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ABSTRACT
This paper shows how to use a decision-theoretic task scheduler in
order to automatically generate efficient intention selection func-
tions for BDI agent-oriented programming languages. We concen-
trate here on the particular extensions to a known BDI language
called AgentSpeak(L) and its interpreter which were necessary so
that the integration with a task scheduler was possible. The pro-
posed language, called AgentSpeak(XL), has several other features
which increase its usability; some of these are indicated briefly in
this paper. We assess the extended language and its interpreter by
means of a factory plant scenario where there is one mobile robot
that is in charge of packing and storing items, besides other admin-
istrative and security tasks. This case study and its simulation re-
sults show that, in comparison to AgentSpeak(L), AgentSpeak(XL)
provides much easier and efficient implementation of applications
that require quantitative reasoning, or require specific control over
intentions (e.g., for giving priority to certain tasks once they be-
come intended).
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1. INTRODUCTION
In the course of attempting to develop a powerful and innovative

agent framework based on a two-level agent architecture combin-
ing cognitive and decision-theoretic frameworks, several ideas have
occurred to us which achieve that goal to various degrees. This pa-
per presents a very practical one, which significantly contributes to
the performance of the BDI framework we have been developing
based on Rao’s AgentSpeak(L) agent oriented programming lan-
guage [10]. Such development relied on our previous experience
with a prototype AgentSpeak(L) interpreter called SIM Speak [7]
(to the best of our knowledge, the first working AgentSpeak(L) in-
terpreter), which runs on Sloman’s SIM AGENT toolkit, a testbed
for “cognitively rich” agent architectures [12].

The referred integration idea is to use TÆMS [1] and the Design-
To-Criteria (DTC) scheduler [14] (see [6] for an overview of that
approach to multi-agent systems) to improve the performance of
BDI programming languages, in particular concerning issues such
as intention selection, on which we concentrate in this paper. We
present here AgentSpeak(XL), an extension we have proposed to
AgentSpeak(L) for improving that language in various aspects and
in particular to accommodate the on-the-fly use of DTC for gen-
erating efficient intention selection functions. This has greatly
improved the expressiveness of the language, facilitating the pro-
gramming of certain types of applications (where quantitative rea-
soning is natural). Also, it has allowed a certain control over an
agent’s set of intentions which was not possible with the original
AgentSpeak(L) interpreter.

The remainder of this paper is structured as follows.
The next section provides the necessary background on
AgentSpeak(L) and TÆMS/DTC. Section 3 presents the extensions
in AgentSpeak(XL) which make it possible to control intention se-
lection by means of high level constructs. We show the advantages
of the extended interpreter by means of a simple case study on a
factory plant robot given in Section 4. Section 5 briefly describes
how to specify that robot’s reasoning both in AgentSpeak(L) and
AgentSpeak(XL), and it provides quantitative results showing the
improvement on the robot’s performance achieved in that case
study by our AgentSpeak(XL) interpreter. Finally, we mention
some future work on alternative ways to handle the integration with
decision-theoretic task scheduling, as well as on directions of re-
search pointing out to our long-term goal of integrating cognitive
and utilitarian approaches to Multi-Agent Systems.



2. BACKGROUND

2.1 AgentSpeak(L)
In [10], Rao introduced the AgentSpeak(L) programming lan-

guage. In that paper, not only has he defined the operation of an
abstract interpreter for it, but he has also defined a proof theory for
that language in which, he claimed, known properties that are sat-
isfied by BDI systems using BDI Logics [11] could also be proved.
Further, he claimed that there is an one-to-one correspondence be-
tween his interpreter and the proof system. In this way, he proposed
what could be considered as the first viable approach to bridging the
ever so quoted gap between BDI theory and practice.

Also, AgentSpeak(L) has many similarities with traditional logic
programming, which is another characteristic that would favour its
becoming a popular language: it should prove quite intuitive for
those familiar with logic programming. Besides, it has a neat nota-
tion, thus providing quite elegant specifications of BDI agents.

Further formalisation of the AgentSpeak(L) abstract interpreter
and missing details were given in [3] using the Z formal specifi-
cation language. Most of the elements in that formalisation had
already appeared in [2]; this highlights the fact that AgentSpeak(L)
is strongly based on the experience with dMARS [5]. In [9], oper-
ational semantics to AgentSpeak(L) was given following Plotkin’s
structural approach; this is a more familiar notation than Z for giv-
ing semantics to programming languages.

Despite all these advantages of AgentSpeak(L), until recently
there was no implemented interpreter for it. The very first work-
ing interpreter for AgentSpeak(L) was presented in [7], which we
called SIM Speak. This was a prototype interpreter based on Slo-
man’s SIM AGENT toolkit [12]. For this project, we have devel-
oped an efficient interpreter in C++, and we have extended the lan-
guage so as to improve it and to integrate with DTC (as we shall
see in Section 3).

We next cover only the basics of the syntax and informal seman-
tics of AgentSpeak(L) first given in [10] (the few formal definitions
we found useful to include in this section are actually taken from
that paper). This is important for the understanding of the remain-
der of the paper, in particular the examples from the case study
given in Section 4. For detailed formalisation of the language, re-
fer to [3, 9].

An AgentSpeak(L) agent is created by the specification of a
set of base beliefs and a set of plans. The definitions below in-
troduce the necessary notions for the specifications of such sets.
Those familiar with Prolog, when reading actual examples of
AgentSpeak(L) programs will notice many similarities, including
the convention of using uppercase initials for variable identifiers,
and the issues related to predicates and unification.

A belief atom is simply a predicate in the usual notation, and
belief atoms or their negations are belief literals. The initial set of
beliefs is in fact just a collection of ground belief atoms.

