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Abstract—We consider a multiagent resource allocation prob-
lem where individual users intend to route traffic by requesting
the help of entities across a network, and a cost is incurred at each
network node that depends on the amount of traffic to be routed.
We propose to study contract-based network resource allocation.
In our model, users and nodes in the network make contracts be-
fore nodes route traffic for the users. The problem is an interesting
self-interested negotiation problem because it requires the com-
plete assembly of a set of distinct resources, and there are multiple
combinations of distinct resources that could satisfy the goal of
negotiation. First, we characterize the network allocation problem
and show that finding optimal allocations is NP-complete and
is inapproximable. We take both Nash equilibrium and pairwise
Nash equilibrium as the solution concepts to characterize the
equilibrium allocations. We find that, for any resource allocation
game, Nash equilibrium and pairwise Nash equilibrium always
exist. In addition, socially optimal allocations are always sup-
ported by Nash equilibrium and pairwise Nash equilibrium. We
introduce best-response dynamics in which each agent takes a
myopic best-response strategy and interacts with each other to
dynamically form contracts. We analyze the convergence of the
dynamics in some special cases. We also experimentally study the
convergence rate of the dynamics and how efficient the evolved
allocation is as compared with the optimal allocation in a variety
of environments.

Index Terms—Negotiation, networks, resource allocation.

I. INTRODUCTION

IN SYSTEMS involving multiple autonomous agents, it is
often necessary to decide how scarce resources should be

allocated. The allocation of resources within a system of au-
tonomous agents is an exciting area of research at the inter-
face of computer science and economics. Multiagent resource
allocation (MARA) is relevant to a wide range of applications,
e.g., industrial procurement, manufacturing systems, and grid
computing (see [4] for a survey). Market mechanisms have
been evolving as a method to incorporate control into systems
with a large number of autonomous agents. Economic para-
digms allow for decentralized implementation while providing
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mechanisms to regulate the behaviors of users. There have been
extensive applications and support for market-based control,
e.g., factory scheduling [5] and communication networks [16].

This paper looks at a MARA problem across computational
networks consisting of selfish entities. Individual users send
traffic by requesting the help of those entities. A cost is incurred
at each node (entity) receiving, storing, and processing traffic.
In this paper, we study contract-based mechanisms for the re-
source allocation problem. In our model, users and nodes in the
network make agreements (contracts) before nodes route traffic
for the users. The model we develop is motivated by multi-
agent environments, where bilateral negotiations may result in
service agreements between users and network entities (nodes).
Agreements are used for allocating traffic flow, and network
entities’ costs are compensated in the form of payments as-
sociated with agreements. Our problem is an interesting self-
interested negotiation problem because it requires the complete
assembly of a set of distinct resources, and there are multiple
combinations of distinct resources (i.e., multiple paths) that
could satisfy the goal of negotiation.

The model considered in this paper can be motivated from
various contexts. As an example, consider a distributed vehicle
network that consists of a number of geographically dispersed
dispatch centers of different companies [28]. Each center is
responsible for certain deliveries and has a certain number of
vehicles. There is a cost associated with each center, which
represents the storage and labor costs of handling the delivery
tasks. When a user wants to deliver certain traffic through a
path, it needs to make contracts with all delivery centers on that
path. When a user has a delivery task, there may be multiple
paths from the source to the destination. The user just needs to
request the centers along any path to finish the delivery task.

As another example, consider the negotiation management
component [1] for Collaborating, Autonomous Stream Process-
ing Systems (CLASP) [3], which has been designed and pro-
totyped in the context of System S project [14] within IBM
Research to enable sophisticated stream processing. There are
multiple sites running the System S software, each with their
own administration and goals. Each site may only have limited
processing capabilities, so cooperation among these sites can
frequently be of mutual benefit. Consider that a site receives
a job. After planning [22], the site finds that using only its
local resources, it cannot satisfy all resource requirements of
the plan. Then, the site negotiates with other sites to acquire
resources that are needed, and such negotiations are conducted
by the site’s negotiation management component [1]. The
plan can be executed if and only if all resource requirements
are satisfied. There may exist multiple functionally equivalent
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plans, and different plans require different set of resources. To
complete the job, the site needs to acquire the resources of any
plan by negotiation. There is a cost associated with a site’s
providing resources, and the cost depends on factors like the
number of sites using its resource. Each plan in this stream
processing example can be treated as a path in our problem.

Our first objective in this paper is to understand the re-
lationship between stability and optimality in this resource
allocation game, where selfish agents strategically choose their
actions. While selfish agents are only interested in maximizing
their individual objective functions, the overall efficiency of
stable allocations that are outcomes of decentralized strategic
interactions can be worse than that of social optimal allocations
formed by a central authority maximizing aggregate social
welfare. We show that finding optimal resource allocations is
NP-complete and is inapproximable. We analyze both Nash
equilibrium (NE) and pairwise NE as the solution concepts to
characterize the equilibrium allocations. While NE is the dom-
inant solution concept in studying agents’ strategic behavior in
various resource allocation games, we also study pairwise NE.
This is a refinement of the NE, which requires that an NE stable
allocation is immune to the strategy deviation of any pair of
agents [12]. We find that, for any resource allocation game,
NE and pairwise NE always exist. In addition, the optimal
allocations are always supported by NE and pairwise NE.

The other main objective of this paper is to understand the
dynamics of the resource allocation process when a collec-
tion of agents interact with each other to dynamically form
contracts. We explore how the allocations evolve under such
dynamics in light of the underlying resource allocation game.
We are interested in understanding and characterizing the
allocations that result when the decision-makers interact to
choose their actions. We define protocols in which agents can
dynamically respond to current allocation by taking myopic
best-response strategies. Individuals do not predict how their
contracting decisions might affect future decisions of other
individuals or, more generally, how they might influence the
future evolution of the allocation. Such myopic behavior occurs
in large multiagent systems where agents have limited informa-
tion about the incentives of others or where agents are resource
bounded. In this paper, we analyze the convergence property of
the dynamics in some special cases. In addition, we consider
decommitment penalty [29] as an additional variable for an
agent to decide the set of allowable contracting actions. We also
experimentally study the convergence rate of the dynamics and
how efficient the evolved allocation is as compared with the
optimal allocation in a variety of environments.

In our approach, users and network nodes make propos-
als and then reach agreements. Our negotiation approach for
MARA is of a distributed nature. In general, the allocation
procedure used to find a suitable allocation of resources could
be either centralized or distributed. The typical and best-known
examples for the centralized approach are combinatorial auc-
tions [6], [20]. In combinatorial auction schemes, a centralized
controlling agent (the “auctioneer”) assumes responsibility for
determining which agents receive which resources based on the
bids submitted by individual agents. However, the problem of
deciding successful bids, i.e., winner determination problem, is

NP-hard [24]. In addition, the auctioneer may face significant
computational overload due to a large number of bids with com-
plex structures. One of the most important arguments against
centralized approaches is that it may be difficult to find an agent
that could assume the role of an “auctioneer.” For instance, self-
ish resource providers may not trust the auctioneer and are not
willing to comply with the decisions made by the auctioneer.
In distributed approaches like automated negotiation, on the
other hand, allocations emerge as the result of a sequence of
distributed negotiations, and each selfish agent acts on behalf of
itself. The distributed model seems more natural in cases where
resources belong to different selfish agents, and finding optimal
allocations may be (computationally) infeasible.

