
Learning Task Allocation via Multi-level Policy Gradient Algorithm with Dynamic
Learning Rate

Sherief Abdallah and Victor Lesser
Department of Computer Science

University of Massachusetts
Amherst, Massachusetts 01003
{shario,lesser}@cs.umass.edu

Abstract

Task allocation is the process of assign-
ing tasks to appropriate resources. To
achieve scalability, it is common to use
a network of agents (also called media-
tors) that handles task allocation. This
work proposes a novel multi-level policy
gradient algorithm to solve the local de-
cision problem at each mediator agent.
The higher level policy stochastically
chooses a task decomposition. The lower
level policy assigns subtasks to neigh-
boring agents also stochastically. Agents
learn autonomously, cooperatively, and
concurrently to increase system perfor-
mance. No state information is used ex-
cept for the task being allocated. Fur-
thermore, the algorithm dynamically ad-
justs the learning rate, to speed up con-
vergence, using the ratio of action val-
ues. Experimental results show how our
proposed solution outperforms other de-
terministic approaches by balancing the
load over resources and converging faster
to better policies.

1 Introduction
Task allocation is the process of assigning tasks to appro-
priate resources. The problem appears in many real appli-
cations like the Grid, web services, sensor nets and other
domains[Czajkowski and et al, 2001]. Consider the web ser-
vices as an example. In that domain there are servers dis-
tributed over the web. Each server provides a set of services
for applications. Users may appear anywhere in the web ask-
ing for a composition of services (also called a task) that re-
quires more than one server. Any server can work on more
than one task at a time. However, the cost of executing a task
increases in proportion to the total number of tasks being ser-
viced by the server. Since users usually do not know where
servers are, a network of agents (also called mediators) that
know about different servers is used. Such agents take re-
quests from users and reply to users with the appropriate set
of servers.

This work illustrates how agents in such a network can
learn to work cooperatively in order to optimize the task al-
location problem. In particular, this work proposes a novel
multi-level policy gradient algorithm to optimize the local de-
cision of each agent in the network. The higher level policy
stochastically chooses a task decomposition. The lower level
policy stochastically assigns subtasks to neighboring agents.
Agents learn autonomously, cooperatively, and concurrently
to minimize the cost of executing tasks. The algorithm does
not use any state information except the type of the task be-
ing allocated and estimates of the cost for assigning task types
to neighbors. Furthermore, to speed up convergence, our pro-
posed algorithm dynamically changes the learning rate in pro-
portion to the cost of choosing an action (whether this action
is choosing a decomposition or assigning a task to a neigh-
bor).

Two factors make the problem both interesting and chal-
lenging: the limited local view of each agent and the need
for load balancing. In large distributed systems, having a
global view of the system’s state is impossible from practi-
cal point of view. Agents usually rely on their limited local
view and use communication to augment this view. This is
a trade-off between optimality and scalability. In our sys-
tem, the only a priori knowledge known by an agent (as will
be described shortly) is the addresses of its direct neighbors.
Furthermore, agents do not communicate their states, but rely
solely on the statistical outcomes of interacting with neigh-
boring agents. In other words, agent A’s knowledge about its
neighbor agent B is summarized via a statistical average of
previous outcomes when A tried assigning a task to B.

What makes load balancing needed in many real systems
is the nonlinear increase of task execution cost with respect
to the increase in load. Cost here is a signal of the system’s
performance. For example, cost may increase due to an in-
crease in task waiting time to indicate a reduction in users’
satisfaction. Therefore, in real systems, it is almost always
better to divide the load as fairly as possible among servers
and resources. The algorithm presented in this paper aims
at balancing the load over servers/resources. Experimental
results show how our algorithm significantly outperforms de-
terministic approaches that ignore load balancing.

The paper is organized as follows. The rest of this section
presents a motivating example. Then a formal problem def-
inition is presented, followed by a description of local agent

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

76

decision problem. Next a description of our algorithm that
optimizes the local agent decision is given. Experimental re-
sults are then presented and discussed, showing how our al-
gorithm outperforms other deterministic approaches. Then a
discussion of related work is given. We finally conclude and
lay out our future directions.