AgentSpeak(L) distinguishes two types of goals: achievement
goals and test goals. Achievement goals are predicates (as for be-
liefs) prefixed with the ‘!’ operator, while test goals are prefixed
with the ‘?’operator. Achievement goals state that the agent wants
to achieve a state of the world where the associated predicate is
true. (In practice, they start off the execution of subplans.) Test
goals state that agents wants to test whether the associated predi-
cate is a true belief (i.e., whether it can be unified with that agent’s
base beliefs).

Next, the notion of triggering event is introduced. It is a very im-
portant concept in this language, as triggering events define which
events may start off the execution of plans (the idea of event, both
internal and external, will be made clearer below). There are two

types of triggering events: those related to the addition (‘+’) and
those related to the deletion (‘-’) of mental attitudes (beliefs or
goals, in fact).

Clearly, from the usual model of agents (see, e.g., the diagram in
[15, page 41]), in regard to their acting on a environment, one sees
that plans need to refer to the basic actions that an agent is able to
perform on its environment. Such actions are also defined as usual
predicates, only there are special predicate symbols used for that
purpose.

The actual syntax of AgentSpeak(L) programs can be reasonably
gathered from the definition of plans below. Recall that the designer
of an agent using AgentSpeak(L) does so by specifying a set of
beliefs and a set of plans only. An AgentSpeak(L) plan has a head
which is formed of a triggering event (denoting the purpose for
that plan), and a conjunction of belief literals forming a context
that needs to be satisfied if the plan is to be executed (the context
must be a logical consequence of that agent’s current set of beliefs).
A plan has also a body, which is a sequence of basic actions or
(sub)goals that the agent has to achieve (or test).

DEFINITION 1 (PLAN). If � is a triggering event, ��� � � � � ��
are belief literals, and ��� � � � � �� are goals or actions, then
� : �� & . . . & �� <- �� ; . . . ; ��. is a plan. The expression
to the left of the arrow is referred to as the head of the plan and
the expression to the right of the arrow is referred to as the body of
the plan. The expression to the right of the colon in the head of a
plan is referred to as the context. A plan’s empty body or context is
replaced with the expression “����”.

We now turn to providing the basics on the interpretation of
AgentSpeak(L) programs. Intentions are particular courses of ac-
tions to which an agent has committed in order to achieve a partic-
ular goal. Each intention is a stack of partially instantiated plans,
i.e., plans where some of the variables have been instantiated.

An event, which may start off the execution of plans, can be
external, when originating from perception of the agent’s environ-
ment, or internal, when generated from the agent’s own execution
of a plan (e.g., an achievement goal within a plan body is an addi-
tion of goal which may be a triggering event). In the latter case, the
event is accompanied by the intention which generated it.

The formal definition of an AgentSpeak(L) agent is as follows.

DEFINITION 2 (AGENT). An agent is given by a tuple
����� �� 	� 
��� �������, where � is a set of events, � is a set
of base beliefs, � is a set of plans, 	 is a set of intentions, and 
 is
a set of actions. The selection function �� selects an event from the
set �; the selection function �� selects an option or an applicable
plan from a set of applicable plans; and �� selects an intention
from the set 	 .

In [7], we have devised a diagram which explains informally the
functioning of an interpreter for AgentSpeak(L) (note that this is
formalised in [10] and [3]). The pictorial description of such inter-
preter, given in Figure 1, greatly facilitates the understanding of the
interpreter for AgentSpeak(L) proposed by Rao. In the figure, sets
(of beliefs, events, plans, and intentions) are represented as rect-
angles. Diamonds represent selection (of one element from a set).
Circles represent some of the processing involved in the interpreta-
tion of AgentSpeak(L) programs.

At every interpretation cycle of an agent program,
AgentSpeak(L) updates a list of events, which may be gener-
ated from perception of the environment, or from the execution of
intentions (when subgoals are specified in the body of plan). Note
that we have introduced a Belief Revision Function (BRF) in the
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Figure 1: Interpreting AgentSpeak(L) Programs [7]

architecture which is implicit in Rao’s interpreter (but normally
made explicit in the generic BDI architecture [15]). It is assumed
that beliefs are updated from perception and whenever there are
changes in the agent’s beliefs, this implies the insertion of an event
in the set of events. We have made this process explicit in the
figure, by including the BRF component.

It is important to remember that �� , ��, and �� (see Defini-
tion 2) are part of the definition of an agent. Previous work on
AgentSpeak(L) did not elaborate on how users specify such func-
tions, but they are assumed to be agent-specific. After �� has se-
lected an event, AgentSpeak(L) has to unify that event with trigger-
ing events in the heads of plans. This generates a set of all relevant
plans. When unifying the context part of heads of plans in that set
with the agent’s base beliefs, AgentSpeak(L) determines a set of
applicable plans (plans that can actually be used for handling the
chosen event). Then �� chooses a single applicable plan from that
set, and either pushes that plan on the top of an existing intention (if
the event was an internal one), or creates a new intention in the set
of intentions (if the event was external, i.e., generated from percep-
tion of the environment). Each of an agent’s intentions is, therefore,
a stack of partially instantiated plans.

