
Negotiation Over Decommitment Penalty

Bo An
Dept. of Computer Science

University of Massachusetts, Amherst, USA
ban@cs.umass.edu

Victor Lesser
Dept. of Computer Science

University of Massachusetts, Amherst, USA
lesser@cs.umass.edu

ABSTRACT
Leveled-commitment contracting is a negotiation protocol in which
an agent is allowed to be freed from a contract at the cost of paying
a penalty to the other contract party. While there has been some
related work on analyzing agents’ strategic behavior in leveled-
commitment contracting and applying decommitment contracting
in practical resource allocation problems, decommitment penalties
are exogenously set in the absence of mutual consensus of contract
parties. Alternatively, this paper considers the role of negotiation
in deciding decommitment penalties. In our model, agents negoti-
ate over both the contract price and the amount of decommitment
penalty in the contracting game and then decide whether to decom-
mit from contracts in the decommitment game. This paper first an-
alyzes agents’ strategic behavior in both the contracting game and
the decommiting game. We then examine the efficiency of negoti-
ating over the penalty through experiments in dynamic contracting
scenarios. Experimental results show that setting penalties through
negotiation achieved higher social welfare than other exogenous
penalty setting mechanisms for a range of contracting strategies.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Algorithms, Economics, Experimentation

Keywords
Negotiation agents, leveled-commitment, penalty, equilibrium

1. INTRODUCTION
In automated negotiation systems for self-interested agents, con-

tracts have traditionally been binding and do not allow agents to ef-
ficiently deal with future events in the environment. Sandholm and
Lesser [12] proposed leveled-commitment contracts which allow
an agent to be freed from an existing contract at the cost of simply
paying a penalty to the other contract party. A self-interested a-
gent will be reluctant to decommit because the other contract party
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might decommit, in which case the former agent gets freed from the
contract, does not incur a penalty, and collects a penalty from the
other party. Despite such strategic decommiting, leveled-commitment
increases the expected payoffs of all contract parties and can en-
able deals that are impossible under full commitment [12]. This
approach has been applied in a number of different application-
s [1, 3, 9, 10].

In leveled-commitment contracting, both contract parties strate-
gically choose their level of commitment based on the contract
price and decommitment penalty which are determined prior to the
start of the decommiting game. The efficiency of leveled-commitment
contracting depends on how the contract price and decommitmen-
t penalty are set. In Sandholm et al.’s model of leveled-commitment
contracts [12–14], both the contract prices and decommitment penal-
ties are assumed to be known to the contract parties before the de-
commiting game. Although algorithms are provided to optimize
the social welfare of the equilibrium outcome [13], the optimization
is not for the favor of each contract party. In existing application-
s (e.g., [1, 3, 9, 10]) of automated negotiation with decommitment,
decommitment penalties are set by third parties (e.g., system de-
signers) and are either fixed or a function of contract prices. In
contrast to previous approaches of setting decommitment penalties
exogenously, this paper proposes to study how to set the contract
price and decommitment penalty through negotiation between the
contract parties.

We propose to study negotiating simultaneously over contract
prices and decommitment penalties for several reasons. First, it is
difficult for system designers to decide optimal contract prices and
decommitment penalties to maximize the social welfare, especially
when there are multiple agents and agents have incomplete infor-
mation. It is also intractable to compute agents’ rational equilibri-
um strategies in many practical sequential games. Furthermore, it
is not appropriate to assume that system designers have complete
knowledge about agents in the system. Finally, a selfish agent may
feel it is advantageous for it to decide the contract price and penalty
by itself. When agents are allowed to negotiate over penalties, each
agent has a larger strategy space which gives it more options for
how to react to the current situation and it may be able to achieve a
utility which cannot be achieved when it is not allowed to negotiate
over penalty. At the same time, agents may reach a higher social
welfare that is unable to be reached when agents are not allowed to
negotiate over penalty.

This paper first analyzes agents’ strategic behavior in the bilater-
al contracting game prior to the decommiting game to make agree-
ments on a contract and a decommiting penalty. One selfish con-
tract party may prefer another pair of contract price and decommit-
ing penalty to the contract price and decommitment penalty which
maximize the social welfare. The leveled-commitment contracting
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we propose includes two games: a contracting game where the two
parties bargain over contract price and decommitment penalty and
a decommiting game in which the two agents make strategically de-
commiting decisions. During the decommiting game, agents will
make optimal decommiting decisions while taking into account the
contract price and decommitment penalty previously agreed upon.
Therefore, in the contracting game, each agent will try to make the
best contract price and penalty which will maximize its utility in
the decommiting game. In this paper, we analyze agents’ equilib-
rium strategies in finite horizon contracting games where both a-
gents don’t know exactly but only statistically what offers they will
receive from other agents in the future.

The other focus of this paper is experimentally investigating the
efficiency of setting decommitment penalties through negotiation
as compared to choosing decommitment penalties exogenously. When
each agent strategically negotiates with other agents to maximize it-
s expected utility in the decommiting game, agents may get worse
social welfare as compared with not negotiating over penalties. We
experimentally compare negotiating over penalties with other ways
of setting penalties in the literature, e.g., fixed penalty, and penalty
as a percentage of the contract price. In our experiment, a num-
ber of contractors and contractees negotiate and decommit dynam-
ically where agents have incomplete information. Selfish agents
can either carry out game theoretic partial lookahead or be myopic.
Experimental results from various environments show that when
decommitment penalties are decided through negotiation, agents
achieved higher social welfare than other approaches of setting de-
commitment penalties.

The rest of this paper proceeds as follows: Section 2 studies the
contracting game when agents are uncertain about their outside op-
tions. Section 3 experimentally evaluates the efficiency of setting
penalties through negotiation. Section 4 concludes this paper.

