
Transition-Independent Decentralized Markov Decision
Processes

Raphen Becker, Shlomo Zilberstein, Victor Lesser, Claudia V. Goldman
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

{raphen,shlomo,lesser,clag}@cs.umass.edu

ABSTRACT
There has been substantial progress with formal models for
sequential decision making by individual agents using the
Markov decision process (MDP). However, similar treatment
of multi-agent systems is lacking. A recent complexity re-
sult, showing that solving decentralized MDPs is NEXP-
hard, provides a partial explanation. To overcome this com-
plexity barrier, we identify a general class of transition-
independent decentralized MDPs that is widely applicable.
The class consists of independent collaborating agents that
are tied together through a global reward function that de-
pends upon both of their histories. We present a novel al-
gorithm for solving this class of problems and examine its
properties. The result is the first effective technique to solve
optimally a class of decentralized MDPs. This lays the foun-
dation for further work in this area on both exact and ap-
proximate solutions.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Coherence and coordination, Multiagent systems

General Terms
Algorithms, Theory

Keywords
decentralized MDP, decision-theoretic planning

1. INTRODUCTION
There has been a growing interest in recent years in formal

models to control collaborative multi-agent systems. Some
of these efforts have focused on extensions of the Markov
decision process (MDP) to multiple agents, following sub-
stantial progress with the application of such models to
problems involving single agents. Examples of these at-
tempts include the Multi-agent Markov Decision Process

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’03,July 14–18, 2003, Melbourne, Australia.
Copyright 2003 ACM 1-58113-683-8/03/0007 ...$5.00.

(MMDP) proposed by Boutilier [2], the Partially Observ-
able Identical Payoff Stochastic Game (POIPSG) proposed
by Peshkin et al. [10], the multi-agent decision process pro-
posed by Xuan and Lesser [14], the Communicative Multi-
agent Team Decision Problem (COM-MTDP) proposed by
Pynadath and Tambe [11], the Decentralized Markov Deci-
sion Process (DEC-POMDP and DEC-MDP) proposed by
Bernstein et al. [1], and the DEC-POMDP with Communi-
cation (Dec POMDP Com) proposed by Goldman and Zil-
berstein [5].

The MMDP model is based on full observability of the
global state by each agent. Similar assumptions have been
made in recent work on multi-agent reinforcement learn-
ing [4]. However, we are interested in situations in which
each agent has a different partial view of the global state and
together they can uniquely determine it. This observation
model is characteristic of a DEC-MDP and the Xuan-Lesser
framework. The other models differ in that they assume a
more general form of observations where there is joint partial
observability.

A recent complexity study of decentralized control shows
that solving such problems is extremely difficult. The com-
plexity of both DEC-POMDP and DEC-MDP is NEXP-
hard, even when only two agents are involved [1]. This is in
contrast to the best known bounds for MDPs (P-hard) and
POMDPs (PSPACE-hard) [9, 7]. The few recent studies of
decentralized control problems (with or without communi-
cation between the agents) confirm that solving even simple
problem instances is extremely hard [11, 13].

One way to overcome this complexity barrier is to ex-
ploit the structure of the domain offered by some special
classes of DEC-MDPs. We study one such class of problems
in which two agents operate independently but are tied to-
gether through a reward structure that depends on both of
their execution histories. The model is motivated by the
problem of controlling the operation of multiple space ex-
ploration rovers, such as the ones used by NASA to explore
the surface of Mars [12]. Periodically, such rovers are in com-
munication with a ground control center. During that time,
the rovers transmit the scientific data they have collected
and receive a new mission for the next period. The mission
involves visiting several sites at which the rovers could take
pictures, conduct experiments, and collect data. Each rover
must operate autonomously (including no communication
between them) until communication with the control center
is feasible. Because the rovers have limited resources (com-
puting power, electricity, memory, and time) and because

there is uncertainty about the amount of resources that are
consumed at each site, a rover may not be able to complete
all of its objectives. In previous work, we have shown how to
model and solve the single rover control problem by creating
a corresponding MDP [15].

When two rovers are deployed, each with its own mis-
sion, there is an important interaction between the activ-
ities they perform. Two activities may be complementary
(e.g., taking pictures of two sides of a rock), or they may
be redundant (e.g., taking two spectrometer readings of the
same rock). Both complementary and redundant activities
present a problem: the global utility function is no longer
additive over the two agents. When experiments provide
redundant information, there is little additional value to
completing both so the global value is subadditive. When
experiments are complementary, completing just one may
have little value so the global value is superadditive. The
problem is to find a pair of policies, one for each rover, that
maximizes the value of the information received by ground
control.

