
Heuristics for Negotiation Schedules in Multi-plan
Optimization

Bo An
Dept. of Computer Science

University of Massachusetts,
Amherst

Amherst, MA USA
ban@cs.umass.edu

Fred Douglis
IBM T.J. Watson Research

Center
Hawthorne, NY USA

fdouglis@us.ibm.com

Fan Ye
IBM T.J. Watson Research

Center
Hawthorne, NY USA

fanye@us.ibm.com

ABSTRACT
In cooperating systems such as grids [4] and collaborative stream-
ing analysis [2], autonomous sites can establish “agreements” to
arrange access to remote resources for a period of time [1]. The
determination of which resources to reserve to accomplish a task
need not be known a priori, because there exist multiple plans for
accomplishing the same task and they may require access to dif-
ferent resources [3]. While these plans can be functionally equiv-
alent, they may have different performance/cost tradeoffs and may
use a variety of resources, both local and belonging to other sites.
The negotiation schedule, i.e., the order in which remote resources
are negotiated, determines how quickly one plan can be selected
and deployed; it also decides the utility for running the plan. This
paper studies the problem of optimizing negotiation schedules in
cooperative systems with multiple plans. We first provide a voting-
based heuristic that reduces the complexityO(n!) of the exhaustive
search to O(mnq). We also present a weight-based heuristic that
further reduces the complexity to O(mn). Experimental results
show that, on average, 1) the voting-based approach achieved 6%
higher utility than the weight-based approach but the voting-based
approach has a much higher computation cost than the weight-
based approach, 2) the two proposed approaches achieved almost
50% higher utility than a randomized approach; and 3) the average
utility produced by the two proposed approaches are within almost
90% of that of the optimal results with reasonable plan sizes.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search

General Terms
Algorithms, Design

Keywords
Optimization, heuristics, collaborative systems

1. INTRODUCTION
In cooperating systems such as grids [4] and collaborative stream-

ing analysis [2], autonomous sites can establish “agreements” to
Cite as: Heuristics for Negotiation Schedules in Multi-plan Optimization,
Bo An, Fred Douglis and Fan Ye, Proc. of 7th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2008), Padgham, Parkes,
Müller and Parsons (eds.),May,12-16.,2008,Estoril,Portugal,pp.551-558.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

arrange access to remote resources for a period of time [1]. The de-
termination of which resources to reserve to accomplish a task need
not be known a priori, because multiple plans for accomplishing
the same task are available and they may require access to different
resources [3]. Given a processing task, multiple functionally equiv-
alent plans can be generated, e.g., through a planner [9]. Each plan
requires a set of resources, possibly from other sites. The site can
use any candidate plan to accomplish the processing task, with dif-
ferent performance/cost tradeoffs. To deploy a plan, the site needs
to obtain all the resources required by that plan. It makes agree-
ments with other sites, which control access to their resources.

We have built a Negotiation Management (NM) system, which
is a subcomponent of a collaborative stream processing environ-
ment [2]. This system conducts automated negotiation among mul-
tiple sites to select the best candidate sites with which to negotiate
and then select the best execution plan given the obtained agree-
ments. NM has two main modules: the Scheduler and the Pro-
posal Generator (PG). The scheduler receives plans from the plan-
ner and determines the negotiation schedule, i.e., the order in which
resources are negotiated. Then it submits negotiation tasks to the
PG in that order. Each negotiation task asks for one resource that
appears in the plans. PG conducts sequential negotiations to get
the resources specified in negotiation tasks. To be successful, the
scheduler needs to satisfy all the resources required by at least one
plan within the cost and time constraints specified for the plan.

This paper studies the optimization problem of the scheduler,
i.e., finding the best negotiation schedule. The schedule determines
whether any plan can be satisfied; if so, which plan is satisfiable,
and at what cost. Determining the optimal negotiation schedule is
non-trivial given multiple plans from which to choose and multi-
ple resources in each plan. The scheduler also faces both time and
budget constraints within which the negotiation must finish. More-
over, the outcome of negotiated resources affects the schedule of re-
maining resources, adding to the complexity of the problem. Naive
methods such as exhaustive search and randomized approach are
either too expensive (O(n!) complexity) or yield low performance.
As alternatives, we propose heuristics that trade between complex-
ity and utility. We first provide a voting-based heuristic that re-
duces the complexity to O(mnq). We then present a weight-based
heuristic which has even less complexity O(mn), with compara-
ble utility. Experimental results show that the proposed approaches
achieve almost 50% higher negotiation utility than a randomized
approach and produce utilities within 90% of that of the optimal
schedule with reasonable plan sizes.

The remainder of this paper is organized as follows. Section 2
summarizes related work. The optimization problem is introduced
in Section 3. Section 4 introduces the voting-based heuristic and
Section 5 presents the weight-based heuristic. In Section 6, we

551

examine the performance of our approaches through simulation.
Section 7 concludes the paper and outlines future work.

2. RELATED WORK
Pegasus [3] is a workflow mapping engine which can automati-

cally map high-level workflow descriptions onto distributed infras-
tructures. Pegasus enables users to represent the workflows at an
abstract level without needing to worry about the particulars of
the target execution systems. It provides robustness and reliabil-
ity through dynamic workflow remapping and automatically man-
ages data generated during workflow execution and capturing their
provenance information.

