successor baseline

Figure 2: Subset of Semantic Database in GRAPPLE

condstions that are awaiting satisfaction.

At any point in time during the running of the intelli-
gent interface, there are one or more top-level plans which
are in progress. They are represented by instantiations of
those plans on the active plan blackboard. When a plan
is instantiated, each of its goals and subgoals is instanti-
ated as well and maintained as pending conditions for that
plan. A backward-chaining approach is then taken to pre-
dict which plans could achieve these pending conditions.

Predictions are currently* made by matching the sub-
goal/goal conditions with the goals of other plans in the
plan library. Once a prediction is made, an instantiation
structure is created for the predicted plan and its precon-
dition is posted to await satisfaction. If the plan is a prim-
itive one, it is posted to the list of ezpected-actions for the
top-level plan that subsumes it.

When a user-action occurs, a matcher is invoked to de-
termine which of the ezpected-actions is being performed.
Values determined by the filter program, which directly
monitors user actions, are passed up to the designated ex-
pected action structure, and bindings of variables are prop-
agated. Pending-conditions are reevaluated and the plan
recognizer generates new expectations after integrating the
action occurrence.

Choice points have been identified at various stages
during plan recognition. For example, one choice point
occurs when many plans qualify as achievers of an out-
standing goal or subgoal. Another arises when an incoming
action matches several predicted actions on the ezpected-
actions list and there is not enough information to disam-
biguate. Heuristics to guide the focus of control and to
limit search are currently under investigation.

*A more complete and sophisticated prediction mechanism will be
incorporated upon the addition of a more sophisticated planner mod-
ule, which will analyze the interactions between cffzcts of plans and
pending goal conditions.
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3.4 Current Research Directions

Work is in progress to develop a model for describing and
using meta-plans, which are special plans describing the
use of the domain plans, and to explore the potential for
reasoning using first-principles knowledge about the do-
main.

3.4.1 Meta-Plans

We are currently working on a meta-plan approach to pro-
vide more types of relationships between plans, in addi-
tional to subgoal decomposition. Recognizing plan failure
and integrating the resulting recovery actions are partic-
ularly important in domains like software development,
where the basic paradigm of work is “trial and error.”
Also, during informal analysis of programmer terminal ses-
sions, we have noticed other plan interrelationships. Ob-
taining on-line help provides the user with specific infor-
mation to be able to formulate and issue some other com-
mand. Gathering information via tools to analyze, reorga-
nize, condense, and present data supports the user in mak-
ing key decisions about how to carry out some plan. At
times, programmers will model a plan with dummy input
in order to see if it will work as they predict. Occasion-
ally, work is undertaken in experimental mode, where the
initial state is explicitly saved in advance, the work then
performed, and a decision made as to whether to accept
the results or back-up to the initial state and try again.

Meta-plans allow us to capture these general patterns
as a context for executing any plan, without having to
write out all the details in every plan. In our work with
meta-plans to date, we have found that the same basic plan
formalism with goal, precondition, subgoal, constraints,
and effects clauses can be used. The meta-plan variables
are not domain objects, rather, they are domain plans,
their goals, effects, etc. While it was not one of our origi-
nal goals, we found that meta-plans can be written so that
the effects manipulate the actual recognition data struc-
tures described in section 3.3. Thus, we can implement
the intelligent interface at the topmost level as a simple
plan execution system, where execution of the meta-plans
causes recognition of the domain plans.

3.4.2 Incorporating First Principles Knowledge

As we have worked with plan definitions of either the state-
driven or event-driven type, we have recognized that there
is additional knowledge about the domain which is not
appropriately expressed in the plans themselves. This is
particularly true in specialized domains such as software
development, where there is a rich set of technical con-
cepts (such as versions, history, configurations, properties
and bugs of modules) and a broad range of first principles
knowledge about programming. This knowledge forms a



self-contained world for reasoning about actions, and will,
we believe, be an important addition to the intelligent in-
terface.

This first principles knowledge can be used in the intel-
ligent interface in several different ways, to improve inter-
face performance and extend more assistance to the user.
Using the first principles knowledge to generate tentative
bindings of plan parameters will result in earlier, more
detailed prediction, and will also limit the number of al-
ternatives to consider during recognition or execution of
plans. It provides an alternative to simple heuristics such
as “prefer the continuation of a plan already in progress
to the start of a new plan” for choosing among alterna-
tives, which may be increasingly important as the number
of alternatives grows or when plans are inherently under-
specified. It can be used to double-check decisions made
by the programmer (modeled in the offline plans). Finally,
first principles knowledge can provide additional semantic
distinctions between apparently equivalent actions (fixing
a bug versus adding a new feature) so that future pro-
grammer decisions (such as what tests to run) can be an-
ticipated and double-checked.

4 Status

We have defined the GRAPPLE plan and semantic database
formalism and are currently completing the plan recogni-
tion algorithms, including constraint handling and focus-
ing. Knowledge Craft [6] , a knowledge representation tool
package that offers a logic programming environment built
on top of a frame-based knowledge representation, is being
used to implement the system. A large set of plans for a
Unix®/C software development environment has been writ-
ten in the GRAPPLE formalism, and we are starting to
formalize the first principles knowledge for this domain.
We have also started work on appropriate meta-plans in
order to provide integrated interpretations for the entire
spectrum of user actions.
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