A simplified version of our problem has been studied by
Ooi and Wornell [8], under the assumption that all agents
share state information every K time steps. A dynamic
programming algorithm has been developed to derive op-
timal policies for this case. A downside of this approach
is that the state space for the dynamic programming algo-
rithm grows doubly exponentially with K. The only known
tractable algorithms for these types of problems rely on ad-
ditional simplifying assumptions. One such algorithm was
developed by Hsu and Marcus [6] and works under the as-
sumption that the agents share state information every time
step (although it can take one time step for the information
to propagate). Approximation algorithms have also been
developed for these problems, although they can at best
give guarantees of local optimality. For instance, Peshkin et
al. [10] studied algorithms that perform gradient descent in
a space of parameterized policies.

The rest of the paper is organized as follows. Section 2
provides a formal description of the class of problems we
consider. Section 3 presents the coverage set algorithm,
which optimally solves this class of problems, and proves
that the algorithm is both complete and optimal. Section
4 illustrates how the algorithm performs on a simple sce-
nario modeled after the planetary rover. We conclude with
a summary of the contributions of this work.

2. FORMAL PROBLEM DESCRIPTION
In this section we formalize the 2-agent control problem

as a transition-independent, cooperative, decentralized deci-
sion problem. The domain involves two agents operating in
a decentralized manner, choosing actions based upon their
own local and incomplete view of the world. The agents are
cooperative in the sense that there is one value function for
the system as a whole that is being maximized1.

Definition 1. A factored, 2-agent, DEC-MDP is defined
by a tuple < S,A, P,R >, where

1In this paper, we assume that the agents cannot commu-
nicate during execution episodes so they must derive an
optimal joint policy that involves no exchange of informa-
tion. We are also studying decentralized MDPs in which the
agents can communicate at some cost[5, 13].

• S = S1×S2 is a finite set of states, with a distinguished
initial state (s1

0, s
2
0). Si indicates the set of states of

agent i.

• A = A1×A2 is a finite set of actions. Ai indicates the
action taken by agent i.

• P is a transition function. P ((s′1, s
′
2)|(s1, s2), (a1, a2))

is the probability of the outcome state (s′1, s
′
2) when the

action pair (a1, a2) is taken in state (s1, s2).

• R is a reward function. R((s1, s2), (a1, a2), (s′1, s
′
2)) is

the reward obtained from taking actions (a1, a2) from
state (s1, s2) and transitioning to state (s′1, s

′
2).

We assume that agent i observes si, hence the two agents
have joint observability. We call components of the factored
DEC-MDP that apply to just one agent local, for example
si and ai are local states and local actions for agent i. A
policy for each agent, denoted by πi, is a mapping from local
states to local actions. πi(si) denotes the action taken by
agent i in state si. A joint policy is a pair of policies, one
for each agent.

Definition 2. A factored, 2-agent DEC-MDP is said to
be transition independent if there exist P1 and P2 such
that

P (s′1|(s1, s2), (a1, a2), s′2) = P1(s′1|s1, a1)

P (s′2|(s1, s2), (a1, a2), s′1) = P2(s′2|s2, a2)

That is, the new local state of each agent depends only on
its previous local state and the action taken by that agent.

Definition 3. A factored, 2-agent DEC-MDP is said to
be reward independent if there exist R1 and R2 such that

R((s1, s2), (a1, a2), (s′1, s
′
2)) = R1(s1, a1, s

′
1) +R2(s2, a2, s

′
2)

That is, the overall reward is composed of the sum of two
local reward functions, each of which depends only on the
local state and action of one of the agents.

Obviously, if a DEC-MDP is both transition independent
and reward independent, then it can be formulated and
solved as two separate MDPs. However, if it satisfies just
one of the independence properties it remains a non-trivial
class of DEC-MDPs. We are interested in the general class
that exhibits transition independence without reward inde-
pendence. The Mars rovers application is an example of
such a domain. The local states capture the positions of
the rovers and the available resources. The actions involve
various data collecting actions at the current site or the de-
cision to skip to the next site. The overall reward, however,
depends on the value of the data collected by the two rovers
in a non-additive way.

2.1 Joint Reward Structure
We now introduce further structure into the global reward

function. To define it, we need to introduce the notion of an
occurrence of an event during the execution of a local policy.

Definition 4. A history, Φ = [s0, a0, s1, a1, ...] is a se-
quence that records all of the local states and actions for one
agent, starting with the local initial state for that agent.

Definition 5. A primitive event, e = (si, ai, s
′
i) is a

triplet that includes a state, an action, and an outcome state.
An event E = {e1, e2, ..., em} is a set of primitive events.

Definition 6. A primitive event e = (si, ai, s
′
i) occurs

in history Φ, denoted Φ |= e if the triplet (si, ai, s
′
i) appears

as a subsequence of Φ. An event E = {e1, e2, ..., em} occurs
in history Φ, denoted Φ |= E iff

∃e ∈ E : Φ |= e.

Events are used to capture the fact that an agent accom-
plished some task. In some cases a single local state may be
sufficient to signify the completion of a task. But because of
the uncertainty in the domain and because tasks could be
accomplished in many different ways, we generally need a
set of primitive events to capture the completion of a task.
To illustrate this in the rover example, we will define the
state to be < t, l > where t is the time left in the day and
l is the location of the current data collection site. The ac-
tions are skip and collect. The event took picture of site 4
would be described by the following set of primitive events:

{(< t, l >, a,< t′, l′ >)| < t, l >=< ∗, 4 >,
a = collect,< t′, l′ >=< ∗, ∗ >}.

