
Meta-Level Control in Multi-Agent Systems

Anita Raja and Victor Lesser
Department of Computer Science,

University of Massachusetts,
Amherst, MA 01003-4610, USA

araja,lesser@cs.umass.edu
Ph: 413-545-3444 Fax: 413-545-1249

Abstract

Sophisticated agents operating in open environments
must make complex real-time control decisions on
scheduling and coordination of domain actions. These
decisions are made in the context of limited resources
and uncertainty about outcomes of actions. The ques-
tion of how to sequence domain and control actions
without consuming too many resources in the process, is
the meta-level control problem for a resource-bounded
rational agent. Our approach is to design and build a
meta-level control framework with bounded computa-
tional overhead. This framework will support decisions
on when to accept, delay or reject a new task, when it is
appropriate to negotiate with another agent, whether to
renegotiate when a negotiation task fails and how much
effort to put into scheduling when reasoning about a
new task.

Introduction
Agents in complex environments must reason about their lo-
cal problem solving actions, interact with other agents, plan
a course of action and carry it out. All these have to be done
in the face of limited resources and uncertainty about action
outcomes in real-time. Furthermore, new tasks can be gen-
erated by existing or new agents at any time, thus an agent’s
deliberation must be interleaved with execution. The plan-
ning, scheduling and coordination of tasks are non-trivial,
requiring either exponential work, or in practice, a sophis-
ticated scheme that controls the complexity. In this paper,
we describe a framework which will provide effective allo-
cation of computation resulting in improved performance of
individual agents in a cooperative multi-agent system.

In this framework, agent actions are broadly classified
into three categories - domain, control, and meta-level con-
trol actions. Domain actions are executable primitive ac-
tions which achieve the various high-level tasks. Control ac-
tions are of two types, scheduling actions which choose the
high level tasks, set constraints on how to achieve them and
sequence the detailed domain level actions which achieve
the selected tasks; and coordination actions which facilitate
cooperation with other agents in order to achieve the high-
level tasks. Meta-level control actions optimize the agent’s

Copyright c� 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

performance by choosing and sequencing domain and con-
trol actions.

Agents perform control actions to improve their perfor-
mance. Many efficient architectures and algorithms that
support these actions have been developed and studied(1; 3;
4). Agents receive sensations from the environment and re-
spond by performing actions that affect the environment us-
ing the effectors. The agent chooses its domain level actions
and this might involve invoking the scheduling and coordi-
nation modules. Classic agent architectures either overlook
the cost of control actions or they assume a fixed and neg-
ligible cost and do not explicitly reason about the time and
other resources consumed by control actions, which may in
fact degrade an agent’s performance. An agent is not per-
forming rationally if it fails to account for the overhead of
computing a solution. This leads to actions that are without
operational significance (5).

Consider an administrative agent which is capable of mul-
tiple tasks such as answering the telephone, paying bills
and writing reports. It usually takes the agent a significant
amount of time to sort out the bills. Suppose the agent does
not perform any meta-level reasoning about the importance
or urgency of the tasks. It will then spend the same amount
of time deciding whether to pick up a ringing phone as it
does on deciding which bills to pay. If the agent is equipped
with meta-level reasoning capabilities, it will recognize the
need to make quicker decisions on whether to answer the
phone than on sorting bills since there is external constraint
on the ringing phone, namely that the caller could hang up.
The agent will make better decisions on answering calls as
well as completing its other tasks by dynamically adjusting
its decision based on its current state and the incoming task.

Our proposed architecture will support this dynamic ad-
justment process by introducing resource-bounded meta-
level reasoning in agent control. In addition to the meta-
level control component, there are various options for in-
voking the scheduling and coordination components. These
options differ in their resource usage and performance. The
meta-level control component will decide if, when and how
much control activity is necessary for each event sensed by
the agent.

Meta-level control actions include allocating appropri-
ate amount of processor and other resources at appropriate
times. To do this an agent would have to know the effect

of all combinations of actions ahead of time, which is in-
tractable for any reasonably sized problem. The question
of how to approximate this ideal of sequencing domain and
control actions without consuming too many resources in the
process, is the meta-level control problem for a resource
bounded rational agent.

