The Role of an Agent Organization in a Grid Computing Environment

Sherief Abdallah , Haizheng Zhang, and Victor L esser
Computer Science Dept.
University of Massachusetts
{shario,hzhang,lesser} @cs.umass.edu

Abstract

In this paper we show how imposing an organization
(topology and search mechanism) on agents in a peer-
to-peer network can improve system performance. The
organizational structure is the underlying topolgy con-
necting agents in the system. The search mechanism
is how agents are traversed in such a topology. In par-
ticular, we discuss our solutions to a resource alloca-
tion problem, involving coalition formation, and a con-
tent retrieval problem, involving locating relevant doc-
uments.

I ntroduction

Mechanisms for handling issue of scale involving resource
allocation and information retrieval will become increas-
ingly important as the size of Grid computing environments
inevitably grow larger. One of the important ways to achieve
scalability is to impose an organization on the set of agents
in the system. While the term “organization” has different
meanings in different contexts, we focus here on two aspects
of an organization: its structure and the associated search
mechanisms. The organizational structure is the underlying
topolgy connecting agents in the system. The search mech-
anism is how agents are traversed in such a topology. For
example, we can view the Internet as a hierachical organiza-
tional structure and the routing protocols as search mecha-
nisms for this structure.

In this paper we present work that studies the effect of
organizations (topology and search mechanism) on the per-
formance of a system. In particular, we discuss our solutions
to a resource allocation problem, involving coalition forma-
tion, and a content retrieval problem, involving locating rel-
evant documents. Though these ideas originated in the area
of multiagent systems, we believe that they naturally lend
themselves for use in a Grid computing environment.

The first part of this paper proposes a scalable, distributed
solution to the coalition formation problem. This problem
has received considerable attention in multiagent systems
community (Shehory 1998; T. Sandholm 1999). The input to
the coalition formation problem is a set of nodes, each con-
trolling some amount of resources, and a set of tasks, each

Copyright © 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

requiring some amount of resources and each worth some
utility. The solution assigns a subset of nodes to a subset of
tasks, such that each task’s requirements are satisfied and to-
tal utility is maximized. This problem is related to the Grid
Information Service, and in particular to composed queries.
The Grid Information Service (GIS) is responsible for keep-
ing track of the status of every resource in the system and
enabling applications to query about it these resources (Cza-
jkowski & et al 2001). For example, a composed query of
the form “find me a subset of nodes that controls (collec-
tively) at least 1GB of memory and 1 teraFLOPS” can be
directly mapped to a coalition formation task. Our solution
uses an underlying organization that interconnects nodes in
the system. Reinforcement learning techniques and neural-
nets are used to learn appropriate policies. We studied dif-
ferent combinations of organization structures (topologies)
and search mechanisms and our results show how both af-
fect system’s performance.

In the second part of this paper, we also show that such an
organizational approach can benefit a Grid-based informa-
tion retrieval system.® Specifically, we exploit an incremen-
tally accumulated agent-view approch that implicitly defines
an organization among agents to efficiently locate relevant
documents. During this accumulation process, each agent
tailors its neighbors based on content similarity and other
criteria. This process can be considered as an implicit dis-
tributed clustering procedure. Thereafter, two context-aware
search approaches are employed to search on this reorga-
nized topology.

Organization-Based Coalition Formation
Problem Definition

LetT = {T1,T>, ..., T, } be the set of tasks coming into the
Grid during one time window. Each task T; is defined by
the tuple (u;,7ri1,77i2,...,77:,m), Where u; is the utility
gained if task T; is accomplished; and rr; j is the amount
of resource k required by task T;. Let I = {I1, I,,I,}
be the set of individual agents in the system. Each agent I;
is defined by the tuple {cr; 1, cri 2, ..., €T'i m), Where cr; i, IS
the amount of resource & controlled by agent I;.

1This work was jointly authored by H. Zhang, B. Croft, B.
Levine, and V. Lesser (Zhang et al. 2004)

The coalition formation problem is finding a subset of
tasks S C T that maximizes utility while satisfying the
coalition constraints, i.e.:

® D iTes Wi Is maximized

o there exists a set of coalitions C' = {C4, ..., |5}, where
C; C I is the coalition assigned to task 73, such that
vT; € S,Vk : ZI]-EC,- crjr > rrig, and Vi # j o
c;n Cj =0

In other words, each task is assigned a coalition capable
of accomplishing it and any agent can join at most one coali-
tion. This means if the resources controlled (collectively) by
a coalition exceed the amount of resources required by the
assigned task, the excess resources are wasted.?