All that remains to be done at this stage is to select a single inten-
tion to be executed in that cycle. Note that each external event for
which there is an applicable plan generates an independent stack
of partially instantiated plans within the set of intentions. The ��
function selects one of the agent’s intention (i.e., one of the inde-
pendent stacks of plans within the set of intentions). On the the top
of that intention there is a plan, and the formula in the beginning of
its body is taken for execution. This implies that either a basic ac-
tion is performed by the agent on its environment, an internal event
is generated (in case the subgoal is an achievement goal), or a test
goal is performed (which means that the set of beliefs need to be
consulted). If the intention is a basic action or a test goal, the set
of intention needs to be updated. In the case of test goals, further
variable instantiation will occur in the partially instantiated plan
which contained that test goal (and the test goal itself is removed
from the intention from which it was taken). In the case where a
basic action is selected, the necessary updating of the set of inten-
tions is simply to remove that action from the intention. When a
removed formula marks the end of the body of a subplan, the sub-

goal that generated it (which therefore stays in the beginning of the
body of the plan immediately below it in the stack) is also removed
from the intention, or the whole intention is removed from the set
if the initial plan (i.e., the plan triggered by an external event) is
the one that finished execution. This ends a cycle of execution, and
AgentSpeak(L) starts all over again, checking the state of the en-
vironment after agents have acted on it, generating events, and so
forth.

2.2 TÆMS and DTC
The approach to multi-agent systems surveyed in [6] is based

on the TÆMS (Task Analysis, Environment Modeling, and Sim-
ulation) domain-independent framework [1] to represent formally
the coordination aspects of problems. The TÆMS framework deals
with worth-oriented environments where a goal is not either fully
achievable or not at all, but rather has a degree of achievement as-
sociated with it. Various task structures can be active at a time, rep-
resenting several objectives all of which must be achieved to some
extent. The agent’s view of the task structure may change over time
due to uncertainty, or due to a dynamically changing environment.
TÆMS also provides ways to model scenarios where tasks have
deadlines and particular kinds of results must be achieved. In that
case, those tasks’ quality is said to have been accrued.

The central representation in TÆMS is that of the local and non-
local sets of activities called task structures, in which several im-
portant pieces of information are captured. These include: (a)
the top-level goals/objectives/abstract-tasks that an agent intends
to achieve; (b) one or more of the possible ways that they could
be achieved, expressed as an abstraction hierarchy whose leafs are
basic action instantiations, called methods; (c) a precise, quanti-
tative definition of the degree of achievement in terms of measur-
able characteristics such as solution quality, cost, and duration; (d)
task relationships that indicate how basic actions or abstract task
achievement affect task characteristics elsewhere in the task struc-
ture. The quality of a task group depends on what and when its
subtasks and their methods are executed. For example, quality can
be accrued by functions such as � ���� that indicates that all sub-
tasks need be accomplished, and � ��� ���� that indicates that all
subtasks need be accomplished in the exact order they have been
specified. Besides the local effects of the execution of methods on
the quality and duration of their supertasks, there exist non-local
effects (NLE) such as enables, facilitates, hinders, and so on. A
task � may enable a method � in the sense that the quality of �
cannot be accrued until � is completed; i.e., the earliest start time
of � is the finish time of � . Therefore, enables is a hard relation-
ship, which means it must be observed in all cases. When a task
�� facilitates another task ��, the duration and/or quality of �� is
affected, but may not necessarily be observed since facilitates is a
soft relationship.

For the work presented in this paper, we have been using
TÆMS as a representation language, and also the Design-To-
Criteria Scheduler (DTC) [14]. It uses a domain-independent, real-
time, flexible computation approach to task scheduling. DTC effi-
ciently reasons about the quality, cost, and duration of interrelated
methods, and constructs a set of satisfying schedules for achieving
high-level goals. DTC is also part of the recently proposed Soft
Real-Time Agent Architecture (see, e.g., [13]). At the moment,
we use its DTC module alone, although we plan to use that more
efficient architecture in future work.



3. INCORPORATING THE DTC SCHED-
ULER INTO AgentSpeak(XL)

This section outlines the major changes that we have proposed
to the AgentSpeak(L) language and its abstract interpreter, both for
adding general programming features, and in particular for accom-
modating DTC as an on-the-fly generator of schedules for intended
means (i.e., plans), so that an efficient intention selection function
can be used as part of the interpreter. We call this extended version
of the language and its interpreter AgentSpeak(XL).

3.1 Language Extensions
We have been working on some extensions to AgentSpeak(L) to

improve various deficiencies of the language for practical program-
ming. These include, for example, the absence of basic arithmetic
and relational operators. Other deficiencies are more significant at a
conceptual level of multi-agent systems. One serious disadvantage
of AgentSpeak(L) in comparison to other abstract agent oriented
programming languages, e.g. 3APL [4], is that it does not pro-
vide ways for dealing with plan failure. In fact, Rao pointed out to
AgentSpeak(L) events for goal deletion, syntactically represented
as ������ and ������, which supposedly were intended for deal-
ing with plan failures, but he did not include that in the semantics
of the language.

We have defined a precise mechanism for allowing programmers
to use such events in order to handle plan failures. Another signifi-
cant improvement that we have made is in respect to agent commu-
nication. We have devised the means by which AgentSpeak(XL)
agents can communicate using a language in the style of KQML
[8], and we have defined also the changes to the abstract interpreter
that have to be made for agents’ mental state to reflect the commu-
nications in which they engage. We have also devised a unification
algorithm which, unlike what has been suggested in [10], allows
the AgentSpeak(XL) programmer to use uninstantiated variables
within negated belief atoms in the context part of plans. Finally,
we plan some modifications to the handling of events too. We em-
phasise that, although these extensions are well defined, the formal
semantics of these extensions is not as yet fully specified, but un-
der work. We do not give here even informal accounts of these
extensions we have defined, as the main focus of this paper is the
integration with DTC.

