
Organization-Based Cooperative Coalition Formation

Sherief Abdallah∗ Victor Lesser
University of Massachusetts, Amherst

MAS Laboratory
{shario,lesser}@cs.umass.edu

Abstract

The coalition formation problem has received a consid-
erable amount of attention in recent years. In this work we
present a novel distributed algorithm that returns a solution
in polynomial time and the quality of the returned solution in-
creases as agents gain more experience. Our solution utilizes
an underlying organization to guide the coalition formation
process. We use reinforcement learning techniques to opti-
mize decisions made locally by agents in the organization.
Experimental results are presented, showing the potential of
our approach.

1 Introduction

Agents can benefit by cooperating to solve a common
problem [3, 9]. For example, several robots may cooperate
to move a heavy object, sweep a specific area in short time,
etc. However, as the number of agents increases, having all
agents involved in a detailed coordination/negotiation process
will limit the scalability of the system. It is better to first form
a coalition of agents that has enough resources to undertake
the common problem. Then only the agents in this coalition
coordinate and negotiate among themselves.

This situation is common in domains where a task requires
more than one agent and there are more than one task compet-
ing for resources. Computational grids and distributed sensor
networks are examples of such domains. In computational
grids a large number of computing systems are connected
via a high-speed network. The goal of the grid is to meet
the demands of new applications (tasks) that require large
amounts of resources and reasonable responsiveness. Such

∗This material is based upon work supported in part by the National Sci-
ence Foundation under Grant No. IIS-9988784 and the Defense Advanced
Research Projects Agency (DARPA) and Air Force Research Laboratory Air
Force Materiel Command, USAF, under agreement F30602-99-2-0525. The
U.S. Government is authorized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright annotation thereon. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of
the National Science Foundation, the Defense Advanced Research Projects
Agency (DARPA), Air Force Research Laboratory or the U.S. Government.

requirements cannot be met by an individual computing sys-
tem. Only subset of the available computing systems (aka a
coalition) has enough resources to accomplish an incoming
task.

The work in [6] defined the coalition formation problem as
follows (a formal definition is given in Section 2). The input
is a set of agents, each controlling some amount of resources,
and a set of tasks, each requiring some amount of resources
and each worth some utility. The solution assigns a coalition
of agents to each task, such that each task’s requirements are
satisfied and total utility is maximized. It should be noted
that the coalition formation problem is not concerned with
how agents in a coalition cooperate to actually executes its
assigned task. Such cooperation can be achieved by other
complementing frameworks such as teamwork [9].

In this paper we propose a novel approach for solving the
coalition formation problem approximately using an underly-
ing organization to guide the formation process. The intuition
here is to exploit whatever knowledge is known a priori in or-
der to make the coalition formation process more efficient.
For instance, in many domains, agents’ capabilities remain
the same throughout the lifetime of the system. Additionally,
incoming tasks may follow some statistical pattern. Can we
organize agents to exploit this knowledge (of their capabilities
and task arrival patterns) to make the search for future coali-
tions more efficient? If so, will all organizations yield the
same performance, or do some organizations perform better
than others? In the remainder of this paper we try to provide
answers to these questions. The main contributions of this
work are:

• an organization-based distributed algorithm for approxi-
mately solving the coalition formation problem

• the use of reinforcement learning to optimize the local
allocation decisions made by agents in the underlying
organization

The paper is organized as follows. In Section 2 we define
the problem formally, laying out the framework we will use
throughout the paper. In Section 3 we present our approach.
Section 4 describes our experimental results. We compare our

approach to similar work in Section 5. Conclusions and future
work are discussed in Section 6.