2. NEGOTIATING OVER PENALTY
As in [12–14], we consider a contracting setting with two risk

neutral agents who attempt to maximize their own expected payoff:
contractor b who pays to get a task done, and contractee s who
gets paid for handling the task. The setting can be interpreted as
modeling a variety of scenarios, for example bargaining between a
buyer and a seller in e-commerce. In our model, b and s negotiate
over contract price and decommitment penalty before additional
offers (outside offers) from other agents become available. Then
they strategically choose to decommit or not when their outside
offers are available.

2.1 Leveled-commitment contracting
We study a setting where the future of agents involves uncertain-

ty. We model this as agents’ potentially receiving outside offers as
in [12–14]. The contractor’s outside offers could come from some
other contractees which can provide the service requested by the
contractor. The contractor can make agreements with those con-
tractees in the future. The contractor’s best (lowest) outside offer
v is characterized by a probability density function f(v). The con-
tractee’s best (highest) outside offer w is characterized by a prob-
ability density function g(w). f(v) and g(w) are assumed statis-
tically independent and are common knowledge [12–14]. That is,
both agents have symmetric information as they both don’t know
the value of v and w.

The contractor’s options are either to make a contract with the
contractee or to wait for v. Similarly, the contractee’s options are
either to make a contract with the contractor or to wait for w. The
two agents could make a full commitment contract at some price.
Alternatively, they can make a leveled-commitment contract which

is specified by a contract price, ρ, and a decommitment penalty q. If
one agent decommits from the agreement, it needs to pay the penal-
ty q to the other agent.1 When the decommitment penalty q is very
large, a leveled-commitment contract is equivalent to a full contract
as no agent will choose to decommit. Therefore, full commitment
contracts are a subset of leveled-commitment contracts.

One implicit assumption is that during the contracting game, the
contractor can only bargain with one contractee and the contractee
can also only negotiate with one contractor. The other assumption
is that the bargaining game finishes before outside options become
available. Bargaining protocols can be used to control the length of
negotiation. Moreover, even if agents are allowed to conduct infi-
nite time negotiation, negotiation often stops soon since bargaining
agents usually have deadline constraints and often face bargaining
costs.

The leveled-commitment contracting consists of two stages. In
the first stage, which we call the contracting game, the agents make
agreements on both a contract price and a decommiting penalty. In
the second stage, which we call the decommiting game, the agents
decide on whether to decommit or not. Clearly, the equilibrium of
the decommiting game affects the agents’s preferences over con-
tract prices and decommitment penalties in the contracting game.
There is no decommiting game if agents make a null contract (i.e.,
no agreement is made) in the contracting game.

2.1.1 Contracting game
We consider the widely used alternating-offers protocol [11].

Formally, contractor b and contractee s can act at times t ∈ {0, 1, . . . , T}.
T = min(Tb, Ts) where Tb and Ts are the negotiation deadline of
b and s, respectively. The player function ι : N → {b, s} returns
the agent that proposes at time t and is such that ι(t) ̸= ι(t + 1),
i.e., a pair of agents bargain by making offers in alternate fashion.
As noted, there is no bargaining in the previous literature [12–14].

Possible actions σt
a of of agent a ∈ {b, s} at any time point t ≥ 0

are defined as follows. If ι(t) = a, a can choose to 1) offer [ρ, q]
where ρ is contract price and q is decommitment penalty; or 2)
exit. If ι(t) ̸= a, a can choose to 1) accept, 2) reject, or 3)
exit. If σt

a = accept , the bargaining outcome is ([ρ, q], t) if
σt−1
â = offer [ρ, q] where â is a’s trading partner. If σt

a = exit
the bargaining stops and the outcome is null contract. Otherwise
the bargaining continues to the next time point.

Each agent a ∈ A = {b, s} is associated with a bargaining cost
δa > 0 for each round. Such a bargaining cost could be incurred
by agents’ reasoning, communication, and waiting. We assume that
the bargaining cost is relatively small as compared with the cost for
finishing a task. Agents’ bargaining costs are common knowledge.

2.1.2 Decommiting game
The decommitting game happens only when the two agents make

a leveled-commitment contract [ρ, q]. In the decommiting game,
each agent has exactly one chance to decommit and there are d-
ifferent decommiting mechanisms depending on who decommits
first [12–14]: 1) contractee has to reveal its decision first; 2) con-
tractor has to reveal its decision first; and 3) agents reveal their de-
cisions simultaneously. We consider the first decommiting mecha-
nism, i.e., contractee takes actions first and contractor moves next.

1Our analysis can be easily extended to handle the setting where the
penalties for the contractor and the contractee are different. Setting
different penalties for contractor and contractee only makes it diffi-
cult to solve the decommitment game, which has been thoroughly
analyzed in the work by Sandholm et al. [12]. For the contract-
ing game, a new variable will be added but the analysis will be the
same.



The other mechanisms can be analyzed analogously.

2.2 Optimal contracts
Agents’ bargaining strategies in the contracting game are affect-

ed by the outcome of the decommiting game: each agent wants to
make the optimal contract that maximizes its expected utility in the
decommiting game. There may be multiple optimal contracts or
the optimal contract may be the null contract.