Although users and network nodes “cooperate” with each
other on the form of contracts, the focus of this paper is not
to investigate the agents’ strategic behaviors under complex
bargaining protocols (e.g., infinite time alternating offers bar-
gaining [26, p.100]). Instead, we are trying to characterize
the network resource allocation game based on using straight-
forward contracting protocols. While analyzing agents’ equi-
librium strategies, agents simultaneously announce their bids
(prices in this paper). While studying the best-response dynam-
ics, an agent makes a proposal first, and the agent accepting the
proposal either accepts or rejects the proposal. In addition, each
agent is allowed to decommit from existing agreements. While
modeling resource allocation dynamics, each agent adopts
a best-response myopic strategy. In game theory, the best
response is the strategy (or strategies) that produces the most
favorable outcome for a player, taking other players’ strategies
as given. In evolutionary game theory, best-response dynamics
represents a class of strategy updating rules, where players’
strategies in the next round are determined by their best re-
sponses to some subset of the population. Myopic best response
refers to dynamical rules in which players do not consider the
effect that choosing a strategy on the next round would have
on future play in the game. Myopic best-response strategy is
widely used to model selfish agents’ natural behaviors, par-
ticularly bounded rational agents [21], and, in this paper, we
will use it to model the formation of stable allocations in a
distributed way.

Like most formal papers on MARA (e.g., [8] and [9]), selfish
routing (e.g., [25]), and network formation (e.g., [12], [15],
and [31]), we restrict our attention to games with complete
information where each agent has complete information about
the other agents. Although this assumption may seem imprac-
tical, our problem is already complex enough given agents’
selfishness and strategic interaction. Moreover, our analysis
will provide us insights into more general resource allocation
problems, e.g., factors affecting the resource allocation results.
In our experiments, we show how some simple forms of
uncertainty affect the resource allocation result. Our result is
a good starting point for studying more realistic models with
incomplete information.

The remainder of this paper is organized as follows. In
Section II, we describe the resource allocation model we con-
sider, including cost structure and monetary transfers between
users and nodes. In Section III, we precisely define the notion
of stability and characterize the possible allocation results. In
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Section IV, we present the best-response dynamics and the
related convergence results. Some representative simulation
results are reported in Section V. Section VI summarizes related
work. Section VII concludes this paper and outlines future
research directions.

II. RESOURCE ALLOCATION IN NETWORKS

A resource allocation game occurs in a network, which is
given by a directed graph G = (V,E), with network node set
V and directed edge set E. There are two types of agents in our
game: users and network nodes. The set of users that intend to
route traffic is A = {1, . . . , k}. A user i wants to send a positive
amount ri of traffic from source node si ∈ V to destination
node ti ∈ V . We use Pi to denote a set of paths from si to
ti, and user i intends to use one of those paths to route the
traffic. We consider only networks in which Pi �= ∅ for all i,
and define P = ∪k

i=1Pi. We allow graph G to contain parallel
edges, and a node can participate in multiple source–sink pairs.
Each path P ∈ Pi consists of a set of ordered nodes starting
from its source node si to its destination node ti. For example,
assume that user i wants to route 1 unit of traffic from node
nd1 to node nd2. A path could be nd1 → nd3 → nd4 → nd2.
That is, if user i decides to use this path to route traffic, it needs
to request node nd3 to accept traffic from node nd1, node nd4

to accept traffic from node nd3, and node nd2 to accept traffic
from node nd4. Therefore, user i needs to make agreements
with nodes nd3, nd4, and nd2. We can see that user i does not
need to make any agreement with its source node nd1. For ease
of analysis, we assume that a path does not include its source
node. We also introduce the restriction that each node appears
at most once in each path because a user only wants to route
its traffic to a destination node, and, thus, visiting a node more
than once cannot bring it any benefit.

The strategy of user i is a vector θi = {bij : j ∈ V, si �= j}.
The entry bij ≥ 0 represents a bid from user i to node j to
request node j to route traffic for user i. The strategy of node
j is a vector θj = {oij : i ∈ A, si �= j}. The entry oij > 0
represents the minimum amount of payment that node j is
willing to accept from user i to route traffic for user i. Given the
strategies of all users and nodes, a contract between user i and
node j is made iff bij ≥ oij and i only needs to pay ψ(bij , oij)
to node j, where ψ(bij , oij) is a payment rule. A payment rule
should satisfy the following: 1) oij ≤ ψ(bij , oij) ≤ bij , and 2)
ψ(bij , oij) is nondecreasing with bij and oij . In this paper,
payment rule ψ(bij , oij) = oij is used when bij ≥ oij , which
implies that user i pays node j’s demand, and node j only gets
its demand.1

A path P ∈ Pi is active iff all nodes on the path have agreed
to route traffic for user i. User i can send its traffic to its
destination only if one of its paths is active. It is possible that
more than one path of i is active. A user pays more if it makes
agreements for more than one active path. However, its gain of
delivering its traffic will not increase with more active paths.
Here, we implicitly assume that each user has only one active

1Network resource allocation games with other payment rules [e.g.,
ψ(bij , oij)=bij , ψ(bij , oij)=(bij +oij)/2] can be analyzed analogously.

path. Note that we consider an unsplittable flow problem in
which user i is not permitted to fractionally route its ri units
of traffic over paths Pi.

Given the strategy profile θ = {θi : i ∈ A ∪ V } of all users
and nodes, the set of active paths is Pa(θ) = ∪i∈APa

i (θ),
where Pa

i (θ) is the set of active paths for user i. The amount
of flow passing through or terminating at node j is fj(θ) =∑

P∈Pa(θ),j∈P f(P ). f(P ) = ri if P is a path for the si−ti
pair, i.e., P ∈ Pi. Each node j has a cost function cj : R+ →
R+. We always assume that cost functions are nonnegative,
continuous, and nondecreasing. All of these assumptions are
reasonable in applications where cost represents a quantity that
only increases with the workload. In particular, we do not
impose explicit node capacities. However, capacity constraints
can be put in nodes’ cost functions. For example, a node’s cost
goes up to infinity when the amount of traffic is higher than its
capacity.

Next, we formalize the notion of utility and social welfare in
the resource allocation game. User i’s utility is defined as

ui(θ) =
{−

∑
j∈V,bij≥oij

oij if Pa
i (θ) = ∅

vi(ri) −
∑

j∈V,bij≥oij
oij otherwise

where vi(ri) is user i’s gain when its traffic can be routed,
and

∑
j∈V,bij≥oij

oij is user i’s cost for its contracts. User i’s
utility can be rewritten as ui(θ) = vi(ri) × min(1, |Pa

i (θ)|) −∑
j∈V,bij≥oij

oij , where |Pa
i (θ)| is the number of user i’s active

paths in Pa
i (θ).

The utility of each node j is defined as

uj(θ) =
∑

i∈A,bij≥oij

oij − cj (fj(θ)) .