2 Problem definition

To focus on the coalition formation problem, we make
some simplifying assumptions to avoid adding the schedul-
ing problem to it. In future we plan to integrate scheduling in
our framework. We assume time is divided into episodes. In
each episode each agent receives a sequence of tasks.1 Once
a task is allocated a coalition, agents in such a coalition can
not be assigned to another task until the end of the episode.
At the end of every episode all agents are freed and ready to
be allocated to the next sequence of tasks. More formally:

Let T = 〈T1, T2, ..., Tq〉 be the sequence of tasks ar-
riving in an episode. Each task Ti is defined by the tuple
〈ui, rri,1, rri,2, ..., rri,m〉, where ui is the utility gained if
task Ti is accomplished; and rri,k is the amount of resource
k required by task Ti. Let I = {I1, I2, ..., In} be the set of
individual agents in the system. Each agent Ii is defined by
the tuple 〈cri,1, cri,2, ..., cri,m〉, where cri,k is the amount of
resource k controlled by agent Ii.

The coalition formation problem is finding a subset of
tasks S ⊆ T that maximizes utility while satisfying the coali-
tion constraints, i.e.:

•
∑

i|Ti∈S ui is maximized
• there exists a set of coalitions C = {C1, ..., C|S|}, where

Ci ⊆ I is the coalition assigned to task Ti, such that
∀Ti ∈ S,∀k :

∑
Ij∈Ci

crj,k ≥ rri,k, and ∀i 6= j :

Ci ∩ Cj = ∅

In other words, each task is assigned a coalition capable
of accomplishing it and any agent can join at most one coali-
tion. This means if the resources controlled (collectively) by
a coalition exceed the amount of resources required by the as-
signed task, the excess resources are wasted.2 The coalition
formation problem as defined above is NP-hard.3

3 Proposed Solution

Because the coalition formation problem is NP-hard, an
optimal algorithm will need exponential time in the worst case
(unless NP = P). We need an approximation algorithm that can
exploit information about the problem. If the environment (in
terms of incoming task classes and patterns) does not follow
any statistical model, and agents continually and rapidly enter
and exit the system, there is little information to be exploited.

1Note that the overall system may receive more than one task at the same
time but at different agents.

2Having more than one type of resource means that there will be trade-
offs, where decreasing the excess of one resource type may increase the ex-
cess of another resource type.

3Please refer to the technical report [1] for the complete proof.

Luckily, in many real applications the environment does fol-
low a model, and the system can be assumed closed.

In such cases, it is intuitive to take advantage of this stabil-
ity and organize the agents in order to guide the search for fu-
ture coalitions. A possible organization may consist of a cen-
tralized manager keeping track of which agents have which
resources. When a task arrives, this centralized manager only
contacts those agents who have the necessary resources to un-
dertake the incoming task. This approach is not scalable and
is inefficient in domains that are distributed by nature (e.g.,
distributed sensor networks). We chose to organize agents in
a hierarchy, which is both distributed and scalable. Sections
3.1 and 3.2.3 show how agents in such organizations learn to
work with each other.4

Figure 1 shows a sample hierarchical organization.5 An
individual (the leaves in Figure 1) represents the resources
controlled by a single agent. A manager (shown as a circle in
Figure 1) is a computational role, which can be executed on
any individual agent, or on dedicated computing systems. A
manager represents agents beneath it when it comes to inter-
action with other parts of the organization.

Figure 1. An Organization Hierarchy

Each manager M has a set of children, children(M),
which is the set of nodes directly linked below it. So
for instance, in the organization shown in Figure 1,
children(M6) = {I12, I13}, while children(M3) =
{M4,M5,M6}. Conversely, each child C has a set of
managers managers(C). For example, managers(M4) =
{M3}. For completeness, children of an individual are the
empty set, and so are the managers of a root node.

Each agent A (either a manager or an individual) controls,
either directly or indirectly, a set of individuals, cluster(A)
(i.e., the leaves reachable from agent A). In the exam-
ple above, cluster(M6) = {I12, I13}, cluster(M3) =
{I7, I8, I9, I10, I11, I12, I13}, and cluster(I6) = {I6}.

Also for each agent A, we define organization(A)
to be the set of all agents reachable from A.
In the above example, organization(M3) =
{M3,M4,M5,M6, I7, I8, I9, I10, I11, I12, I13}.