We follow the same analysis as in [12] to compute agents’ opti-
mal contracts. Assume that the contract made during the contract-
ing game is [ρ, q]. In a sequential decommiting game where the
contractee has to decommit first, if the contractee has decommited,
the contractor’s best move is not to decommit as q ≥ 0. In the sub-
game where the contractee has not decommited, the contractor’s
best move is to decommit if −v − q > −ρ, i.e., the contractor de-
commits if its outside offer, v, is below a threshold v∗ = ρ−q. So,
the probability that it decommits is pb =

∫ v∗

−∞ f(v)dv.
The contractee gets w − q if it decommits, w + q if it does not

but the contractor does, and ρ if neither decommits. Thus the con-
tractee decommits if w−q > pb(w+q)+(1−pb)ρ. When pb < 1
the inequality above shows that the contractee decommits if its out-
side offer exceeds a threshold w∗ = ρ+ q(1 + pb)/(1− pb). So,
the probability that it decommits is ps =

∫∞
w∗ g(w)dw.

Given agents’ equilibrium strategies under contract c = [ρ, q],
b’s expected payoff πb(c, f(v), g(w)) (πb(c, f, g) for short) is

ps

∫ ∞

−∞
(q−v)f(v)dv+(1−ps)[

∫ v∗

−∞
−(v+q)f(v)dv−

∫ ∞

v∗
ρf(v)dv]

The expected payoff πs(c, f, g) of contractee s is∫ ∞

w∗
g(w)(w − q)dw +

∫ w∗

−∞
g(w)

[
pb(w + q) + (1− pb)ρ

]
dw

If agents fail to make a contract, an agent can wait for its best out-
side offer. Thus, agents’ expected utilities under the null contract
are πb(null, f, g) =

∫∞
−∞ −f(v)vdv = −E(v) and πs(null, f, g)

=
∫∞
−∞ g(w)wdw = E(w).

We assume that agents are individually rational (IR), i.e., no a-
gent will accept a contract worse than the null contract. A contract
c is IR if it is individually rational for both agents. Formally, the
set C(f, g) of IR contracts based on agents’ beliefs f(v) and g(w)
are

{c|πb(c, f, g) ≥ −E(v), πs(c, f, g) ≥ E(w)}

We assume that C(f, g) is not empty. The contract c∗b(f, g)
(c∗s(f, g)) which maximizes the contractor’s (contractee’s) expect-
ed utility is the contractor’s (contractee’s) optimal contract. For-
mally,

πb(c
∗
b(f, g), f, g) = max

c∈C(f,g)
πb(c, f, g)

πs(c
∗
s(f, g), f, g) = max

c∈C(f,g)
πs(c, f, g)

Therefore, the utility a can get is in the range [πa(null, f, g),
πa(c

∗
a(f, g), f, g)]. For any value x in the range [πa(null, f, g),

πa(c
∗
a(f, g), f, g)], we assume that there is always a contract c

such that πa(c, f, g) = x. That is, the contract space is contin-
uous. Furthermore, we assume that selfish agents are benevolent
in the sense that when an agent is indifferent among several offers,
it always proposes the offer giving its trading partner the highest
payoff. Based on this analysis developed previously by Sandholm
et al. [12–14], we now extend it to a contracting game which agents
negotiate over contract prices and decommitment penalties.

2.3 Agents’ Equilibrium Strategies
In this setting, agents have symmetric information and thus the

appropriate solution concept for the bargaining game is the sub-
game perfect equilibrium. In subgame perfect equilibrium, agents’
strategies are in equilibrium in every possible subgame. Such a
solution can be found by backward induction [7].

Initially, it is determined the time point T where the game ratio-
nally stops: it is T = min(Tb, Ts). The equilibrium outcome of
every subgame starting from t > T is null, since at least one agent
will have exited from the negotiation. Therefore, at t = T agent
a = ι(T ) would propose its best offer which is acceptable to â as â
would accept any offer which gives it a utility not worse than null,
namely, any offer c such that πâ(c, f, g) ≥ πâ(null, f, g). Thus,
the optimal offer c∗(T ) of ι(T ) is c∗ι(T )(f, g). From t = T back
to t = 0 it is possible to find the optimal offer agent ι(t) can make
at t, if it makes an offer, and the offers that it would accept. c∗(t)
denotes the optimal offer of agent ι(t) at t. c∗(t) is the offer which
generates the highest utility for agent ι(t) under the condition that
c∗(t) is acceptable to agent ι(t + 1) at time t. Agent ι(t + 1) ac-
cepts c∗(t) at time t if 1) accepting c∗(t) is no worse than exiting
from negotiation, and 2) accepting c∗(t) is no worse than rejecting
the offer and making c∗(t+ 1) at time t+ 1 (if it’s possible). The
equilibrium strategy of any sub-game starting from 0 ≤ t ≤ T pre-
scribes that agent ι(t) offers c∗(t) at t and agent ι(t+1) accepts it
at t.

Backward propagation is used to provide a recursive formula for
c∗(t): 1) If t = T , c∗(t) = c∗ι(t)(f, g), i.e., the proposing agent
at T can propose its optimal contract; 2) If t < T , the propos-
ing agent will propose its best offer which is acceptable to agen-
t ι(t + 1). Formally, c∗(t) is such that πι(t+1)(c

∗(t), f, g) =
max{πι(t+1)(null, f, g), πι(t+1)(c

∗(t+1), f, g)−δι(t+1)}. Through-
out this paper, we assume that such c∗(t) exists and it generates a
utility no worse than exiting from negotiation . The values of c∗(t)
can be calculated recursively from t = T back to t = 0 applying
backward induction.

Finally, agents’ equilibrium strategies can be defined as follows:
• a = ι(t): a proposes c∗(t) at time t ≤ T and exits negotia-

tion at time t > T .
• a ̸= ι(t): At time t < T , a accepts the offer c from ι(t) if

πa(c, f, g) ≥ πa(c
∗(t+1), f, g)−δa and rejects otherwise.