Our solution to this problem is to construct a MDP-
based meta-level controller which uses reinforcement learn-
ing(RL) to learn the utility of control actions and decision
strategies in resource-bounded contexts. In order to con-
struct such a controller, it is necessary to identify the fea-
tures which affect the decisions. The paper is structured as
follows: we first enumerate the assumptions made in our ap-
proach and describe the agent architecture which will pro-
vide meta-level control. We then present and evaluate a
case-base of hand-generated heuristics for meta-level con-
trol. These heuristics will determine the features necessary
for the RL meta-level controller to make accurate decisions.
Preliminary experimental results illustrating the strength of
meta-level control in agent reasoning and the effectiveness
of the heuristics are provided.

Assumptions
The following assumptions are made in the framework de-
scribed in this paper: The agents are cooperative and will
prefer alternatives which increase social utility even if it is
at the cost of decreasing local utility. Since the environment
is cooperative, we can safely assume that the cumulative of
meta-level control decisions at the individual agent level rep-
resent the meta-level control reasoning process for a multi-
agent system. An agent may concurrently pursue multiple
high-level goals and the completion of a goal derives util-
ity for the system or agent. The overall goal of the system
or agent is to maximize the utility generated over some fi-
nite time horizon. The high-level goals are generated by ei-
ther internal or external events being sensed and/or requests
by other agents for assistance. These goals must often be
completed by a certain time in order to achieve any utility.
It is not necessary for all high-level goals to be completed
in order for an agent to derive utility from its actions. The
partial satisfaction of a high-level goal is sometimes permis-
sible while trading-off the amount of utility derived for de-
crease in resource usage. The agent’s scheduling decisions
involve choosing which of these high-level goals to pursue
and how to go about achieving them. There can be non-
local and local dependencies between tasks and methods.
Local dependencies are inter-agent while non-local depen-
dencies are intra-agent. These dependencies can be hard
or soft precedence relationships. Coordination decisions in-
volve choosing the tasks which require coordination and also
which agent to coordinate with and how much effort must be
spent on coordination. Scheduling and coordination actions
do not have to be done immediately after there are requests
for them and in some cases may not be done at all. There are
alternative ways of completing scheduling and coordination
activities which trade-off the likelihood of these activities re-
sulting in optimal decisions versus the amount of resources
used. We also make the simplifying assumption that negoti-
ation results are binding and we assume that the agents will

not decommit from their contract at later stages.

Agent Architecture
In this section, we provide an overview of our architecture
which provides effective meta-level control for bounded ra-
tional agents. Figure 1 describes the control flow within this
proposed architecture. The number sequences describe the
steps in a single flow of control. At the heart of the system
is the Domain Problem Solver(DPS). It receives tasks and
other external requests from the environment(Step 1). When
an exogenous event such as arrival of a new task occurs, the
DPS sends the corresponding task set, resource constraints
as well constraints of other tasks which are being executed,
and performance criteria to the meta-level controller(Step
2). The controller computes the corresponding state and de-
termines the best action prescribed by the hand-generated
heuristic policy for that particular task environment. The
best action can be one of the following: to call one of the
two domain schedulers on a subset of tasks; to gather more
information to support the decision process; to drop the new
task or to do nothing. The meta-level controller then sends
the prescribed best action back to the DPS(Step 2a).

The DPS, based on the exact nature of the prescribed ac-
tion, can invoke the complex scheduler, simple scheduler
or coordination component(Step 3) and receives the appro-
priate output(Step 3a). If the action is to invoke the complex
scheduler, the scheduler component receives the task struc-
ture and objective criteria as input and outputs the best satis-
ficing schedule as a sequence of primitive actions. The com-
plex scheduler can also be called to determine the constraints
on which a coordination commitment is established. If the
meta-level or the domain scheduler prescribe an action that
requires establishing a commitment with a non-local agent,
then the coordination component is invoked. The coordina-
tion component receives a vector of commitments that have
to be established and outputs the status of the commitments
after coordination completes. The simple scheduler is in-
voked by the DPS and receives the task structure and goal
criteria. It uses pre-computed abstract information of the
task to select the appropriate schedule which fits the criteria.