Definition 7. A primitive event is said to be proper if
it can occur at most once in any possible history of a given
MDP. That is:

∀Φ = Φ1eΦ2 : ¬(Φ1 |= e) ∧ ¬(Φ2 |= e)

Definition 8. An event E = {e1, e2, ..., en} is said to be
proper if it consists of mutually exclusive proper primitive
events with respect to some given MDP. That is:

∀Φ ¬∃i 6= j : (ei ∈ E ∧ ej ∈ E ∧ Φ |= ei ∧ Φ |= ej)

We limit the discussion in this paper to proper events.
They are sufficiently expressive for the rover domain and
for the other applications we consider, while simplifying the
discussion. Later we show how some non-proper events can
be modeled in this framework.

Definition 9. Let Φ1 and Φ2 be histories for two agents.
A joint reward structure

ρ = [(E1
1 , E

2
1 , c1),, (E1

n, E
2
n, cn)],

specifies the reward (or penalty) ck that is added to the global
value function if Φ1 |= E1

k and Φ2 |= E2
k.

In this paper we focus on factored DEC-MDPs that are
transition-independent and whose global reward function R
is composed of two local reward functions R1 and R2 for
each agent plus a joint reward structure ρ. This allows us to
define two underlying MDPs, < Si, Ai, Pi, Ri > even though
the problem is not reward independent.

Given a local policy, πi, the probability that a primitive
event e = (si, ai, s

′
i) will occur during any execution of πi,

denoted P (e|πi), can be expressed as:

P (e|πi) =

∞∑
t=0

Pt(si|πi)P (ai|si, πi)Pi(s′i|si, ai) (1)

where Pt(si|πi) is the probability of being in state si at time
step t. Pt(si|πi) can be easily computed for a given MDP
from its transition model; P (ai|si, πi) is simply 1 if πi(si) =
ai and 0 otherwise; and Pi(s

′
i|si, ai) is simply the transition

probability. Similarly, the probability that a proper event
E = {e1, e2, ..., em} will occur is:

P (E|πi) =
∑
e∈E

P (e|πi). (2)

We can sum the probabilities over the primitive events in E
because they are mutually exclusive.

Definition 10. Given a joint policy (π1, π2) and a joint
reward structure ρ, the joint value is:

JV (ρ|π1, π2) =

|ρ|∑
i=1

P (E1
i |π1)P (E2

i |π2)ci

Definition 11. The global value function of a transi-
tion-independent decentralized MDP with respect to a joint
policy (π1, π2) is:

GV (π1, π2) = Vπ1(s1
0) + Vπ2(s2

0) + JV (ρ|π1, π2)

where Vπi(s
i
0) is the standard value of the underlying MDP

for agent i at si0 given policy πi.

While Vπ(s) is generally interpreted to be the value of
state s given policy π, we will sometimes refer to it as the
value of π because we are only interested in the value of the
initial state given π. The goal is to find a joint policy that
maximizes the global value function.

Definition 12. An optimal joint policy, denoted
(π1, π2)∗, is a pair of policies that maximize the global value
function, that is:

(π1, π2)∗ = argmaxπ′1,π′2
GV (π′1, π

′
2).

To summarize, a problem in our transition-independent
decentralized MDP framework is defined by two underlying
MDPs, < S1, A1, P1, R1 > and < S2, A2, P2, R2 >, and a
joint reward structure ρ.

2.2 Expressiveness of the Model
Transition-independent DEC-MDPs with a joint reward

structure may seem to represent a small set of domains, but
it turns out that the class of problems we address is quite
general. Many problems that do not seem to be in this class
can actually be represented by adding extra information to
the global state. In particular, some problems that do not
naturally adhere to the mutual exclusion among primitive
events can be handled in this manner. The mutual exclusion
property guarantees that at most one primitive event within
an event set can occur. We discuss below some cases violat-
ing this assumption and how they can be treated within the
framework we developed.

At least one primitive event – Suppose that multiple
primitive events within an event set can occur and that an
additional reward is added when at least one of them does
occur. In this case the state can be augmented with one bit,
initially set to 0. When a primitive event in the set occurs,
the bit is set to 1. If we redefine each primitive event to
include the bit switching from 0 to 1, then the event set is
now proper because the bit is toggled from 0 to 1 only on
the first primitive event encountered.

All primitive events – Suppose that an event is com-
posed of n primitive events, all of which must occur to trig-
ger the extra reward. In this case, each local state must be

augmented with n bits (one per primitive event), which start
at 0 and are toggled to 1 when the corresponding primitive
event occurs (ordering constraints among primitive events
could reduce the number of bits necessary). The new event
set occurs when all of the bits are 1.