For the integration with DTC, we need to specify labels which
unequivocally identify every single plan in the plan library. A
plan’s label � is separated from the rest of the plan’s syntactic
structure by a “->” symbol. This was the first syntactic change
we introduced in AgentSpeak(XL). A plan is now defined as
“� -> � : �� & � � � & �� <- �� ; � � � ; ��.” (cf. Definition 1).

In order to allow AgentSpeak(XL) programmers to use basic
constructs of any programming language, such as basic arithmetic
and relational operators, we have extended the language with a fea-
ture we call internal action. This allows for the access to user-
defined, extensible libraries of procedures, which unlike agent’s ba-
sic actions (here also referred to as external actions), do not affect
the environment shared by all agents in a society. The fact that they
do not affect the environment is an essential part in the semantics
of internal actions: this means that they can be instantaneously ex-
ecuted (as they cause no effects in the environment, and therefore
in perception). Because these actions are executed instantaneously,
unlike external actions which require the interpreter to proceed to a
next cycle (waiting for the action to be performed by the environ-
ment and then providing the agent with new perception), it means
that we can effectively use them in the context as well as in the
body of plans. Recall that the context part of a plan has to be fully
evaluated when the interpreter is checking for applicable plans for

a specific event (this cannot wait for another interpretation cycle).
Also, the possibility of using internal actions in the context of plans
is quite important, as programmers may quite often need to have
access to those library procedures for actually deciding on whether
a plan is applicable or not. For example, an internal action which
implements relational operators may need to be used in the context
part of the plan to make sure that it will not even be considered as
applicable (executing that action in the body of the plan would first
allow the plan to be applicable, possibly chosen as intended means,
and only later failing; in that case it would be necessary to use the
plan failure operators).

Syntactically, internal actions have a ‘.’ in their names, which is
used to separate the name of the library from the name of the action
(as with C++ classes and methods). This has two advantages: (i)
the interpreter can differentiate, among the formulæ in the context
of a plan, which are the predicates that need to be checked (against
the agent’s set of beliefs) for logical consequence, from the ones
that are internal actions (recall that their semantics assures that they
can be performed in that same interpretation cycle), or differentiate,
in the body of plans, internal from basic actions (which are dealt
with by the environment and whose effects are only perceived in
the next interpretation cycle); and (ii) programmers can organise
newly defined actions in various libraries.

A standard library is provided with AgentSpeak(XL), which de-
fines useful operators (e.g., relational and arithmetic ones). This
is the only “nameless” library, so one can use �������� � to ac-
cess the ��� internal action defined in the standard library. Using
something like “� � � & �� �� � � & � � �” in a plan context is auto-
matically translated into “� � � & �������� � & � � �”, which in turn
accesses to the standard library.

This definition of internal actions has also been quite handy
in the aimed integration with DTC. Besides the standard library,
another one, called the task structure library, is available in
AgentSpeak(XL). This is the extension of main interest in this pa-
per, as it allows the use of DTC for intention selection. This library
is presented in Section 3.3, as we first have to define the changes to
the AgentSpeak(L) interpreter that were necessary for integrating
with DTC. The other extensions briefly mentioned in this section
are not presented in this paper.

3.2 Extensions to the Interpreter
In order to have an efficient intention selection function (�� in

Definition 2 and Figure 1; see Section 2.1), the idea that we are
presently pursuing is the following. The DTC scheduler (briefly
described in Section 2.2) produces, for a given TÆMS task struc-
ture, alternative sequences in which an agent should execute the
methods in that task structure so as to best satisfy the criteria (qual-
ity, duration, and cost) and deadlines specified for them in the task
structure of interrelated methods. Therefore, if we create a TÆMS
task structure where the method labels are in fact the labels that
uniquely identify the instances of plans that are currently in the set
of intentions, and the programmer can set specific values for the
scheduling criteria of each plan, as well as define the (TÆMS-like)
relations of each plan to the others, then applying DTC to this task
structure generates an order in which the plans that are candidate
for intention selection would be best chosen for execution.

One important alteration in the data structures used to store the
set of intentions was necessary for the integration with DTC. We
have to store the current scheduling criteria and relations for each
intended means1 together with it in the set of intentions, so as to be
able to generate the TÆMS task structure representing the particu-

�Recall that an intended means is a partially instantiated plan cur-
rently in the agent’s set of intentions.



lar state of the set of intentions. Note that the criteria and relations
can change during the execution of a plan (as seen in the next sec-
tion); that is why they have to be stored in the set of intentions.

We now further define the translation of a set of intentions into
a TÆMS task structure. The root task will have as subtasks each
of the agent’s intention (i.e., the subtasks represent the stacks of
instantiated plans in the set of intentions). This task has quality ac-
cumulation function � ����, as all intentions have to be executed
eventually (but in any order). Each intention in turn has as sub-
tasks the plans in its stack of plans, with � ��� ���� for quality
accumulation function (as the order is important here). A TÆMS
method label will in fact be a reference (through plan labels) to the
intended means. This provides a simple algorithm for translating an
agent’s current set of intentions into a TÆMS task structure; this is
clearly illustrated in Figure 2, which is self-explanatory.
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Figure 2: Converting a Set of Intentions into a TÆMS Task
Structure

Given that we can translate the set of intentions into a TÆMS
task structure (as seen in the figure), and we can run DTC on it,
it is easy to create an efficient intention selection function for the
AgentSpeak(XL) interpreter: it suffices to read the schedules of
plan labels produced by DTC. All the intention selection function
has to do is select the first formula (e.g., an action or a subgoal)
in the body of the intended means whose label is in the beginning
of a schedule provided by DTC. When the formula being executed
marks the end of a plan, that plan’s label is also removed from the
schedule. In the example in Figure 2, all schedules would have
intention �� being chosen for execution before ��, because �� ��

enables �� ��
.