At time T ≤ t ≤ Ta, a accepts the offer c from ι(t) if
πa(c, f, g) ≥ πa(null, f, g) and rejects otherwise. At time
t > Ta, exits negotiation.

Therefore, at equilibrium, two agents will reach an agreement at
time t = 0 and the agreement contract is c∗(0). Agents’ equilib-
rium strategies depend on many factors, e.g., outside offers in the
future, bargaining costs, and order of proposing.

The social welfare of the equilibrium contract is πb(c
∗(0), f, g)+

πb(c
∗(0), f, g) which may be lower than the optimal social welfare

maxc∈C(f,g)(πb(c, f, g) + πs(c, f, g)). When the decommitment
penalty is set exogenously, the system designer can compute the
optimal penalty which maximizes the social welfare of the equilib-
rium contract by solving the contracting game. In more realistic
scenarios in which there are usually more than two agents and a-
gents have more uncertainties, it may be intractable to compute the
optimal penalty to optimize the social welfare and it is important to
investigate the benefit of negotiating over penalty.

3. EFFICIENCY OF NEGOTIATING OVER
PENALTY

In the previous sections, we provide agents’ equilibrium strate-
gies in the contracting settings in which selfish agents strategically



make offers and respond to received offers. While selfish agents are
only interested in maximizing their individual objective functions,
the overall efficiency of the outcomes of decentralized strategic in-
teractions, can be worse than social optimal solutions formed by
a central authority maximizing aggregate social welfare. It’s de-
sirable to compare the efficiency of the negotiation based mecha-
nism for setting penalties with some existing methods for deciding
penalties [1, 3, 4, 9, 10]. While the previous sections consider a
simple two agent contracting scenario, in this section, we consider
more realistic bargaining scenarios where there are multiple agents
which have incomplete information about others. We consider the
case of contracting between multiple agents since most practical
scenarios there is more than two agents. Therefore, doing experi-
ments in realistic environments makes our results more convincing.
If there are only two agents, we can mathematically compute the
contracting outcome. In contrast, in the multi-agent environment,
it’s intractable for each agent to mathematically derive its equilib-
rium strategy [7] and thus we evaluate the benefits of negotiating
over penalty through experimentation. Different contracting set-
tings are experimentally compared using agents of different types:
myopic agents or agents that can carry out game-theoretic partial
lookahead whose design took into account the important factors af-
fecting agents’ equilibrium strategies analyzed in Section 2.3. Bar-
gaining based penalty is also compared with some representative
approaches for settings penalties exogenously [1, 3, 4, 9, 10].In all
of the settings, setting decommitment penalties based on bargain-
ing outperform setting penalties exogenously.

To make our comparison fair, we tested out approach in a wide
range of negotiation environments. For space limitations, we pro-
vided average results over a wide range of scenarios. However,
the results for each scenario class indicated that our approach led
to better performance. With respect to practicality, we consid-
er the negotiation management component [1] for Collaborating,
Autonomous Stream Processing systems (CLASP) [5], which has
been designed and prototyped in the context of System S project [8]
within IBM Research to enable sophisticated stream processing.
There are multiple sites running the System S software, each with
their own administration and goals. Different sites may have dif-
ferent processing capabilities, so cooperation among these sites can
frequently be of mutual benefit. For each resource, there are mul-
tiple resource providers and resource competitors. There is a cost
associated with a site’s providing a resource and the costs of dif-
ferent sites could be different. Each site has a limited number of
contracting opportunities since a site has to acquire resources by a
deadline.

3.1 Contracting Protocol
In the experiments, the agents are divided into two subsets: con-

tractors and contractees. Each contractor has one task to finish and
has a cost associated with the task. Each contractee has no task ini-
tially and also has a cost to handle a task. A contractor can either
complete its task by itself or contract out its task to a contractee
who could also handle the task.

The negotiation protocol is sequential, i.e., only one contractor
and one contractee negotiate in each round. When a pair of con-
tractor and contractee was chosen to conduct negotiation at one
round, the contractor makes a proposal to the contractee and the
proposal includes both a contract price and a decommitment penal-
ty. The contract price is chosen by the contractor. The decom-
mitment penalty depends on the penalty setting mechanism and it
could be either set exogenously or decided by the contractor. The
contractee can either accept the proposal or reject the proposal. The
two agents make a new contract if the contractee accepts the pro-

posal from the contractor. If an agent has already a contract at the
start of the negotiation, it has to decommit from the existing con-
tract if it makes a new contract with the other agent. If the contrac-
tor has no agreement at the end of negotiation, it can either handle
the task by itself or consider contracting out the task in the future
negotiations.

3.2 Agent design
For each type of agents (contractors or contractees), we devel-

oped two kinds of agents: myopic and partially lookahead. In our
experiments, there may be a large number of agents and agents have
incomplete information (e.g., agents don’t know the costs of other
agents, agents don’t know the negotiation order), it is computation-
ally intractable (even impossible) to solve the sequential bargaining
game by searching the game tree. Alternatively, following the ne-
gotiation decision functions paradigm [6], we design agents which
take a partially lookahead strategy in which each agent approxi-
mate future events and outside options. The other kind of agents
are myopic agents which never look ahead.

3.2.1 Myopic agents
Contractee: A myopic contractee accepts an offer if and only if

it can gain some immediate payoff by accepting the offer. Specif-
ically, if s has no contract, s will accept an offer c = [ρ, q] if its
immediate gain is higher than 0, i.e., the offering price ρ is no less
than cost cs. If s has a contract c′ = [ρ′, q′] before receiving a new
offer c = [ρ, q], s will accept the offer c = [ρ, q] if ρ− q′ > ρ′.