Counting occurrences – Suppose that an event is based
on a primitive event (or another event set) repeating at least
n times. Here, the local state can be augmented with logn
bits to be used as a counter. The extra reward is triggered
when the desired number of occurrences is reached, at which
point the counting stops.

Temporal constraints – So far we have focused on global
reward structures that do not impose any temporal con-
straints on the agents. Some temporal constraints, like fa-
cilitates [3], can also be represented in this framework if time
is enumerated as part of the local states. For example, sup-
pose that event E1 in agent 1 facilitates/hinders event E2

in agent 2, that is, the occurrence of E1 before E2 leads to
an extra reward c. To properly define ρ, we need to create
new events E1

i and E2
i for all 1 ≤ i ≤ maxTime, and ci = c.

E1
i represents E1 occurring at time i and E2

i represents E2

occurring after i. If both E1
i and E2

i occur, then reward c
is gained because E1 happened before E2. A more compact
representation of temporal constraints remains the subject
of future research.

To summarize, there is a wide range of practical prob-
lems that can be represented within our framework. Non-
temporal constraints tend to have a more natural, compact
representation, but some temporal constraints can also be
captured.

3. COVERAGE SET ALGORITHM
This section presents a novel algorithm to find optimal

joint policies for transition-independent decentralized
MDPs. This is one of the first algorithms to tractably and
optimally solve a significant subclass of DEC-MDPs. Most
other work on distributed problems have used approximate
solutions, such as heuristic policy search and gradient de-
scent (e.g., [10]), or assumed complete communication at
every step or when the optimal action is ambiguous (e.g.,
[2, 13]). The former do not converge on the optimal solu-
tion and the latter are not practical when communication is
not possible or very expensive.

Throughout the discussion we use i to refer to one agent
and j to refer to the other agent.

The algorithm is divided up into three major parts:

1. Create augmented MDPs. An augmented MDP repre-
sents one agent’s underlying MDP with an augmented
reward function.

2. Find the optimal coverage set for the augmented
MDPs, which is the set of all optimal policies for one
agent that correspond to any possible policy of the
other agent. As we show below, this set can be repre-
sented compactly.

3. Find for each policy in the optimal coverage set the
corresponding best policy for the other agent. Return
the best among this set of joint policies, which is the
optimal joint policy.

Pseudo-code for the coverage set algorithm is shown in
Figure 1. The main function, CSA, takes a transition-inde-
pendent DEC-MDP (as described in Section 2) as input, and

function CSA(MDP1, MDP2, ρ)
returns the optimal joint policy
inputs: MDP1, underlying MDP for agent 1

MDP2, underlying MDP for agent 2
ρ, joint reward structure

optset← COVERAGE-SET(MDP1, ρ)
value← −∞
jointpolicy ← {}
/* find best joint optimal policy */
for each policy1 in optset

policy2 ← SOLVE(AUGMENT(MDP2, policy1, ρ))
v ← GV({policy1, policy2},MDP1,MDP2, ρ)
if (v > value)

then value← v
jointpolicy ← {policy1, policy2}

return jointpolicy

function COVERAGE-SET(MDP , ρ)
returns set of all optimal policies with respect to ρ
inputs: MDP , arbitrary MDP

ρ, joint reward structure

planes← {} /* planes are equivalent to policies */
points← {}
/* initialize boundaries of parameter space */
for n← 1 to |ρ|

boundaries← boundaries ∪ {xn = 0, xn = 1}
/* loop until no new optimal policies found */
do

newplanes← {}
points← INTERSECT(planes ∪ boundaries)
/* get optimal plane at each point */
for each point in points

plane← SOLVE(AUGMENT(MDP , point, ρ)
if plane not in planes

then newplanes← newplanes ∪ {plane}
planes← planes ∪ newplanes

while |newplanes| > 0
return planes

Figure 1: Coverage Set Algorithm

returns an optimal joint policy. The remaining functions are
described in detail below.

3.1 Creating Augmented MDPs
The first part of the algorithm is to create the augmented

MDPs, which are essentially the underlying MDPs for each
agent with an augmented reward function. The new reward
is calculated from the original reward, the joint reward struc-
ture and the policy of the other agent. The influence of the
other agent’s policy on the augmented MDP can be cap-
tured by a vector of probabilities, which is a point in the
following parameter space.

Definition 13. The parameter space is an |ρ| dimen-
sional space where each dimension has a range of [0, 1]. Each
policy πj has a corresponding point in the parameter space,
x̄πj , which measures the probabilities that each one of the
events in ρ will occur when agent j follows policy πj:

x̄πj = [P (Ej1|πj), P (Ej2|πj), ..., P (Ej|ρ||πj)].

Given a point in the parameter space, x̄πj , agent i can de-
fine a decision problem that accurately represents the global
value instead of its local value. It can do this because both

the joint reward structure and agent j’s policy are fixed.
This new decision problem is defined as an augmented MDP.