3.3 The Task-Structure Library
In this initial version of the Task Structure library of internal ac-

tions, which is accessed by the �� library name, we do not consider
the possibility of a method having more than one outcome, and we
define specific values rather than distributions for each of the DTC
scheduling criteria (i.e., we consider the density to be the maximum
one for each of these values). Refer to [14] for the precise definition
of these TÆMS-related terms.

Each of the methods which represent intended means (plan in-
stances on top of intention stacks) will have a single outcome,
which can be associated to whether the plan finished successfully
or not. Therefore, when the parameters for the scheduling criteria
of that intended means are set (in the plan itself), they can only re-
fer to that single outcome. In order to inform the AgentSpeak(XL)
interpreter of the specific values for the three DTC scheduling cri-
teria, we use the internal action

���������������� ������ ����� � ������ � �� ������

(defined within the �� library), or the programmer
can use specific actions to set one particular criterion:
����������������, �������� ��������, and ���� ���������.
The ����������������� action is used to set deadlines for plans.
(Note that the parameters to those internal actions can be variables
if they have been previously instantiated within the plan.) The
first version of the AgentSpeak(XL) �� library shall not make use
of TÆMS quality accumulation functions other than � �� and
� ��� ��.

The following internal actions are used for specifying the
TÆMS enables, facilitates, and hinders relations between the
plan that executes the action and those given as param-
eter: �����������!�� � � � � !��, �������	�����
�!�� � � � � !��, and
����������!�� � � � � !��, respectively. We are investigating
whether other TÆMS relations should be considered. Also, one
can annotate those relations at the end of the code by prefixing the
internal action with “! ->” to specify that it is for the plan whose
label is ! that the relation holds.

It is interesting to note that, given that these criteria and rela-
tions can be specified not only in the context but also in the body of
plans, they can be changed dynamically by AgentSpeak(XL) pro-
grammers (as we shall see in an example, in the next section). This
is possible because the �� internal actions change the plan sched-
ule criteria and plan relations that are associated with that intended
means in the set of intentions.

There are two ways in which the TÆMS task structure gener-
ated from the agent’s set of intentions can change: either when an
intended means executes actions from the �� library which change
the criteria and relations among plans, or when a new intended
means is inserted in the set of intentions, which means that there
is a new TÆMS method to be considered for scheduling. Both of
them trigger the updating of the TÆMS task structure correspond-
ing to the current set of intentions and the execution of DTC on
that task structure. This is done in order to get a new schedule of
intended means labels to be used as an intention selection function.

4. A CASE STUDY: THE FACTORY PLANT
ROBOT

The scenario we shall use to demonstrate the advantages of
AgentSpeak(XL) is as follows. A factory produces certain frozen
items stored in boxes which a robot has to pack with a special wrap-
ping that prevents decaying of the goods. In the production end of
the factory, each item is produced at a certain temperature, which
can be critical before the items are packed: when attempting to pack
an item whose temperature has raised above those critical levels,



that basic action fails (i.e., the robot plan for doing so fails too) and
the item is thrown away (thus causing losses for the factory). Also,
on every packed item, the robot needs to inform the details of the
item (its identification number and its production temperature) to
an agent that manages the access to the factory’s database (referred
to as db in the AgentSpeak(L) code below). We concentrate in the
reasoning of a type of robot in the factory plant which is in charge
of packing the items and, when there remains no unpacked items
at the production end, the robot has to carry these processed items
to the storage end of the factory where the freezers are located. We
assume that there is only one of these robots in the factory plant
(to avoid coordination problems, which we do not address in this
paper), as well as we assume that the robot can carry any number
of items at a time. That is, the robot is always capable of carrying
whatever items it has processed since it last went to the freezers.

There is one more task of which the robot has to take care. The
freezers’ thermostat settings need to be changed from time to time
according to the specific type of products that have been stored in
the freezers. The robot always knows what that setting should be,
based on the types of items it has been processing. In the code
below, there is a simple plan for communicating such temperature
settings to the agent that controls the freezers, which includes the
transmission of the robot’s identification and a passcode for the
freezer agent to grant access to freezer settings. Besides requesting
an identification and passcode, as a further security measure, the
designers of the factory’s information systems have recently de-
cided that the freezer managing agents will, at certain intervals of
time, request the robot to confirm the temperature setting it requires
for the items it is processing (which means that it has to identify it-
self and provide the given passcode). However, when changing
the settings of a particular freezer, no other freezer settings can be
changed by the robot.

This added security measure (of frequent robot identification re-
quests by the freezer agents) would prevent sabotage to the factory
production line, but it requires the robot to give priority to the tem-
perature setting plan over its other tasks. If the robot takes too long
to finish a temperature setting sequence, the freezer agent that has
issued that identification request to the robot will sound the alarm
to alert the security system installed in the factory plant. Time is
particularly critical between the actions that communicate the parts
of the identification and temperature setting sequence.

We intend to show that, differently from AgentSpeak(L), with
AgentSpeak(XL): i) we can easily improve the performance of the
robot for its particular tasks (in regards to avoiding items to be
thrown away because they reached critical temperature levels); ii)
we can indeed give actual priority to the temperature setting se-
quence (thus avoiding the alarm being sound); and above all iii) we
do so by reusing what seems to be a reasonable library of plans for
these tasks with minor changes.