The DPS can invoke the execution component either to
execute a single action prescribed by the meta-level con-
troller or a schedule prescribed by the domain-level sched-
uler(Step 4). The execution results are sent back to the
DPS(Step 4a) where they are evaluated and if the execu-
tion performance deviates from expected performance, the
necessary measures are taken by the DPS.

This work accounts for the cost at all three levels of the
decision hierarchy - domain, control and meta-level con-
trol activities. The cost of domain activities is modeled di-
rectly in the task structures which describe the tasks. They
are reasoned about by control activities like negotiation and
scheduling.

The cost of control activities are reasoned about by the
meta-level control activities. Negotiation costs are reasoned
about explicitly in this framework since they can be mod-
eled as part of the domain activities needed to complete a
high-level goal. The negotiation tasks are split into an in-
formation gathering phase and a negotiating phase, with the

Meta-Level Control
Component

1

Domain Problem
Solver

Coordination
Component

Execution and
Monitoring
Component

*Action/
Schedule

*Domain Tasks

2

* Neg.
Constraints

*Commitments

 *Constraints
*Goal Criteria

*Goal
 Criteria

*Schedule

*Best action

*Feedback

*New tasks

3 4

2a

4a
3a

3 3a

*Goal Criteria

Complex Domain
Scheduler

Simple domain
scheduler

3*Goal
 Criteria

3a*Schedule

Environment

Figure 1: Control-flow in a bounded rational agent

outcome of the former enabling the latter. The negotiation
phase can be achieved by choosing a member from a fam-
ily of negotiation protocols(7). The information gathering
phase is modeled as a MetaNeg method in the task structure
and the negotiation methods are modeled as individual prim-
itive actions. Thus, reasoning about the costs of negotiation
is done explicitly, just as it is done for regular domain-level
activities. The MetaNeg method belongs to a special class
of domain actions which request an external agent for a cer-
tain set of information and it does not use local processor
time. It queries the other agent and returns information on
the agent’s expected utility from its tasks, expected comple-
tion time of its tasks and flexibility of its schedule. This in-
formation is used by the meta-level controller to determine
the relevant control actions.

However, reasoning about the cost associated with
scheduling activities is implicit. A fixed cost is associated
with each of the two schedulers and these costs affect the
subsequent choice of domain activities made by the control
activities. The earliest start time of domain activities are
determined by the latest finish times of their corresponding
control activities.

Meta-level control activities in this framework are mod-
eled as inexpensive activities. The cost for meta-level con-
trol in this framework are incurred by the computation of
state features which facilitate the heuristic decision-making
process. The state features and their functionality are de-
scribed in greater detail later on in this section.

The domain level scheduler depicted in the architecture
will be an extended version of the Design-to-Criteria(DTC)
scheduler(6). Design-to-Criteria (DTC) scheduling is the
soft real-time process of finding an execution path through
a hierarchical task network such that the resultant sched-
ule meets certain design criteria, such as real-time dead-

lines, cost limits, and utility preferences. It is the heart of
agent control in agent-based systems such as the resource-
Bounded Information Gathering agent BIG (2). Casting the
language into an action-selecting-sequencing problem, the
process is to select a subset of primitive actions from a set of
candidate actions, and sequence them, so that the end result
is an end-to-end schedule of an agent’s activities that meets
situation specific design criteria.

We also introduce a simple scheduler based on the use of
abstractions of agent task structures. This will support reac-
tive control for highly constrained situations. Abstraction is
an offline process where potential schedules and their associ-
ated performance characteristics for achieving the high level
tasks are discovered for varying objective criteria. This is
achieved by systematically searching over the space of ob-
jective criteria. Also multiple schedules could potentially
be represented by the same abstraction. The abstraction
hides the details of these potential schedules and provides
only the high level information necessary to make meta-level
choices. When an agent has to schedule a task but doesn’t
have the resources or time to call the complex domain-level
scheduler, the generic abstraction information of the task
structure can be used to provide the approximate schedule.