Contractor: A myopic contractor b gradually increases its offer-
ing price when it fails to make a contract. That is, a contractor takes
a time-dependent strategy when it has no contract [6]. Its offering
price in its ith negotiation is

∫ cmax
s

cmin
s

xfs(x)dx + (cb −
∫ cmax

s

cmin
s

x

fs(x)dx) · i/τ where τ is the number of negotiation opportuni-
ties,

∫ cmax
s

cmin
s

xfcs(x)dx is a contractee’s expected cost, cb is the
cost of b, fs(x) is the probability density function of the cost of
a contractee, and cmin

s and cmax
s are the minimum and maximum

cost of a contractee, respectively. Therefore, a contractor without a
contract will increase its offer with the decrease of its contracting
opportunities.

If b already has one contract c′ = [ρ′, q′], it will make a new
contract c = [ρ, q] such that b’s utility will be immediately in-
creased by ε > 0 if the offer is accepted by the contractee, i.e., ρ′

− q′ − ρ = ε. In our experiments, ε is randomly selected from
[0, cmax

s /5].
If the penalty is exogenously decided, the penalty q of an offer

is decided based on the offering price. If the penalty is decided
through negotiation, contractor b decides the penalty considering
the offering price: q = (cb − ρ)/cb · cmax

s . That is, a lower price
corresponds to a high penalty, which is intuitive as a selfish agent
does not hope a contract with a low contract price to be decom-
mited. Note that the myopic strategy is independent of information
about the number of contractors and contractees.

3.2.2 Partially lookahead agents
We design a lookahead bargaining strategy based on 1) the com-

petition between contractors and contractees, and 2) agents’ multi-
ple opportunities to make a contract. Both market competition and
trading opportunities affect an agent’s outside offers and bargain-
ing power. Furthermore, trading opportunities can be used to model
bargaining costs in the sense that the number of an agent’s trading
opportunities decreases as time goes on.

As an example, consider the strategies of contractor b. There are
two situations: b has one contract before making an offer to s or
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Figure 1: Game tree after b makes an offer to s (b has no con-
tract before making the offer).

not. Let’s consider the case that b has no contract at the start of
making an offer to s. Assume that b proposes a contract c = [ρ, q]
(the game tree after this proposing action is shown in Fig. 1). Then
there are two possibilities: s accepts the proposal with probability
pac and s rejects the proposal with probability 1− pac. If s rejects
the proposal, b can still make an agreement with other contractees
in the future and the expected contract price is vexp. If s accepts the
proposal, the probability that s will decommit from the contract is
psdc. If s accepts the proposal, the probability that b will decommit
from the contract is pbdc. After the contract is decommited, b may
contract out the task to other contractees in the future. Therefore,
the expected final cost ub([ρ, q]) of making offer c = [ρ, q] is

(1−pac)vexp+pac
(
psdc(vexp−q)+pbdc(vexp+q)+(1−psdc−pbdc)ρ

)
The calculation of the expected final cost of an offer c = [ρ, q]

depends on values of pac, vexp, psdc, and pbdc, which are approx-
imated based on the expected contracting price and the number
of contracting opportunities. Agents’ expected contracting price
is approximated by considering the market competition between
contractors and contractees. Consider that one contractor and one
contractee are conducting one-shot negotiation: contractor propos-
es first and contractee accepts or rejects the contractor’s offer. Then
the contract price is the contractee’s cost if the contractee’s cost is
known to the contractor. Consider that some buyers and sellers are
negotiating with each other. With more contractees, the contract-
ing price will decrease due to the competition between contractees.
Analogously, with more contractors, the contracting price will go
up since the competition among contractors will increase. While
making a proposal, each strategic agents needs to consider the ex-
pected contracting price, which is estimated by considering market
competition between contractors and contractees. The probability
distribution for any contractor’s cost is Fb(.), where Fb(y) denotes
the probability that the cost of a contractor b is no greater than y.
The probability density function of Fb(y) is denoted by fb(y).

Let F k
b (y) be the probability distributions of the kth highest

cost among all the contractors. The probability density function
of F k

b (y) is denoted by fk
b(y). F 1

b(y) is equal to the product of
the probabilities that the cost is higher than or equal to y for each
contractor. F 2

b(y) is equal to F 1
b(y) plus the probability that the

highest maximum reserve price is greater than y, and the second
highest maximum reserve price is less than or equal to y. These
probabilities can be calculated as follows (assume that there are n

contractors and m contractees):

F 1
b(y) =

(
Fb(y)

)n
F 2
b(y) = F 1

b(y) + C1
n

(
1− Fb(y)

)2−1(
Fb(y)

)n−1

F k
b (y) = F k−1

b (y) + Ck−1
n

(
1− Fb(y)

)k−1(
Fb(y)

)n−k+1

The corresponding probability density functions are:

f1
b(y) = n

(
Fb(y)

)n−1

f2
b(y) = f1

b(y)− C1
nfb(y)

(
Fb(y)

)n−1
+ C1

n

(n− 1)fb(y)
(
1− Fb(y)

)2−1(
Fb(y)

)n−2

fk
b(y) = fk−1

b (y)− Ck−1
n (k − 1)fb(y)

(
1− Fb(y)

)k−2(
Fb(x)

)n−k+1
+ Ck−1

n fb(y)
(
1− Fb(y)

)k−1(
Fb(y)

)n−k+1

In the same way, we can get Gk
s (y), the probability distribution

of the kth lowest cost among all the contractees. The probability
density function of Gk

s (y) is denoted by gks (y).
We provide a heuristic approach to estimate the expected agree-

ment price cex. When the number n of contractors is higher than
the number m of contractees, the contracting price is the (m+1)st

highest cost of the contractors. Otherwise, the contracting price is
the nst lowest cost of the contractees. Formally,

cex =


∫ cmax

b

cmin
b

fm+1
b (y)ydy if n > m∫ cmax

s

cmin
s

fn
s (y)ydy if n ≤ m

where cmin
a and cmax

a are the minimum and maximum costs of agent
a, respectively.

