
DNVA: a tool for visualizing and analyzing multi-agent learning in networks

Sherief Abdallah, Sima Sadleh
Faculty of Engineering and IT

British University in Dubai
Dubai, United Arab Emirates

Email: shario@ieee.org

Iyad Rahwan, Aamena Al Shamsi
Masdar Institute

Abu Dhabi, United Arab Emirates

Victor Lesser
Computer Science Dept.

University of Massachusetts Amherst
Amherst, United States

Abstract—Networks are seen everywhere in our modern life,
including the Internet, the Grid, P2P file sharing, and sensor
networks. Consequently, researchers in Artificial Intelligence
(and Multi-Agent Systems in particular) have been actively
seeking methods for optimizing the performance of these
networks. A promising yet challenging optimization direction
is multi-agent learning: allowing agents to adapt their behavior
through interaction with one another. However, understanding
the dynamics of an adaptive agent network is complicated due
to the large number of system parameters, the concurrency
by which the system parameters change, and the delay in
the effect/consequence of parameter changes. All these factors
make it hard to understand why an adaptive network of agents
performed well at some time and poorly at another.

In this paper we present a software tool that enables
researchers in the multi-agent systems field to visualize and
analyze the evolution of adaptive networks. The proposed
software customizes and implements techniques from data
mining and social network analysis research and augment these
techniques in order to analyze local agent behaviors. We use
our tool to analyze two domains. In both domains we are able
to report and explain interesting observations using our tool.

Keywords-multi-agent learning; visualization; network anal-
ysis; dynamics

I. INTRODUCTION

Networks are seen everywhere in our modern life, in-
cluding the Internet, the Grid, P2P file sharing, and sensor
networks. Consequently, researchers in Artificial Intelligence
(and Multi-Agent Systems in particular) have been actively
seeking methods for optimizing the performance of these
networks. A promising yet challenging optimization direc-
tion is multi-agent learning: allowing agents to adapt their
behavior through interaction with one another. However,
understanding the dynamics of an adaptive agent network is
complicated due to the large number of system parameters,
the concurrency by which the system parameters change, and
the delay in the effect/consequence of parameter changes.
All these factors make it hard to understand why an adaptive

This material is based in part upon work supported by the British Univer-
sity in Dubai (BUiD) under Grant Number INF009 and the National Sci-
ence Foundation (NSF) under Award Number IIS-1116078. Any opinions,
findings, conclusions or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the views of BUiD or
NSF.

network of agent performed well at some time and poorly
at another.

In this paper we present a tool that enables researchers
in the multi-agent systems field to visualize and analyze
the evolution of adaptive networks. Such tool facilitates
better understanding of multiagent learning dynamics in
networks; and is therefore an important step toward de-
veloping more advanced and robust learning techniques for
agent networks. While there has been some previous work
that used data mining techniques to analyze communication
messages (between agents) [15], the previous work focused
on debugging multi-agent systems and inspecting individual
messages exchanged between the agents. Such analysis is
not helpful in understanding learning dynamics that require
higher level of analysis and looking at agent strategies rather
than individual messages. Also some of the previous work
provided tools for analyzing multi-agent systems visually,
but these tools did not rely on a methodology based on data
mining as we do here [12], [8]. Most of the work in analyz-
ing (communication) networks and distributed systems relied
on simple heuristics that are intuitive, easy to understand,
and experimentally verified to work adequately. Even when
large-scale and in-depth analysis of the network behavior
was conducted, the underlying nodes were assumed to have
fixed behavior (not learning) [13]. Here we are interested in
analyzing networks of learning agents, where the dynamics
of the network change over time even if the outside world
remains unchanged. As Section III illustrates, the software
tool helped us analyze and explain interesting observations
that were reported in earlier work for two domains: social
learning [17], [2] and the taxi dispatch system [4].

To summarize, our contributions in this paper are:

• Presenting a new tool for analyzing the learning dy-
namics of a network of adaptive agents.

• Two case studies that illustrate the use of our tool in
explaining observed phenomena.

II. DYNAMIC NETWORK VISUALIZATION ANALYSIS
(DNVA) TOOL

Our DNVA tool is an open source software that builds on
the Social Network Image animator (SoNIA) open source

Figure 1. DNVA Tool Block Diagram.

package [6]. SoNIA is a java based package that helps in ex-
ploring dynamic network evolving over time and facilitates
studying the relations of networks’ entities (nodes). SoNIA
focused on visualizing dynamic networks over different
slices of time (via different algorithmic layouts). Our tool
extends SoNIA’s capabilities in the following aspects:

• New XML format and a corresponding parser and data
structure that is more suitable for large-scale networks
and online analysis.