Problem Solution

Because the coalition formation problem is NP-hard, an op-
timal algorithm will need exponential time in the worst case
(unless NP = P). We need an approximation algorithm that
can exploit information about the problem. If the environ-
ment (in terms of incoming task classes and patterns) does
not follow any statistical model, and agents continually and
rapidly enter and exit the system, there is little information
to be exploited. Luckily, in many real applications the en-
vironment does follow a model, and the system can be as-
sumed closed. In such cases, it is intuitive to take advantage
of this stability and organize the agents in order to guide the
search for future coalitions. We chose to organize agents in
a hierarchy, which is both distributed and scalable.

Figure 1 shows a sample hierarchical organization.® An
individual (the leaves in Figure 1) represents the resources
controlled by a single agent. A manager (shown as a circle
in Figure 1) is a computational role, which can be executed
on any individual agent, or on dedicated computing systems.

Figure 1: An Organization Hierarchy

Each manager M has a set of children, children(M),
which is the set of nodes directly linked below it. So
for instance, in the organization shown in Figure 1,
children(M6) = {I12,113}, while children(M3) =
{M4,M5,M6}. Conversely, each child C' has a set of
managers managers(C'). For example, managers(M4) =
{M3}. For completeness, children of an individ-
ual are the empty set, and so are the managers of

2Having more than one type of resource means that there will be
trade-offs, where decreasing the excess of one resource type may
increase the excess of another resource type.

3Note that the example in Figure 1 shows a strict tree organiza-
tion. In general, an organization may be represented by a directed
acyclic graph, where the same agent may have more than one man-
ager.

a root node. Also for each agent A, we define
organization(A) to be the set of all agents reachable
from A. In the above example, organization(M3) =
{M3, M4, M5, M6,17,18,19, 110,111,112, 13},

Local Decision Algorithm 1 describes the decision pro-
cess made by each manager in the organization. The al-
gorithm is executed every time a task 7' is received by a
manager M (either from the environment or from another
agent). LOC is the list of coalitions allocated for previ-
ous tasks. The algorithm works as follows. M evaluates
its current state s (see Section State Abstraction). M then
selects an action a based on its policy (see Section Learn-
ing). This action a can either be to stop forming the coali-
tion or to select a child M; € children(M). If a child is
selected, a subtask T; of T" is dynamically created based on
M;’s state (Section Task Decomposition). M then asks M;
to form a subcoalition capable of accomplishing T;. (The
notion M;.allocateCoalition(T;) means that the function
allocateCoalition is called remotely on agent M;). M;
forms a subcoalition C, and sends a commitment back to
M. M updates C'r and learns about this action. M updates
its state, including the amount of resources to be allocated

U R) and the corresponding utility to be gained (uw). .
(M) selects the nex@ best gctlon %/nd thegprocesg co)ntlnues

as long as all the following conditions hold (step 3): T re-
quires more resources than currently allocated, M still con-
trols some unallocated resources that are required by 7', and
the stop action has not been selected. At the end M adds
the formed coalition Cr to its list of commitments LOC
and returns C'r. Note that manager M executes Algorithm
1 if and only if organization(M) has enough resources to
accomplish T'. Otherwise, M passes T' up the organization
hierarchy until it reaches a capable manager (T is rejected
if even the root manager does not have enough resources).
Also to simplify handling of multiple tasks, we do not allow
coalition formation of a task to be interrupted.

Example Figure 2 shows how a group of agents, orga-
nized in a hierarchy, can cooperate to form a coalition. A
task T = (u = 100,7r; = 50,rrs = 150) is discovered
by agent M6. Knowing that organization(M6) does not
have enough resources to accomplish T, M6 sends task T'
to its manager M 3. Since organization(M3) has enough
resources to achieve T', M3 uses its local policy to choose
the best child to contribute in achieving T', which is M5.
M3 decomposes T' into subtask T5 = (us = 50,7751 =
0,7r52 = 100), and asks M5 to allocate a coalition for it.
M5 returns a committed coalition Cz, = {I10,111}. The
process continues until the whole task T is allocated. Fi-
nally, M3 integrates all subcoalitions into Cr and sends it
back to M6.