Taxonomy of meta-level control decisions
We now describe a taxonomy of the meta-level decisions
in a multi-agent system using a simple example scenario.
Consider a multi-agent system consisting of 2 agents A and
B. The discussion will focus only on the various meta-level
questions that will have to be addressed by agent A. T0 and
T1 are the top-level tasks performed by agent A. Each top-
level task is decomposed into two executable primitive ac-
tions. In order to achieve the task, agent A can execute
one or both of its primitive actions within the task deadline
and the utility accrued for the task will be cumulative (de-
noted by the sum function). Methods are primitive actions
which can be scheduled and executed and are characterized
by their expected utility, cost and duration distributions. For
instance, the utility distribution of method M2 described as
��� �� ��� ��, indicates that it achieves utility value of 10
with probability 0.9 and utility of 12 with probability 0.1.
Utility is a deliberately abstract domain-dependent concept
that describes the contribution of a particular action to over-
all problem solving. There exists an enables relationship
from task NX belonging to agent B to method M2 belonging
to agent A’s task T1. This implies that successful execution
of NX by agent B is a precondition for agent A to execute
method M2.

In the remainder of this section, we enumerate the fea-
tures computed when the meta-level control component is
invoked. The cost of computing and reasoning about these
state features reflect the cost of meta-level control reasoning.
We then enumerate the various meta-level control decisions
and the case-base of heuristics used to make the decisions.

The following are some simple state features which are
used in the heuristic decision making process of the meta-
level controller. We use qualitative values such as high,
medium and low, to represent the various factors which af-
fect the heuristic features. The quantitative values such as

quality of 80 versus quality of 60 were classified into qual-
itative buckets (high versus medium quality) initially based
on intuitions on the expected and preferred behavior of the
system. They are verified by multiple simulation runs of the
system on various test cases.

F0: Current status of system This feature is represented
as a 3-tuple representing the NewItems Stack, Agenda and
ScheduleStack where each entry in the tuple contains the
number of items on the corresponding stack. The new items
are the tasks which have just arrived at the agent from the
environment. The agenda stack is the set of tasks which have
arrived at the agent but whose reasoning has been delayed
and they have not been scheduled yet. The schedule stack is
the set of tasks currently being scheduled. Eg. � �� �� � �
means there are two new items which have arrived from the
environment and there is one task being scheduled.

F1: Relation of utility gain per unit time of a par-
ticular task to that of currently scheduled task set:
The ������� 	
�� �
� ���� ���
 of a task is the ratio of
���
�
��
��
� ������� to ���
�
��
��
� ���
���� of that
task. This feature compares the utility of a particular task
to that of the existing task set and helps determine whether
the new task is very valuable, moderately valuable or not
valuable in terms of utility to the local agent.

F2: Relation of deadline of a particular task to that
of currently scheduled task set: This feature compares the
deadline of a particular task to that of the existing task set
and helps determine whether the new task’s deadline is very
close, moderately close or far in the future.

F3: Relation of priority of items on agenda to that of
currently scheduled task set: This feature compares the
average priority of the existing task set to the priority of the
new task and helps determine whether the new task is very
valuable, moderately valuable or not valuable in terms of
utility to the local agent. Priority is a function of the utility
and deadlines of the tasks. Computing the average priority
of a task set is a more complicated function than computing
the priority of a single tasks since it involves recognizing
dominance of individual tasks.

The experiments described in this paper use the above
four features. There are other features, simple and complex,
which are enumerated below but yet to be implemented..

F4: Percent of slack in local schedule: This feature is
used to make a quick evaluation of the flexibility in the local
schedule. The amount of slack in the local schedule allows
the agent to accept new tasks and schedule them in the free
slots as well as deal with unexpected meta-level control ac-
tivities.