Approximation of vexp, pac, psdc, and pbdc: We let vexp be cex.
While receiving an offer [ρ, q], the contractee s will take both offer-
ing price ρ and penalty q into account. If ρ is too small, s will not
accept the offer. If the penalty is too high and s accepts the offer, s
will not have a chance to decommit from the contract in the future.
Therefore, pac is defined as min((ρ−q/2)/cex, 1). If s accepts b’s
offer [ρ, q], s will decommit from the contract if another contractor
can pay no less than ρ + q. Given that the expected contracting
price cex, the probability that s decommits from the contract is 0 if
ρ + q ≥ cex. Otherwise, psdc = 1/2 as it’s possible that the con-
tractor decommits before the contractee decommits and we assume
that both agents have the same probability of decommiting first. If
s has no negotiation opportunities in the future or ρ − q < cex,
pbdc = 0. Otherwise, pbdc = 1/2 as it’s possible that s decommits
first.

Given the definition of the expected cost of each proposal, the
optimal proposal c∗ = [ρ∗, q∗] is the proposal minimizing its ex-
pected cost. That is, for any offer c = [ρ, q], it follows that

ub([ρ
∗, q∗]) ≤ ub([ρ, q])

Therefore, b will search all possible values of ρ and q to find
out the best offer if the penalty setting mechanism is “bargaining”.
As the search space is infinite, in our experiments we only search
all integer values. If the decommitment penalties are determined
exogenously, b only searches the possible values of ρ.

The situation that b has one contract while making an offer can
be analyzed in the same way. When b has one contract, it can still
use the existing contract if its new offer is rejected.

A contractee acts as follows: If it has no contract while receiving
an offer [ρ, q], it will accept the offer if and only if its utility while
accepting the offer is higher than that while not accepting the of-
fer. If it rejects the offer, it can make a contract with the expected
contracting price in the future. If it accepts the offer, there are two



Table 1: Variables
Variables Values

Number of contractors (n) [2, 20]

Number of contractees (m) [2, 20]

Contracting opportunities of each contractor (τ ) [1, 8]

Cost of a contractor [50, 100]

Cost of a contractee [0, 50]

Fixed penalty {0, 10, 20, 40}
Penalty rate (percentage of contract price) {0.1, 0.3}

Table 2: Average cost ratios
Strategy All Myopic All Lookahead Random match

Bargaining 2.161 3.109 2.775

Fixed penalty-0 3.837 3.844 3.778

Fixed penalty-10 2.618 3.573 3.252

Fixed penalty-20 2.529 3.573 3.262

Fixed penalty-40 2.653 3.627 3.357

Price rate-0.1 3.355 3.573 3.518

Price rate-0.3 2.541 3.547 3.174

situations in the future: one agent decommits from the contract or
no agent decommits from the contract. s can compute its expect-
ed utility for accepting the offer in the same way as computing the
expected cost when the contractor is making an offer. The situa-
tion when s has a contract while receiving an offer [ρ, q] can be
analyzed analogously.

3.3 Experimental settings
Experiment parameters: Extensive experiments were conducted

in a variety of scenarios subjected to parameters in Table. 1. The
experiment parameters reflect the design of the Collaborating, Au-
tonomous Stream Processing systems [1, 5]. The number of con-
tractors and contractees were randomly selected from [2, 20]. Each
contractor may have multiple opportunities to make contracts with
contractees. The number of contracting opportunities of each con-
tractor is in the range of [1, 8]. Each agent is assumed to know the
number of agents of different types and the number of contracting
opportunities of each contractor. Initially, each agent was random-
ly assigned a cost for handling its task. The contractors’ costs were
drawn uniformly in the interval [50, 100] and each contractee’s cost
is in the interval [0, 50]. The contractors never negotiate with each
other. The contractees also never negotiate with each other.

We compare the contracting results when agents’ decommitment
penalties are determined by negotiation and results where decom-
mitment penalties are determined exogenously. While there are
many methods to exogenously set decommitment penalties [1, 3,
4, 9, 10], the following two approaches are the most widely used:
1) fixed penalty independent of contract prices and 2) penalty as a
percentage of contract prices. We compare our negotiation based
approach with the above two approaches. For fixed penalty, the
penalty is chosen from {0, 10, 20, 40}. When the decommitment
penalty is a percentage of a contract price, the rate is chosen from
{0.1, 0.3}, i.e., q = 0.1ρ or q = 0.3ρ. Thus, there are 7 approach-
es to set penalties: 4 fixed penalty values, 2 penalty functions in
which a penalty is a fraction of contract price, and the bargaining
approach. For the bargaining approach, the contractor can choose
penalties freely.

Extensive stochastic simulations were carried out for all the com-
binations of variables in Table. 1. For each setting, we randomly

generated 100 instances and for each instance, there is only one
contractor and one contractee negotiating with each other at each
time period. The order in which the agents meet for negotiation is
random. That is, in each round of the bargaining game, one contrac-
tor and one contractee are randomly picked to negotiate with each
other. For example, in a setting where there are two contractors and
two contractees, and each contractor has two negotiation chances.
Agents’ costs in each instance are randomly generated. The nego-
tiation order in each instance is randomly generated and the max-
imum number of negotiation rounds is determined by the number
of contractors and the number of each contractor’s negotiation op-
portunities. For each instance, we try the 7 different approaches to
set decommitment penalties and 3 different strategy combinations:
1) all agents choose the myopic strategy, 2) all agents choose the
partial lookahead strategy, and 3) each agent randomly chooses a
strategy.