State Abstraction Since managers control exponentially
more individuals as we ascend in the organization, abstrac-
tion of state information is necessary to achieve scalability
(otherwise we are effectively centralizing the problem). In
our solution, each manager M abstracts the state of its orga-
nization, organization(M). The price of this abstraction
is loss of information (a manager higher in the hierarchy

Algorithm 1 allocateCoalition(7")

INPUT: task T' = (U, 771,y ey TT)
OUTPUT: coalition Cr = {I1, ..., I|c,|}

Llet Cr = {}, wvu + u, UR + (rry,..,mrm),
stop <« false, AR < the amount of available re-
sources controlled by M = awvailable Resources() =
total Resources(M) — > -1 oc total Resources(C)

2. s + encodeState(uu, UR)

whileUR > 0 AND UR.AR > 0 AND stop = false

do

w

4: a + selectAction(s)
5. if ais the stop action then
6: stop <+ true
7. dse
8: let M; be the child corresponding to a.
9: T; + decomposeTask(T, M;)
10: Cr, < M;.allocateCoalition(T;)
11: Cr + Cru(Cr,
12: UR + UR — total Resources(Cr;), uu ur,,
and AR + AR — total Resources(Cr;)
13: r « time and communication costs of forming C'r;
14: if UR = 0 /* T does not need more resources */
then
15: rr+u
16: end if
17: s' + encodeState(uu, U R) /* the next state */
18: learn(s,a,r,s’)
19: s+ s
20: endif
21: end while

22: LOC + LOC U Cr I* to exclude agents in Cr from
next allocations */
23: return Cr

“sees” fewer details about its organization). For a manager
M, the function encodeState collects the abstract states of
each child M; € children(M) and encodes this informa-
tion along with the vector of resources to be allocated, UR,
and the utility to be gained, uu, to produce the current state
of organization(M). (This encoding is then fed to neural
nets to get action values, as we discuss in Section Learning.)

Due to the large state space, we use a factored state.
That is, a state is defined by a set of features. To
abstract a feature at a manager M, we need to de-
fine it recursively in terms of features abstracted at M’s
children. For example, we defined the feature vec-
tor total Resources(M) = (try,...,tr,) as the total
amount of resources controlled by manager M (where m
is the number of different resource types). It can be
defined recursively as follows: total Resources(M) =
2 cechildren(n) totalResources(c). That is, the total re-
sources controlled by a manager is the sum of the total
resources controlled by its children. For an individual I;,
total Resources(I;) = I;.

Some features cannot be abstracted directly, but
can still be inferred from other abstracted features.
For example, averageResources(M) is a feature vec-

[a] Agent M6 discovers a new task, T [b] Task T is beyond M6's capabilities,
so it hands T to a higher manager, M3

[c] Having more global view of the organzation,
M3 decides to decompose T into subtask T5
and ask M5 to allocate a coalition for it.

[d] M5 successfully allocate T5, and
sends committed coalition back to M3

[e] M3 decomposes the rest of T into subgoal [f] At the end, Task T is achieved. M3
T4 and ask another agent to allocate it. integrates all subcqalition into C and
The process continues until all T is allocated sends it to the originating agent, M6.

Figure 2: An example of organization-based coalition formation.

tor of the average amount of resources controlled
by any individual in organization(M). To com-
pute this feature, we need another abstract feature:
the total number of individuals in an organization,
size(M) > cechitaren(ar) St2€(c). Then we have
averageReources(M) = total Resources(M) [size(M).

The above features are assumed constant throughout
the system lifetime. For each constant feature we de-
fine a corresponding dynamic feature, preceded by avail,
to indicate the current value of the feature. For exam-
ple, the number of individuals not allocated to tasks =
availSize(M) = size(M) — Y ccroc(ar size(C), and
their aggregated resources = availT otal Resources(M) =
total Resources(M) — 3 ceroc () total Resources(C).

Task Decomposition When a manager M selects a child
M; to ask for contribution regarding task T', M decomposes
T heuristically to 7; . As we described in Section State
Abstraction, a manager M only sees abstract features of its
child M;. Using this information, M needs to find T; that is
more suitable to Organization(M;). The heuristic we use
is to try to ask each child a multiple, «, of the average avail-

; e availTotal Resources(M;)
able resources it controls; i.e., a x availSize(7T)) .

We want to chose a such that the expected excess of re-
sources is minimized.*

“When M decomposes T into T;, it does not know what coali-
tion M; would return, which makes it difficult to minimize the

The intuition behind the heuristic is as follows. If all
individuals controlled by M; are identical, the heuristic is
the only choice to avoid wasting resources. As individuals
become more diverse, the multiple of average available re-
sources remain the most likely to succeed without wasting
any resources. Because agents can not participate in more
than one coalition, the minimum of the ratio 7; over all re-
source types is selected and used for all other resource types.
Also to ensure progress, « is at least 1. Finally, the utility
of the decomposed task is proportional to the total of the
decomposed resources.