Definition 14. An augmented MDP, MDP
x̄πj
i , is de-

fined as < Si, Ai, Pi, R
′
i, x̄πj , ρ >, where x̄πj is a point in the

parameter space computed from the policy for agent j, ρ is
the joint reward structure and R′i is:

R′i(e) = Ri(e) +

|ρ|∑
k=1

δkP (Ejk|πj)ck,

where δk =

{
1 e ∈ Eik
0 otherwise

Note that e = (s, a, s′) so R(e) is the same as R(s, a, s′).
An intuitive way to think about the augmented MDPs is

in terms of a credit assignment problem. The system re-
ceives an extra reward if an event occurs for both agents.
However, instead of giving that reward to the system, the
reward could be divided up between the agents. An aug-
mented MDP for agent i represents giving all of the credit
(extra expected reward) to agent i.

Theorem 1. The value of a policy πi over MDP
x̄πj
i is:

V
x̄πj
πi (si0) = Vπi(s

i
0) + JV (ρ|πi, πj).

Proof. The value of an MDP given a policy can be cal-
culated by summing over all time steps t and all events e,
the probability of seeing e after exactly t steps, times the
reward gained from e:

V
x̄πj
πi (si0) =

∞∑
t=0

∑
e

Pt(e|πi)R′(e)

=

∞∑
t=0

∑
e

Pt(e|πi)

Ri(e) +

|ρ|∑
k=1

δkP (Ejk|πj)ck

=

∞∑
t=0

∑
e

Pt(e|πi)Ri(e) +

∞∑
t=0

∑
e

|ρ|∑
k=1

δkPt(e|πi)P (Ejk|πj)ck

= Vπi(s
i
0) +

|ρ|∑
k=1

P (Ejk|πj)ck
∞∑
t=0

∑
e∈Ei

k

Pt(e|πi)

= Vπi(s
i
0) +

|ρ|∑
k=1

P (Ejk|πj)P (Eik|πi)ck

= Vπi(s
i
0) + JV (ρ|πi, πj).

The function AUGMENT in Figure 1 takes an MDP, a
policy and a joint reward structure and returns an aug-
mented MDP according to Definition 14.

Since the joint value function has been neatly folded into
the value of an augmented MDP, the global value function
can be rewritten as:

GV (π1, π2) = V
x̄π2
π1 (s1

0) + Vπ2(s2
0) = Vπ1(s1

0) + V
x̄π1
π2 (s2

0)
(3)

From this it is easy to show that an optimal joint policy
is a Nash equilibrium.

Proposition 1. An optimal joint policy (π1, π2)∗ is a
Nash equilibrium over the augmented MDPs:

V
x̄π2
π1 = max

π′1

V
x̄π2
π′1

(s1
0)

V
x̄π1
π2 = max

π′2

V
x̄π1
π′2

(s2
0).

Proof. Assume ∃π′1 6= π1 : V
x̄π2
π′1

(s1
0) > V

x̄π2
π1 (s1

0).

From Equation 3:

GV (π′1, π2) = V
x̄π2
π′1

(s1
0) + Vπ2(s2

0)

GV (π1, π2) = V
x̄π2
π1 (s1

0) + Vπ2(s2
0)

Therefore, GV (π′1, π2) > GV (π1, π2). This contradicts
(π1, π2)∗. By symmetry, we can show the same for π2.
Therefore, the optimal joint policy is a Nash equilibrium
over augmented MDPs.

This naturally suggests an iterative hill-climbing algo-
rithm where the policy for one agent is fixed and the optimal
policy for the other agent’s augmented MDP is computed.
Then the new policy is fixed and a new optimal policy for the
first agent is computed. Repeating this process will converge
upon a locally optimal solution, and with random restarts
it becomes an attractive approximation algorithm.

The problem is that it provides no guarantees. No matter
how long it is run, there is always the possibility that it
will not find the optimal joint policy. We circumvent this
problem by providing an algorithm that finds all of the local
maxima. In the average problem this is feasible because the
number of local maxima is orders of magnitude fewer than
the number of policies (though certainly a problem could be
crafted in which this is not the case).

3.2 Finding the Optimal Coverage Set
An augmented MDP is defined over a point in the param-

eter space, which is a continuous space. This means that
for both agents, there are an infinite number of augmented
MDPs, however, only a finite number of them are poten-
tially meaningful: the ones where the point in parameter
space corresponds to a policy of the other agent. Generally,
most of the augmented MDPs have the same optimal poli-
cies, so the set of all optimal policies for all of the augmented
MDPs for one agent is quite small. This set is what we call
the optimal coverage set.

Definition 15. The optimal coverage set, Oi, is the
set of optimal policies for MDP x̄

i given any point in param-
eter space, x̄:

Oi = {πi | ∃x̄, πi = argmaxπ′i
V x̄π′i(s

i
0)}.

Another way to look at the optimal coverage set is to
examine the geometric representation of a policy over the
parameter space. The value of a policy πi, given in The-

orem 1, is a linear equation. If |x̄πj | = 1, then the value
function is a line in two dimensions. When |x̄πj | = 2, the
value function is a plane in three dimensions. In general,
|x̄πj | = n and the value function is a hyperplane in n + 1
dimensions.