Given all agents’ strategies, the social welfare is defined as

sw(θ) =
∑
i∈A

ui(θ) +
∑
j∈V

uj(θ)

=
∑
i∈A

vi(ri) × min (1, |Pa
i (θ)|) −

∑
i∈A

∑
j∈V,bij≥oij

oij

+
∑
j∈V

∑
i∈A,bij≥oij

oij −
∑
j∈V

cj (fj(θ))

=
∑
i∈A

vi(ri) × min (1, |Pa
i (θ)|) −

∑
j∈V

cj (fj(θ)) .

Therefore, while keeping the set of active paths, changing
agents’ payments will not change the social welfare.

Each user has a set of paths that it can choose to route its
traffic. Before using a path to route traffic, a user needs to
make agreements with all the nodes on that path. The maximum
amount of money user i can pay for making agreements for path
P ∈ Pi is vi(ri) (otherwise, the user gets negative utility by
using this path). The minimum amount of money user i needs
to pay for a node on the path P is the node’s cost incurred
by routing the traffic for user i. A node’s cost in routing a
traffic depends on its current traffic, which is determined by the
strategies of other users.
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Definition 1 (Potentially Active Path): A path P ∈ Pi is
potentially active if and only if there exists a strategy profile
θ−i of all agents without user i such that the total marginal cost∑

j∈P (cj(fj(θ−i) + ri) − cj(fj(θ−i))) of all the nodes on path
P while routing traffic for user i is no higher than user i’s gain
vi(ri). Formally, a path P ∈ Pi is potentially active iff ∃θ−i,
vi(ri) ≥

∑
j∈P (cj(fj(θ−i) + ri) − cj(fj(θ−i))).

If a path is not potentially active, its user does not need
to consider it as an option for routing traffic. Without loss
of generality, in this paper, we assume that all paths P are
potentially active. While it is complex to check whether a
path is potentially active, we introduce the notion of strongly
potentially active path, which is easier to check. A path of a
user is strongly potentially active if it is a potentially active path
when there is only one user.

Definition 2 (Strongly Potentially Active Path): A path P ∈
Pi is strongly potentially active if and only if when there are no
other users, the total cost

∑
j∈P cj(ri) of all the nodes on path

P while routing traffic for user i is no higher than user i’s gain
vi(ri). Formally, a path P ∈ Pi is strongly potentially active iff
vi(ri) ≥

∑
j∈P cj(ri).

Proposition 3: If cost functions are concave and a path P ∈
Pi is strongly potentially active, it is also potentially active.

Proof: Given that cost functions are concave, for any θ−i

and any j ∈ P , it follows that cj(fj(θ−i) + ri) − cj(fj(θ−i))
≤ cj(ri). Thus, vi(ri) ≥

∑
j∈P cj(ri) implies vi(ri) ≥

∑
j∈P

(cj(fj(θ−i) + ri) − cj(fj(θ−i))). �
Proposition 4: If cost functions are convex, a potentially

active path P ∈ Pi is also strongly potentially active.
Proof: A potentially active path P ∈ Pi implies that

∃θ−i, vi(ri) ≥
∑

j∈P (cj(fj(θ−i) + ri) − cj(fj(θ−i))). Since
cost functions are convex, for any θ−i and any j ∈ P , it follows
that cj(fj(θ−i) + ri) − cj(fj(θ−i)) ≥ cj(ri). Thus, vi(ri) ≥∑

j∈P cj(ri), i.e., P is strongly potentially active. �
We mentioned before that the social welfare does not depend

on agents’ payments if their active paths remain the same. In
other words, the social welfare only depends on users’ active
paths achieved by contracting. To optimize the social welfare,
we need to find the set of paths that maximize the difference
between users’ gains by routing traffic and nodes’ cost incurred
by routing traffic. The social welfare maximization problem can
be formulated as follows:

Pa
opt

= max
Pa⊆P

⎛
⎝∑

i∈A
vi(ri)×min (1, |Pa ∩ Pi|)−

∑
j∈V

cj (fj(Pa))

⎞
⎠

where Pa is a subset of P , and fj(Pa) =
∑

P∈Pa f(P ) is the
amount of traffic passing or terminating at node j given the set
of active paths Pa. It is easy to see that |Pa

opt ∩ Pi| ≤ 1, i.e., in
the optimal solution, each user has at most one active path.

Proposition 5: If cost functions are concave and a path P ∈
Pi is strongly potentially active, then |Pa

opt ∩ Pi| = 1.
Proof: Assume that Pa

opt is an optimal solution and
|Pa

opt ∩ Pi| = 0. After adding path P to Pa
opt, the utility in-

crease of user i is vi(ri), and the cost increase to all the nodes

is
∑

j∈P (cj(fj(Pa
opt) + ri) − cj(fj(Pa

opt))). The change of
social welfare is σsw = vi(ri) −

∑
j∈P (cj(fj(Pa

opt) + ri) −
cj(fj(Pa

opt))). As each node’s cost function is concave,
it follows that

∑
j∈P (cj(fj(Pa

opt) + ri) − cj(fj(Pa
opt))) ≤∑

j∈P cj(ri). Thus, σsw ≥ vi(ri) −
∑

j∈P cj(ri) ≥ 0. There-
fore, social welfare will increase by adding path P , which is
contrary to the fact that Pa

opt is an optimal solution. �
Theorem 6: The problem of computing the socially optimal

allocation is NP-complete and is impossible to approximate.
Proof: Membership of NP is easy. We generate a deci-

sion problem for the optimization problem first: Is there an
allocation Pa

opt that can generate a social welfare at least α?
Given an allocation Pa

opt, compute the cost of each node and
then sum up the cost of all nodes. Finally, compare the users’
gains and nodes’ cost. It is easy to see that the complexity of
the calculation is polynomial in the number of nodes and the
number of users.

For hardness, we must show that the problem is no easier
than all other NP-complete problems. To do this, it suffices
to show that any instance I of some known NP-complete
problems can be transformed into an instance of τ(I) of the
optimization problem such that the transformation can be done
in polynomial time, and the transformed problem τ(I) has a
solution if and only if the original problem I has a solution.
Here, we define a reduction from the arc-disjoint path problem,
which has been shown to be strongly NP-complete [11]. The
disjoint path problem is specified by a graph G and a set
of source–destination pairs (s1, t1), (s2, t2), . . . , (sk, tk). The
goal is to find k disjoint paths P1, . . . , Pk such that path Pi

connects vertex si to vertex ti. Given an instance of arc-disjoint
path problem, we transform it into an instance of our allocation
problem as follows. First, we create k users in which user i
wants to send traffic from node si to node ti. The amount of
traffic of each user is one unit, i.e., ri = 1 for all i. vi(ri) = 1.
User i’s path set Pi contains all paths from node si to node ti
given the directed graph G. The cost of each node j is

cj(x) =
{ 0 if x <= 1

x × ω otherwise

where ω > |E| is a large number.
If the initial instance has k arc-disjoint paths, the social

welfare should be k if each user takes the corresponding path,
as the traffic passing or terminating at each node should be at
most 1. To see the other direction, if there exists an allocation
with the social welfare of at least k, then there is a solution to
the initial arc-disjoint path problem. Therefore, the allocation
optimization problem is strongly NP-hard.