In System S [2], a job is an execution unit that accomplishes
certain work through stream analysis. A job takes the form of a
processing graph, consisting of resources, i.e., data sources and
processing elements (PEs), which are interconnected in a certain
manner. These resources might be located at multiple different
sites. Due to the potentially large numbers of data sources and PEs
needed in complex jobs, and the existence of functionally equiva-
lent processing graphs, it is infeasible for human users to manually
construct and identify the best alternative graph. System S has a
planner component that can construct processing graphs automati-
cally from high-level descriptions of desired results [9].

Many resources needed in plans are accessed exclusively. In or-
der for a site to reserve a limited resource from another site, it must
establish an agreement with the other site, specifying the price of
sharing the resource [1]. Therefore, some mechanisms should be
used by sites to dynamically establish such agreements. One ex-
ample of this is automated negotiation [6] among software agents;
research on engineering e-negotiation agents has received a great
deal of attention in recent years (e.g., [5]).

The optimization problem in this paper can be treated as a stochas-
tic scheduling problem. Stochastic scheduling is concerned with
scheduling problems in which the processing times of tasks/jobs
are modeled as random variables. Thus a job’s processing time is
not known until it is complete. Stochastic scheduling has been an
active research area for a long time (see [8] for a survey) and a num-
ber of techniques like approximation [7] have been proposed. Our
optimization problem is different from most stochastic scheduling
problems in that there are multiple candidate plans for a task/job. In
addition, the scheduler faces both deadline and budget constraints.

As the scheduler has multiple plans from which to choose and
each plan has multiple resource requirements, the scheduler needs
to determine the order in which to negotiate resources. We do not
address the problem of how PG makes agreements in this paper.

3. SCHEDULE OPTIMIZATION
This section presents the optimization problem of the scheduler.

Some variables used in this formulation are summarized in Table 1.
The planner generates a set of plans PS , and each plan consists

of a set of resources. The resources in plan PL are PL. Without
loss of generality, we assume a resource appears at most once in
any single plan.1 The planner will then submit the plans to the
scheduler and ask the scheduler to make agreements to satisfy the
resource requirements of any one of the plans. The planner will also
specify 1) the reserve price δ, i.e., the highest amount of money the
scheduler can use to make agreements, and 2) the deadline τ , i.e.,
the longest amount of time the scheduler can use to do scheduling
and ask PG to make agreements. The planner submits all plans to
the scheduler at the same time before scheduling.
1Our approach can be extended to accommodate the situation that
one resource appears more than once in a plan.

Table 1: Symbols used in this paper
τ scheduling deadline

δ the reserve price for the scheduling

PS plans submitted to the scheduler

PSt feasible plans at the scheduling round t

PL the set of resources in plan PL

t(r) the negotiation time for getting resource r

c(r) the price for getting resource r

p(r) the probability that PG can get resource r successfully

T t the resource in the negotiation task at round t

AGt the set of agreements at round t

After receiving plan(s) from the planner, the scheduler submits
one task (a resource) to PG. After receiving the negotiation result
from PG, scheduling enters the next round: the scheduler selects
another task to submit to PG. The result of a negotiation task could
be “success,” which indicates that PG made an agreement, or “fail-
ure,” which indicates that PG failed to get the resource.

Resource consumers can revoke agreements made before at the
cost of paying a penalty. The penalty depends on the price of the
agreement and the period from the agreement making time to the
revocation time. In general, the higher the price, or the later the
revocation of an agreement, the greater the penalty. Assume the
price of an agreement Ag is Prc(Ag), the agreement making time
is Tmk(Ag) and the agreement revoking time is Trvk(Ag). We
assume a linear penalty function as a function of price and duration:
specifically, the penalty is ρ(Prc(Ag), Trvk(Ag) − Tmk(Ag)) =

min
(
αPrc(Ag)

(
Trvk(Ag)−Tmk(Ag)

)
, P rc(Ag)

)
, where α ∈

(0, 1]. Other forms of penalty functions are possible but we take
this simple form in the paper.

The planner gives the reserve price (budget) to the scheduler,
whose goal is to minimize the spending for getting all the agree-
ments for one plan. The scheduler will report the scheduling re-
sult to the planner before the deadline approaches. A scheduling
result could be either a “failure” notification or a plan with a set
of agreements which can satisfy the plan’s resource requirements.
The planner’s cost includes the prices of the agreements for that
plan and penalties incurred by revocation. For ease of analysis, we
treat the planner’s utility as the scheduler’s utility. The scheduler
tries its best to minimize the spending, thus maximizing its own
utility, defined as

u =

{
(1 + β)δ − Prc(AG)− ρ(AG) if scheduling succeeds
−ρ(AG) otherwise

where Prc(AG) is the price of all non-revoked agreements and
ρ(AG) is the penalty for revocation. When scheduling succeeds,
the scheduler needs to pay for agreements and penalties and δ −
Prc(AG)−ρ(AG) is a bonus for cost savings. βδ is another bonus
for successful scheduling: it ensures that the scheduler gets some
utility for succeeding, even it has spent all the budget δ for negotia-
tion. Without this extra bonus, a scheduler that succeeds but spends
all the budget gets zero utility, as if it had done nothing at all.

If scheduling fails, the scheduler receives no bonus but needs to
pay for penalties. (Note that the maximum revocation penalty for
any agreement is the full price.)