1.1 Motivating Example
To get a better insight into the complexity of the decision
making of each agent, consider the example in Figure 1. This
system consists of three agents, MA, MD, and MF . Each
agent is connected to two resources. There are two main types
of resources, A and B. Resource Ai is of type A and can
undertake only task type TA. Similarly, resource Bi is of
type B and can only undertake task type TB. Resources Af

and Bf are of types A and B respectively but they are fast
resources that need half the time of other resources to fin-
ish their tasks. Task TAB is a more complex task that has
three alternative decompositions: {TA, TA}, {TB, TB} and
{TA, TB}. However, only agent MD knows how to decom-
pose task TAB.

Suppose agent MA receives many tasks of type TA. If
MA always chooses A1 to assign TA to (i.e. determinis-
tic policy), then A1 will be overloaded and its cost rapidly
increases. After several trials, MA will not see A1 as ap-
pealing and will switch its policy to another neighbor. As the
other neighbor gets overloaded MA will switch again and so
on. This means that MA will not converge on a determinis-
tic policy and will keep oscillating after spikes of high costs
due to overloading. One would expect a stochastic policy,
where MA chooses each neighbor with a certain probability,
would perform better. Similarly, suppose agent MD receives
a task of type TAB. MD then needs to choose among the
three possible decompositions of TAB. Each decomposition
imposes certain load patterns on the system. For example,
always choosing the decomposition {TA, TB} means there
will be equal load on both resource types A and B.

Figure 1: A network of agents that are responsible for assigning
resources to incoming tasks.

2 Problem Definition
Let T = {T1, ..., T|T |} be the set of task types. Different
instances of tasks types appear randomly at different agents.
Each task instance Ij is defined by an arrival time tIj

, a task

type TIj
∈ T , and a payoff OIj

. A decomposition function
D(Ti) = {d1, ..., d|D(Ti)|} associates with each task a set of
decompositions, where di ⊆ T (hence D(Ti) provides alter-
native ways to do task Ti). The system has a set of resources
R = {R1, ..., R|R|}. A resource Ri can undertake a set of
task types HRi

⊆ T . ∀Tj ∈ HRi
: FRi

(Tj) > 0 is the time
resource Ri needs to finish a task of type Tj . The cost of ex-
ecuting a task Tj at resource Ri at time t is C

t(Tj , Ri). The
cost is time-dependent because it depends on the total load
on resource Ri at that time. The goal is to optimize the al-
location of tasks to appropriate resources such that net profit
(which is payoff reduced by total cost) over period of time
∆ is maximized. More formally, the global system goal is to
maximize the objective function Γ defined as follows.

Γ =
∑

I:tI∈∆

OI −
∑

〈Ti,Rj〉∈A

C
tI (Ti, Rj)

where A = {a1, ..., a|A|} is a set of task-resource assign-
ments, where ai = 〈Ti, Ri〉. However, because there is not
any centralized entity that has a global view of the whole sys-
tem, evaluating and optimizing Γ is practically impossible.
Instead, one needs a local objective function ΓMx

that each
agent Mx attempts to optimize. Let M = {M1, ...,M|M |}
be the set of agents interconnecting the set of resources R.
Each agent Mx has a set of neighbors N(Mx) ⊆ M ∪ R.
Each agent knows of a set of decompositions DMx

, where
DMx

(Tj) ⊆ D(Tj). The goal of each agent Mx is to allo-
cate incoming task instance I = 〈tI , TI , OI〉 to neighboring
agents such that ΓMx

(I) is maximized, where

ΓMx
(I) = OI −

∑

〈Ti,nj〉∈AMx (I,d)