• Advanced detailed network visualization with corre-
sponding data mapper.

• Novel Network Analysis Visualization
Figure 1 shows the block diagram of the DNVA tool. The

remainder of this section describes the main elements of
DNVA.

A. New Input Format

Several software tools support XML as an input format,
with considerable variations. Only few formats, however,
support dynamic networks. Figure 2 compares the logical
structure of the input file for the (original) SONIA software
against the format of our tool. The file format for SONIA
has two crucial limitation: time scalability and online visual-
ization. For SONIA, changes in the network are grouped per
network entity (i.e. per node or edge). So for example, all
the changes in node X’s features should be grouped together
in one block in SONIA’s input file format. Such format
works for small time scale, because it requires processing the
complete input file before being able to visualize anything.
This should be contrasted to our file format where changes
are grouped per time instance, which allows immediate and
online visualization of changes. Further features of the new
input file format include:

• Nodes and edges’ addition and removal is allowed.
• Modification in nodes and edges attributes over time is

allowed.
• Default values provided for nodes with missing

edges/nodes attributes.
The structure of the proposed DNVA input file is illus-

trated below.
<DynamicNetwork>

Node 1
• Change at time 1 of

attribute X
• Change at time 5 of

attribute Y
• ….

Node 2
• Change at time 5 of

attribute Y
• ….

Edge 12
• Change at time 10 of

attribute Z
• ….

…

Time 5
• Node 1 change of

attribute Y
• Node 2 change of

attribute Y
• ….

Time 1
• Node 1 change of

attribute X
• ….

Time 10
• Edge 12 change of

attribute Z
• ….

…

Figure 2. Comparing the file formats of SONIA (left) and DNVA (right).

<!-- Nodes Attributes definition -->
<Nodeattributes>
<attribute name=’Q_a1’ type=’Double’/>
<attribute name=’Q_a2’ type=’Double’/>
</Nodeattributes>

<!-- Edges Attributes definition -->
<Edgeattributes>
<attribute name=’Num_of_Interactions’

type=’Integer’/>
</Edgeattributes>

<!--Initial nodes, edges and attributes at
time 0 -->

<change time=’0’>
<!-- List of nodes -->
<node id=’0’>
<attributeValue name=’Q_a1’ value=’0’/>
<attributeValue name=’Q_a2’ value=’0’/>
</node>

<node id=’1’>
<attributeValue name=’Q_a1’ value=’0’/>
<attributeValue name=’Q_a2’ value=’0’/>
</node>

<!-- List of edges -->
<edge edgeID=’0-1’ source=’0’ target=’1’

type=’add’>
<attributeValue name=’Num_of_Interactions’

value=’0’/>
</edge>
</change>

<!-- Once any change occurs it will be added
(node/edges addition, removal, attribute
values modification-->

<change time=’5’>
<node id=’1’>
<attributeValue name=’Q_a1’ value=’0.1’/>
</node>
</change>
</DynamicNetwork>

A parser is implemented to represent the network data
structure including all nodes, edges and their attributes. Us-

ing the data structure, the tool can extract network features
such as the node degree over time.

B. Advanced Detailed Network Visualization

Visualization was and remains the crux of exploratory data
analysis. Our tool facilitates visualizing dynamic networks
by defining three components:

• a set of visualizable features for nodes and edges
that is defined by the tool. The visualizable node
features include the node size (integer: 1-100), shape
(nominal: square, circle, diamond, etc), and three color
components (3 integers reflecting the red, green, and
blue color components). The visualizable edge features
include the edge width, style (dashed, solid, dotted, etc),
and three color components.

• a set of logical attributes for nodes and edges that is
defined in the input file. The set can include for example
the probability of choosing an action by an agent in
general (node attribute) or for a particular neighbor
(edge attribute).

• a mapping between logical attributes and visualizable
features which specify which logical attributes are to
be visualized and how. Figure 3 shows a snapshot of
such mapping.