PG receives two types of tasks from the scheduler: negotiation
tasks and revocation tasks. The scheduler has incomplete informa-
tion about how PG will behave given each negotiation task. Given
a resource r, t(r) is the expected negotiation time for getting re-

552

source r, c(r) is the price for getting resource r, and p(r) is the
probability that PG can get resource r successfully. Without loss
of generality, a resource in different plans has the same t(r), c(r),
and p(r). After receiving a revocation task, PG will 1) notify the
other party involved in the agreement, 2) pay a penalty to the other
party, 3) report to the scheduler. For ease of analysis, here we as-
sume that 1) revocation tasks cost PG no time, 2) each negotiation
task involves only one resource, and 3) PG can only negotiate for
one resource at each time. Therefore, the scheduler can submit an-
other task if and only if PG finishes the previous task.

After receiving plans from the planner, the scheduler has the fol-
lowing choices: 1) submit a negotiation task to PG if it can pre-
sumably earn positive utility by scheduling; 2) report “failure” to
the planner if the scheduler finds that it could not schedule any plan
within the reserve price δ and scheduling deadline τ . The follow-
ing observation shows the conditions under which the scheduler
will return “failure” directly at the beginning of scheduling.

PROPOSITION 1. If minPL∈PS
∑

r∈PL t(r) > τ or minPL∈PS∑
r∈PL c(r) > δ, the scheduler will directly return return failure

information to the planner.

PROOF. minPL∈PS
∑

r∈PL t(r) is the minimum time needed
to get all the resources in any plan. If minPLi∈PS

∑
r∈PL t(r) >

τ , it is impossible for the scheduler to find a plan with agreements.
Similarly, if minPL∈PS

∑
r∈PL c(r) > δ, the scheduling will fail

as minPL∈PS
∑

r∈PL c(r) is the minimum money needed to re-
turn a plan with agreements.

Feasible plans refer to the set of plans whose resource require-
ments can still be possibly satisfied by future negotiation. Assume
PG fails to reach an agreement for resource r, all plans which in-
clude the resource r will become infeasible. Therefore, the feasible
resource set PSt at scheduling round t has the following property:
PSt ⊆ PSt−1 ⊆ PS . After getting the feedback from the PG at
scheduling round t, the scheduler has the following four choices:

• Submit another negotiation task to PG: If no plan’s resource
requirements has been satisfied and there is an opportunity
to get all agreements for the resource requirements of one
plan, the scheduler may submit a new negotiation task to PG.
If one plan’s resource requirements have been satisfied, the
scheduler can still submit a negotiation task in order to satisfy
the resource requirements of a better plan with lower cost.

• Revoke one or more agreements: As scheduling continues,
some agreements may become unnecessary. For example,
resource r and r′ appears and only appears in plan PL. If
PG fails to get resource r, plan PL is unfeasible. Then the
agreement for resource r′ becomes unnecessary. Unneces-
sary agreements should be revoked as early as possible to
minimize penalty.

• Return a plan with agreements to the planner: Once all the
resource requirements of one plan have been satisfied and
there is no opportunity to satisfy the resource requirements
of a better plan, the scheduler will return the plan with agree-
ments to the planner and stop scheduling.

• Return “failure” to the planner: If the budget constraint or the
deadline constraint makes the scheduler unable to satisfy the
resource requirements of any plan, the scheduler will return
“failure” to the planner and stop scheduling.

A naive way to calculate the optimal schedule is by exhaustive
search. If there are n resources in all the plans, the complexity of

Algorithm 1 Voting algorithm for the single-plan case
Input: Agreement set AG, plan PL, deadline τ ′.
Output: A schedule Υ.
Data Structure: V (r) for each resource r ∈ RT t(PL).

1: Let Size = 1, V (r) = 0 for each resource r ∈ RT t(PL).
2: repeat
3: Size + +;
4: for each combination of resources R ⊆ RT t(PL) where

|R| = Size do
5: if deadline has not approached then
6: Find the best schedule Γ for the set of resource R;
7: for each resource r ∈ R do
8: if r is the ith resource in Γ then
9: V (r) = V (r) + |R|+ 1− i;

10: end if
11: end for
12: end if
13: end for
14: Generate plan Υ in which resource r is behind resource r′

if V (r) < V (r′)
15: until scheduling deadline is approached or Size ==

|RT t(PL)|
16: return Υ

exhaustive search is O(n!). An alternative is to randomly choose
a resource to negotiate during each scheduling round. Although
the randomized approach has low complexity O(1), its scheduling
results may be far from optimal. This paper presents a voting-based
approach and a weight-based approach to allow tradeoffs between
complexity and utility.

4. VOTING-BASED ALGORITHM
As the complexity of exhaustive search factorially increases with

the number of resources in the plans, it is infeasible to run the ex-
haustive search to find out the optimal schedule. To permit trade-
offs between the high complexity and utility, this section presents
a voting-based approach which performs exhaustive searches on
small resource sets and derives the negotiation schedule for large
resource sets based on the search results.

4.1 Algorithm for Single-plan Case
We begin with a simpler version of the problem in which there is

only one plan PL, i.e., PS = {PL}. At each step of scheduling,
the scheduler needs to find out the next resource to be submitted
to the PG for negotiation. The set of resources having not been
negotiated at scheduling round t is RT t(PL) = PL − ∪t−1

t′=0T
t′ ,

where T t′ is resource submitted at round t′. RT 0(PL) = PL.
|RT t(PL)| = |PL| − t is the number of resources in RT t(PL).
At round t, the scheduler needs to find the optimal schedule Λt

o ∈
Λt in which Λt represents all the possible schedules at round t and
T t′(Υ) is the negotiation task at round t′ according to the sched-
ule Υ ∈ Λt. If negotiation for resource T t−1 fails, PL’s resource
requirements cannot be satisfied and the scheduler will stop sched-
uling and revoke all agreements made before.