F5: Percent of slack in other agent’s schedule: This
feature is used to make a quick evaluation of the flexibility
on the other agent’s schedule. The computation of feature
F5 is inexpensive since it is done after an information gather-
ing phase, represented by a primitive action called MetaNeg
which when executed will gather information on non-local
agents which are potential coordination partners for the local
agent.

F6: Relation of utility gain per unit time of non-local
task to non-local agent’s current task set: This feature
compares the utility of a particular task to that of the existing

task set of a non-local agent and helps determine whether
the new task is very valuable, moderately valuable or not
valuable with respect to the utility of the other agent. The
computation of feature F6 is inexpensive since it too is done
after the information gathering phase.

F7: Expected utility of current schedule item at cur-
rent time: This is the expected utility of the current schedule
item at time t as determined by the domain-level scheduler
which uses expected value computations.

F8: Actual utility of current schedule item at current
time: This is the actual quality of the current schedule item
at run time t. This feature is compared to F7 in order to
determine whether schedule execution is proceeding as ex-
pected. If it is not proceeding as expected, a reschedule is
initiated to prevent the agent from reaching a failure point
from which recovery is not possible. Features F7 and F8
will be computed at specified monitoring points.

F9: Expected Rescheduling Cost with respect to a task
set: This feature estimates the cost of rescheduling a task set
and it depends on the size and quality accumulation factor of
the task structure. It also depends on the horizon and effort
parameters specified to the domain-level scheduler.

F10: Expected DeCommitment Cost with respect to a
particular task: This is a complex feature which estimates
the cost of decommiting from a method/task by consider-
ing the local and non-local down-stream effects of such a
decommit. The domain-level scheduler could be invoked a
number of times to compute this feature making it expensive
to compute.

F11: Relation of slack fragmentation in local schedule
to new task: This is a complex feature which determines the
feasibility of fitting a new task given the detailed fragmen-
tation of slack in a particular schedule. It involves resolving
detailed timing and placement issues.

F12: Relation of slack fragments in non-local agent
to non-local task: This is a complex feature which deter-
mines the feasibility of fitting a new task given the detailed
fragmentation of slack in a particular non-local schedule. It
involves resolving detailed timing and placement issues.

The following are some of the specific meta-level deci-
sions that will be addressed by any individual agent. We
describe how the heuristics determine the best action when
certain exogenous events occur. The description is limited
to reasoning about features F0-F4. Current work allows for
reasoning about all 12 features.

1. Arrival of a new task from the environment: When a new
task arrives at the agent, the meta-level control compo-
nent has to decide whether to reason about it later; drop
the task completely; or to do scheduling-related reason-
ing about an incoming task at arrival time and if so, what
type of scheduling - complex or simple. The decision
tree describing the various action choices named A1-A9 is
shown in Figure 2. Each of the meta-level decisions have
an associated decision tree. As each exogenous event oc-
curs for a particular environment, its corresponding de-
cision tree is added incrementally to the parent MDP for
that environment and the optimal policy will be computed
offline. Heuristic Rule: If the new task has very low or

New task

arrives

Use detailed scheduler

Get new

Drop new task

features

on all tasks including
partially executed tasks

Legend

state

 transition function

Use simple scheduler

Drop task

on new task

Drop task

[A2]

[A1]

[A3]

[A4]

[A5]

[A6]

[A7]

[A8]

[A9]

 executable action

 external action

on new task

Add new task

to agenda

Add task

to agenda

Use detailed

scheduler on task

Use detailed scheduler

and drop agenda

Figure 2: Decision tree when a new task arrives

negligible priority and high opportunity cost with respect
to taking resources away from future higher priority tasks,
then it should be discarded. If the incoming task has very
high priority, in other words, the expected utility is very
high and it has a relatively close deadline, then the agent
should override its current schedule and schedule the new
task immediately. If the deadline is very tight the agent
will uses the abstraction-based simple scheduler; else, it
will use the more complex scheduler. If the current sched-
ule has average utility that is significantly higher than the
new task and the average deadline of the current schedule
is significantly closer than that of the new task, then rea-
soning about the new task should be postponed till later.
If the new task is scheduled immediately, the scheduling
action costs time, and there are associated costs of drop-
ping established commitments if the previous schedule is
significantly revised or completely dropped. These costs
are diminished or avoided completely if the task reason-
ing is postponed to later or completely avoided if the task
is dropped.