3.1 Local Decision

Algorithm 1 describes the decision process made by each
manager M in the organization once it receives a task T (ei-

4In this work we assume the hierarchy is given.
5Note that the example in Figure 1 shows a strict tree organization. In gen-

eral, an organization may be represented by a directed acyclic graph, where
the same agent may have more than one manager.

ther from the environment or from another agent). LOC is
the list of coalitions committed for tasks received previously
in the current episode.6 The algorithm works as follows.
M evaluates its current state s (Section 3.2.1). M then se-
lects an action a based on its policy (Section 3.2.3). Each
action corresponds to a child Mi ∈ children(M). Once
a child is selected, a subtask Ti of T is dynamically cre-
ated based on Mi’s state (Section 3.2.2). M then asks Mi

to form a subcoalition capable of accomplishing Ti. (The
notion Mi.allocateCoalition(Ti) means that the function
allocateCoalition is called remotely on agent Mi). Mi

forms a subcoalition CTi
and sends a commitment back to

M . M updates CT and learns about this action. M updates
its state, including the amount of resources to be allocated
(UR) and the corresponding utility to be gained (uu).

M selects the next best action and the process continues
as long as the following conditions hold (step 3): T requires
more resources than currently allocated AND M still controls
some unallocated resources that are required by T . At the end
if enough resources are allocated to T , M adds the formed
coalition CT to its list of commitments LOC and returns CT .
Otherwise T is passed up the hierarchy. Also to simplify han-
dling of multiple tasks, we do not allow coalition formation
of a task to be interrupted. This means that if a new task Tnew

arrives at manager M while M is still forming a coalition for
an older task Told, then M will finish forming the coalition
for Told before considering Tnew.

3.2 Example

Figure 2 shows how a group of agents, organized in a
hierarchy, can cooperate to form a coalition. A task T =
〈u = 100, rr1 = 50, rr2 = 150〉 is discovered by agent M6.
Knowing that organization(M6) does not have enough re-
sources to accomplish T , M6 sends task T to its manager
M3. Since organization(M3) has enough resources to
achieve T , M3 uses its local policy to chose the best child
to contribute in achieving T , which is M5. M3 decomposes
T into subtask T5 = 〈u5 = 50, rr5,1 = 0, rr5,2 = 100〉,
and asks M5 to allocate a coalition for it. M5 returns a com-
mitted coalition CT5

= {I10, I11}. The process continues
until the whole task T is allocated. Finally, M3 integrates all
subcoalitions into CT and sends it back to M6.

3.2.1 State Abstraction

For a manager M , the function encodeState collects the ab-
stract states of each child Mi ∈ children(M) and encodes
this information along with the vector of resources to be al-
located, UR, and the utility to be gained, uu, to produce the
current state of organization(M). (This encoding is then
fed to neural nets to get action values, as we discuss in Sec-
tion 3.2.3.)

6LOC is reset at the beginning of each episode.

Algorithm 1 allocateCoalition(T)
INPUT: task T = 〈u, rr1, ..., rrm〉
OUTPUT: coalition CT = {I1, ..., I|CT |}

1: let CT = {}, uu ← u, UR ← 〈rr1, ..., rrm〉,
stop ← false, AR ← the amount of available re-
sources controlled by M = availableResources() =
totalResources(M)−

∑
C∈LOC totalResources(C)

2: s← encodeState(uu, UR)
3: while UR > 0 AND UR.AR > 0 AND stop = false do
4: a← selectAction(s)
5: let Mi be the child corresponding to a.
6: Ti ← decomposeTask(〈UR, uu〉 , Mi)
7: CTi

←Mi.allocateCoalition(Ti)
8: CT ← CT ∪ CTi

9: UR← UR− totalResources(CTi
), uu← uu−uTi

,
and AR← AR− totalResources(CTi

)
10: r ← time and communication costs of forming CTi

11: if UR = 0 /* T does not need more resources */ then
12: r ← r + u
13: end if
14: s′ ← encodeState(uu, UR) /* the next state */
15: learn(s, a, r, s′)
16: s← s′

17: end while
18: if UR > 0 /* task T successfully allocated */ then
19: LOC ← LOC ∪ CT /* to exclude agents in CT from

next allocations */
20: return CT

21: else
22: if ∃M ′ ∈ managers(M) /* if not root */ then
23: M ′.allocateCoalition(T) /* pass T up */
24: else
25: fail.
26: end if
27: end if

Since managers control exponentially more individuals
as we ascend in the organization, abstraction of state in-
formation is necessary to achieve scalability (otherwise we
are effectively centralizing the problem). In our solution,
each manager M abstracts the state of its organization,
organization(M). The price of this abstraction is loss of
information (a manager higher in the hierarchy “sees” fewer
details about its organization). This leads to uncertainty in
the manager state, and hence makes the local decision pro-
cess more difficult to optimize.