In addition, the allocation optimization problem is inapprox-
imable as we can set an infinitely large ω, which will make
the distance between utility k and another utility arbitrarily
large when two active paths are going through the same node.
This implies that the allocation optimization problem cannot be
approximated within a finite factor. �

III. CHARACTERIZATION OF EQUILIBRIUM

This section introduces the equilibrium concepts. The con-
cept of NE is, in some sense, the analog of centralized optimal
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design in the context of multiple distributed selfish agents.
However, multiplicity of Nash equilibria motivates an exam-
ination of a stronger equilibrium concept. Here, we also use
pairwise NE [13], which is a refinement of NE in which a pair
of agents is allowed to simultaneously change their strategies.
The concept of pairwise NE fits our contracting framework in
which a pair of agents is able to coordinate their actions through
direct negotiation. Note that our equilibrium analysis focuses on
agents’ pure strategies.

A strategy profile θ forms an NE of a resource allocation
game if for each agent i and each alternative strategy θ′i

ui(θ) ≥ ui (θ′i, θ−i) .

We say that an allocation (a set of active paths) Pa is
supported via a given game relative to a profile of utility
functions if there exists an equilibrium θ of the game such that
Pa = Pa(θ). It is easy to see that in any NE, a user’s proposal
bij should be no larger than node j’s asking price oij as, if
so, the node can get higher utility by increasing oij to bij . In
addition, the existence of NE is guaranteed.

Proposition 7: Nash equilibria always exist in all resource
allocation games.

Proof: If any pair of user i and node j takes the strategy
bij = 0 and oij = ω, where ω is a large number, an empty
allocation without any contract is formed. It is obvious that the
empty allocation is always supported by an NE. �

Proposition 8: The socially optimal allocation is supported
by a strategy profile of NE.

Proof: Given the socially optimal allocation Pa
opt, we

generate agents’ strategy profile as follows. If user i has no
agreement with node j (i.e., user i’s active path does not include
node j), user i’s payment to node j is 0, and j’s demand for any
user i is ω, which is a large number. Other bij and oij pairs need
to satisfy the following conditions: 1) bij = oij ; 2) if user i has
an active path, its total payment is no higher than vi(ri); and
3) if the amount of traffic passing or terminating at node j is
positive, node j’s received payment from all users is equal to
node j’s cost of routing traffic. It is easy to see that the above
strategy profile exists and is an NE. Each node gets a utility
of 0, and it cannot get a higher utility by deviating from the
current strategy. Similarly, each user’s utility will not increase
by choosing a different strategy. �

The price of anarchy (price of stability, respectively) is the
worst (best, respectively) possible ratio of the social welfare
found by some independent selfish behavior and the optimal so-
cial welfare possible by a centralized social welfare maximizing
solution [25]. The price of anarchy and the price of stability are
well-studied concepts in algorithmic game theory for problems
such as load balancing, routing, and network design [25].

Proposition 9: The price of anarchy of the network resource
allocation game could be arbitrarily large, and the price of
stability of the network resource allocation game is 1.

Proof: The result is trivially followed by the fact that both
the empty allocation and the socially optimal allocation are
supported by a strategy profile of NE. �

The empty NE allocation is formed because each user ex-
pects some others to make changes. It is easy to see that the

concept of Nash stability is too weak as a concept for model-
ing contract formation when contracts are bilateral. Here, we
use a stronger concept pairwise NE to accommodate bilateral
interactions. This refinement allows any two agents who have
not yet reached an agreement to change their bids to make an
agreement.

Definition 10 (Pairwise NE): A strategy profile θ is a pair-
wise equilibrium of one of the above games if it is a NE of the
game, and there does not exist any i ∈ A and j ∈ V such that

ui

(
θ−ij , b

′
ij , o

′
ij

)
> ui(θ), uj

(
θ−ij , b

′
ij , o

′
ij

)
≥ uj(θ) or

ui

(
θ−ij , b

′
ij , o

′
ij

)
≥ui(θ), uj

(
θ−ij , b

′
ij , o

′
ij

)
> uj(θ)

where θ−ij indicates the strategy profile found simply by delet-
ing bij and oij .

Proposition 11: An NE is also a pairwise NE in the follow-
ing cases: 1) each user has an active path; or 2) for any user
i who has no active path, there is no path P ∈ Pi such that
|P | = 1, where |P | is the number of nodes in path P .

Proof:

Case 1) If user i and node j have an agreement, one agent’s
utility increase leads to the other agent’s utility de-
crease when they simultaneously change the values
bij and oij . If user i and node j have no agreement,
the user’s utility will decrease by making an agree-
ment with node j.

Case 2) For user i who does not have an active path, it
should have no agreement with any node in the NE.
Therefore, its making a new agreement with a node
cannot guarantee that it can route its traffic if there
is no path P ∈ Pi such that |P | = 1. However, the
user’s cost will increase as it needs to pay to make
an agreement. �

Proposition 12: A pairwise NE always exists in each re-
source allocation game. The socially optimal allocation is also
supported by a strategy profile of pairwise NE.

Proof: For each resource allocation game, there is at least
one NE. Assume that a strategy profile θ is an NE but is not
a pairwise NE. By definition, θ is not a pairwise NE only if
there is a user node pair (i, j) such that one agent’s utility will
increase and the other agent’s utility will not decrease if they
change their strategies (bij , oij) to (b′ij , o

′
ij). It is easy to see

that there is no contract between user i and node j (i.e., bij <
oij). We can prove this by contradiction. If there is a contract
between user i and node j (i.e., bij = oij > 0), we consider
the following two situations: 1) if b′ij ≥ o′ij , one agent’s utility
will decrease due to the deviation, which is contrary to the
fact that both agents are willing to change to strategy pair
(b′ij , o

′
ij); and 2) if b′ij < o′ij , one agent’s utility will increase

by decommitting from the contract, which is contrary to the
assumption that θ is an NE in which no agent can benefit from
unilaterally decommitting from a contract. Therefore, there is
no contract between user i and node j under strategy profile θ,
i.e., bij < oij .

As both agents are willing to change to use strategy (b′ij , o
′
ij),

it follows that b′ij = o′ij > 0, which means that user i has no
active path given strategy profile θ, as otherwise, its utility will
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decrease by making another contract. Therefore, user i makes
no contract with all nodes in θ given that it has no active path
given strategy profile θ. Thus, we can see that node j is user i’s
destination, as if not, user i still has no active path by making
only one contract, and, thus, user i has no incentive to change
its bid price to b′ij .

Based on the above analysis, we can create a pairwise NE
strategy profile θ′ from an NE strategy profile θ as follows.
If there is a user node pair (i, j) such that one agent’s utility
will increase and the other agent’s utility will not decrease if
they change strategies (bij , oij) to (b′ij , o

′
ij), where b′ij = o′ij ,

change their strategies to (b′ij , o
′
ij). After the strategy change,

the new strategy profile should be an NE. This process stops
until the evolved strategy is a pairwise NE. After user i’s
strategy is changed, user i will have an active path, which
implies that user i will not have an incentive to concurrently
change its strategy with any node. Therefore, this process will
surely converge to a pairwise NE.