2. Decision on whether to negotiate: The meta level con-
troller will decide to negotiate based on the information
returned by the MetaNeg action. It queries the other agent
and returns information on the agent’s expected utility
from its tasks, expected completion time of its tasks and
flexibility of its schedule. We know that method M2 in
agent A is enabled by task NX belonging to agent B. The
benefit from including method M2 in agent A’s schedule
is that it increases its total utility. However, it also re-
quires agent A and B to negotiate over the completion
time of task NX by agent B and this negotiation has an
associated cost as well as there is a resource cost to the
agent which agrees to the contract. Heuristic Rule: If the
other agent’s current expected utility is much lower than

the results of the negotiation, then the local agent will ini-
tiate negotiation. Negotiation is also initiated if the other
agent’s tasks have high utility but the deadlines are far
enough in the future to permit the other agent to execute
the enabling task. If the other agent’s tasks have higher
priority than the local task, then the negotiation option is
dropped.

3. Choice of negotiation protocol: When an agent decides
to negotiate, it should also decide whether to negotiate
by means of a single step or a multi-step protocol that
may require a number of negotiation cycles to find an ac-
ceptable solution or even a more expensive search for a
near-optimal solution. The single shot protocol is quick
but has a higher chance of failure where as a more com-
plex protocol takes more time and has a higher chance of
success Heuristic Rule: If the agent receives high utility
from the results of the negotiation, then the agent should
choose the more effective albeit more expensive protocol.
The protocol which has a higher guarantee of success re-
quire more resources, more cycles and more end-to-end
time in case of multi-step negotiation and higher compu-
tation power and time in case of near-optimal solutions.
(The end-to-end time is proportional to the delay in be-
ing able to start task executions). If the agent does not
have too much resources to expend on the negotiation or
if there is a very slight probability that the other agent will
accept the contract, then the local agent should choose the
single shot protocol.

4. Failure of a negotiation to reach a commitment: If the
negotiation between two agents using a particular nego-
tiation protocol fails, the initiating agent should decide
whether to retry the negotiation; whether to use the same
protocol or an alternate protocol with the same agent or
alternate agents and how many such retries should take
place? Heuristic Rule: If negotiation is preferred (the
agent will receive high utility as a result of the negotia-
tion), then a more complex negotiation protocol is chosen
since it has a higher probability of succeeding. Since re-
sources have already been spent on figuring out a solution
to the negotiation, it may be profitable to put in a little
more effort and achieve a solution. If there is a very slight
or no probability of finding an acceptable commitment,
then resources which can be profitably spent on other so-
lution paths are being wasted and the agent might find
itself in a dead-end situation with no resources left for an
alternate solution. So the negotiation option should be
dropped.

Two other meta-level decisions which are being devel-
oped determine the parameters for invoking the domain
scheduler including scheduler horizon, scheduler effort and
slack amount in overall schedule and also determine whether
to invoke the domain level scheduler for a reschedule since
the performance of the agent is not going as expected.