Additionally, due to the large state space, we use a fac-
tored state. That is, a state is defined by a set of fea-
tures. To abstract a feature at a manager M , we need
to define it recursively in terms of features abstracted
at M ’s children. For example, we defined the feature
vector totalResources(M) = 〈tr1, ..., trm〉 as the to-
tal amount of resources controlled by manager M (where
m is the number of different resource types). It can be
defined recursively as follows: totalResources(M) =

Figure 2. An example of organization-based coalition for-
mation.

∑
c∈children(M) totalResources(c). That is, the total re-

sources controlled by a manager is the sum of the total re-
sources controlled by its children. For an individual Ii,
totalResources(Ii) = Ii.

Some features cannot be abstracted directly, but can
still be inferred from other abstracted features. For exam-
ple, averageResources(M) is a feature vector of the av-
erage amount of resources controlled by any individual in
organization(M). To compute this feature, we need another
abstract feature: the total number of individuals in an organi-
zation, size(M) =

∑
c∈children(M) size(c). Then we have

averageReources(M) = totalResources(M)/size(M).
The above features are assumed constant throughout

the system lifetime. For each constant feature we de-
fine a corresponding dynamic feature, preceded by avail,
to indicate the current value of the feature. For exam-
ple, the number of individuals not allocated to tasks =
availSize(M) = size(M) −

∑
C∈LOC(M) size(C), and

their aggregated resources = availTotalResources(M) =
totalResources(M)−

∑
C∈LOC(M) totalResources(C).

3.2.2 Task Decomposition

When a manager M selects a child Mi to ask for contri-
bution regarding task T , M decomposes T heuristically to
Ti. As we described in Section State Abstraction, a man-

ager M only sees abstract features of its child Mi. Using
this information, M needs to find Ti that is more suitable to
Organization(Mi). The heuristic we use is to try to ask each
child a multiple, α, of the average available resources it con-
trols; i.e., α × availTotalResources(Mi)

availSize(Mi)
. We want to chose α

such that the expected excess of resources is minimized.7
The intuition behind the heuristic is as follows. If all

individuals controlled by Mi are identical, the heuristic is
the only choice to avoid wasting resources. As individuals
become more diverse, the multiple of average available re-
sources remain the most likely to succeed without wasting
any resources. Because agents can not participate in more
than one coalition, the minimum of the ratio lj over all re-
source types is selected and used for all other resource types.
Also to ensure progress, α is at least 1. Finally, the utility of
the decomposed task is proportional to the total of the decom-
posed resources.

3.2.3 Learning

A key factor in the performance of our system is how a man-
ager selects its actions (function selectAction in Algorithm
1). In particular, in what order should a manager ask each
child for its contribution? We modeled this as a Markov De-
cision Process, MDP, defined by the tuple 〈S,A, P,R〉.

S is the set of states. A state of manager M (when it
receives task T) consists of the abstract states of each child
Mi ∈ children(M), the resources required by T and its util-
ity. A is the set of actions, where each action corresponds to a
child. P is the transition probability. The uncertainty is due to
the abstraction and the fact that a child might have allocated a
task that its parent does not know about. Because it is difficult
to analytically compute such transition probability, we used a
model free learning algorithm as we discuss shortly.

Finally R is the reward function. From Algorithm 1, in-
termediate rewards are small negative rewards to reflect the
communication and the processing costs of each additional
step spent forming the coalition. Once a manager M success-
fully allocates a coalition to task T , it gains a reward equal to
T ’s utility.8 Note that even if T is a subtask of another task
T ′, the rewards received by M are independent of whether the
coalition formation for T ′ will succeed or not. This recursive
optimality speeds up learning, while not affecting the quality
of the formed coalitions.