C
tI (Ti, nj)

where AMx
(I, d) = {ak : ak = 〈Ti, nj〉} is a set of task-

neighbor assignments, where nj ∈ N(Mx) and Ti ∈ d ∈
DMx

(TI). C
tI (Ti, nj) is the cost of assigning task Ti to

neighbor nj . In other words, agent Mi needs to find both
a decomposition d and an assignment of neighbors to each
of the subtask types in d such that the total estimated cost of
executing I is maximized (note that cost is negative). The
cost C

tI (Ti, nj) is only an estimation because it depends on
how agent nj will conduct the allocation of Ti. For exam-
ple, if nj is still learning then it is likely that the cost will
be higher than the real cost (e.g. because nj is allocating Ti

poorly). As agents interact with each other, one would hope
that the local agent policies converge to good (if not optimal)
collective policy. Therefore, the local objective function at
each agent ΓMi

only approximates the global objective func-
tion Γ. However, as the results in this paper show, using our
algorithm agents successfully converge and learn cooperate
in allocating tasks. The following section presents our algo-
rithm

3 Multi-level policy gradient algorithm
An agent, in a task allocation framework, makes its decision
in a two-step process. First, it chooses a decomposition from
the set of alternative decompositions. Then for each sub-
task in the chosen decomposition the agent chooses one of

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

77

its neighbors to assign. Formally, each agent needs to learn
two policies: πhigh(Ti, dj) and πlow(Ti, nj). πhigh(Ti, dj)
is the probability of choosing decomposition dj ∈ D(Ti),
while πlow(Ti, nj) is the probability of choosing neighbor nj

to assign to task Ti. Any of the two policies (or both) can be
deterministic (e.g. ∀Ti∃nj : π(Ti, nj) = 1). However, one
would expect deterministic policies to be suboptimal as they
can not balance the load as well as stochastic policies.

While πlow could have been conditioned on the chosen
composition (i.e. π

dk

low(Ti, nj), where dk is the chosen de-
composition by πhigh) we opted to make both πhigh and πlow

independent. This speeds up learning, because a single πlow

is shared across decompositions and across tasks, but is not
always optimal. For example, consider again the scenario in
Figure 1. Let agent MA receives task TAB and assume MA

can decompose TAB to {TA, TA}. Now the cost of assign-
ing one task TA to A1 is not independent of the decomposi-
tion. The cost depends on how the other task is assigned (if
both are assigned to the same agent then the cost should be
higher). Nevertheless, in most cases this is a valid approxi-
mation as verified by our results.

Agents communicate with each other using messages.
There are only two types of messages: REQUEST and RE-
SPONSE. A agent Msender sends a REQUEST message
to agent Mreceiver asking it to accomplish certain task.
Mreceiver estimates the cost for accomplishing the requested
task (as will be described shortly) and sends a RESPONSE
message, with the estimated cost, back to Msender. There-
fore, the operation of each agent is driven by received mes-
sages (i.e. event driven) and is divided into two algorithms for
processing each message type. Algorithm 1 is where decision
making occurs (deciding how to decompose a task and assign
subtasks) while Algorithm 2 is where learning takes place.

Algorithm 1: Process REQUEST message
Input: REQUEST from Msender to Mreceiver to do task Ti

begin1.1
Choose a decomposition d∗ uniformly at random1.2
proportional to πhigh(Ti, dj), ∀dj ∈ D(Ti).
for each task Tk ∈ d∗ choose a neighbor nl uniformly at1.3
random proportional to πlow(Tk, nl),
∀nl ∈ N(Mreceiver). Let A = {a1, ..., a|d∗|} be the
chosen set of assignments for each subtask of d∗, where
ak = 〈Tak

, nak
〉.

Send a RESPONSE message to Msender with the1.4
estimated cost of A, CTi

=
∑

〈Ti,nj〉∈A
C(Ti, nj).

Send REQUEST messages to neighbors according to A.1.5

end1.6

3.1 Learning
Learning a stochastic policy is usually slower and more diffi-
cult than learning a deterministic policy (Q-learning [Sutton
and Barto, 1999] is a well known and understood learning al-
gorithm for deterministic policies). Learning a stochastic pol-
icy usually involves some sort of policy gradient algorithms
as described in Algorithm 2. The main unknown variable for
each agent is the cost of assigning a certain task type to a

Algorithm 2: Process RESPONSE message
Input: RESPONSE from neighbor nj regarding task Ti with

estimated cost C
begin2.1

Let n∗ = argmaxnj
C(Ti, nj).2.2

update the cost C(Ti, nj)← (1− α)C(Ti, nj) + αC.2.3
update policy (either deterministically or stochastically as2.4
described shortly)

end2.5

neighbor. This negative value can be learned using a simple
update equation derived from Q-routing [Boyan and Littman,
1994]: C(Ti, nj) ← (1 − α)C(Ti, nj) + αC

new(Ti, nj).
The equation merges previous cost estimate, C(Ti, nj) , with
a newly received cost estimate, C

new(Ti, nj), using a weight
parameter α.