Given a schedule Υ at round t, the expected utility while con-
ducting the schedule is U(Υ) = Usuc(Υ)−Pfail(Υ) where Usuc(Υ)
is the utility of the scheduler when it gets all resources and Pfail is
the penalty the scheduler needs to pay if scheduling fails. We have

Usuc(Υ) =
∏

r∈RT t(PL)

p(r)
(
(1 + β)δ −

∑
r∈PL

c(r)
)

553

Pfail(Υ) =

|PL|−1∑

t′=t

pt′
fail(Υ)P t′

fail(Υ)

where pt′
fail(Υ) is the probability that the scheduler fails to get

T t′(Υ) and P t′
fail(Υ) is the penalty that the scheduler needs to pay

if it fails to get resource T t′(Υ):

pt′
fail(Υ) =

t′−1∏

t′′=t

p(T t′′(Υ))
(
1− p(T t′(Υ))

)

P t′
fail(Υ) =

t−1∑

t′′=0

ρ
(
c(T t′′),

t−1∑

t′′′=t′′+1

t(T t′′′) +

t′∑

t′′′=t

t(T t′′′(Υ))
)

+

t′−1∑

t′′=t

ρ
(
c(T t′′),

t′∑

t′′′=t

t(T t′′′(Υ))
)

The optimization problem for the scheduler is to find the optimal
negotiation schedule Λt

o for the remaining resources RT t(PL) at
round t, which can be formalized as follows:

Λt
o = max

Υ∈Λt

(
Usuc(Υ)− Pfail(Υ)

)

It can be found that any schedule Υ ∈ Λt has the same Usuc(Υ)
because changing the order of resources in any schedule Υ has no
effect on Usuc(Υ). Thus, the schedule minimizing Pfail(Υ) would
be the optimal schedule.

Let |RT t(PL)| = n, then the complexity of finding the opti-
mal schedule by exhaustive search isO(n!), which is computation-
ally intractable. The intuition behind the voting-based approach
is based on order invariability, which indicates the following: if
resource r appears before resource r′ in the optimal schedule for
resource set R′, then resource r appears before resource r′ in the
optimal schedule for resource set R′′ where R′ ⊂ R′′. Empirical
evidence suggests that, in most cases (more than 90% in all our
experiments), order invariability is valid. Given the deadline con-
straints and the high complexity of the problem, it is worthwhile to
exploit the order invariability property when it almost applies.

Rather than exhaustively searching in the optimal schedule for
remaining resources RT t(PL), in the voting-based approach, we
only search the optimal schedule for a small set of resources R ⊆
RT t(PL). Then we compute the schedule for RT t(PL) using
the optimal schedules for all combinations of a smaller number
of resources. Let |R| = q, there are

(
n
q

)
different combinations

of resources of size q. The complexity of computing the optimal
schedules for all

(
n
q

)
combinations is O(

(
n
q

)
q!) (O(nq) when q is

constant). The complexity is reduced by

n!(
n
q

)
q!

= (n− q)!

Algorithm 1 shows how to find the schedule for RT t(PL) using
voting. The input is the current agreement set AG, the plan PL,
and the deadline τ ′, which is the maximum time the algorithm can
run. The output of the algorithm is a schedule Υ for RT t(PL).

V (r) denotes how many “votes” r receives; it is used to repre-
sent how desirable it is to negotiate resource r earlier. The resource
with the highest V (r) will be negotiated first. Size represents the
number of resources which will be used to run exhaustive search.
At the beginning, Size is set to 2 and the scheduler will first find
the optimal schedule of every pair of resources. Then Size will be

Algorithm 2 Voting-based algorithm
Input: Plan set PS , deadline τ , reserve price δ.
Output: A plan PLo with agreement or “failure”.
Data Structure: Task set T , agreement set AG, feasible plan set
PSt.

1: Let t = 0, T = ∅,AG = ∅, PS0 = PS, fail=false, PLo = ∅.
2: repeat
3: Step 1: initialization (Algorithm 3)

4: Step 2: revoke agreements and stop negotiation:
5: if PLo! =null then
6: revoke agreements in AG which is not needed for PLo

7: return PLo with agreements
8: else
9: if |PSt| = 0 then

10: revoke all agreements in AG
11: return “failure”
12: else
13: revoke agreements which are not needed in any plan in

PSt

14: end if
15: end if

16: Step 3: submit a proposal
17: for each resource r ∈ RT t(PSt) which has not been nego-

tiated do
18: compute its weight w(r)
19: end for
20: Let the task at t be maxr∈RT t(PSt) w(r) and submit it to

PG;

21: t + +;
22: PSt = PSt−1;
23: until false

set to 3 and all combinations of three resources are searched, then
Size is set to 4, 5, and so on.

For each combination of resources R, the scheduler will search
all possible schedules and choose the one with the highest utility as
the optimal schedule Γ. The ith resource in an optimal schedule of
q resources receives a “vote” of q + 1− i and V (r) is increased by
the “votes” from all combinations where r appears.

After scheduling all the combinations of Size resources, the out-
put schedule Υ will be updated. if V (r) < V (r′), resource r will
be negotiated later than resource r′ in the plan Υ. The algorithm
will stop when the scheduling deadline is reached or all possible
schedules have been searched, i.e., Size = |RT t(PL)|. When the
algorithm stops, the latest schedule Υ will be returned.