It follows from the above process that a socially optimal
allocation is also supported by a strategy profile of a pairwise
NE. In addition, a socially optimal NE allocation is also a
pairwise NE. �

In summary, NE and pairwise NE always exist in all resource
allocation games. In some situations, there may be more than
one NE and pairwise NE. The above analysis is based on the
situation that all agents concurrently decide their strategies.
However, given the multiplicity of (pairwise) Nash equilibria,
agents have to choose from among these different equilibria,
and the coordination problem faced by individuals is not en-
tirely resolved. In addition, the calculation of (pairwise) Nash
equilibria may have a high computation cost (even computa-
tional intractable), particularly when there are a large number
of users and network nodes. This leads us to study the process
by which individuals learn about the resource allocation game
and revise their decisions on contracting over time. To study this
issue, in Section IV, we introduce a best-response dynamics in
which all agents negotiate with each other in discrete time, and
agents take actions that are the myopic best response to other
agents’ current strategies. In addition, our analysis shows that
both the empty allocation and the socially optimal allocation(s)
are supported by strategy profiles of a (pairwise) NE. While
studying best-response dynamics, we will investigate 1) how
good the allocations evolved by the dynamics are and 2) what
factors affect the convergence of the dynamics.

IV. DYNAMICS

This section studies the resource allocation under a natural
form of myopic local best-response dynamics. The allocation
of resources evolves in discrete steps, each consisting of three
stages. During the first stage, a set of exogenously designated
users can choose to decommit from contracts made before
and send out new proposals to network nodes. Then, during
the second stage, network nodes get back to users to indicate
whether they are willing to make agreements. During the third
stage, users can choose to decommit from contracts made
before. At each stage, each agent takes myopic best-response
actions to maximize its utility.

Let Ct
i be the set of agreements agent i has made at the

beginning of round t. After a contract is decommitted, it will be
removed from agents’ contract set. After a contract is formed,
it will be added into agents’ contract set. Obviously, at time
0, we have C0

i = ∅. For each agreement C made between
node V (C) and user A(C), λ(C) is the agreement price, and
T (C) is the time when the agreement was made. We consider
a discrete-time dynamics that includes three stages at every
round. At round t, q users At are chosen to propose to network
nodes. Each user i ∈ At then will send a set of proposals
to network nodes. Let the set of proposals received by node
j be Wt

j . At the second stage at round t, each node j will
decide whether to accept each proposal 〈i, bij〉 from user i or
not. If node j agrees to accept a proposal 〈i, bij〉, it sends a
confirmation message to user i. Otherwise, it sends a rejection
message to user i. Therefore, any agreement is based on the
permission of both parties. At the third stage, each user i ∈ At

can choose to decommit from some contracts in Ct
i if it is

profitable to do so.Note that a user i is allowed to decommit at
both stages 1 and 3, but its decommitment criteria are different:
at stage 1, user i will decommit from an agreement with node j
if it believes that it could get a cheaper agreement with node j;
at stage 3, user i will choose one active path (if possible) based
on its agreements and decommit from agreements not related to
that active path. After the three stages at round t, the dynamics
then continues to the next round t + 1 given the new allocation
of resources and contracts made between users and network
nodes. We assume that when a node is indifferent between
accepting a proposal and rejecting a user’s proposal (or keeping
a contract or decommitting from a contract), the node will
choose to accept the proposal (or keeping the contract). That
is, each agent is benevolent while it is maximizing its utility.

An activation rule refers to a rule used for choosing the set
of users At at each round t. A uniform activation rule chooses
users At in the following way: The probability that a user i will
be chosen to make proposals is q/k. That is, each user has an
identical probability of being chosen.

The state of the dynamics at round t is defined by the set
of contracts Ct = ∪i∈ACt

i = ∪j∈V Ct
j . We say that Ct = Ct′ if

and only if all the contracts in Ct are the same as the contracts
in Ct′ , including the price of each contract. Given the set of
contracts Ct

i of user i, i’s active paths at time t are Pa
i (Ct

i ). The
allocation at time t then is Pa(Ct) = ∪i∈APa

i (Ct
i ). Note that

Ct = Ct′ implies that Pa(Ct) = Pa(Ct′), but not vice versa.
The reason is that an allocation is only about the active paths for
each user, but a contract also concerns the price of that contract.

Definition 13 (Convergence): Dynamics converge to an allo-
cation if there exists t′ such that, for t > t′, Pa(Ct) = Pa(Ct′).
Dynamics converge to a state if there exists t′ such that, for
t > t′, Ct = Ct′ . Dynamics converging to a state implies that
dynamics converge to a stable allocation.

A. Myopic Best-Response Strategy

An agent taking myopic best-response strategy makes strate-
gic decisions so that its utility is maximized at the end of each
stage, and it will not consider other agents’ concurrent actions
at the same stage. At the beginning of each stage of each round,
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each agent has complete information about the status of any
other agent. However, each agent does not know the concurrent
actions of other agents within each stage.

At stage 1 of round t, each user i ∈ At can propose to
network nodes. At the beginning of this stage, we let Ct

i =
Ct−1

i for any agent i, and there are two cases: |Pa
i (Ct

i )| =
1,2 i.e., i has one active path that can be used to route
traffic. The cost associated with the only active path P in
Ct

i is
∑

C∈Ct
i
λ(C). However, i can still send out requests to

nodes to find an alternative active path that is less costly than∑
C∈Ct

i
λ(C). The other case is |Pa

i (Ct
i )| = 0, which implies

that the user needs to make contracts to route traffic. At stage
1, each user acts as follows. First, user i checks the price of
each contract and decommits from a contract C with node j
if cj(fj(Ct)) − cj(fj(Ct) − ri) < λ(C), where fj(Ct) is the
amount of flow passing or terminating at node j given contract
set Ct. cj(fj(Ct)) − cj(fj(Ct) − ri) is the node j’s marginal
cost of routing traffic for user i if user i did not make an
agreement with node j before. cj(fj(Ct)) − cj(fj(Ct) − ri) <
λ(C) implies that it is possible that i can make an agreement
with node j with a price lower than λ(C). Let ci

min be user i’s
cost for an existing active path, and it is given by

ci
min =

{∑
C∈Ct

i
λ(C) if |Pa

i (Ct
i )| = 1

vi(ri) otherwise

where |Pa
i (Ct

i )| is the number of active paths based on updated
contract set Ct

i . Then, for each path P ′ ∈ Pi, user i first decides
whether to request help from all the nodes in path P ′ by
comparing the predicted cost ci(P ′) =

∑
j∈P ′ c(j) of the path

P ′ and ci
min. The cost to get an agreement from node j is c(j),

and c(j) is given by

c(j)=
{

λ(C) if ∃C ∈ Ct
i , V (C)=j

cj (fj(Ct+ri))−cj (fj(Ct)) otherwise

where cj(fj(Ct + ri)) − cj(fj(Ct)) is node j’s marginal cost
by routing traffic for user i, and we use this marginal cost as
the price of making an agreement with node j. If user i has
already made an agreement with a node j, i does not need
to make an agreement with node j as i cannot benefit from
decommitting from their contract and making a new contract
(cj(fj(Ct)) − cj(fj(Ct) − ri) ≥ λ(C)). If ci(P ′) < ci

min, user
i sends out requests to get agreements for each node on path
P ′. Otherwise, user i will not try to make agreements for path
P ′, and it needs to spend more than the cost of the existing
active path. If user i wants to make a contract with node j in
path P ′ ∈ Pi and it has not made an agreement with j, user i
sends a proposal W to node j, and the price of the proposal is
λ(W ) = cj(fj(Ct + ri)) − cj(fj(Ct)).