Updating policies πlow and πhigh can be done either de-
terministically using Q-routing-based [Boyan and Littman,
1994] approach or stochastically using policy gradient ap-
proach. Algorithm 3 shows the deterministic approach while
Algorithm 4 shows the policy gradient approach. Experimen-
tal results compares both extremes and hybrids of them.

Algorithm 3: Deterministic Policy Update
Input: task Ti

begin3.1
∀nj : πlow(Ti, nj)← 1 iff nj = argmaxkCnk

(Ti)3.2
otherwise πlow(Ti, nj)← 03.3
∀Tl, dj s.t. Ti ∈ dj and dj ∈ D(Tl) : πhigh(Tl, dj)← 13.4
iff dj = argmaxk

∑
Tu∈dk

maxmCnm(Tu)

otherwise πhigh(Tl, dj)← 03.5

end3.6

Algorithm 4: Policy Gradient Update
Input: task Ti and neighbor nj

begin4.1
πlow(Ti, nj)← πlow(Ti, nj) + δ iff4.2
nj = argmaxkCnk

(Ti)
otherwise πlow(Ti, nj)← π(Ti, nj)− δ4.3
normalize πlow s.t.

∑
nj

π(Ti, nj) = 14.4

∀Tk, dl s.t. dl ∈ D(Tk) and Ti ∈ dl :4.5
πhigh(Tk, dl)← πhigh(Tk, dl) + δ if dl is the best
decomposition for Tk

otherwise πhigh(Tk, dl)← π(Tk, dl)− δ4.74.7
normalize πhigh s.t.

∑
dj

π(Ti, dj) = 14.8

end4.9

The policy gradient algorithm above uses a fixed learning
rate δ. The smaller δ is the more careful our algorithm ex-
plores the policy space, and hence the more likely it will
converge to an optimal policy. However, the smaller the
δ is the slower the convergence. In this work we propose
using dynamic learning rates that are derived from learned
costs. The use of different learning rate of an agent de-
pending on the agent’s performance has been proposed be-
fore [Michael Bowling, 2002]. However, previous work

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

78

only used two fixed values of learning rates. We propose
taking advantage of the consistency of the cost estimates
(all are non positives) and scales δ accordingly. In par-
ticular, line 4.7 is modified to “otherwise πhigh(Tk, dl) ←

π(Tk, dl) − δ
C(Tk,dl)

maxdu C(Tk,du)”, where C(Tk, du) is the maxi-
mum cost of allocating Tk if decomposition du ∈ Tk is cho-
sen; i.e. C(Tk, du) =

∑

Ti∈du
maxnj

C(Ti, nj). To prevent
spikes in learning rate, especially in the beginning of learning,
the learning rate is not allowed to surpass a threshold δmax.

3.2 Cycles
Like any routing algorithm, it is possible to have cyclic poli-
cies. For example, two neighboring agents may send the same
task back and forth between each other. Such a policy is un-
desirable as it wastes system resources without getting any
real work done. This problem has two aspects. The first is
detecting such a cycle. The second is choosing an appropri-
ate reinforcement signal to penalize such behavior.

There are two known methods to detect cycles. The first
method assigns a unique identifier for each task. Each agent
then keeps track of task identifiers it had seen. A cycle is
detected once a task identifier is seen twice. Two problems
make this approach unappealing: ensuring the uniqueness of
task identifiers across the distributed network and deciding
for how long to keep task identifiers. A simpler yet approx-
imate approach is to use the age of a task to detect a cycle.
If a task has been floating in the system for too long, then
it is likely that there is a cycle. What makes this approach
approximate is defining the maximum age. Optimally, max-
imum age should be the diameter of the network. However,
in an open and dynamic system, it is unlikely that any agent
would know the diameter of the network. We use the second
approach in our experiments.