For effective visualization of large networks, our tool
allows filtering and highlighting a subnetwork. The filter-
ing feature enables the user to formulate simple queries
(specifying values for logical attributes) or complex queries
(combination of simple queries). Based on the formulated
query the network representation will be updated to show
only the nodes that satisfy the query. The highlighting
feature is similar to filtering feature, where the subnetwork
satisfying the query is highlighted, without deleting the rest
of the network. We allow more than one subnetwork to be
highlighted with different colors (reflecting multiple logical
subnetworks). To visualize the changes in a network over
time, play/stop and resume time line is provided through
the SoNIA package.

In addition to the logical attributes that are defined in the
input file, our tool can compute network-based attributes
(i.e. the attributes that depend on the network structure)
such as the node degree. These computed attributes are
then treated as normal logical attributes (as if the network-
based attributes where read from the input file) and can be
visualized accordingly.

C. Novel Network Analysis Visualizations

Visualizing the detailed network (with individual nodes
and edges), even with filtering and highlighting, is difficult
to use as the first step when analyzing a large network.
Instead, one would prefer a summarized view of the network
dynamics to start with and then go gradually into more
focused and detailed view. Different novel summarizing
graphs are supported by our tool, including:

(a) Histogram time series Heatmap

(b) 3-D edge visualization

(c) collective time series
Figure 4. Different Visualizations of DNVA. In the heatmap visualization
the horizontal axis represents time, the vertical axis represents (logical)
attribute value, and the color represents the frequency of a particular
attribute value. The 3D-edge visualization and the collective time-series
visualizations are described in Section III.

• Histogram time series heat-map
• 3-D edge visualization
• Collective time series
Figure 4 illustrates these visualizations, which are ex-

plained in more detail later when we discuss the case studies.

III. CASE STUDIES

To evaluate the effectiveness of our tool, this section
presents our analysis of two domains: social learning and
taxi dispatch systems. The significant difference between the
two domains stresses the generality of our tool.

A. Social Learning

Social learning studies how a group of agents interact and
learn from one another to reach a norm [14]. A norm or a
convention is an unwritten law that a society of agents agree
on. Social norms are used by humans all the time. Choosing
on which side of the road to drive a car and the right-of-way
at an intersection are well-known examples. In a multi-agent

Figure 3. Snapshot of the tool showing the mapping between logical attributes and visualizable features.

setting, a convention may refer to a dominant coordination
strategy, a common communication language, or the right
of way among a group of robots. Upon establishing a norm,
the overhead of coordination drops and the reliability of
the multi-agent system increases [16]. When studying the
emergence of norms and conventions, researchers typically
assumed the interaction between agents to be random: a
pair of agents were selected randomly to interact with one
another. The process is then repeated until convergence.
When agents are adaptive, the process is referred to as
social learning. The coordination game is perhaps the most
widely used game for studying social learning as it presents
an agent community with two equally plausible norms to
choose from [14]. Recently social leaning was studied in
networks [17] where the underlying network restricted the
interactions between agents. In such a setting, convergence
to a global norm was no longer guaranteed as more than
one (sub)convention might emerge concurrently and remain
stable.1 The reason for the emergence of multiple stable sub-
conventions was the existence of a stable barrier that sepa-
rated the sub-conventions from one another (or equivalently,
prevented each convention from invading the other). Such a
barrier or a frontier created a suboptimal equilibrium. The
frontier effect was reported to either prevent or significantly
slowdown the convergence to a global norm across variety
of network types, particularly for scale-free networks [17].

1A sub-convention is a convention that is not adopted by the vast majority
of the agents.

Here we study social leaning in scale-free networks, the
most challenging type of networks for reaching a global
consensus. Figure 5 shows the 3D visualization of the dy-
namics of this case (the z-axis represents time, from bottom
to top). Each point in the x-y plane represents a network
edge: the probability of choosing the first convention for the
two agents across the edge. There is no single norm that
agents converge to. The vast majority of edges connect two
agents that adopt the the same norm (the bottom and the
top corners of the 3D cube). There are few edges on the
boundary of the two norms (the left and the right corners
of the 3D cube). The unexpected part here is the nodes that
keep appearing between the four corners (e.g. those enclosed
by the black ellipse). With the simple coordination game,
one would expect all agents to converge to one of the two
norms and therefore all edges to converge to one of the four
corners. This observation required further investigation to
determine whether this was just a simulator bug or a genuine
observation.