At stage 2, each node j decides if it decommits from some
existing contracts in Ct

j and decides if it accepts or rejects some
proposals from users. Let the proposals received by node j be
Wt

j . Each existing agreement can be treated as a proposal as a
node can decommit from a contract and can make a contract by

2As a user can decommit from agreements at the end of each round, each
user will not maintain more than one active path, as it will spend more by
doing so.

accepting a proposal. Formally, node j needs to choose a set
of proposals W∗ to maximize its utility, and the optimization
problem can be formulated as

W∗ = max
W⊆Wt

j
∪Ct

j

( ∑
W∈W

λ(W ) − cj

( ∑
W∈W

rA(W )

))

where rA(W ) is the amount of traffic of the user that sends the
proposal W .

Theorem 14: Each node’s optimization problem at stage 2 of
round t is NP-complete.

Proof: Membership of NP is easy. We generate a decision
problem for the optimization problem first: Is there a set of
proposals W∗ that can generate a utility at least α? Given
proposal set W∗, compute the cost for routing traffic and the
sum of payment that the node can receive from the set of
proposals. It is easy to see that the complexity of the calculation
is polynomial in the number of proposals in W∗. For hardness,
we define a reduction from the well-known 0–1 Knapsack
problem.

Formal definition of 0–1 Knapsack problem: There is a
knapsack of capacity c > 0 and N items. Each item has value
vi > 0 and weight wi > 0. Find the selection of items (δi = 1
if selected, 0 if not) that fit,

∑N
i=1 δiwi ≤ c, and the total value,∑N

i=1 δivi, is maximized.
To see how the reduction works, consider an instance of 0–1

Knapsack problem, and we transform it into our optimization
problem as follows. Each item i corresponds to a proposal
Wi. The value of each item corresponds to the payment of
the corresponding proposal, i.e., λ(Wi) = vi. The weight of
each item corresponds to the amount of traffic associated with
the corresponding proposal, i.e., rA(Wi) = wi. Node j’s cost
function is defined as

cj(x) =
{ 0 if x ≤ c
∞ otherwise.

It is easy to see that our optimization problem is equivalent
to the original 0–1 Knapsack problem. The transformation
is entirely automatic and is polynomial. Thus, each node’s
optimization problem of stage 2 is NP-hard. �

After computing the optimal set of proposals W∗, node j
will act as follows: 1) If a contract C ∈ Ct

j is not included in
W∗, node j will decommit from the contract and notify user
A(C) about it; 2) if a proposal W ∈ Wt

j is not included in W∗,
node j will notify user A(W ) about its rejection decision; and
3) if a proposal W ∈ Wt

j is included in W∗, node j will add
the proposal to its contract list and notify user A(W ) about its
accept decision.

During the third stage at round t, each user i selects one
active path (if there exists one) and decommits from other
unnecessary contracts. More specifically, Pa

i (Ct
i ) is the set of

active paths given by user i’s contract set Ct
i after stage 2. If

user i has no active path, it will decommit from all the existing
contracts. If user i has some active paths, i.e., |Pa

i (Ct
i )| > 0,

user i will choose the path P ∈ Pa
i (Ct

i ) with the lowest cost and
maintain all the contracts related to this path, and, at the same
time, decommits from all the agreements that are not related to
path P .
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B. Convergence Analysis

Here, we analyze the convergence property of the dynamics
in which all agents take the myopic best-response strategy.

Proposition 15: In the following special cases, dynamics
will converge to a pairwise stable NE, no matter how many
users are allowed to make proposals at each round.

1) Users’ path sets are not overlapping, i.e., for any path P ∈
Pi of user i and P ′ ∈ Pj of user j, P ∩ P ′ = ∅.

2) All nodes’ cost functions are linear, i.e., cj(x) = βj × x.

Proof:

Case 1) This result is trivial as each node will receive at most
one request. At the second stage of each round, all
nodes will agree to users’ request, and users will
choose the cheapest path at stage 3. No user can find
a cheaper path at later rounds.

Case 2) This result is also obvious. As cost functions are
linear, a node’s marginal cost of routing any more
traffic does not depend on its current workload.
Therefore, at the second stage, all nodes will agree
to users’ request, and users will choose the cheapest
path at stage 3. No user can find a cheaper path at
later rounds. �

Proposition 16: If all nodes’ cost functions are convex, i.e.,
c′j(x) is monotonically nondecreasing, and only one user is
allowed to propose at each round, dynamics will converge to
a pairwise NE.

Proof: After each user chooses its active path, no agent
(including both users and network nodes) will decommit from
the agreements for this path later. Take the user proposing at
round 0 for example. At the end of round 0, the user will choose
the path with the lowest marginal cost of all the nodes on that
path. It is easy to see that the user cannot find another cheaper
active path later given that 1) nodes’ cost functions are convex,
and 2) each node may have some other agreement(s). Similarly,
the user proposing at round 1 will not change to another active
path after round 1. Therefore, no agent will decommit from
existing agreements later, and thus, the dynamics will surely
converge. �

Proposition 17: There are instances in which the dynamics
converges to allocations that are not socially optimal, no matter
which level of concurrence is chosen.

Proof: Such an example is shown in Fig. 1, where the cost
function of each node is on the top of each node. Suppose that
there are two users i and j both planning to route three units
of traffic from node 1 to node 4. The socially optimal solution
is that both users use the path passing node 2. However, the
stable allocation generated by our dynamics can only be that
both users choose the path passing node 3, no matter which
concurrence level is chosen. The socially optimal allocation
is not achievable unless each user considers the other user’s
concurrent behavior when q = 2. The reason for failing to reach
the socially optimal stable allocation is that each user does not
consider other users’ concurrent actions at each round, which
may lead to the final equilibrium being far worse than the
socially optimal application. �

Fig. 1. Illustration example for inefficiency.

C. Concurrency and Decommitment Penalty

We consider several variations on our basic model of dy-
namics. The first variation we consider is concurrence, which
is determined by the parameter q. If q = 1, only one user will
propose to network nodes at each round. With the increase in
the value of q, more users will concurrently propose at each
round. The increase in concurrence will potentially increase
the convergence rate of resource allocation, as more users can
change their allocations at each round. However, on the other
hand, too much concurrence may lead to more inconsistency
on users’ views about other agents. Thus, the increase in
concurrence may slow down the convergence of allocation.