The algorithm is an anytime algorithm in the sense that with
more time, the algorithm will search the optimal schedule of a
larger number of negotiation tasks with the increase of Size. With
more time, the schedule returned by the algorithm is better.

4.2 Algorithm for the Multi-plan Case
If there are more than one feasible plan, we can run the voting

algorithm for each plan, and then compute the overall weight w(r)
for each resource r ∈ RT t(PSt) at round t where RT t(PSt) =
∪PL∈PStRT t(PL) is the set of all possible negotiation tasks. Al-
gorithm 2 describes the procedure to determine the negotiation task
at each round t. The input of the algorithm is the set PS of plans
submitted by the planner, deadline τ , and reserve price δ. The out-
put is the plan PLo with agreement if scheduling succeeds or “fail-

554

Algorithm 3 Initialization
1: if t == 0 then
2: for each PL ∈ PSt do
3: remove PL from PSt if

∑
r∈PL t(r) > τ or∑

r∈PL c(r) ≥ (1 + β)δ
4: end for
5: else
6: if PG fails to get resource T t−1 then
7: remove plans which need resource T t−1 from PSt

8: for each PL ∈ PSt do
9: remove PL from PSt if τ − ∑t−1

t′=0 t(T t′) is not
enough to get the resources having not been negotiated
in plan PL

10: end for
11: else
12: if some plans’ resource requirements have been satisfied

then
13: Let PLo be the plan which minimize the sum of the

cost for the agreements needed by the plan and the
penalty for the remaining agreements

14: end if
15: end if
16: end if

ure” otherwise. During scheduling, the scheduler needs to maintain
the following data structure: task set T , agreement setAG, feasible
plan set PSt. Algorithm 2 includes the following three main steps:

At the beginning of each round, the scheduler updates its data
structure given the last round’s negotiation result. If t = 0, these
plans which cannot satisfy the budget and deadline constraints will
be removed from PSt. When t > 0, if PG fails to get resource
T t−1, it will first remove plans which need resource T t−1 from
PSt. Then it will check whether the remaining scheduling time
τ − ∑t−1

t′=0 t(T t′) is enough to get the resources having not been
negotiated in plan PL. It not, it will remove PL from PSt. If
PG’s negotiation at round t− 1 is successful, some plans’ resource
requirements may have been satisfied. Assume the satisfied plans
are PSs ⊆ PSt and a plan PL ∈ PSs needs a set of agreements
AG(PL). The following plan will be chosen as PLo:

PLo = min
PL∈PSs

(∑
r∈PL

c(r) +
∑

Ag∈AG−AG(PL)

ρ(Prc(Ag),

t−1∑

t′=0

t(T t′)− Tmk(Ag))

)

In other words, PLo is the plan that minimizes the sum of the cost
for the agreements needed by the plan and the penalty for revoking
the remaining agreements.

The second step is revoking unnecessary agreements and check-
ing whether to stop scheduling. There are three situations: 1) PLo! =
null, i.e., one plan’s resource requirements have been satisfied.
The scheduler will revoke all unnecessary agreementsAG−AG(PLo)
and return plan PLo with agreements AG(PLo) to the planner. 2)
|PSt| = 0, which means that scheduling fails because there is no
satisfiable plan left. The scheduler will revoke all agreements AG
and return “failure” to the planner. 3)PLo = null and |PSt| > 0,
which indicates scheduling will continue and the scheduler will re-
voke agreements which are not needed in any plan in PSt.

The most important part is deciding which resource to negotiate
at round t. For each resource r ∈ RT t(PSt), its wight w(r) repre-
sents how desirable it is to negotiate it first. That is, the negotiation

task during round t is the resource with the highest weight, i.e.,

T t = max
r∈RT t(PSt)

w(r)

in which w(r) is given by:

w(r) =
∑

PL∈PSt

w(r, PL)

where w(r, PL) is the weight of resource r in plan PL.
To compute w(r, PL), the scheduler will first run the voting al-

gorithm to generate the schedule for RT t(PL). To get the schedule
for the remaining resource RT t(PL) ⊆ PL, the scheduler needs
to decide the deadline τ ′ to run Algorithm 1. Let τ ′′ be the remain-
ing scheduling time and it follows that τ ′′ ≥ maxPL∈PSt

∑
r∈RT t(PL)

t(r) as otherwise, the plan PL will not be feasible. Here we use a
heuristic to decide the value of τ ′:

τ ′ =
τ ′′ −

∑
P L∈PSt

∑
r∈RT t(PL) t(r)

|PSt|
| ∪PL∈PSt RT t(PL)|

where
∑

P L∈PSt
∑

r∈RT t(PL) t(r)

|PSt| is the average negotiation time
for each remaining plan and | ∪PL∈PSt RT t(PL)| is the number
of resources in all the remaining plans.

After getting the schedule Υ for RT t(PL) of the plan PL using
Algorithm 1, the weight w(r, PL) of resource r ∈ RT t(PL) is

w(r, PL) =

{
|RT t(PL)|+1−i∑

r∈P L c(r)
if r is the ith resource in Υ

0 otherwise

It can be found that the higher the order of resource r in the sched-
uler Υ for PL, the higher the value of w(r, PL). If r appears first
in all the schedulers for plans PSt, r will be chosen as T t.