Learning A key factor in the performance of our system
is how a manager selects its actions (function select Action
in Algorithm 1). In particular, in what order should a
manager ask each child for its contribution?® We consid-
ered three possible policies: random, greedy, and learn-
ing. The random policy just picks a child at random.
The greedy policy selects the child M; with the highest
preference value p; = Y7 | min(cr; x,rry), which mea-
sures how much resources M; can contribute to the in-
coming task. For example, let the incoming task T =
(v = 100,77v = 50,77 = 150) and let man-
ager M has two possible children M; and M, where
availTotal Resources(My) = (cri,1 = 200,cr1,2 = 0)
and availTotal Resources(Mz) = {(cra1 = 0,¢crae =
200). Then p; = 50 and p; = 150, hence M will select
M.

In the learning approach, we used the Q-learning algo-
rithm (Sutton & Barto 1999) with neural nets to approximate
action values. Unlike value or policy iteration, Q-learning is
a model-free algorithm that does not require an environment
model. Q-learning also learns in an incremental manner; as
an agent gains more experience, its performance improves.
This is important in domains containing huge number of
states, many of which will not be visited.

We used a decaying exploration rate to select actions so
that agents explore less as they gain more experience. We
also used a separate neural net for each action. This uses
more memory space, but provides better approximation.

In reinforcement learning, rewards determine what an
agent learns. From Algorithm 1, intermediate rewards are
small negative rewards to reflect the communication and the
processing costs of each additional step spent forming the
coalition. Once a manager M successfully allocates a coali-
tion to task 7', it gains a reward equal to 7"’s utility.> Note
that even if T is a subtask of another task 7", the rewards
received by M are independent of whether the coalition for-
mation for 7" will succeed or not. This recursive optimal-
ity speeds up learning, while not affecting the quality of the
formed coalitions.

wasted excess of resources.

A more sophisticated decision process would consider paral-
lelism. Here we focus on strictly serialized orderings only.

®We can implicitly indicate our preferences by modifying the
reward function. For example, in (Shehory 1998) the author prefers
coalitions of smaller size. This can be achieved by adjusting the
reward function accordingly (e.g., dividing the utility gained by
the size of the coalition formed).

We explored several techniques to speed up learning fur-
ther. One technique involved minimizing the input fed to
each neural net. The key observation is that the value of
choosing a child M; depends mainly on M;’s state, and to
a lesser extent on the other children’s states. We also tried
using eligibility tracing, but the learning algorithm often di-
verged so this approach was dropped.

Organization Structure If we view the underlying orga-
nization as a search tree, our distributed algorithm searches
the same search tree several times for each task and for each
episode. Each time, the search has a different start state
(where and when the task is discovered) and different goal
state (the set of individuals — leaves — that form the coali-
tion.)

To optimize performance, not only do we need to find a
good search mechanism, but we also need to find an organi-
zation that for a specific environment model and agent pop-
ulation yields the best performance. In other words, we are
modifying the search tree so that the search mechanism can
perform better. The closest analogue in classical Al is the
use of macro operators, which adds edges to the search tree
to speedup the search. In our case we have more flexibil-
ity, as we can modify the search tree in whatever way we
see appropriate. In our experiments we verify this by testing
different organization structures of the same agent popula-
tion and same tasks distribution, as we describe in Section
Results.

Experiments and Results

Setup In our experiments, we wanted to know if using
an underlying organization improved the system’s perfor-
mance. To do so, we compared our approach to centralized
(a single manager controlling all individuals) random pol-
icy (CRP) and to centralized greedy policy (CGP). We
also investigated the effect of learning in an organization
by comparing three local policies: distributed learned policy
(DLP), distributed random policy (DRP), and distributed
greedy policy (DG P). Finally to measure the effect of the
organization structure on system performance, we collected
results using different organizations, all constructed from the
same population of individual agents as shown in Figure .
More details can be found in (Abdallah & Lesser 2004).

manager O
individual type A /\
individual type B A\
individual type C []
individual type D [

SH RS

Figure 3: Different Organizations.

Results for every organization/technique combination

were computed over 10 simulation runs. Each simulation
run consisted of 30,000 episodes. Seven tasks arrive at ev-
ery episode and are randomly picked from a bag of tasks (to
simulate a stable environment). Tasks in the bag are gener-
ated randomly such that each task requires between 4 and
10 agents to be accomplished. At any episode, the resources
required by arriving tasks exceed the resources available to
the system.

Our experiments focused on a population of 40 individ-
uals and 10 managers so we can easily hand code different
organization structures and study their effect. However, to
verify the scalability of our approach, we also tested a pop-
ulation of 90 individuals and 13 managers.