Another variation we consider here is the role of decom-
mitment penalty. That is, when a user i wants to decommit
from a contract C at round t, it needs to pay a penalty ρ(C, t)
to the node involved in the contract. Introducing penalty will
add two features to our model: First, there is some probability
that an individual exhibits “inertia,” i.e., chooses the same
strategy as in the previous period. This ensures that agents do
not perpetually miscoordinate. Second, more commonly and
realistically, there is a cost associated with making proposals,
and penalty can be used to model such a cost. Costs can be
incurred by the computation of various kinds of decisions.
Costs can also be incurred by the pressure of a deadline by
which a user has to stop negotiation. In addition, it is intuitive
that one agent compensates the other contract party(ies) when
it wants to be freed from a contract.

Once there is a penalty, an agent will change its strategy
only if the gain from the deviation is higher than the penalty
it needs to pay due to the deviation. In a resource allocation
game with a lot of nodes and users, it may be very difficult to
find a pure strategy (pairwise) NE. In the resource allocation
dynamics, agents will dynamically choose contracting actions
using myopic best-response strategy. A (pairwise) NE may not
be actually reached given agents’ concurrent myopic actions.
Then, (pairwise) Nash equilibria may be too restrictive to
characterize resource allocation dynamics. It is easy to see, in
retrospect, that the use of approximate equilibrium is inherently
needed. Penalty can be used to model approximate equilibrium.
Assume that the penalty for the deviation is higher than ε. If
each agent i’s changing its strategy from θi to any θ′i cannot im-
prove the payoff by more than ui(θ′i, θ−i) − ui(θ) = ε, all the
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TABLE I
VARIABLES

agents will choose not to deviate from their current strategies
and the equilibrium is ε-approximate NE.

Given that it is difficult to get closed-form results, we now
move to further simulations to get more intuitions about the
behaviors of the best-response dynamics.

V. NUMERICAL RESULTS

We implemented a simulation testbed consisting of a man-
ager, user agents, and network node agents to simulate the
dynamics in the resource allocation game. The manager gen-
erates users and network nodes and randomly determines their
parameters (e.g., the number of users, the number of network
nodes, the level of concurrence, cost functions, the number of
paths, and penalty rates). We tested the dynamics in different
scenarios subject to those parameters. We characterize the
pairwise stable Nash equilibria obtained with metrics such as
dynamics’ convergence rate, i.e., the social utility relative to
the optimal social utility that is computed offline.

We performed a series of experiments in a variety of test
environments, and the parameters are given in Table I. In the
experiments, the number of network nodes in each graph is
randomly selected from [4, 15]. The number of paths for each
user is randomly selected from [1, 8]. The number of users
is randomly selected from [2, 15], and each user can use any
path to route its traffic. At each round, q users can propose
concurrently. Concurrency rate q/k, which has a range of
[0.1, 1], determines the ratio between the number of proposing
users and the total number of users. A concurrence rate of
1 implies that, at each round, all the users make decisions
concurrently. We use a linear decommitment penalty function
ρ(C, t) = ηλ(C), where η ∈ [0, 1]. We ran each experiment
for, at most, 500 rounds. If each agent’s contracts does not
change for over 50 rounds, which is long enough as compared
with the number of users, we conclude that the dynamics of
this experiment converge. The cost function of each node is in
the form of cj(x) = νx�, where ν ∈ [0.2, 5] and � ∈ [0.5, 1.5].
Cost function cj(x) is 1) concave when � < 1, 2) convex
when � > 1, and 3) linear when � = 1. We found that varying
the parameters of cost functions within a small range did not
significantly affect the results. The amount of traffic associated
with each user agent is randomly chosen from [5, 20].

After each experiment, we measure the social welfare of
the final allocation. As we evaluate the dynamics in differ-
ent environments, we measure the ratio of the utility of the
evolved allocations to the utility of the optimal allocations. In
each experiment, we use an exhaustive search to compute the

Fig. 2. Convergence rate and utility ratio as functions of the number of users.

Fig. 3. Convergence rate and utility ratio as functions of the penalty rate.

socially optimal allocation. Another performance measure is
the convergence rate, which is the ratio between the number of
experiments in which dynamics converge and the total number
of experiments.

Figs. 2–4 show some representative experimental results
gathered from a series of experiments in different environment
settings. Each data point represents the average value in 5000
runs where we randomly set the parameters in Table I.

Observation 1: The convergence rate and the utility ratio
decrease with the increase in the number of users. Fig. 2 shows
that when there are only two users, the convergence rate is
almost 1. However, with the increase in the number of users,
the convergence rate dramatically decreases, and the decreasing
speed slows down with more users. This result is intuitive, as,
with more users, competition will increase, and each user’s mar-
ginal cost is harder to predict. One user’s changing its strategy
will result in more agents’ strategy update. Fig. 2 also shows
that with more users, the performance distance between the
utility of the evolved final allocation and the optimal allocation
increases, which corresponds to the intuition that it is more
difficult to reach the socially optimal allocation when there are
more users.
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Fig. 4. Convergence rate and utility ratio as functions of the concurrence rate.

Observation 2: Experimental results in Fig. 3 suggest that
the convergence rate increases with the increase in the penalty
rate, which is intuitive as agents are more inclined to stick to
existing contracts when the penalty is increased. We see that
there is a big jump of the convergence rate when the penalty
rate increases from 0.9 to 1. We also find that, with the increase
in the penalty rate, the evolved final allocation becomes worse
as compared with the socially optimal allocation, which corre-
sponds to the intuition that, with higher penalty rates, users are
making tradeoff between gaining better allocation and paying
more penalties, and thus, agents’ activity of “searching” for
optimal allocations is decreased.

Observation 3: Experimental results in Fig. 4 show that the
convergence rate increases with the increase in the concurrence
when the concurrence is low, but the convergence rate decreases
with the increase in the concurrence when the concurrence is
high. When the concurrence is low, the increase in the con-
currence may speed up the evolvement of dynamics, as more
users can change their active paths at each round without too
much interference. However, when many users are proposing
concurrently, agents’ strong dependence makes the dynamics
difficult to converge.

From Fig. 4, we can also see that the utility of the evolved
final allocation is getting worse when the concurrence is very
high. That is because too many users’ concurrent moves make
it difficult for agents to move on the right path to the optimal
allocation.

Observation 4: It can be observed from Fig. 5 that with
the increase in the number of paths for each user, both the
convergence rate and the utility ratio decrease. With more paths,
each user has more alternatives to route its traffic. Accordingly,
each user has more options while it decides to decommit from
existing agreements. Thus, it is more difficult for the dynamics
to converge. In addition, with more paths for each user, each
network node can potentially be chosen by more users to route
traffic. When a network node makes a new agreement or decom-
mits from an agreement, it may result in the decommitment of
other agreements.

Observation 5: Another observation we found from our
experiments is that both the convergence rate and the utility

Fig. 5. Convergence rate and utility ratio as functions of the number of paths.

ratio decrease when users’ uncertainties increase. There are
many sources of uncertainty in the resource allocation game.
One such source is concurrence. In our myopic strategy, users
do not reason about the actions of other concurrent proposing
agents. As shown in Fig. 4, both the convergence rate and the
utility ratio decrease when the concurrence is high.