It can be found in Algorithm 2 that the scheduler will stop sched-
uling once the resource requirements of one plan are satisfied. This
is partly because in our approach, a plan with lower cost has a
higher chance to be satisfied before a plan with higher cost. In ad-
dition, given a plan with agreements, the scheduler needs to revoke
agreements made before if it finds another plan with agreements.
Moreover, uncertainty about negotiation results makes it possible
that the scheduler fails to satisfy the resource requirements of an-
other plan but pays more penalties.

Let n = | ∪PL∈PS PL| be the number of resources in all plans
PS and m = |PS| be the number of plans. If Size = q, the
complexity of using the voting-based approach to determine the
negotiation task at round t is O(m

(
n
q

)
q!) = O(mn!/(n − q)!) =

O(mnq). We can find that even we choose very small voting depth
q, the complexity of the voting-based approach is still high. In
the next section, we present a weight-based approach, which has a
lower complexity of O(mn).

5. WEIGHT-BASED APPROACH
This section presents a weight-based approach. Rather than do-

ing an exhaustive search on a small scale, the weight of each re-
source is computed directly by considering the characteristics of
the multiple plans and resources in these plans.

5.1 Analysis for the Single-plan Case
Different resources have different prices, probabilities of suc-

cessful negotiation, and negotiation times. It would help the sched-
uler to find the optimal schedule if we can find how those resource
properties will affect the optimal schedule.

555

PROPOSITION 2. Resources with higher prices should be nego-
tiated later.

PROOF. We prove it by comparing the utility while changing
the order of two resources T t′(Υ) = r and T t′+1(Υ) = r′ in
the schedule Υ. Assume the new schedule after changing the order
of the two resources is Γ. For ease of analysis, assume resources
r and r′ have the same probability of successful negotiation and
negotiation time, but with different prices. Then we have:

U(Υ)− U(Γ) = Usuc(Υ)− Pfail(Υ)− Usuc(Γ) + Pfail(Γ)

= Pfail(Γ)− Pfail(Υ)

=

|PL|−1∑

t′′=t′

(
pt′′

fail(Γ)P t′′
fail(Γ)− pt′′

fail(Υ)P t′′
fail(Υ)

)

= α

t′−1∏

t′′=t

p
(
t(T t′′(Υ))

)
p(r)t(r)

(
c(r′)− c(r)

)

(
1− p(r′)

)
+ α

|PL|−1∑

t′′=t′+2

pt′′
fail(Υ)t(r)

(
c(r′)− c(r)

)

It can be found that if c(r′) > c(r), U(Υ) > U(Γ); otherwise
U(Υ) < U(Γ). This indicates that cheaper resources should be
negotiated before the expensive resources.

This observation corresponds to the intuition that if we negotiate
a resource with a higher price first, the revocation penalty later will
also be higher when the agreement becomes unnecessary as the
penalty increases with the price in the agreement.

PROPOSITION 3. Resources with higher success probabilities
should be negotiated later.

PROOF. Similarly, assume there are two schedules Υ and Γ which
are the same except that in Υ, T t′(Υ) = r, T t′+1(Υ) = r′. In the
schedule Γ, T t′(Γ) = r′, T t′+1(Γ) = r. Assume r and r′ are only
different in the probabilities of successful negotiation. We have

U(Υ)− U(Γ) = Usuc(Υ)− Pfail(Υ)− Usuc(Γ) + Pfail(Γ)

= Pfail(Γ)− Pfail(Υ)

=

|PL|−1∑

t′′=t′

(
pt′′

fail(Γ)P t′′
fail(Γ)− pt′′

fail(Υ)P t′′
fail(Υ)

)

= α

t′−1∏

t′′=t

p
(
t(T t′′(Υ))

)(
t′−1∑

t′′′=0

c(t(T t′′′(Υ)t(r)

(
p(r′)− p(r)

)
+ c(r′)t(r)

(
p(r′)− p(r)

))

It can be found that if p(r′) > p(r), U(Υ) is better than U(Γ),
which indicates that the resources with higher success rates should
be negotiated first.

This observation corresponds to the intuition that if we negotiate
resources with lower success probabilities later, the scheduler will
have higher probability of failing to obtain those resources and will
have to revoke agreements made before, thus paying more penal-
ties. Therefore, we would like to first negotiate resources which are
difficult to get, in order to reduce such revocation penalties.

5.2 Analysis for the Multi-plan Case
The two observations above are helpful while developing sched-

uling algorithms. However, different resources have different suc-
cess probabilities and prices. Thus, the scheduler needs to make
tradeoffs to solve the conflicts between different properties. In ad-
dition, the two observations are valid for the single-plan case. In
the multiple-plan case, in addition to success probability and price,
the following factors should also be considered:

• Appearance frequency. Assume there are two resources r
and r′. r appears in most plans and resource r′ appears much
less than r. Assume there is no big difference in r and r′’s
other properties like price. It is intuitive to negotiate resource
r first because if PG cannot get resource r, PG does not need
to consider those plans which need resource r anymore. An
extreme situation is that resource r appears in all the plans.
Obviously, we need to get resource r first. If PG fails to get
resource r, scheduling stops. If the scheduler lets PG nego-
tiate for r′ first and PG successfully gets resource r′, then
the scheduler later needs to pay for revoking the agreement
about r′ when PG fails to get resource r.

• Plan cost: The cost of a plan PL is C(PL) =
∑

r∈PL c(r).
The costs of different plans may vary. Regardless of other
factors like negotiation time, the scheduler would like to sat-
isfy the resource requirements of the plan with lower cost
first as the scheduler will try to maximize its utility, which
will decrease with the increase of the plan cost.