Experimental Results
For the purposes of this paper, we used the environment in-
troduced in the previous section with randomly generated
which adheres to the above mentioned characteristics. The

Row # Agent TS Arrival Deadline Control Utility
Name ID Time Activity Run1 Run2 Run3 Run4 Run5 Run6 Run7

1 A T0 1 1 40 NTCS 17.50 19.50 17.50 17.50 17.50 17.50 16.30
2 A T0 2 10 28 Drop 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 A T1 3 21 75 ATCS, NM1 45.60 51.19 55.20 45.60 45.60 12.00 43.41
4 A T0 4 55 80 ATCS 16.00 16.00 16.00 16.00 16.00 16.00 18.00
5 A T0 5 61 100 ATCS 6.00 6.00 6.00 6.00 6.00 6.00 6.00
6 B NX 3 37 47 SS 10.00 10.00 10.00 10.00 10.00 - 10.00

Total
Utility 96.10 102.69 104.70 95.10 95.10 51.50 93.77
Col. # 1 2 3 4 5 6 7 8 9 10 11 12

Table 1: Experimental Results for agents capable of meta-level reasoning: Agent Name is name of the agent being considered;
TS ID is the name of the task being considered; Arrival Time and Deadline are the arrival times and deadlines for that particular
task; Control Activity is the control action chosen by the meta-level controller; Columns 5-11 describe the utility accrued for
each of the individual tasks in seven different runs; Row 6 describes the total utility of all tasks completed by both agents for
each run

Row # Agent TS Arrival Deadline Control Utility
Name ID Time Activity Run1 Run2 Run3 Run4 Run5 Run6 Run7

1 A T0 1 1 40 ATCS 22.80 24.00 23.00 22.00 22.00 22.00 18.26
2 A T0 2 10 28 ATCS 10.00 12.00 10.00 10.00 10.00 10.00 10.00
3 A T1 3 21 75 ATCS, NM1 12.00 12.00 12.00 12.00 12.00 12.00 12.00
4 A T0 4 55 80 ATCS 10.00 10.00 10.00 10.00 10.00 10.00 12.00
5 A T0 5 61 100 ATCS 10.00 10.00 12.00 12.00 10.00 10.00 10.00
6 B NX 3 39 53 ATCS 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Total
Utility 74.80 78.00 77.00 76.00 74.00 74.00 72.26
Col. # 1 2 3 4 5 6 7 8 9 10 11 12

Table 2: Experimental Results for agents with no meta-level reasoning: Control Activity is the fixed control action used by the
agent

maximum possible utility from task T0 is 23.0 and mini-
mum is 17.0; the maximum from task T1 is 56.0 and mini-
mum utility is 12.0; NX has a deterministic utility of 10.00.
We make the simplifying assumption that task NX arrives
at agent B only as a result of a successful negotiation with
agent A. There are four possible meta-decisions upon arrival
of a new task: NTCS, New Task Complex Scheduling in-
vokes the complex DTC scheduler on the new task only and
has a time cost of 2; Drop, this causes the agent to drop
the new task and not reason about it ever again has a time
cost of 0; ATCS, All Task Complex Scheduling invokes the
complex DTC scheduler on the new task as well as all other
tasks which are on the agenda or in partial execution and has
a time cost of 3; and SS, Simple Scheduling invokes the sim-
ple abstraction based analysis on the new task only and has
a time cost of 1. There are two possible options for Nego-
tiation: NM1, Negotiation Mechanism 1 which is the sim-
ple single-shot protocol and NM2, Negotiation Mechanism
2 which is the more complex multi-shot protocol.

The design criteria in these experiments is to maximize
overall utility over a finite horizon. Individual tasks have
hard deadlines associated with them. It is assumed that if
a task has not accrued utility by its deadline, it receives a

utility of zero. This simple design criteria setting is one that
lends itself to meta-level control as the existence of a hard
deadlines (in contrast to a soft preference, e.g., soft dead-
line or no deadlines) make processor and other resources
valuable commodities requiring a the non-myopic reasoning
provided by the meta-level control component.

The results for the experiments on agents which have
meta-reasoning capabilities are shown in Table 1 and the
results on agents which have no meta-level reasoning capa-
bilities are shown in Table 2. The above described scenario
is used in both cases. All domain, control and meta-level
actions have a time cost associated with them which are re-
flected in the results.

Consider Table 1 where each row represents a specific
task arriving at the specified agent at the associated arrival
time with a deadline. The task names are augmented with
the arrival count to differentiate between various instances
of the same task. For eg. Row 4 describes task TO arriving
at agent A as its fourth task at time 55 with a deadline of 80.
Column 5, titled Control Action describes the various deci-
sions made by the meta-level controller upon arrival of the
new task. Columns 6-12 describe the utility accumulated by
each of the tasks for seven different runs.