Below, we give straightforward plans for dealing with the var-
ious tasks that the robot has to perform, without considering any
of the restrictions that there exists in terms of priorities and in the
synchronisation between them for this particular scenario. That is,
in the simple version below we do not handle the fact that certain
plans cannot be executed before others have finished, that all cur-
rent intentions have to be interrupted when plans with higher prior-
ities also become intended, and so on. In fact, as we shall comment
later on, it is quite difficult to do that in AgentSpeak(L). Before we
start discussing the plans, it is worth presenting the initial belief
base2 that would be required in the running version of the robot
program (both in AgentSpeak(L) and AgentSpeak(XL)).

�Recall that AgentSpeak(L) programs are given by a set of initial
beliefs and a set of plans.

id(robot1).
passcode(initcode).
settings(265). // 265K = -8ÆC
location(production).

Note that the temperature is expressed in Kelvin so as to simplify
the use of a box’s temperature in determining the appropriate pri-
ority it should be given. We next show the first plan, labelled b1,
which takes care of packing boxes and recording the relevant infor-
mation. Recall that these plans express the tasks to be done by the
robot quite generally, without any concern for prioritising anyone
of them once they become intended means.
b1 -> +box(Id,Temp) : location(production) <-

pack(Id);
communicate(db,processed(Id,Temp));
+processed(Id,Temp).

All items produced while the robot was away storing previously
processed boxes will only be perceived (resulting in the addition
of a box(Id,Temp) belief) by the robot when it returns to the
production end of the factory plant. Only then will all those boxes
be processed in parallel (that is, as separate focuses of attention in
the robot’s set of intentions).

Recall that these boxes’ temperatures may be critical. In fact if
an item’s temperature has raised above a certain threshold when
the robot attempts to pack it, the basic action fails (it means that
the item is thrown away). In consequence, the whole plan fails too
(thus preventing the robot from communicating a processed item
to the database, etc.). Giving priority to boxes with higher temper-
atures is easily dealt with in AgentSpeak(XL), while dealing with
that in AgentSpeak(L) is quite tedious, unless the added feature of
internal actions is used.
b2 -> -box(Id,Temp) : not box(AnyId,AnyTemp) <-

pickAllPacks;
+destination(freezers);
moveTowards(freezers);
!calculateIdealTemp; // this plan is not expounded
!deleteAllProc.

The perception of a box persists until it is packed; accordingly,
an agent’s box(Id,temp) belief is deleted when it is packed.
The last box to be packed triggers the robot to pick all packed
boxes, take them to the freezers, store them, and then return to the
production end. In parallel with that moving, the robot also cal-
culates the ideal freezer temperature for the processed items (these
parallel activities are possible as they are separate focuses of atten-
tion in the set of intentions, the one for moving being determined
by the external event of having its location changed). Then the
robot updates its belief base by removing all beliefs about recently
processed items (the ones that are going to be, or have just been,
stored in the freezers).

Note that events of type -box(Id,Temp), associated with all
boxes that were packed when there remained other boxes ready for
packing, will not have applicable plans, and therefore will be dis-
carded. Also, the plan for calculating the ideal temperature for the
freezers, considering the particular types of items being processed
by the robot, will not be shown here. All we need to know about
that plan is that it changes the settings(T) belief of the robot,
by consulting the types of items it has recently processed.

Plans d1 and d2 below delete all beliefs about processed items
(when they have already been considered by the plan that calculates
the best temperature setting for the freezers). Note also that these
deletions must finish before the robot starts again to pack boxes
once it has come back to the production end. We shall see in the
next section how to assure that happens, both in AgentSpeak(L)
and in AgentSpeak(XL). In the plans below we assume that the
applicable plan selection function chooses the topmost applicable
plan when there is more than one.



d1 -> +!deleteAllProc : processed(Id,Temp) <-
-processed(Id,Temp);
!deleteAllProc.

d2 -> +!deleteAllProc : true <- true.

Plans l1 to l3 actually move the robot to either end of the fac-
tory plant. First we need to check whether it has arrived to its
present destination. If it has arrived to the freezers, all the robot
has to do is store all packs and then move back to the production
end of the factory plan. It does so by changing its belief on its
destination and then just moving to one adjacent cell towards
that direction, which is done with the basic action moveTowards.
Plan l3 will then keep the robot moving (as its location is changed
through perception) until it gets to either destination.
l1 -> +location(freezers) : true <-

storeAllPacks;
-destination(freezers);
+destination(production);
moveTowards(production).

There is not much to do when the robot is back. The boxes pro-
duced while it was away (if any) will all be perceived now by the
robot, so the events about box production will keep the robot busy.
Boxes produced while the robot is at the production end are imme-
diately perceived.
l2 -> +location(production) : true <-

-destination(production).

The next plan keeps the robot moving towards its present desti-
nation, either production or freezers according to its present des-
tination belief, until the robot eventually arrives there. It re-
lies on the perception of location being changed. If the location is
changed, a belief is changed through perception, generating a (trig-
gering) event. Again we assume that the applicable plan selection
function chooses the topmost applicable plan (so l3 is not selected
if l1 or l2 apply).
l3 -> +location(X) : destination(D) <-

moveTowards(D).

The plan below sends the temperature setting sequence to the
freezer that has requested it. Recall that if more than one freezer
makes such request, only one can be handled at a time, and it
should be given priority over all other focuses of attention of the
robot. Also the three communicate actions should be executed
in three consecutive reasoning cycles: if the robot takes too long to
reply to these requests, or if it delays too much between communi-
cated parts of the sequence, the alarm will be sound. We shall see
how to guarantee these requirements both in AgentSpeak(L) and
AgentSpeak(XL) in the next section.
f1 -> +freezer(F) : true <-

?id(RobotId);
?passcode(PassCode);
?settings(Temperature);
communicate(F,RobotId);
communicate(F,PassCode);
communicate(F,Temperature).