We used the Q-learning algorithm [8] with neural nets to
approximate action values. Unlike value or policy iteration,
Q-learning is a model-free algorithm that does not require an
environment model. Q-learning also learns in an incremental

7When M decomposes T into Ti, it does not know what coalition Mi

would return, which makes it difficult to minimize the wasted excess of re-
sources.

8Note that we can implicitly indicate our preferences by modifying the
reward function. For example, in [6] the author prefers coalitions of smaller
size. This can be achieved by adjusting the reward function accordingly (e.g.,
dividing the utility gained by the size of the coalition formed).

manner; as an agent gains more experience, its performance
improves. This is important in domains containing huge num-
ber of states, many of which will not be visited.

We used a decaying exploration rate to select actions so
that agents explore less as they gain more experience. We
also used a separate neural net for each action. This uses more
memory space, but provides better approximation.

We explored several techniques to speed up learning fur-
ther. One technique involved minimizing the input fed to each
neural net. The key observation is that the value of choosing a
child Mi depends mainly on Mi’s state, and to a lesser extent
on the other children’s states. We also tried using eligibil-
ity tracing, but the learning algorithm often diverged so this
approach was dropped.

In our experimentation (Section 4) we compared three pos-
sible policies: random, greedy, and learning. The random
policy just picks a child at random. The greedy policy se-
lects the child Mi with the highest preference value pi =∑m

k=1 min(cri,k, rrk), which measures how much resources
Mi can contribute to the incoming task. For example, let the
incoming task T = 〈u = 100, rr1 = 50, rr2 = 150〉 and
let manager M has two possible children M1 and M2 where
availTotalResources(M1) = 〈cr1,1 = 200, cr1,2 = 0〉 and
availTotalResources(M2) = 〈cr2,1 = 0, cr2,2 = 200〉.
Then p1 = 50 and p2 = 150, hence M will select M2.

3.2.4 Organization Structure

If we view the underlying organization as a search tree, our
distributed algorithm searches the same search tree several
times for each task and for each episode. Each time, the
search has a different start state (where and when the task is
discovered) and different goal state (the set of individuals —
leaves — that form the coalition.)

To optimize performance, not only do we need to find a
good search mechanism, but we also need to find an organi-
zation that for a specific environment model and agent pop-
ulation yields the best performance. In other words, we are
modifying the search tree so that the search mechanism can
perform better. The closest analogue in classical AI is the use
of macro operators, which adds edges to the search tree to
speedup the search. In our case we have more flexibility, as
we can modify the search tree in whatever way we see appro-
priate. In our experiments we verify this by testing different
organization structures of the same agent population and same
tasks distribution, as we describe in Section 4.

4 Experiments and Results

4.1 Setup

In our experiments, we wanted to know if using an under-
lying organization improved the system’s performance. To do

so, we compared our approach to centralized (a single man-
ager controlling all individuals) random policy (CRP) and
to centralized greedy policy (CGP). In CRP , an agent is
picked at random and added to the coalition. In CGP , the
agent that may contribute the most resources to the coalition
is selected.

We also investigated the effect of learning in an organi-
zation by comparing three local policies: distributed learned
policy (DLP), distributed random policy (DRP), and dis-
tributed greedy policy (DGP). Finally to measure the ef-
fect of the organization structure on system performance, we
collected results using different organizations, all constructed
from the same population of individual agents. In the system
we tested, agents control two types of resources, and the fall
into 6 types of agents:

Type A controls 〈crA,1 = 2, crA,2 = 2〉 resources
Type B controls 〈crB,1 = 10, crB,2 = 10〉 resources
Type C controls 〈crC,1 = 0, crC,2 = 30〉 resources
Type D controls 〈crD,1 = 1, crD,2 = 10〉 resources
Type E controls 〈crE,1 = 20, crE,2 = 2〉 resources
Type F controls 〈crF,1 = 8, crF,2 = 0〉 resources

In these classes, we tried to represent different specializa-
tions among agents. We studied four different organization
structures shown in Figure 3. Organization H is homoge-
neous. Agents of each type are clustered together, then similar
types (e.g., A and B) are clustered together. Organization SE
is semi-homogeneous. Each couple of agents of similar types
are clustered together, then similar clusters are clustered to-
gether. Organization SH is similar to H , but one organization
level is omitted. Finally, organization RS has the same “struc-
ture” of SH , but individual agents are assigned randomly to
each cluster.