Once a cycle is detected at an agent, the system faces the
credit assignment problem: determining who is/are responsi-
ble and penalizing them. Several factors make this problem
difficult: use of stochastic policies, partial observability, and
using task age for detecting cycles. All these factors add un-
certainty to determining who is/are responsible for the cycle.
For example, the agent that received an old task may not even
be part of the cycle. The work in [Tao et al., 2001] used a
global penalty signal (i.e. all agents are penalized once a cy-
cle is detected). Their approach does not scale to a large open
system. Our work on the other hand uses a local penalty:
the agent who received a too old task sends a high nega-
tive penalty to the sender of that task. Experimental results
show the effectiveness of this approach in conjunction with
our learning algorithm.

4 Experimental Results
The first part of our results evaluate the performance using
the example scenario in Figure 1. This helps in getting better
understanding of how our approach works. The second part
evaluates the scalability of the approach using the scenario
in Figure 2. Both parts aim at evaluating the benefit of both
multi-leveled policies and the dynamic learning rate.

For the small scenario in Figure 1, in each time step a
task of type TAB appear at agent MF with probability 0.5

and at agent MA with probability 0.5. Agent MD, the only
agent who knows how to decompose TAB, does not receive
any task directly. The cost of any task at a resource R is
−10× load(R)2, where load(R) is the number of tasks cur-
rently being serviced at resource R. When a resource fails to
accomplish a task (e.g. when a resource of type A is assigned
a task of type TB), a penalty of -10000 is imposed as a cost.
A task also fails if it reaches age 10 time units. The cost of
communicating a task to a neighbor is -1. Tasks takes 5 time
units to execute on resources of type A or B and only 3 time
units to execute on either Af or Bf .

Figure 3 compares the performance of our algorithm for
three settings of the learning rate δ: dynamic between 0.0001
and 0.01, static at 0.01, and static at 0.0001. The horizontal
axis is the time steps while the vertical axis is the absolute
sum of incurred costs per 100 time steps, averaged over 10
simulation runs (lower is better). The static-at-0.0001 is too
slow and it did not converge even after 10000 times steps.
As expected, a larger static learning rate (0.01) leads to faster
convergence. Using a dynamic learning rate strikes a balance
by converging to a much better policy than static-at-0.01 (less
than 25% of its cost) in much less time than the static-at-
0.0001. Although there might be a static learning rate that
achieves performance similar to that of the dynamic rate, it is
much harder to fine tune the learning rate to a fixed value than
to specify the range of the dynamic rate (we used δ = 0.0001
and δmax = 0.01).

steps
0 2000 4000 6000 8000 10000

co
st

0

200000

400000

600000

800000

1e+06

dynamic

static−0.0001

static−0.01

Figure 3: The effect of the dynamic learning rate.

Figure 4 compares the performance of our algorithm using
four settings of the policies πlow and πhigh: both are deter-
ministic (deterministic), only πlow is stochastic (low), only
πhigh is stochastic (high), and both are stochastic (two-level).
As expected, two-level is the slowest to converge but achieves
the lowest steady cost (about 80% of the second lowest steady
cost, low). On the other hand, and to our surprise, high con-
verges faster than deterministic (and achieves lower steady
cost than deterministic, which is expected). The reason is
that even without any learning, πhigh selects a decomposition
uniformly at random. This slightly balances the load with-
out paying the price of slow convergence due to learning a
stochastic πlow.

Figure 5 illustrates the evolution of stochastic policies in
agents MD and MA during a simulation run. The horizontal
axis represents time steps. The vertical axis represents poli-
cies, i.e. the total 1.0 probability divided over actions (an

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

79

Figure 2: A large scale network of 100 resources and 20 agents.

steps
0 2000 4000 6000 8000 10000

co
st

0

200000

400000

600000

800000

1e+06

two−level

high

low

deterministic

Figure 4: The effect of two level stochastic policies on perfor-
mance.