The optimal coverage set, then, is the set of hyperplanes
that are highest in the n + 1 dimension for all points in
the parameter space (first n dimensions). Figure 2 gives an
example of planes over a 2-dimensional parameter space.

Figure 2: Intersecting Planes. (a) The first iteration checks the corners of the parameter space: (0, 0), (0, 1),
(1, 0), (1, 1), which yields three planes. In the second iteration four new useful points are found. The top three
all have the same optimal plane, which is added in (b). The fourth point yields the plane added in (c). The
next iteration produces eight new useful points, two of which result in the sixth plane, added in (d). The
next iteration finds no new optimal planes and terminates, returning the set of six policies.

Theorem 2. If two points x̄ and ȳ in n-dimensional pa-
rameter space have the same corresponding optimal policy
πi, then all points on f(α) = x̄ + α(ȳ − x̄), 0 ≤ α ≤ 1, the
line segment between x̄ and ȳ, have optimal policy πi.

Proof.

Let π = argmaxπV
x̄
π (s0) = argmaxπV

ȳ
π (s0),

z̄ = f(α0), 0 < α0 < 1, and
π′ = argmaxπ′′V

z̄
π′′(s0).

Assume V z̄π (s0) < V z̄π′(s0). We know V x̄π (s0) ≥ V x̄π′(s0), and
because V (·) and f(·) are linear functions, we can compute
their value at f(1) = ȳ by computing the unit slope.

V ȳπ (s0) =
V z̄π (s0)− V x̄π (s0)

α0
+ V x̄π (s0)

V ȳπ′(s0) =
V z̄π′(s0)− V x̄π′(s0)

α0
+ V x̄π′(s0)

V ȳπ (s0) < V ȳπ′(s0)

This contradicts that π is optimal at ȳ, therefore

V z̄π (s0) = V z̄π′(s0).

A bounded polyhedron in n dimensions is composed of a
set of faces, which are bounded polyhedra in n − 1 dimen-
sions. The corners of a bounded polyhedron are the points
(polyhedra in 0 dimensions) that the polyhedron recursively
reduces to.

Theorem 3. Given a bounded polyhedron in n dimen-
sions whose corners all have the same corresponding optimal
policy πi, any point on the surface or in the interior of that
polyhedron also has optimal policy πi.

Proof. By induction on the number of dimensions
Base case: n=1. A polyhedron in 1 dimension is a line
segment with corners being the endpoints. From Theorem

2, all points on the line have optimal policy πi.
Inductive case: Assume true for n − 1, show true for n.
From the inductive assumption, all points in the faces of the
polyhedron have optimal policy πi. For any point within
the polyhedron, a line passing through that point intersects
exactly two faces. From Theorem 2, this point has optimal
policy πi.

The part of the algorithm discussed in this section is han-
dled by the function COVERAGE-SET in Figure 1. It takes
an MDP and a joint reward structure and returns the opti-
mal coverage set, based on Theorem 3. To illustrate how
this works, we will step through a small example.

Consider an instance of the Mars rover problem with just
two elements in the joint reward structure: (E1

1 , E
2
1 , c1) and

(E1
2 , E

2
2 , c2). The function CSA calls COVERAGE-SET on

MDP1 and ρ. The first thing that COVERAGE-SET does
is to create the boundaries of the parameter space. These
are the hyperplanes that enclose the parameter space. Since
each dimension is a probability, it can range from 0 to 1,
so in this case there are 4 boundary lines: x1 = 0, x1 = 1,
x2 = 0, x2 = 1. The algorithm then loops until no new
planes are found.

In each loop, INTERSECT is called on the set of known
boundary and policy hyperplanes. INTERSECT takes a set
of hyperplanes and returns a set of points that represent the
intersections of those hyperplanes. The simple implemen-
tation would just return every intersection point, however
many of those points are not useful–those that lie outside
the parameter space or lie below a known optimal plane.
For example, Figure 2(d) has six policy planes and the four
boundaries of the parameter space. The total number of
points is approximately 84, but only the 14 visible points
are necessary to divide up the parameter space into the set
of polygons.

After computing the set of points, the augmented MDP
for each of those points is created and the optimal policy
for each of those augmented MDPs is computed by SOLVE,
which can use standard dynamic programming algorithms.
The value of a policy and a point in parameter space is

V
x̄π2
π1 (s1

0) = P (E1
1 |π1)P (E2

1 |π2)c1 +

P (E1
2 |π1)P (E2

2 |π2)c2 + Vπ1(s1
0).

For a given π1, the value function is a plane over the param-
eter space. The plane for the new optimal policies will either
be equivalent (different policy but same value) or equal to
a plane already in the coverage set, or it will be better than
every other plane in the coverage set at this point in param-
eter space. If it is the latter case, this new plane is added

0

2

4

6

8

10

12

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76
Size of Optimal Coverage Set

%
 T

ot
al

Figure 3: Distribution over the size of the optimal
coverage set. The rightmost column is ≥ 76.

to the coverage set. If a complete iteration does not find
any new planes, then the loop terminates and the current
coverage set is returned.