Results Figure 4 illustrates how the performance of our
system improves as agents gain more experience. CRP
achieved least average utility. DRP performed better than
CRP.” CGP is better than both. Our approach, DLP, out-
performed all other policies for all organization structures,
except when using a random organization structure. Inter-
estingly, DG P performed worse than DRP and DLP in
all organizations except RS, where it performed better than
both.

8500

8000

500

ge utility

avera
X
=]
1]
]

6500

6000 | | | |
2500 7500 12500 17500 22500
episodes

Figure 4: Learning curve.

This reinforces our belief that organization structure does
affect performance. Learning the local policy lessens this
effect, but state abstraction and task decomposition remain
sensitive to the structure of the organization. For the ab-
straction and task decomposition algorithms that we used, if
agents are randomly organized, little can be gained by learn-
ing. In our experiments with larger agent population (90
agents), D L P was better than other policies, achieving 35%
more utility than CRP and at least 20% better than DRP
and DGP.

More importantly, DLP is more stable than other ap-
proaches. The standard deviation (of achieved utility) us-
ing CG' P was 70% worse than D LP with SE organization.
C RP was 30% worse than DL P. Also DG P was the worst
for all organizations except RS. We had similar results with
the larger agent population. DL P had the least standard de-
viation, which was around one third that of DG P.

Centralized approaches exchange fewer messages. Still,
learning the local decision reduces the number of exchanged
messages. C'G P wasted 20% more resources than DLP,

"We believe this is due to the goal decomposition component of
the organization, which encodes part of the domain knowledge.

while CRP wasted 40% more. We got similar results for
the larger agent population.

A Mediator-Free Document Retrieval System
System Architecture

This section presents a document retrieval architecture for
the grid computing environment. In such a system, we as-
sume that agents are connected to each other in a peer-to-
peer fashion. An agent at any time can generate queries
into the Grid in order to find relavant documents. In the
absence of a mediator, agents must cooperate to forward
the queries among themselves so as to locate appropriate
agents, rank the collections, and finally return and merge
the results in order to fulfill the information retrieval task in
a distributed environment. Figure 5 illustrates part of a doc-
ument retrieval system in Grid computing that could com-
prise thousands of agents. Each agent is composed of five
components: a collection, a collection descriptor, a search
engine, an agent-view structure and a control center. The
collection is a set of documents to share with other peers.
Collection descriptor can be considered as the “signature” of
the collection. By distributing collection descriptors around,
agents can have better knowledge about how content is dis-
tributed in the agent society. Specifically, in this system we
use collection model as collection descriptors. A collection
model is the language model built for a particular collection.
It characterizes the distribution of the vocabulary in the col-
lection. The language model concept was originally intro-
duced in information retrieval research (Ponte & Croft 1998)
and has proven effective in the distributed IR field (Callan
2000)(French et al. 1999). It has many interesting prop-
erties which are easily exploitable in the Grid computing
environment: first, a collection model is lightweight since
it significantly condenses the description of the content of
the collection and thus is much smaller in size compared to
the collection. Additionally, the size of the collection model
grows minimally with the size of the document collection.
Secondly,the collection model is a relatively accurate indica-
tor of the content of the collection. The agent control center
is the unit that accepts user queries and is also responsible
for performing the distributed search algorithm. The local
search engine allows each agent to conduct a local search
on its document collection so as to determine whether there
are any documents that meet the criteria of a specific user
query and then return relevant documents. The agent-view
structure, also called the local view of each agent, contains
information about the existence and structure of other agents
in the grid and thus defines the underlying topology of the
agent society.

The rest of the section will present the framework in more
details from the formulation and evolvement of the agent-
view structure and the distributed search algorithm

Agent-View Algorithm

A common approach to forming an initial agent-view, as
used in the Gnutella system, is for agents (when first joining
the system) to initiate a discovery protocol by sending out

7 / Agent View BN
/ \

Figure 5: A Mediator-free Document Retrieval System.