Figure 6 visualizes individual node policies as time series.
A policy of a node is simply the probability of choosing the
first convention. The vast majority of nodes settle to one of
the two norms, as expected from Figure 5. However, there
are few nodes that never settle and keep oscillating: Node
12 and Node 13. This phenomena was not reported by the
previous research in social learning [17], [2].

To understand why such nodes behaved this way, we
needed to visualize the network in detail. We used the

Figure 5. 3D visualization of the dynamics (the z-axis represents time, from bottom to top). Each point in the x-y plane represents a network edge: the
probability of choosing the first convention for the two agents across the edge. There is no single norm that agents converge to. The vast majority of edges
connect two agents that adopt the the same norm (the bottom and the top corners of the 3D cube). There are few edges on the boundary of the two norms
(the left and the right corners of the 3D cube).

Figure 6. Visualizing individual node policies as time series. The vast
majority of nodes settle to one of the two norms. However, there are two
nodes that never settle and keep oscillating: Node 12 and Node 13. This
phenomena was not reported by any of the previous research in social
learning.

simple mapping from a node’s policy (logical attribute) to
the node’s red color component (visual feature). Figure 7
visualizes the underlying network. Notice here that Node
12 and Node 13 (highlighted) are sandwiched between
two stable subconventions. As a result, the two nodes are
susceptible to random walks: there is no strict preference to
one convention as opposed to the other and the two nodes

Figure 7. Visualization of the underlying network. Notice here that
Node 12 and Node 13 (highlighted) are sandwiched between two stable
subconventions and as a result they are susceptible to random walks.

will never converge.

B. Taxi Dispatch System

The second domain we analyzed is the taxi dispatch
system. A taxi dispatch system is used to assign vacant

taxi to a customer in different locations. In a recent paper,
multi-agent technologies were used to improve the perfor-
mance of such system [4]. The system divided the city into
regional dispatch area and adjacent areas are assigned to
each dispatch area, therefore creating a network. An adjacent
dispatch area is used when there is no vacant cabs in the
local dispatch area. The underlying network was initially
created by a human expert, and then later was restructured
automatically through a self-organizing mechanism [4]. Here
we analyze the data set representing the evolution of the taxi
dispatch network and observe the change in the network
properties. The original paper used the degree distribution
to assess the change in the network due to self-organization.
The degree distribution, however, showed very little change
and that does not fully explain the significant improvement
in performance.

We visualize the initial network (before self-organization)
in Figure 8, where node color visualizes the node degree.
We can see more than 27 isolated areas (indicated by red
rectangles) that have no adjacent area. The isolated areas
either suffer overload or under-utilization of cabs. Figure
9 visualizes the network at the end of the simulation and
after applying the multi-agent self-organization technique.
The orange edges represent new connections that were added
through self-organization. Notice here although the change
in the degree distribution was minimal, the change in some
individual nodes was significant. For example Node 11
(highlighted) was initially isolated, but toward the end it
got (in)degree of 7. Node 87 (highlighted) has degree of 1,
but toward the end became one of the hubs. In fact, when
the nodes with dark red color in the final network (hubs)
were not hubs initially (Figure 8). This shows that the self-
organizing mechanism used in the original work did not
follow preferential attachment property.

IV. RELATED WORK

Some researchers analyzed how individual agent policies
co-evolved over time, either theoretically [9], [18], [3] or
experimentally [11], as the number of agents increases,
inspecting individual agent policies does not scale well
with the size of the network. A more recent work used
data mining techniques to extract patterns from log files
of communicated messages between agents [15]. Inspecting
individual messages exchanged between the agents becomes
less practical and less useful as the network gets larger.
Some of the previous work provided generic frameworks for
analyzing multi-agent systems [12], [8], but these framework
limited analysis to few agents and ignored the underlying
network structure, unlike the work presented here. Most
of the work in analyzing (communication) networks and
distributed systems relied on simple heuristics that are intu-
itive, easy to understand, and experimentally verified to work
adequately. Large-scale and in-depth analysis of the network
behavior assumed the underlying nodes are relatively simple

with fixed behavior [13]. Here we are interested in analyzing
networks of learning agents, where the dynamics of the
network change over time even if the outside world remains
unchanged.

There has been several tools that were developed for
analyzing social networks. The network analysis approach
relied on summarizing the quantitative characteristics of a
network using simple measures such as the degree distribu-
tion [1]. Example of such tools include the Social Network
Analysis (SNA) tool [7], the open source tool Java Universal
Net-work/Graph Framework (JUNG) [10], Gephi [5], and
SoNIA [6]. These tools were used successfully for mining,
visualizing and analyzing snapshot of a network or a graph.
However, except for SoNIA that we extend in this work,
none of these tools were specifically designed to handle
dynamic networks.