Performance measure-cost ratio: The social welfare sw is sim-
ply −sc where sc is the sum of agents’ costs. After each experi-
ment, we measure the ratio of the social welfare of the solution ob-
tained through negotiation to the optimal social welfare. For each
instance, the optimal social welfare can be calculated in polynomi-
al time: recursively make a contract between the contractor with
the highest cost and the contractee with the lowest cost until al-
l contractors or contractees have contracts. The average cost ratio
for all instances is calculated for each setting. The lower cost ratio,
the better. For each setting, we compare the cost ratio when agents
use different strategy combinations and different approaches to set
penalties.

3.4 Observations
Observation 1: Table 2 summarizes the average cost ratios in

all settings when the contractor/contractee ratio is within the range
[1/3, 3]. We found that on average, negotiating over penalty achieved
lower cost ratio as compared with exogenous methods for setting
penalties, no matter which strategies were used by agents. When
agents can negotiate over penalties, they have a much larger strate-
gy space. Although agents are optimizing the utilities of their own,
agents still achieved higher social welfare than setting penalties ex-
ogenously. Furthermore, when the decommitment penalty is 0, the
cost ratio is higher than any other exogenous methods for setting
decommitment penalties. When there is no decommitment penal-
ty, each agent can decommmit from contracts for free and thus
contract breach may happen forever. Throughout our experiment,
when there is no penalty, the number of decommitments is 4 times
as large as that when the decommitment penalty is 10. When the
penalty is too high (e.g., fixed penalty 40), decommitment penalty
is not going to happen frequently and the initial contract of each
agent is likely to be its final contract. In Table 2, the cost ratio for
very high fixed penalty (e.g., 40) is higher than that for a moderate
fixed penalty (e.g., 20).

The cost ratio when all agents taking myopic strategies is lower
than the cost ratio when agents take lookahead strategies or ran-
domly determine choose lookahead strategies or myopic strategies
(called random match). Furthermore, agents with random strate-
gies achieved lower cost ratio than agents with lookahead strate-
gies. Myopic contractees will accept an offer if it can gain some
immediate payoff. In contrast, contactees perform lookahead will
take market competition into account and will accept an offer if and
only it can gain some utility increase from the long-run (see Sec-
tion 3.5 for further analysis). Therefore, a contract is more likely
to happen when a contractee uses the myopic strategy as compared
with using the lookahead strategy. In our experiments, when all
agents take the myopic strategy, the average number of contract-
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Figure 2: Number of contractors and cost ratio (contractor/contractee ratio: 1)
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Figure 3: contractor/contractee ratio and cost ratio

s per contractor is 27% higher than that when all agents take the
lookahead strategy.

Observation 2: Fig. 2 shows the cost ratio with different num-
ber of contractors when the number of contractors are equal to the
number of contractees. In all the settings, negotiating over penalty
achieved lower cost ratio as compared with exogenous methods for
setting penalties. It’s observed that the cost ratio increases with the
increase of number of agents, especially when the penalty is low
and agents use the myopic strategy.

Observation 3: It can be observed from Fig. 3 that with differ-
ent contractor/contractee ratios, negotiating over penalty achieved
lower cost ratio as compared with exogenous methods for setting
penalties. The cost ratio decreases with the increase of contrac-
tor/contractee ratio when the contractor/contractee ratio is low. How-
ever, the cost ratio increases with the increase of contractor/contractee
ratio when the contractor/contractee ratio is higher than 1. In gen-
eral, due to the existence of decommitment penalties, a contractee
having already a contract is less likely to accept a new offer as com-
pared with when it has no contract. Thus, generally the first con-
tract made by each contractee has a high probability of being its
final contract. When there is big difference between the number of
contractors and contractees, the initial contracts made by all agents
could be “bad” as compared with the socially optimal solution. For
example, assume that there are 10 contractees and 1 contractor. If
the contractor is chosen to negotiate with a contractee with relative-
ly high cost as compared with other contractees. Assume that they
make a contract and no decommitment happens. The solution may
be much worse than the socially optimal solution in which the con-
tractor makes a contract with the contractee with the lowest cost.
In contrast, when the number of contractors is equal to the num-

ber of contractees, it’s more likely that each contractor makes one
contract, which is the socially optimal solution.

Observation 4: Fig. 4 shows the change of cost ratio with ne-
gotiation opportunities. With different number of negotiation op-
portunities, negotiating over penalty achieved lower cost ratio as
compared with exogenous methods for setting penalties. When al-
l agents are myopic, the number of negotiation opportunities has
no significant impact on the cost ratio. But when agents perform
lookahead, the cost ratio decreases with the increase of negotiation
opportunities when the number of negotiation opportunities is low.
This is probably because each contractee will take market compe-
tition into account while deciding whether to accept an offer.