action is a neighbor in case of πlow and a decomposition in
case of πhigh). Figure 5(a) shows πlow of task TB at agent
MD. There are four possible assignments of TB, to each
neighbor of MD. The probability of assigning A3, which is
a resource of type A, quickly drops to zero as expected. Also
since MA is not directly controlling any resources of type B,
the probability of MD choosing MA also drops to zero but
after a while (about 6000 steps). The reasons are cycles and
indirect links. Initially MD may send a request for a task of
type TB to MA who in turn either sends it to MF or back to
MD. However, using the simple maximum task age mech-
anism, eventually MD learns to stop sending tasks of type
TB to MA. In the end, MD only chooses among two as-
signments for TB: B1 and MF , with more probability of
choosing MF . This what one would expect to balance the
load: faster resources get more tasks.

Figure 5(b) shows πlow(TB, .) for agent MA. After step
6000 we see the policy almost fixed. This is because MA is
not receiving any tasks of type TB from agent MD, there-

fore it stopped learning about it. Figure 5(c) shows how MD

learns πhigh for different decompositions of task TB. Agent
MD quickly learns to drop decomposition {TA, TB}. The
reason is that this decomposition requires equal numbers of
resource types A and B, while the system contains 4 A re-
sources and only 2 B resources. MD converges to an intu-
itive policy that produces more TA tasks than TB tasks.

The second part of the results show the scalability of our
approach using the system in Figure 2. This system consists
of 100 resources (rectangles) and 20 agents (ellipses). With
probability 0.67 the resource is of type A, otherwise it of type
B. Also with probability 0.67 the resource is normal, other-
wise it is fast. Each agent has two neighboring agents picked
randomly from the set of agents. Each resource is connected
randomly to one of the agents. At each time step, tasks of
type TAB appear at 11 agents (light gray) with probability
0.5. The other 9 agents (dark gray) know how to decompose
tasks of type TAB. Other parameters are the same as the
small scenario. Therefore, the average number of TAB tasks
per 100 time steps is 0.5 × 11 × 100 = 550, which requires
(after decomposition) 1100 resources. A lower bound on the
average cost, assuming perfect knowledge and perfect distri-
bution of load, is 11000. The highest average cost (if all tasks
allocated to the same resource) is Figures 6 and 7 show the
performance of the different approaches in the larger system.
We can see significant savings of our approach compared to
the other approaches.

5 Related Work
In [Hannah and Mouaddib, 2002], a mediator serially allo-
cates tasks to agents. That work used a Markov Decision
Process (MDP) model where actions are agent-task assign-
ments and learned a deterministic policy. This differs from
our work where all subtasks are allocated concurrently and

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

80

steps
0 2000 4000 6000 8000 10000

pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1

MF

MA

B1

A3

(a) πlow(TB, .) for agent MD.

steps
0 2000 4000 6000 8000 10000

pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1

MD

MF

A2

A1

(b) πlow(TB, .) for agent MA.

steps
0 2000 4000 6000 8000 10000

pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1

{TA,TB}

{TB,TB}

{TA,TA}

(c) πhigh(TAB, .) for agent MD.

Figure 5: Policies of different agents.

using two-level stochastic policy. That work also assumed
the set of tasks were fixed and arrived in fixed order, while we
assume tasks arrive stochastically in time and location. They
also assumed agents with homogeneous capabilities, while
our model supports heterogeneous agents.

The work in [Dolgov and Durfee, 2004] modeled the re-
source allocation problem as a constrained MDP, or CMDP.
A CMDP is an MDP augmented with a set of (resource) con-
straints. The set of actions were assumed fixed and the pol-
icy was serial and deterministic. They also used an offline
algorithm which solved the problem assuming the transition
probabilities are known. We use an on-line algorithm without
sharing state information among agents.