Figure 3. Different Organization Structures.

Results for every organization/technique combination
were computed over 10 simulation runs. Each simulation
run consisted of 30,000 episodes. Seven tasks arrive at every
episode and are randomly picked from a bag of tasks. Tasks
in the bag are generated randomly such that each task requires
between 4 and 10 agents to be accomplished. At any episode,

the resources required by arriving tasks exceed the resources
available to the system.

Our experiments focused only on 40 individuals and 10
managers so we can easily hand code different organization
structures and study their effect. However, to verify the scala-
bility of our approach, we tested it in a population of 90 agents
and 13 managers. Agents were organized in a way similar to
organization H and were randomly generated (using 9 distri-
butions to represent 9 different classes of agents). Tasks were
also randomly generated (from two different distributions).
We plan to study even larger populations and use clustering
techniques to automatically generate different organizations.

4.2 Results

Figure 4 shows the average utility for different organi-
zations and policies. As expected, CRP performed worst.
DRP performed better than CRP .9 CGP is better than both.
Our approach, DLP , outperformed all other policies for all
organization structures, except when using a random organi-
zation structure.

Figure 5 illustrates how the performance of our system im-
proves as agents gain more experience (i.e., witness more
episodes). Interestingly, DGP (not shown in the figures),
performed worse than DRP and DLP in all organizations
except RS, where it performed better than both. In our exper-
iments with larger agent population (90 agents), DLP was
better than other policies, achieving 35% more utility than
CRP and at least 20% better than DRP and DGP .

CENTERALIZED

7000

7200

7400

7600

7800

8000

8200

8400

CRP

CGP

SH SE H RS

7000

7200

7400

7600

7800

8000

8200

8400

DRP

DLP

Figure 4. Utility average.

More importantly, DLP is more stable than other ap-
proaches as Figure 6 shows. The standard deviation (of
achieved utility) using CGP is 70% worse than DLP with
SE organization. CRP is 30% worse than DLP . Also DGP
was the worst for all organizations except RS. We had similar
results with the larger agent population. DLP had the least
standard deviation, which was around one third that of DGP .

While it is expected that our approach performs better than
distributed random and greedy policies, one might expect cen-

9We believe this is due to the goal decomposition component of the orga-
nization, which encodes part of the domain knowledge.

episodes
2500 7500 12500 17500 22500

av
er

ag
e

ut
ili

ty

6000

6500

7000

7500

8000

8500

H

SE

SH

RS

Figure 5. Learning curve.
tralized policies to perform better than our approach, due to
the inaccuracies (incurred by abstraction) and the limitations
on managers’ choices (imposed by the organization). We be-
lieve the reason our system performed better is the underly-
ing organization, which implicitely encodes domain knowl-
edge. In other words, limiting the actions of a manager is
actually a good thing if these actions are the best actions this
manager can take. This is also why a bad organization may
lower performance. The underlying organization also affects
the abstraction quality. A random organization contains more
information, hence it will be abstracted poorly (the entropy
principle).

CENTERALIZED

600

700

800

900

1000

1100

1200

CRP

CGP

SH SE H RS

600

700

800

900

1000

1100

1200

DRP

DLP

Figure 6. Utility standard deviation.

Figure 7 compares the average number of exchanged mes-
sages per task. As expected this measure increases as the or-
ganization hierarchy gets taller. Centralized approaches ex-
change fewer messages. Still, learning the local decision re-
duces the number of exchanged messages. Finally, Figure 8
shows the average resources wasted. CGP wasted 20% more
resources than DLP , while CRP wasted 40% more. We got
similar results for the larger agent population.