ping and pong packets with their IP addresses. In our sys-
tem, we slightly modify this approach by also transmitting
the collection model of the agent. This agent discovery pro-
cedure results in a random-graph like topology being con-
structed, where each agent in the grid establishes an agent-
view structure with the collection models and IP addresses
of its neighboring agents. However, one obvious drawback
of such a topology is the lack of search efficiency since there
is no connection between the agent-view and how to effec-
tively search for relevant documents. Therefore, we propose
an agent-view reorganization algorithm (AVRA) based on
the initial agent-view. The goal of AVRA is to create an
agent-view that contains agents whose content is similar, im-
plicitly creating semantically close agent clusters. For exam-
ple, we can have a “sports” cluster, an “economics” cluster,
and so on. These clusters are not disjoint which means that
an agent can belong to multiple clusters. For example, an
agent can belong to both a “basketball” cluster and a “col-
lege” cluster based on its content. Clusters are connected
to each other, so if a query is issued to an agent without
many relevant documents it can be routed swiftly to the ap-
propriate clusters. To this end, agents exchange their local
agent-views to expand the scope of their local agent-view so
that each agent is more informed about the content distribu-
tion over the entire network. Specifically, each agent decides
locally which agent in its agent-view to interact with so as
to construct in a directed way an expanded view. The deci-
sion to expand along a particular direction results in send-
ing an Expand? message to appropriate agents. The Ex-
pand? message includes the address of the sending agent
so that the target agents can send back the answer. Upon
receiving the Expand? message, each agent sends its own
agent-view to the requesting agent. Such communication
augments each agent’s local view with further information
about the content distribution in the agent society, and allows
the agent to make a more informed decision about whom to
forward queries. The agent-view reorganization algorithm
then prunes the topology implied by the agent-view so that
the agent-view does not become unreasonably large leading
to the same scalability issues found in a centralized media-
tor architecture. One major concern of the AVRA algorithm

is connectivity. Pruning the agent-view without caution can
result in very poor connectivity, which in turn reduces the
number of the agents that can be reached and thus decreases
overall system performance. Additionally, agents in P2P
networks often vary in their capacity in terms of the max-
imum number of outgoing connections they can maintain.
Therefore, throughout the reorganization process, we keep
the agents out-degree unchanged. Meanwhile, the in-degree
of each agent is checked from time to time to ensure that
it can be reached by other agents. The algorithm works as
follows:

For each agent A;in the system, we calculate its similar-
ity Wec(A;, A;) with the neighbors A;. After ranking, agent
A; probes its most similar K neighbor agents with Expand?
messages. In our experiment, we use K = 1 to reduce com-
munication. Upon receiving Expand? messages, each agent
responds with its current agent-view. To prevent the same
agents from being chosen repeatedly and thereby slowing
convergence, we specify that no agent can be picked more
than twice in three consecutive rounds. This heuristic helps
an agent construct a more encompassing view so that the re-
organization process proceeds smoothly. After expanding its
view as a result of interacting with its neighboring agents,
agent A; prunes its agent-view according to the following
rules:

(1) M% of its degree are designated as its most similar
neighbors while the rest (1 — M %) neighbors are randomly
chosen from the agent-views it has collected. This random-
ization has the effect of maintaining connectivity in the agent
society. As experiments show, if all the neighbors are chosen
from the most similar agents (M is 100%), the resultant net-
work suffers from poor connectivity. Specifically, it contains
many separate “clusters” though these clusters are quite se-
mantically close. After testing different values, we set M to
80%.

(2) If the number of incoming connections (in-degree) of
Agent A; falls below 2, an empirical threshold which in-
dicates whether this agent is easily reached by the outside
world, then the agent contacts its neighbors to request that
they add it as one of their neighbors in their local agent-view.

Distributed Search Algorithms

The distributed search process is initiated when an agent re-
ceives a query. The agent then needs to make a number of
local decisions such as whether it should perform a local
search to see if it can satisfy the query locally, whether it
should forward this query to other agents and to whom, or
whether it should drop the query. During this process, if an
agent receives a query that it previously processed, it simply
skips this message as Gnutella does. Otherwise, the search
continues in the network until all the agents receiving the
query drop the message. There is no explicit recognition by
individual agents that query is no longer being processed by
any agent in the network.

The next two subsections propose two search algorithms,
namely, & Nearest Neighbors (kNN) collection model-based
approach and Gradient Search Scheme (GSS), to take ad-
vantage of collection models and the reorganized topology.
We define agents with local documents that are relevant to

the query as “relevant agents” and “irrelevant agents” other-
wise. As the agent reorganization algorithm aims to cluster
the agents by content, the key to the search algorithms per-
formance is to direct the queries to the relevant agents cluster
swiftly.

We introduce two concepts to facilitate the description of
the search algorithms.

Definition 1: Covered Agents Level (CAL) is defined as
the number of agents visited during a query search divided
by the size of the agent society.

CAL, =n/N

Definition 2: Cumulative Recall Ratio (CRR) for a query
after n agents are searched is defined as

2?21 Tj

RQi

Here R, is defined as the total number of relevant doc-
uments located in the entire network for the query ¢;, and
r; is the number of relevant documents located at agent j.
CRR is used as a metric to measure the performance of a
distributed search algorithm in relationship to its CAL.