The next section mentions what changes are necessary to have
these plans working for the given scenario both in AgentSpeak(L)
and in AgentSpeak(XL). It also presents the results of the simula-
tions using both interpreters.

5. RESULTS: COMPARING AgentSpeak(L)
AND AgentSpeak(XL)

In order for the plans shown in the previous section to actually
work in an AgentSpeak(L) interpreter that uses a generic intention
selection function (as the one we presented in [7]), a large number
of changes have to be made to that code. Rao assumed, when he

defined AgentSpeak(L) [10], that users would provide the three se-
lection functions (see Definition 2) needed by the interpreter (i.e.,
they were assumed to be agent-specific). However, neither he nor
d’Inverno and Luck [3] provided the means for the specification of
such intention selection functions. Their implementation in stan-
dard programming languages may not be straightforward, posing
serious hindrances to the use of AgentSpeak(L). The simple and
efficient specification of dependencies between plans allowed in
AgentSpeak(XL), with its automatic generation of intention selec-
tion functions by DTC, is one of its greatest advantages over the
original AgentSpeak(L) programming language.

Using a generic intention selection function (i.e., considering
that an application-specific, user-defined, intention selection func-
tion is not available), the following changes would have to be made
to the plans shown in the previous section for them to work properly
in such AgentSpeak(L) interpreter. The first thing we have to worry
about is giving the necessary priority to the temperature setting
sequence. In fact, full priority is not possible in AgentSpeak(L).
If, for example, the freezer agent required the very next robot ac-
tion to be the first step in the identification and temperature set-
ting plan, and that all steps were to be done with no intervals (in
terms of interpretation cycles), that would not be possible at all
in AgentSpeak(L). In AgentSpeak(XL), on the other hand, that is
quite easily achieved, as we shall see later.

The best we can do in AgentSpeak(L) is to divide the plans above
in as many separate plans as possible and in the context of all of
them to check whether a freezer agent has requested a temperature
setting sequence (by checking whether a particular belief is present
in the belief base). If that is the case, the internal event requesting
the pushing of a subplan would fail (by the lack of an applicable
plan), as all plans are actually only applicable if there is no request
from the freezers, thus causing the intended means that generated
the internal event to be removed. So there must be alternative plans
for each event which, in case there are freezer requests, they record
in the agent’s belief base what the robot was doing when the inter-
ruption from the freezer happened. However, it is important to note
that, in case there are too many independent intention stacks in the
set of intentions, it may take too long for the priority to be given to
the freezer request (i.e., until other intended means on top of inten-
tion stacks are eliminated as explained above) and so the alarm may
end up being sound by the freezer agent. There is a similar mech-
anism for assuring that plan b2 finishes before any instance of b1
is allowed to start running. Giving priority to higher temperature
items was much facilitated by the use of a specific internal action
(a construct that was not available in the original AgentSpeak(L)
language).

We do not show here the complete code for either im-
plementations of the robot’s reasoning (in AgentSpeak(L) and
AgentSpeak(XL)). However, by the description above, it is not dif-
ficult to see that the AgentSpeak(L) code is not elegant at all. The
resulting code is extremely clumsy because of the use of many be-
lief addition, deletion, and checking (for controlling intention se-
lection). It is thus a type of code that is very difficult to implement
and maintain. In fact, with a generic intention selection function,
the AgentSpeak(L) interpreter does not allow any complete solu-
tion to the problem, or even a more elegant implementation. Also,
these many extra handling of beliefs do increase the number of rea-
soning cycles required by the robot, as we see below.

We now describe how an intention selection function generated
by DTC solves the problem of giving full priority to a freezer re-
quest, once dealing with it becomes an intended means; the prob-
lem of prioritising items with higher temperatures; and the prob-
lem of assuring that all beliefs about processed items have been



removed before the robot starts packing again. (This last require-
ment is to avoid deleting information on processed items that have
not yet been taken into consideration by the plan that calculates the
freezers’ temperature setting).

All that is required is the inclusion of a few TÆMS-like relation-
ships to the plans, and setting some deadlines for associating in-
stances of the plan for packing items with the difference between a
maximum value and the temperature of the items themselves. This
way, the higher the temperature of the item, the earlier the plan’s
associated deadline, hence the sooner it will be packed, preventing
items from being thrown away, whenever possible. In order to have
a working AgentSpeak(XL) solution to the problem (including the
freezer request priority), we start from the general plans (given in
the previous section) and simply insert the commands described
below.

In the context part of plan b1, we include
& D = 1000-Temp & ts.deadline(D), and then we
insert ts.deadline(1000); right after the basic action
pack(Id); in the body of that plan. That is, to the original plan,
we only need to add the setting of the deadline of the plan, which
is earlier for higher temperature items, but only until that item is
actually packed. Note how we set, during the execution of the plan
itself, the deadline back to the maximum value (we have used 1000
for that) once the item is packed. This assures a higher priority to
that plan instance over the instances for other boxes, according to
the item’s temperature, only while that item is not packed, thus
allowing other instances of the plan, handling other unpacked
boxes, to have priority of execution.

At the end of the original plans, we annotate some TÆMS-like
relationships among them with the following commands:
b1 -> ts.enables(b2). assures that b2 only starts to

run when all boxes have been packed and processed (it is then time
to take the items to the freezers);
b1 -> ts.hinders(d1,d2). assures that d1 and d2

finish before b1 starts to run (to prevent, when the robot returns
to the production end, the deletion of information on recently pro-
cessed items);
f1 -> ts.enables(f1,b1,b2,d1,d2,l1,l2,l3).

gives priority to attending freezer requests (plan f1) over all other
goals of the agent.