Observation 5: When decommitment penalties are set through
negotiation, lookahead agents search the whole contract space (in-
cluding contract prices and penalties) and find the best contract.
We analyzed the relations between contract price, penalties, and
remaining negotiation opportunities. We found that: 1) the con-
tract price of any contractor without a contract increases with the
decrease of remaining negotiation opportunities; and 2) when the
contract price of a contract is low, the decommitment penalty is
high. Those observations correspond to the heuristics for setting
the penalty of myopic agents. Fig. 6(a) shows that when each con-
tractor has 8 negotiation opportunities, an agent without a contract
gradually increases its offering price with the decrease of nego-
tiation opportunities. Fig. 6(b) shows that the offering penalties
by lookahead contractors are lower with the decrease of negotia-
tion opportunities. Fig. 6(c) shows the relation between proposed
penalties and prices. When the ratio of offering penalty to offering
price decreases with the increase of offering price, which is intu-
itive as contractors don’t want to lose favorable contracts.
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Figure 4: Number of contracting opportunities and cost ratio
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5−10 10−1515−2020−2525−3030−3535−4040−4545−5050−5555−6060−6565−7070−7575−8080−8585−9090−95
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Offering price

Av
er

ag
e 

of
fe

rin
g 

pe
na

lty
/p

ric
e 

ra
tio

(c) Offering price and offering penalty

Figure 5: Offers by contractors perform lookahead

3.5 Further analysis
We assume that a lookahead agent knows 1) the number of con-

tractors and contractees, and 2) the number of negotiation opportu-
nities. We examined how this assumption will affect the efficiency
of leveled-commitment contracting. When the true number of ne-
gotiation opportunities is half of the contractors’ belief about their
negotiation opportunities, the cost ratio of lookahead agents de-
creased by 6% but setting penalty through negotiation still achieved
a lower cost ratio than other methods for setting penalties. Note that
the strategy of myopic agents doesn’t depends on agents’ knowl-
edge of the number of contractors and contractees. Therefore, even
if we remove the first assumption, negotiation over penalty is still a
better option than setting penalties exogenously.

In our previous experiments, contractors using the same penalty
setting method compete with each other and make contracts with
contractees. Then the social welfare for different penalty setting
approaches were compared with each other. From market design-
ers’ perspective, it’s better to allow agents to negotiate over penalty
rather than setting a fixed penalty (function). If each selfish con-
tractor has an opportunity to select a method to set its penalty, is it
better to comply to the penalty suggested by the market designer?
To answer this question, we let contractors with different penalty
setting methods compete with each other and compare their final
costs. Table. 3 shows the average cost of contractors with differ-
ent penalty setting methods. For each instance, we first created 7
contractors with the same cost and each contractor uses a differ-
ent method to set its penalty, then the 7 contractors compete with
each other and make contracts with 7 contractees. We can see that
no matter which strategy is used by agents, contractors not using a
penalty suggested by the system designer achieved lower cost.

For the experimental results in Table. 3, all contractors in each
experiment use the same strategy and lookahead contractors achieved

higher cost than myopic contractors. This is mainly due to the in-
direct competition between contractors. As compared with looka-
head agents, myopic agents are “cooperative”. When strategic a-
gents compete with each other, agents’ performance could be much
worse than agents behave in a cooperative way. We also evaluated
agents’ performance when agents using different negotiation strate-
gies compete with each other. We observed that, when myopic con-
tractors compete against lookahead contractors in each experiment,
the average cost of myopic contractors is higher than that of looka-
head contractors. Fig. 6 compares the average cost of myopic con-
tractors and lookahead contractors when they compete with each
other in each experiment where there are equal number of con-
tractors and contractees. We examined the contractors’ cost while
changing 1) the strategies of contractees and 2) the probability that
each contractor uses the myopic strategy. When the probability
that each contractor uses the myopic strategy is 0, all contractors
use the lookahead strategy. In contrast, when the probability that
each contractor uses the myopic strategy is 1, all contractors are
myopic. We can see that independent of the strategies of sellers,
lookahead contractors achieved lower average cost than that of my-
opic contractors. In addition, contractors’ cost when contractees
use the lookahead strategy is higher than contractors’ cost when
contractees use the myopic strategy.

4. CONCLUSION
This paper complements previous work on leveled-commitment

contracting by integrating a strategic contracting game with the
leveled decommiting game. Agents are allowed to make leveled-
commitment contracts. This paper analyzes the optimal contract-
s in the decommiting game and agents’ equilibrium strategies in
finite horizon negotiation with bargaining costs. We also exper-
imentally evaluated the efficiency of negotiating over penalty as
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(a) Contractees use the myopic strategy
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gies
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Figure 6: Average cost of contractors when contractors with different strategies compete with each other

Table 3: Average cost of contractors
Strategy Myopic Lookahead Random match

Bargaining 40.24 42.05 41.23

Fixed penalty-0 65.27 63.84 64.13

Fixed penalty-10 45.52 47.48 47.80

Fixed penalty-20 43.72 45.45 44.24

Fixed penalty-40 44.61 48.44 45.57

Price rate-0.1 50.43 49.34 49.08

Price rate-0.3 46.08 47.93 46.87

compared with some other approaches for setting decommitment
penalties in the literature. Experimental results show that setting
penalties through negotiation achieved higher social welfare than
other mechanisms for setting penalties, no matter which strategies
are chosen by agents. We are currently using this framework in an
actual distributed multi-agent resource allocation application and
the preliminary results are encouraging [2].

While we developed partial lookahead agents by approximat-
ing the future outside options, we plan to increase the spectrum
of lookahead by allowing agents search the game tree. However, as
it is often intractable to compute a rational strategy in game trees, it
would be desirable to develop some anytime search algorithms con-
cerning computational constraints. We will also explore some other
myopic strategies. In the future work, we will also compare nego-
tiating over penalty with other exogenous approaches like penalty
as a function of contracting time. In addition, our experiments thus
far focused on scenarios with moderate complexity, but we wish to
investigate much larger problems where there are more agents. The
most practical motivation of bargaining theory is designing agents
in environments close to the real world. By allowing agents to ne-
gotiate over penalty, agents are given more flexibility to optimize
their contracts. While there has been some work applying leveled-
commitment contracting in the practical e-commerce, they all use
exogenous methods to set decommitment penalties [1,3,9,10]. De-
signing agents negotiating over penalty e-commerce applications is
another focus of our future research.
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