Based on our observations and intuitions, we propose a heuristic
to compute the weight w(r, PL) of resource r as follows

w(r, PL) = f(
∑

r∈PL

c(r), p(r), |RT t(PL)|)

where
∑

r∈PL c(r) is the cost of the plan PL, |RT t(PL)| is the
number of resources to be negotiated in plan PL. w(r, PL) will
satisfy the following properties:

• w(r, PL) decreases with
∑

r∈PL c(r). That is, if the cost of
the plan is high, any resource of this plan has a lower proba-
bility to be negotiated first.

• w(r, PL) decreases with p(r), which corresponds to our pre-
vious proposition that the resource with lower success prob-
ability should be negotiated first.

• w(r, PL) decreases with |RT t(PL)|. With fewer remaining
resources to be negotiated, the scheduler can know whether
it can satisfy the resource requirements of the plan in shorter
rounds. Thus, it is reasonable to negotiate plans with less
resources first because those plans seem “hopeful”.

w(r) is the sum of the weight of resource r in all the plans. If the
resource r appears more in those plans, it will have a higher weight.
Therefore, it has a higher probability of being negotiated first. In
other words, frequently appearing resources will be negotiated first.
An example function to compute w(r, PL) is:

w(r, PL) =

{ 1∑
r∈P L c(r)p(r)|RT t(PL)| if r ∈ RT t(PL)

0 otherwise

Given w(r, PL) of each resource in plan PL, we can compute the
weight w(r) of each resource r ∈ RT t(PSt). Then we can use
Algorithm 2 to determine the negotiation task at each round.

556

Table 2: Variables
Variables Values

Resource prices [1, 200]

Negotiation time [1, 50]

Success probability [0, 1]

Number of plans [2, 30]

Number of resources in a plan [2, 10] or [2, 20]

Voting depth 3 or [2, 10]

The complexity of the weight-based approach at each schedul-
ing round is O(nm) where n = | ∪PL∈PS PL| is the number
of resources in all the m = |PS| plans. Obviously, the weight-
based approach has much lower complexity than the voting-based
approach, even when the voting depth is small. When the voting
depth is q, the complexity of the voting based approach isO(nqm),
which is higher than O(nm).

6. EXPERIMENTAL RESULTS
We implemented a simulation testbed consisting of a manager,

planner, scheduler and proposal generator to evaluate the perfor-
mance of our proposed algorithms. The manager generates re-
sources and randomly determines their parameters (e.g., negoti-
ation time, price, probability of success). The planner generates
plans and determines their parameters (e.g., reserve price and sched-
uling deadline). PG sequentially negotiates for resources and the
negotiation results follow the distributions defined by the manager.
The scheduler uses different scheduling algorithms to submit ne-
gotiation tasks to PG and return scheduling results to the planner.
In order to demonstrate the performance of the proposed two ap-
proaches by comparison, a randomized approach was also evalu-
ated in which the scheduler randomly chose a resource to negoti-
ate. Additionally, exhaustive search is used to calculate the optimal
schedule for scenarios with small numbers of resources where ex-
haustive search is tractable.

We performed a series of experiments to compare the perfor-
mance of the weight-based and voting-based approaches. The pa-
rameters are given in Table 2. Resources were subjected to dif-
ferent resource prices, negotiation times, and success probabilities.
In the experiments, the resource price is randomly selected from
[1, 200], the negotiation time of each resource from [1, 50], and the
success probability of each resource from [0, 1]. The number of al-
ternative plans submitted to the scheduler is between [2, 30]. Each
plan is subject to different numbers of resources, reserve prices,
and deadlines. The number of resources in each plan is randomly
chosen from [2, 20]. The reserve price δ is defined as a minPL∈PS∑

r∈PL c(r), where a randomly selected from [1, 3]. Similarly,
the deadline τ is defined as b minPL∈PS

∑
r∈PL t(r), where b is

randomly selected from [1, 3]. For the voting algorithm, different
voting depths may result in different scheduling performance. Due
to the high complexity of the exhaustive search, the voting depth
was set to 3 in all experiments except the one explicitly varying
that parameter. β was set to 0.1 in the experiments, but we found
that varying this parameter within a small range (0.1− 0.5) did not
significantly affect the results.

After each experiment, we measure the utility value of each sched-
uling result. As we evaluated algorithms in different environments,
we normalize the utilities u ∈ [umin, δ] of different experiments
into the same range [0, 1] where umin < 0 is the lowest utility the
scheduler may receive when the scheduling fails and δ is the bud-
get. The normalized utility u′ of an experiment is given as:

Figure 1: Average utility as a function of the number of plans

u′ =
u− umin

δ − umin

Figs. 1-3 show some representative experimental results gath-
ered from a series of experiments in different environment settings.
Each experiment consists of the average of 200 runs.

Observation 1: High complexity precludes computing the opti-
mal schedule when there are a large number of resources. Fig. 1
shows the performance of different scheduling algorithms when
the number of resources is no larger than 10. We can find that
the voting-based approach and the weight-based approach achieve
much higher utility (50% on average), sometimes more than 100%
higher, than the randomized approach. The average utility obtained
by the optimal schedule is, on average, around 10% higher than that
of the two proposed algorithms.

We also ran experiments when the number of resource of each
plan is between 2 and 20. We observed similar improvements of
both heuristics over the randomized approach. Regardless of the
number of resources, the voting-based one also achieves slightly
higher (6%) utility than the weight-based one on average.