3.3 Selecting the Optimal Joint Policy
Given an optimal coverage set for agent i (considering the

joint reward ρ), finding the optimal joint policy is straight-
forward. From Proposition 1 and Definition 15 we know
that one of the policies in the optimal coverage set is a part
of an optimal joint policy. Therefore, finding the optimal
joint policy reduces to policy search through the optimal
coverage set. For each policy in agent i’s optimal coverage
set, create the corresponding augmented MDP for agent j
and find its optimal policy. The optimal joint policy is the
pair with the highest global value.

The function GV returns the global value as defined in
Definition 11.

Theorem 4. The coverage set algorithm always returns
the optimal value.

Proof. To prove that the coverage set algorithm always
returns the optimal value, we show that the algorithm termi-
nates, it finds the optimal coverage set, and then it returns
the optimal joint policy.

Termination – Three of the four loops in this algorithm
iterate over the elements in finite, unmodified sets. The
fourth loop is the do ... while | newplanes |> 0. In every
iteration, policies for the MDP are added to newplanes only
if they have not been added in a previous iteration. Since
the set of possible policies is finite, eventually there will be
no policies to add and the loop will terminate.

Optimal coverage set is found – All the planes/policies
in the returned set are derived by solving the corresponding
MDP using dynamic programming and are therefore opti-
mal. All the relevant point intersections between the hyper-
planes are found. This set of points divides the parameter
space into a set of polyhedra. From Theorem 3 if no new
optimal policies are found from those points, then the set of
optimal policies is the optimal coverage set.

The optimal joint policy is returned – The set of joint
policies created by taking an optimal coverage set and find-
ing the corresponding optimal policy for the other agent in-

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50 60 70 80
Size of Optimal Coverage Set

V

al
ue

 I
te

ra
ti

on
s

Figure 4: Number of value iterations by the size of
the optimal coverage set.

cludes all Nash equilibria. The algorithm returns the best of
those equilibria, which from Proposition 1 is the optimal
joint policy.

4. EXPERIMENTAL RESULTS
We have implemented a version of this algorithm that

works on problems with a 2-dimensional parameter space,
and we have tested it on a number of randomly generated
problems. The test instances were modeled after the Mars
rover example used throughout this paper. There are two
rovers, each with an ordered set of sites to visit and collect
data. The state for each rover is composed of their current
task, and the current time left in the day. The action for
each state is to skip the current site or to collect data at
the current site. If the rover chooses skip, then it moves
on to the next site without spending any time. There is a
distribution over time to collect data, but it always succeeds
unless the time in the day runs out.

The problem instances generated had a total time of 15
hours and 6 sites for a total of 90 states for each rover. The
reward for skipping a task was 0, and for collecting at a site
was randomly chosen from a uniform distribution between
0.1 and 1.0. The time to collect was a Gaussian distribution
with a mean between 4.0 and 6.0 and a variance 40% of the
mean. Two of the sites (3 and 4) had a reward that was
superadditive in the global value. c1 and c2 were randomly
chosen from a uniform distribution between 0.05 and 0.5.

Data was collected from 4208 random problems. About
11% of the underlying MDPs were trivial, that is, the op-
timal coverage set only included one policy. At the other
extreme, about 7% of the underlying MDPs were hard, and
had a large number of policies in the optimal coverage set.
In our tests, we considered an optimal coverage set of size
≥ 76 to be hard. The average size (not including the hard
problems) was 13.3. The full distribution can be seen in
Figure 3.

Figure 4 demonstrates how this algorithm scales with the
size of the optimal coverage set. The average number of
value iterations was 1963. The number of reachable states
in this problem ranged from 70 to 75. To solve this using
brute force policy search would result in at least 270 policy
evaluations. While policy evaluation is usually cheaper than
value iteration, it is still clearly infeasible for these problems.

To collect this data, we used a brute force intersection al-
gorithm that found all of the intersection points and weeded
out only those that were out of bounds. It did not check to
see whether the points were below another already known
plane. We also cached the results of each run of value it-
eration and never ran it twice on the same point. We are
working on a more efficient implementation of the function
INTERSECT that will not need to intersect all planes to
find the interesting points. This will lead to both a faster
INTERSECT function, and fewer runs of value iteration.

5. CONCLUSION
The framework of decentralized MDPs has been proposed

to model cooperative multi-agent systems in which agents
receive only partial information about the world. Comput-
ing the optimal solution to the general class is NEXP-hard,
and the only known algorithm is brute force policy search.
We have identified an interesting subset of problems called
transition-independent DEC-MDPs, and designed and im-
plemented an algorithm that returns the optimal joint policy
for these problems.