Priority is given immediately to the first instance of a freezer
request plan in the set of intentions. If two freezers make requests
at the same time, the second one will be given priority right after
the first request is attended. In AgentSpeak(L), the second may
need to wait for a priority (until other intentions get stuck), in the
same way it happens for a first instance of the plan in the set of
intentions.

If a plan has a TÆMS relation to itself (as is the case with f1),
when it is inserted in the set of intentions, we only include a relation
of that type from the instances that are already intended means to
the new instance being inserted. Therefore, an enables relationship
from f1 to itself solves the problem of allowing only one of the
freezers to have its temperature set at a time. The relationship to all
other types of plans guarantees the priority to f1 over all of them.

As seen above, only a few changes to the original plans are
needed in order to get the automatic set up of an efficient inten-
tion selection function by using DTC. Also, annotating such plan
relationships at the end of the source code, rather than in the plan
context or body (which is also possible), makes it easier to reuse
and maintain plans, as the plans themselves need not be changed.
Furthermore, the AgentSpeak(XL) version not only works for all
required restrictions on the original plans, but it is also quite effi-
cient, as seen below by the results obtained for the factory plant

scenario simulation.
We have run simulations of the factory plant scenario where we

have set two parameters: the maximum number of boxes that could
have been produced every time the robot arrived at the production
end (either 10, 20, 30, or 40), and the average number of interpreta-
tion cycles between requests for temperature setting issued by each
freezer (either 60, 80, or 100). This gives a total of 12 different con-
figurations. The factory floor is divided into cells, and the robot can
move from one of these to an adjacent one each time it selects the
basic action for moving (thus taking one interpretation cycle). The
distance between the production end and the freezers is 10 cells,
and there are 3 freezers in the factory plant. The results obtained
for both interpreters can be seen in Figure 3, where we show the av-
erage results over the twelve different configurations we have used.
We do not show or comment on the individual ones for conciseness,
but AgentSpeak(XL) has a consistently better performance.
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Figure 3: Average Results over Various Configurations

From the figure, one can see clearly that the AgentSpeak(XL)
robot is able to store almost double the number of items stored by
the AgentSpeak(L) robot, whereas the number of decayed items is
almost halved. The AgentSpeak(XL) robot has allowed no freezer
alarms to be sounded, whilst the AgentSpeak(L) robot has failed to
reply in time to around �	
 of freezer requests.

6. CONCLUSION
We have integrated the DTC scheduler into an AgentSpeak(L)-

like programming language that we have called AgentSpeak(XL).
Some new constructs were added to that language, for its gen-
eral improvement, and to accommodate the DTC-based generation
of intention selection functions. The extended interpreter allows,
among other things, the automatic conversion of the agent’s set of
intentions into a TÆMS task structure so that its DTC schedules
define efficient intention selection functions. By the specification



of plan relationships and quantitative criteria with the added lan-
guage constructs, which is done in a high level and easy way, we
allow programmers to have control over intention selection, a job
that was particularly difficult to do with AgentSpeak(L), as seen in
our case study on the factory plant robot.

Our more ambitious goal is to further integrate, in a two-level
agent architecture, the cognitive and utilitarian approaches to multi-
agent systems. That should be done by allowing AgentSpeak(XL)
agents to use GPGP2 [6] coordination mechanisms (when they au-
tonomously deliberate to do so). Meanwhile, our very next step
is to use other components of the Soft Real-Time Agent Architec-
ture [13] rather than DTC alone. That should increase efficiency
of the interpreter in regards to the automatic generation of inten-
tion selection functions, considering that it would avoid the need to
reschedule whenever the set of intentions is changed.

Further evaluation of the results we obtained from the case study
presented here should help us assess whether our decisions to
schedule whole plans rather than basic (external) actions was a
good one. We also have to investigate the use of DTC for imple-
menting the other AgentSpeak(L) selection functions, in particular
the event selection function. Undoubtedly, tackling the intention
selection problem was more important than the others, considering
that there is a natural applicable-plan selection function (namely,
using the order in which the plans were given by the programmer,
as in Prolog), and we are working on a version of AgentSpeak(XL)
that tries to handle as many events as possible in a single interpre-
tation cycle. Theoretical work is also being done on giving formal
semantics to our extensions of AgentSpeak(L), based on the seman-
tics given in [9].

Pursuing the ideas we have presented here has been quite illumi-
nating about the integration of the frameworks with which we have
been working. It is a significant step towards our more ambitious
goal of reconciling utilitarian coordination to cognitive agents.
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[9] Á. F. Moreira and R. H. Bordini. An operational semantics
for a BDI agent-oriented programming language. In
Proceedings of the Workshop on Logics for Agent-Based
Systems (LABS-02), held in conjunction with the Eighth
International Conference on Principles of Knowledge
Representation and Reasoning (KR2002), April 22–25,
Toulouse, France, 2002.

[10] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical
computable language. In W. Van de Velde and J. Perram,
editors, Proceedings of the Seventh Workshop on Modelling
Autonomous Agents in a Multi-Agent World (MAAMAW’96),
22–25 January, Eindhoven, The Netherlands, number 1038
in LNAI, pages 42–55, London, 1996. Springer-Verlag.

[11] A. S. Rao and M. P. Georgeff. Decision procedures for BDI
logics. Journal of Logic and Computation, 8(3):293–343,
1998.

[12] A. Sloman and R. Poli. SIM AGENT: A toolkit for exploring
agent designs. In M. Wooldridge, J. P. Müller, and
M. Tambe, editors, Intelligent Agents II—Proceedings of the
Second International Workshop on Agent Theories,
Architectures, and Languages (ATAL’95), held as part of
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