Observation 2: Experimental results in Fig. 2 suggest that the
voting-based approach and the weight-based approach still perform
better than the randomized approach as the average number of re-
sources in each plan increases. Moreover, with more resources in
each plan, the advantage of our heuristics increases, which corre-
sponds to the intuition that the totally randomized approach cannot
do well in much more complex environments.

Observation 3: Fig. 3 depicts the change of the CPU time (in
milliseconds) and average utility for the voting-based algorithm. In
this experiment, there are 12 resources and 3 plans. The computa-
tion overhead is shown on a log scale in Fig. 3. We can find that
the computation overhead of the voting-based approach almost ex-
ponentially increases with the increase of voting depth. Moreover,
with the increase of voting depth, the increase of average utility
is much slower than the increase of computation overhead. The
results imply that in resource bounded environments, the weight-
based approach is a better selection.

7. CONCLUSION
This paper studies the scheduling problem of finding the optimal

negotiation schedules given a set of candidate plans. The problem
studied in this paper is complex due to multiple choices and uncer-
tainty. We utilize the characteristics of all the candidate plans to

557

Figure 2: Average utility as a function of the number of re-
sources in plans

Figure 3: Average utility and computing overhead as functions
of voting depth. Overhead is shown on a log scale

decide the order of resources to negotiate. We provide both voting-
based and weight-based algorithms to determine the negotiation
schedule. The voting-based approach has higher computation over-
head than the weight-based approach. Experimental results suggest
that the proposed approaches achieved 50% higher utility than the
randomized approach and are within almost 90% of that of the op-
timal results with reasonable plan sizes.

Experimental results suggest that the voting-based approach is
slightly better (6%) than the weight-based approach in average util-
ity. But the voting-based approach has a higher complexity, espe-
cially when the voting depth is large. The weight-based approach
is more suitable for “heavy” scheduling problems in which there
are many plans and each plan consists of a large number of re-
sources. If there are a small number of resources, the voting-based
approach is more suitable. For resource-bounded environments,
the weight-based approach is more suitable as it is more efficient
in saving time than the voting-based approach. We can choose the
voting-based approach when there is ample scheduling time as the
average utility of the voting-based approach is higher than that of
the weight-based approach and the performance of the voting-based
approach improves with larger voting depth.

In general, the proposed heuristics can be applied in scheduling
for resource acquisition in many other application domains, such

as multi-agent manufacturing systems, autonomic and service ori-
ented computing, dynamic web/grid service composition, virtual
chain management, workflow, and enterprise integration.

Finally, a future agenda of this work includes:

• This work assumes static environments where all the plans
are sent to the scheduler before the scheduling starts. This
assumptions can be loosened by considering dynamic sce-
narios in which the scheduler may receive more plans during
scheduling.

• We can consider other types of penalty functions than lin-
ear functions. For example, we can consider a grace period
during which there is no revocation penalty.

• Plans may have different reserve prices to indicate their pri-
ority, which makes the scheduling problem more complex.

• Our experiments thus far focused on scenarios ranging from
low to moderate complexity, but we wish to investigate much
larger problems. Initial experiments with more demanding
plans (fixing all plans to have 30 alternatives with 30 re-
sources apiece) found that both the voting-based and weight-
based heuristics have significantly lower utilities, due to the
number of times planning fails; voting with a depth of two
improves the average utility from 16% to 22% but takes 10
times as long (123ms).

Acknowledgements
We thank Mike Branson, Brad Fawcett, Anton Riabov, Zhen Liu
and Cathy Xia for helpful comments in the development of this
work. Special thanks are due Brad Fawcett for implementing the
Proposal Generator in our prototype system.

8. REFERENCES
[1] A. Andrieux et al. Web Services Agreement Specification

(WS-Agreement), Version 2006/07. GWD-R (Proposed
Recommendation), Grid Resource Allocation Agreement
Protocol (GRAAP) WGGRAAP-WG, July 2006.

[2] M. Branson, F. Douglis, B. Fawcett, Z. Liu, A. Riabov, and
F. Ye. CLASP: collaborating, autonomous data stream
processing systems. In Proc. of the ACM/IFIP/USENIX 8th
International Middleware Conference, pages 348–367, 2007.

[3] E. Deelman et al. Pegasus: a framework for mapping complex
scientific workflows onto distributed systems. Scientific
Programming Journal, 13(3):219–237, 2005.

[4] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the
grid: enabling scalable virtual organizations. International
Journal of High Performance Computing Applications,
15(3):200–222, 2001.

[5] N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons,
C. Sierra, and M. Wooldridge. Automated negotiation:
prospects, methods and challenges. Int. Journal of Group
Decision and Negotiation, 10(2):199–215, 2001.

[6] S. Kraus. Strategic Negotiation in Multiagent Environments.
MIT Press, Cambridge, MA, 2001.

[7] R. H. Mohring, A. S. Schulz, and M. Uetz. Approximation in
stochastic scheduling: the power of lp-based priority policies.
Journal of the ACM, 46(6):924–942, Nov. 1999.

[8] J. Ni-Mora. Encyclopedia of Optimization, volume V, chapter
Stochastic scheduling, pages 367–372. Kluwer, 2001.

[9] A. Riabov and Z. Liu. Planning for stream processing
systems. In Proc. of the Twentieth National Conference on
Artificial Intelligence, pages 1205–1210, 2005.

558