Besides being the first optimal algorithm to solve any non-
trivial class of DEC-MDPs, the new algorithm can help es-
tablish a baseline for evaluating approximate solutions. Us-
ing the exact algorithm, other experiments have shown that
a simple hill-climbing algorithm with random restarts per-
forms quite well. In many cases, it finds the optimal joint
policy very quickly, which we would not have known without
the coverage set algorithm to identify it.

The new algorithm performed well on randomly gener-
ated problems within a simple experimental testbed. A
more comprehensive evaluation is the focus of future work.
This will include a formal analysis of the algorithm’s running
time, and testing the algorithm with more complex problem
instances. This algorithm is also naturally an anytime algo-
rithm, because the COVERAGE-SET function could termi-
nate at any time and return a subset of the optimal coverage
set. We will explore this more in future work. We also plan
to explore the range of problems that can be modeled within
this framework. For example, one problem that seems to fit
the framework involves a pair of agents acting with some
shared resources. If together they use more than the to-
tal available amount of one of the resources, they incur a
penalty representing the cost of acquiring additional units
of that resource.

Finally, the optimal coverage set is an efficient represen-
tation of the changes in the environment that would cause
an agent to adopt a different policy. This information could
be extremely useful in deciding when and what to commu-
nicate or negotiate with the other agents. In future work,
we will explore ways to use this representation in order to
develop communication protocols that are sensitive to the
cost of communication.

6. ACKNOWLEDGMENTS
We thank Daniel Bernstein for useful feedback on earlier

versions of this paper. This work was supported in part
by NASA under grant NCC 2-1311 and by the National
Science Foundation under grant IIS-0219606. Any opinions,
findings, conclusions or recommendations expressed in this
material are those of the authors and do not reflect the views
of NASA or NSF.

7. REFERENCES
[1] D.S. Bernstein, R. Givan, N. Immerman, and S.

Zilberstein. The complexity of decentralized control of
Markov decision processes. Mathematics of Operations
Research, 27(4):819-840, November 2002.

[2] C. Boutilier. Sequential optimality and coordination in
multiagent systems. Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence,
478–485, Stockholm, Sweden, 1999.

[3] K. Decker, V. Lesser. Quantitative modeling of complex
environments. International Journal of Intelligent Systems
in Accounting, Finance and Management. Special Issue on
Mathematical and Computational Models and
Characteristics of Agent Behaviour., Volume 2, pp.
215-234. January, 1993.

[4] M. Ghavamzadeh and S. Mahadevan. A multiagent
reinforcement learning algorithm by dynamically merging
Markov decision processes. Proceedings of the First
International Conference on Autonomous Agents and
Multiagent Systems, Bologna, Italy, 2002.

[5] C. V. Goldman and S. Zilberstein. Optimizing information
exchange in cooperative multi-agent systems. To appear in
Proceedings of the Second International Joint Conference
on Autonomous Agents and Multiagent Systems,
Melbourne, Australia, 2003.

[6] K. Hsu and S.I. Marcus. Decentralized control of finite
state Markov processes. IEEE Transactions on Automatic
Control, 27(2):426–431, 1982.

[7] M. Mundhenk, J. Goldsmith, C. Lusena, and E. Allender.
Complexity of finite-horizon Markov decision process
problems. Journal of the ACM, 47(4):681–720, 2000.

[8] J.M. Ooi and G.W. Wornell. Decentralized control of a
multiple access broadcast channel: Performance bounds.
Proceedings of the 35th Conference on Decision and
Control, 293–298, 1996.

[9] C.H. Papadimitriou and J. Tsitsiklis. The complexity of
Markov decision processes. Mathematics of Operations
Research, 12(3):441–450, 1987.

[10] L. Peshkin, K.-E. Kim, N. Meuleau, and L.P. Kaelbling.
Learning to cooperate via policy search. Proceedings of the
Sixteenth International Conference on Uncertainty in
Artificial Intelligence, 489–496, 2000.

[11] D. Pynadath and M. Tambe. The communicative
multiagent team decision problem: Analyzing teamwork
theories and models. Journal of Artificial Intelligence
Research, 389–423, 2002.

[12] R. Washington, K. Golden, J. Bresina, D.E. Smith, C.
Anderson, and T. Smith. Autonomous rovers for Mars
exploration. Proceedings of the IEEE Aerospace
Conference, 1999.

[13] P. Xuan and V. Lesser. Multi-agent polices: From
centralized ones to decentralized ones. Proceedings of the
First International Joint Conference on Autonomous
Agents and Multi-Agent Systems, Bologna, Italy, 2002.

[14] P. Xuan, V. Lesser, and S. Zilberstein. Communication
decisions in multi-agent cooperation: Model and
experiments. Proceedings of the Fifth International
Conference on Autonomous Agents, pages 616-623,
Montreal, Canada, 2001.

[15] S. Zilberstein, R. Washington, D. S. Bernstein, and A. I.
Mouaddib. Decision-Theoretic Control of Planetary
Rovers. In M. Beetz et al. (Eds.): Plan-Based control of
Robotic Agents, LNAI, No. 2466, 270–289, 2002.