CRRy, . =

kNN collection model based approach. The collection
model is a stable representation of a collection. This insight
leads to an intuitive distributed search scheme. An agent first
determines if the cluster it belongs to is a “relevant agent
zone” or “bad agent zone” by comparing the similarity of
the collection it hosts with the query qi, i.e W 4(A4;, ¢;) and
a threshold T'sim.8 Specifically, the algorithm works as fol-
lows:

(0) If an agent Ai receives a query g;, A; would drop the
query qi if it has been processed previously, otherwise cal-
culate the similarity We,(c;, ¢;)

(1) If Weq(Aj, gs) is above threshold T, Aj is likely
to be located in a “good agent zone” . In this situation, the
agent computes the similarity of its neighbors A; and the
query g;, i.e Weq(A;,¢;) and select the k& agents with high-
est Weq(A;,q;) value to forward the query. However, in
practice, we face the same situation as in the agent-view re-
organization process. If we forward all the queries to agents
highly-similar with the initiator, then the most similar agents
tend to receive the query repeatedly since they form a clique;
thereby lowering the chance that other agents are examined
as part of the search process. This leads to a low CAL value
when the search is completed which motivates an alterna-
tive strategy. Thus, Instead of forwarding queries solely to
highly-similar agents, we also forward queries to some high-
degree agents. Researchers (Walsh 2001) have found that
the high-degree agents are of special importance in the dis-
tributed search algorithm. After testing different parameters,
we use the top 20% highest-degree neighbors and the top
40% most-similar agents for forwarding the queries.

(2) IfWeq(A;, g;) is below T, then the agent considers
itself as part of an “irrelevant agent zone”. It then tries to
expand the search so as to get out of the “irrelevant agent
zone” by forwarding the query to high-degree agents rather
than highly-similar agents.

8After testing different values, we set T';,, as 0.15.

Gradient Search Scheme. The Gradient Search
Scheme(GSS) differs from the kNN approach in how
it deals with the situation when the initiator is in a “bad
agent zone”. As in reality, most of the agents in the
grid computing environment are irrelevant to the queries.
Therefore, the strategy of how to deal with queries starting
from irrelevant agent zones is crucial to the search per-
formance. Though the kNN collection model algorithm
is designed to direct queries out of "bad agents zone” as
soon as possible, experimental results show that the system
performance is still very sensitive to where the initial search
is originated; the kNN approach suffers from a drastic
decrease in performance when it is initiated from irrelevant
agents since it still takes a long time for the query to reach
relevant agents. The GSS addresses this issue by first trying
to locate an appropriate agent for initiating the search for
the given query by distinguishing between good and bad
starting agents based on the similarity value between the
query and agent as the kNN approach does. If the initial
agent is good, the Gradient algorithm simply follows the
kNN collection model algorithm. Otherwise, the algorithm
starts a gradient search process to find a new originator for
this query. The detailed protocol works as follows:

(0) If an agent A; receives a query g;, A; would drop the
query g; if it has been processed previously, otherwise cal-
culate the similarity W, (c;, ¢;) of the collection on Ai and
the query ¢;.

(1) If Weq(cs, ¢s) is above a certain threshold T';yp,, it in-
dicates that the agent is a good candidate for the query. The
algorithm then follows the KNN collection model algorithm.

(2) Otherwise, for each neighboring agent A;, pick the
neighbor B which satisfies argmazWeq(c;, ¢;). A message
is sent from A to B with the value mazWq(c;, g;).

(3) Step (2) is repeated N times. At each round, the old
values and the new value are accumulated in the message
that is then forwarded to the next node. For example let us
assume that agent P is selected after N rounds. The mes-
sage P receives will contain N maximum similarity values
generated as the result of previous rounds. P will then pick
the agent with the highest similarity value as the new orig-
inator to restart the search using the KNN algorithm. There
is a trade-off involved in determining the value for V; the
bigger the value of N the more likely that a good originator
will be found while the smaller the value of N the quicker
the search for relevant documents will begin. Considering
these two factors, we used a value for N of three in our ex-
periments.

Experiments and Results

Setup Similarity measures are heavily used in both the
AVRA and the distributed search algorithms. In our frame-
work, both collection models and query models are treated
as language models, and therefore, distributions. We use
Kullback-Leibler (KL) divergence to measure the distance
between collection models or between collection models and
query models. The detailed computation formula can be
found in (Zhang et al. 2004).