Task allocation can be viewed as a more complex and more
general form of packet routing. As in routing, each agent acts
as a router, trying to route the packet through the least costly
path. Packets impose little load on the nodes (resources)

steps
0 2000 4000 6000 8000 10000

co
st

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

dynamic

static−0.0001

static−0.01

Figure 6: The effect of dynamic learning rate in the large system
scenario.

steps
0 2000 4000 6000 8000 10000

co
st

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

two−level

high

low

deterministic

Figure 7: The effect of two level policies in the large system sce-
nario.

as opposed to tasks, which raises the issue of load balanc-
ing. Also task allocation involves alternative decompositions
while packets are routed as non-decomposable units. Most
of the previous work in packet routing [Boyan and Littman,
1994; Kumar and Miikkulainen, 1998] maps the routing prob-
lem to a set of local decision problems for each agent. The
work used reinforcement learning techniques to learn a de-
terministic policy for each router. The goal was to minimize
average packet delay. Experimental results showed the ef-
fectiveness of the approach. More recently, a policy gradi-
ent approach was used to solve the packet routing problem
[Tao et al., 2001]. However, the work ignored the load on the
nodes and only focused on the capacity of links. Their policy
gradient also used a fixed learning rate, unlike the algorithm
presented here.

6 Conclusion and Future Work
This paper presents a novel algorithm that allows agents in a
network to learn cooperatively how to allocate a task. The al-
gorithm learns two-level stochastic policies using policy gra-
dient. The high level policy selects a decomposition for an in-
coming task while the low level policy assigns a neighboring
agent to each task in the selected decomposition. Experimen-
tal results show the benefit of introducing each of these levels
with more than four times saving in cost as compared to de-
terministic approaches. Our algorithm also dynamically ad-
justs the learning rate. Experimental results show how using
a dynamic learning rate significantly speeds up convergence

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

81

while outperforming learners with fixed learning rate.
An interesting issue that was not covered in the paper is

how to set up the network connections, i.e. the neighbor-
hood of each agent N . Optimally, the network should reduce
communication overhead by adapting to task arrival patterns.
For example, an agent that receives many tasks asking for
resource Rx should be connected as closely as possible to re-
sources of that type. A related issue is how the system would
perform in the face of changes in the network (e.g. an agent or
a resource leaving the system or another agent or a resource
entering.) Furthermore, this work models resource failures
implicitly using penalties. An explicit model of failure prob-
ability may allow agents to learn better policies (e.g. pre-
ferring an agent with high probability of failure if its cost is
cheap and the task payoff is low, or vice versa).

References
[Boyan and Littman, 1994] Justin A. Boyan and Michael L.

Littman. Packet routing in dynamically changing net-
works: A reinforcement learning approach. In Jack D.
Cowan, Gerald Tesauro, and Joshua Alspector, editors,
Advances in Neural Information Processing Systems, vol-
ume 6, pages 671–678. Morgan Kaufmann Publishers,
Inc., 1994.

[Czajkowski and et al, 2001] K. Czajkowski and et al. Grid
information services for distributed resource sharing. Pro-
ceedings of the 10th IEEE Symp On High Performance
Distributed Computing, 2001.

[Dolgov and Durfee, 2004] Dmitri Dolgov and Edmund
Durfee. Optimal resource allocation and policy formu-
lation in loosely-coupled markov decision processes. In
In Proceedings of the Fourteenth International Conference
on Automated Planning and Scheduling., 2004.

[Hannah and Mouaddib, 2002] Hosam Hannah and Abdel-
Illah Mouaddib. Task selection problem under uncertainty
as decision-making. In Proceedings of the first interna-
tional joint conference on Autonomous agents and multia-
gent systems, 2002.

[Kumar and Miikkulainen, 1998] Shailesh Kumar and Risto
Miikkulainen. Confidence-based q-routing: An on-line
adaptive network routing algorithm. In Proceedings of Ar-
tificial Neural Networks in Engineering, 1998.

[Michael Bowling, 2002] Manuela Veloso Michael Bowling.
Multiagent learning using a variable learning rate. Artifi-
cial Intelligence, 136(2):215–250, 2002.

[Sutton and Barto, 1999] R Sutton and A Barto. Reinforc-
ment Learning: An Introduction. MIT Press, 1999.

[Tao et al., 2001] Nigel Tao, Jonathan Baxter, and Lex
Weaver. A multi-agent, policy-gradient approach to net-
work routing. In Proc. 18th International Conf. on Ma-
chine Learning, pages 553–560. Morgan Kaufmann, San
Francisco, CA, 2001.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

82