In addition to concurrence, we also explored some other
types of uncertainty in our experiments, such as if users do
not know the set of contracts each node has made, users do
not know other users’ traffic load, and users have incomplete
information about network nodes’ cost functions. We observed
that the convergence rate and the utility ratio decrease with the
increase in uncertainty, which corresponds to the property in
reality that agents often have better performance when agents
have more knowledge of others.

VI. RELATED WORK

Our research touches several lines of research. This section
discusses some important related work like MARA, network
formation, selfish routing, and automated negotiation.

Formally, a MARA problem can be represented as a triple
〈A,R,U〉 representing sets of agents, resources, and utility
functions by which individual agents associate values with
resource subsets. MARA research is inspired by Sandholm’s
[27] work on sufficient and necessary contract types. Then, a
number of variants of the MARA problem have been studied in
the literature [4]. As in our approach, agents in MARA research
(e.g., [4], [7]–[9], and [27]) often take myopic strategies, and
they only accept deals from which they can perceive an imme-
diate benefit [8]. However, our problem is different from the
general MARA problem. In our problem, there are two types
of agents: network nodes and users that have no resource. In
MARA, an allocation of resources is partitioning of resources
among all the agents [9]. In other words, each resource has
at most one “owner.” However, in our problem, each network
node can route traffic for any number of users. That is, each
“resource” can be used by multiple agents. In addition, network
structures play an important role in the resource allocation
results. Furthermore, MARA focuses on discrete resources, but
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in our problem, each node’s cost function is continuous. The
network resource allocation problem is much more complex
than the general MARA problem.

Our work is also related to the work on network formation
games by both the computer science and economics communi-
ties (see [12] and [31] for a survey). In our resource allocation
problem, there are two types of agents: users that pay to have
traffic routed and nodes in the network that accept payment and
route traffic for users. In addition, an agent’s utility depends
on the routing result and the payments involved in agreements.
However, in the network formation problem, the utility of each
node is determined by the structure of the formed network and
its efforts in forming the network, e.g., an agent incurs some
costs while creating edges. In the model of Johari et al. [15],
which also consider traffic routing through contracting, all the
nodes form a network first, then each node takes the shortest
path to send the traffic, and each node can use any node in
the network. However, in our model, contracting is used to
make agreements between users and network nodes, and the
nodes will route traffic for the users only if they have made
agreements.

This paper is also related to the literature on selfish routing
[25], which is a classical mathematical model of how selfish
users might route traffic through a congested network. The
outcome of selfish routing is generally inefficient, and users
always choose the path with the lowest cost (e.g., network
delay). In contrast, in our paper, a user is always trying to
minimize the cost of routing its traffic, while at the same time,
each network node wants to maximize the difference between
payments from the users and costs due to traffic routing. In
addition, unlike congestion games in which costs incurred by
a player depend only on its path and the amount of flow on the
edges of its path [23], in our model, the cost is associated with
each node, and the cost depends on the amount of traffic passing
or terminating at that node.

This paper is also connected to the literature on automated
negotiation that focuses on analyzing agents’ strategic behav-
iors in various bargaining games characterized by the number
of agents, the number of issues, and information setting (see
[19] for a survey). In our problem, a user needs to negotiate for
multiple resources (issues), and negotiation succeeds if the user
gets agreements for one path. This is a simple form of multi-
linked negotiation, where the issues are interrelated in the sense
that, from the perspective of the overall negotiation, negotiation
issues are dependent, as an agent’s utility from the overall
negotiation depends on obtaining overall agreements. Almost
all the work on multi-issue negotiation focuses on bilateral
negotiation, and a variety of learning and searching methods
are used, e.g., case-based reasoning [30], similarity criteria-
based search [10], and decentralized search [17], [18]. The only
exception is [2], which studies a multiresource negotiation in
which resources belong to different agents. Our problem is
more than a multiresource negotiation as there are multiple
paths. One user just needs to get agreements for one path. Then,
the user needs to decide which path to choose, and the optimal
decision depends on many factors. To our best knowledge, there
is no work investigating such a complex negotiation problem,
and we leave it for future research. While automated negotiation

work (e.g., [2], [10], [17], and [18]) is typically concerned
with negotiation at the local level (what are agents’ equilibrium
strategies), in this paper, we address negotiation at a global level
by analyzing how the actions taken by agents locally affect
system-level objectives like social welfare or stability.

VII. CONCLUSION

The contributions of this paper include the following. 1) We
have provided a framework for a multiuser resource allocation
problem. We have shown that finding optimal resource allo-
cation is NP-complete and is inapproximable. We have taken
both NE and pairwise NE as the solution concepts to character-
ize the equilibrium allocations. We have found that the social
optimal allocations are supported by NE and pairwise NE. 2)
A myopic best-response strategy for the resource allocation
game has been proposed to characterize the resource alloca-
tion dynamics. We have also analyzed the convergence of the
dynamics in some special cases. 3) Through experiments, we
have shown that a) the dynamics’ convergence rate i) decreases
with the number of users, ii) increases with the penalty rate, iii)
increases with the concurrence when the concurrence is low,
iv) decreases with the concurrence after a certain level of the
concurrence has been reached, v) decreases with the number of
paths, and vi) decreases with users’ uncertainty; and b) the ratio
of the social welfare of evolved allocations and that of optimal
allocations decreases with the increase in i) the number of users,
ii) the penalty rate, iii) the concurrence, iv) the number of paths,
and v) uncertainty.

There are several natural directions suggested by our re-
search. The most obvious one is to expand the strategy space
considered by each agent in our dynamics. For example, it
would be interesting to develop some look-ahead strategies
and more complex interaction protocols (e.g., infinite horizon
strategic bargaining [26]). Again, agents’ strategies should be
natural and close to reality when we are trying to character-
ize the resource allocation game. Coordination (or mediation)
mechanisms may be useful in optimizing the contracts of a set
of users if they work together. In addition, our experiments, thus
far, have focused on scenarios ranging from low to moderate
complexity, but we wish to investigate much larger problems
where there are more users and network nodes. In such cases,
some new algorithms (e.g., approximate algorithms) are needed
to compute the optimal allocation. In addition, in our model, a
user needs to negotiate with all the nodes on a path. Future work
will also consider a more complex model in which a user only
needs to negotiate with the first node on a path, and the first
node negotiates with other nodes to route the traffic.

The well-defined optimization problem considered in this
paper relates to many applications (e.g., [1] and [28]). Our
model may be a useful analytical tool for shedding light on
the complex and dynamic processes that create the cooperative
relationship in reality. Our work opens up the opportunity to
consider contract-based resource allocation over large computa-
tional networks (e.g., supply chain, web/grid service composi-
tion, workflow, and enterprise integration). This paper assumes
that all agents (including both users and nodes) have complete
information about others. In more practical scenarios, agents
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only have incomplete information. In those cases, designing
efficient or optimal mechanisms is a challenging problem. An-
alyzing agents’ strategic behaviors under those mechanisms is
also very interesting. This paper assumes that agents are selfish;
it would also be interesting to study network resource allocation
procedures where agents are cooperative (or semi-cooperative),
particularly when agents have bounded communication and
computational resources. It is also promising to design resource
allocation dynamics in which each agent adopts strategies based
on ideas from evolutionary game theory.
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