5 Related work

In [6], the authors presented a distributed algorithm for
solving the coalition formation problem. The algorithm re-
quires exponential time but is optimal. It neither used learning
nor an underlying organization. Our algorithm is an approxi-
mation algorithm that returns a solution in polynomial time.

The work in [5] introduced an anytime coalition structure
generation algorithm (the term coalition structure refers to

CENTERALIZED

10

15

20

25

30

35

40

45

CRP

CGP

SH SE H RS

10

15

20

25

30

35

40

45

DRP

DLP

Figure 7. Messages average.

CENTERALIZED

24

26

28

30

32

34

36

38

CRP

CGP

SH SE H RS

24

26

28

30

32

34

36

38

DRP

DLP

Figure 8. Average percentage of wasted resources.
the solution of the coalition formation problem). As in [6],
the work did not use any organization for guiding the coalition
formation search and assumed a black box function that given
a feasible solution returns the value of such solution, while we
evaluate the solution based on the total utility of the allocated
tasks.

The work in [7] used a multi-leveled learning scheme to
form coalitions. Both reinforcement learning and case based
reasoning were used. Unlike our work, they do not use an
underlying organization, which limits the scalability of their
approach (their experiments were limited to 4 agents).

In [4], the authors proposed and analyzed a simplified and
restricted model of an organization, which takes only process-
ing and communication costs into account. While they tried
also to analyze the performance of different organizations,
unlike our work there was no notion of resources, individ-
ual capabilities, coalition capabilities, task requirements, and
coalition formation.

In our approach a group of agents co-learn to work together
in an organization. This can be viewed as distributed learning
of a hierarchical policy that targets recursive optimality [2].
However, none of the work in hierarchical learning area in-
troduced the concepts of quantitative/dynamic state abstrac-
tion and task decomposition. We defined these concepts to
decouple agents’ local decision problems while minimizing
communication, and hence achieve scalability. Our work also
quantitatively evaluates how different action hierarchies affect
the learning performance.

6 Conclusions and Future work

In this work we defined a generic problem solving frame-
work using an underlying organization, and applied it to the
coalition formation problem. We provided an algorithm for
the local decision to be made by each agent, given state ab-
stractions from other agents and its decomposed task. We
used Q-learning with neural nets as functional approximators
to improve the local decision. Our initial results show that
our approach outperformed both random and greedy policies
for most of the organizations we studied. It achieved higher
utility and more stability with a smaller percentage of wasted
resources and fewer exchanged messages. The results also
verify the scalability of our approach as it still outperforms
the other approaches we studied for larger systems.

In future, we aim to study a wider variety of organizations
for different types of environments. We will also investigate
further our abstraction and decomposition schemes, as we be-
lieve better schemes can considerably improve the learned
policy performance. We also plan to study the optimization
of the underlying organization and how this interacts with op-
timizing the hierarchical policy.

References

[1] S. Abdallah and V. Lesser. Organization-based coalition forma-
tion. Technical report, UMASS, to appear.

[2] A. Barto and S. Mahadevan. Recent advances in hierarchical
reinforcement learning. In Discrete Event Systems journal, vol-
ume 13, pages 41–77, 2003.

[3] K. Decker and V. Lesser. Designing a family of coordination al-
gorithms. In 1st International Conference on Multi-Agent Sys-
tems, 1995.

[4] Y. pa So and E. Durfee. Designing tree-structured organiza-
tions for computational agents. Computational and Mathemati-
cal Organization Theory, 2(3):219–246, 1996.

[5] T. Sandholm and et al. Coalition structure generation with worst
case guarantee. Proceedings of the 3rd Internation Conference
on Autonomous Agents, 1999.

[6] O. Shehory. Methods for task allocation via agent coalition
formation. Artificial Intelligence Journal, 101(1–2):165–200,
1998.

[7] K. Soh and X. Li. An integrated multilevel learning approach to
multiagent coalition formation. International Joint Conference
on Artificial Intelligence, pages 619–624, August 2003.

[8] R. Sutton and A. Barto. Reinforcment Learning: An Introduc-
tion. MIT Press, 1999.

[9] M. Tambe. Towards flexible teamwork. Journal of Artificial
Intelligence Research, 7:83–124, 1997.