V. CONCLUSION

In this paper we presented our tool for analyzing networks
of adaptive agents. Unlike most of the similar tools, which
either focused on analyzing a snapshot of a network or
ignored the underlying network, our tool analyzes the learn-
ing dynamics over time in a network of agents at different
levels of details. We showed how our tool helped us explain
some interesting observations in two case studies: the social
learning and the taxi dispatch domains.

One of the future directions we plan to pursue is to extend
our tool and implement more advanced techniques, such as
frequent sequence mining as well as novel visualization tech-
niques that are suitable for multi-state learning dynamics.

REFERENCES

[1] S. Abdallah. Generalizing unweighted network measures to
capture the focus in interactions. Social Network Analysis
and Mining, 1(4):255–269, 2011.

[2] S. Abdallah. Using a hierarchy of coordinators to overcome
the frontier effect in social learning. In Proceedings of
the 8th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 2012.

[3] S. Abdallah and V. Lesser. A multiagent reinforcement
learning algorithm with non-linear dynamics. Journal of
Artificial Intelligence Research, 33:521–549, 2008.

[4] A. Alshamsi, S. Abdallah, and I. Rahwan. Multiagent self-
organization for a taxi dispatch system. In The International
Joint Conference on Autonomous Agents and Multiagent
Systems, page (to appear), May 2009.

[5] M. Bastian, S. Heymann, and M. Jacomy. Gephi: An open
source software for exploring and manipulating networks,
2009.

[6] S. Bender-deMoll and McFarland. The art and science of
dynamic network visualization. Journal of Social Structure,
7(2), 2006.

Figure 8. Visualizaition of the taxi network before reorganization.

Figure 9. Visualization of the taxi network after the reorganization.

[7] A. Bohn, I. Feinerer, K. Hornik, and P. Mair. Content-Based
Social Network Analysis of Mailing Lists. The R Journal,
3(1):11–18, June 2011.

[8] T. Bosse, D. N. Lam, and K. S. Barber. Tools for analyz-
ing intelligent agent systems. Web Intelligence and Agent
Systems, 6(4):355–371, 2008.

[9] M. Bowling and M. Veloso. Multiagent learning using a
variable learning rate. Artificial Intelligence, 136(2):215–250,
2002.

[10] D. Fisher, J. O’madadhain, P. Smyth, S. White, and Y.-B.
Boey. Analysis and Visualization of Network Data using
JUNG. Journal of Statistical Software.

[11] M. Ghavamzadeh, S. Mahadevan, and R. Makar. Hierarchical
multi-agent reinforcement learning. Autonomous Agents and
Multi-Agent Systems, 13(2):197–229, 2006.

[12] J. Jin, R. T. Maheswaran, R. Sanchez, and P. Szekely.
Vizscript: visualizing complex interactions in multi-agent
systems. In Proceedings of the international conference on
Intelligent user interfaces, pages 369–372, 2007.

[13] V. Paxson. End-to-end routing behavior in the internet.
SIGCOMM Comput. Commun. Rev., 36(5):41–56, 2006.

[14] S. Sen and S. Airiau. Emergence of norms through social
learning. In Proceedings of the international joint conference
on Artifical intelligence, IJCAI, pages 1507–1512, San Fran-
cisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.

[15] E. Serrano, J. J. Gómez-Sanz, J. A. Botı́a, and J. Pavón.
Intelligent data analysis applied to debug complex software
systems. Neurocomputing, 72(13-15):2785–2795, 2009.

[16] T. Sugawara. Emergence and stability of social conventions
in conflict situations. In Proceedings of the international joint
conference on Artifical intelligence, pages 371–378, 2011.

[17] D. Villatoro, J. Sabater-Mir, and S. Sen. Social instruments
for robust convention emergence. In IJCAI, pages 420–425,
2011.

[18] P. Vrancx, K. Tuyls, and R. Westra. Switching dynamics
of multi-agent learning. In Proceedings of the 7th interna-
tional joint conference on Autonomous agents and multiagent
systems, pages 307–313, Richland, SC, 2008. International
Foundation for Autonomous Agents and Multiagent Systems.