We created an experimental agent network as described in
(Zhang, Croft, & Levine 2003) and distribute TREC VLC1

collections to the agents. TREC VLC1 is split to 921 sub-
collections largely by source and therefore is denoted by
TREC-VLC1-921. The statistics about TREC-VLC-921 can
be found in (Callan 2000). We run query set 301 — 350 on
TREC-VLC1-921.

After the underlying topology and collections are dis-
tributed to the agents, we reorganize the topology with pa-
rameter K = 0,3,10 respectively. To perform the search
algorithm, we randomly pick agents as originators. In this
experiment, we examined the performance of 50 queries for
each combination. Each query was repeated 50 times. By
averaging 50 results for each query, there was more than 95
percent confidence interval.

Results The detailed results are available at (Zhang et al.
2004). The results show that, as expected, the central KL
approach with its global view consistently outperforms the
other three approaches. They are consistent with the con-
clusion that the collection model is a stable indicator of the
collection. Correspondingly, both the GSS and kNN algo-
rithms, which take advantage of collection models, signifi-
cantly outperform the random search scheme when using the
same underlying topology. When a topology with K = 0 is
used, the cumulative recall ratio of kNN and GSS are sig-
nificantly better than the random approach when CAL is be-
low 50%. Another observation is that when CAL is low,
which would be the expected case in real networks, GSS fur-
ther improves the performance of kNN. However, with the
increase of CAL this gain diminishes. For example, when
CAL is above 30%, the difference between kNN and GSS is
indistinguishable. Therefore, we conclude that although the
GSS benefits from a good starting agent, this impact fades
as more and more agents are reached. We can also gain the
insight from the results that the importance of topology re-
organization is dependent on the specific search algorithms
used. There are no obvious gains from the AVRA algo-
rithm for the random search strategy as the latter does not
take advantage explicitly of collection models. On the other
hand, there is considerable performance improvement using
the GSS when K increases, ranging from 10% — 30% when
K = 3. When K further increases, the performance benefits
are more obvious. The fact that AVRA brings more benefits
to the GSS than KNN search is based on GSS’s ability to re-
locating to good originators sooner and the new originators
are often surrounded by many other good agents. Perfor-
mance results stabilize when K > 3. Therefore, we con-
clude that the local agent-view reorganization process tends
to converge after three rounds. Of course, this number may
differ with various applications and network sizes.

Conclusion

In this paper we discussed our solutions to a resource allo-
cation problem, involving coalition formation, and a content
retrieval problem, involving locating relevant documents.
Our results verified the important role of organization on the
performance of a system. In coalition formation, learning
to work in an organization outperformed the unorganized
solution. It achieved higher average utility (20-35% more
than non-organized approaches) and was more stable (30-

70% less standard deviation). Similarly, reorganizing clus-
ters of relevent document proved crucial, with 10-30% in-
crease in system performance. In future, we plan on apply-
ing our ideas in the Grid computing domain.

References

Abdallah, S., and Lesser, V. 2004. Organization-Based
Coalition Formation. UMass Computer Science Technical
Report 2004-04.

Callan, J. 2000. Distributed information retrieval. Read-
ing, Massachusetts: Kluwer Academic Publishers.

Czajkowski, K., and et al. 2001. Grid information services
for distributed resource sharing. Proceedings of the 10th
IEEE Symp On High Performance Distributed Computing.

French, J. C.; Powell, A. L.; Callan, J. P;; Viles, C. L,;
Emmitt, T.; Prey, K. J.; and Mou, Y. 1999. Comparing the
performance of database selection algorithms. In Research
and Development in Information Retrieval, 238—245.

Ponte, J., and Croft, B. 1998. A language modeling ap-
proach to information retrieval. In In Proceedings of SI-
GIR, pages 275-281, 1998.

Shehory, O. 1998. Methods for task allocation via agent
coalition formation. Artificial Intelligence Journal.

Sutton, R., and Barto, A. 1999. Reinforcment Learning:
An Introduction. MIT Press.

T. Sandholm, e. a. 1999. Coalition structure generation
with worst case guarantee. Proceedings of the Third Inter-
nation Conference on Autonomous Agents.

Walsh, T. 2001. Search on high degree graphs. In In
Proceedings of International Joint Conference on Artificial
Intelligence, 266-274.

Zhang, H.; Croft, B.; Levine, B.; and Lesser, V. 2004.
A multi-agent approach for peer-to-peer based information
retrieval systems. In University of Massachusetts, Amherst,
MAS Technical Report, Submitted to AAMAS 2004.
Zhang, H.; Croft, B.; and Levine, B. 2003. Efficient topolo-
gies and search algorithms for peer-to-peer content sharing.
In University of Massachusetts, Amherst, CIIR Technical
Report IR-314.