In Row 1, task T0 1 arrives at time 1. Since the meta-
level controller is aware that no other tasks are in execution,
it invokes NTCS on the task which is a cheaper option than
ATCS which would be the choice of an agent with no meta-
reasoning capabilities.

In Row 2, task T0 2 arrives at time 11 while the previous
task is still in execution and a meta-level decision to drop
task T0 2 is made. This is because the previous task T0 1
has the exact same characteristics as the current task and has
a tight deadline. The task also has a tight deadline and inter-
rupting the already executing tasks might result in missing
the deadlines on both Task T0 1 and task T0 2.

In Row 3, Agent A decides to do a complete reschedule of
all tasks and chooses to negotiate with agent B over task NX
using negotiation mechanism NM1. In this case, it is will-
ing to reschedule task T0 1 since the expected utility from
the newly arrived task is much higher than that of the cur-
rent task. Also, the fact that the agent dropped task T0 2
although it was unaware of the arrival of a highly preferred
task in the near-future works to agent A’s advantage since
it has more time to perform the higher valued task. In five
out of six runs, the agent’s decision to drop the previous task
T0 2 and perform task T1 3 with the negotiation option re-
sults in very high utility values. In Run 6, task T1 3 receives
a very low utility because negotiation fails with agent B and
the task receives the minimum utility. However on average,
agent A’s meta-level decision works to its benefit. In Row 6,
we see that agent �B chooses the simple scheduling option to
execute task NX 3 because of its tight deadline.

Consider Table 2. Here the agent does not reason about
the characteristics of the tasks at the meta-level. This re-
sults in the agent choosing the same control action, namely
ATCS for all tasks independent of the status of other tasks in
execution. This results in the most expensive control action
being invoked independent of the current state of the system.
This results the choice of domain activities with shorter du-
rations and lower utilities as reflected by the utility values
in columns 6-12. The total utilities accumulated by five of
the six runs in Table 2 is significantly lower than the corre-
sponding run in Table 1. This supports our hypothesis that
meta-level control is generally advantageous.

Conclusions and Future Work
In this paper we present a novel meta-level control agent
framework for sophisticated multi-agent environments. The
meta-level control has limited and bounded computational
overhead and will support reasoning about scheduling and
coordination costs as first-class objects.

We have shown, using a simple example, that meta-level
control is beneficial. The heuristics described in this pa-
per, although very simple, enable the meta-level controller
to make accurate decisions in simple scenarios. We plan to
introduce more complex features which will make the rea-
soning process more robust. Some such features include re-
lation of slack fragments in local schedule to new task. This
would enable an agent to fit a new task in its current sched-
ule if it is possible and avoid a reschedule. Another feature
would be to estimate the decommitment cost for a particular

task. This will enable us to consider environments in which
agents can decommit from tasks which they have previously
agreed to complete.

We will extend the detailed domain level scheduler(DTC)
to handle scheduling effort, slack and horizon as first-class
objects. The extended DTC will accept parameters which
constrain the effort spent on scheduling which in turn will af-
fect the overhead of the scheduler. It will also be extended to
deal with slack as a schedulable element which can be quan-
tified and valued as any other primitive action. We hope that
augmenting the domain level scheduler will make the meta-
level controller more versatile by providing more options.

Finally, we will use the insight gathered from the heuris-
tic approach to construct the state features, reward functions
and algorithms to apply a reinforcement learning approach
to this problem. We expect this analysis to provide valuable
experience about applying RL techniques to complex real-
world problems.

References
[1] Craig Boutlier. Sequential Optimality and Coordina-

tion in Multiagent Systems. In Proceedings of the Six-
teenth International Joint Conference on Artificial Intel-
ligence, 1999.

[2] Victor Lesser, Bryan Horling, Frank Klassner, Anita
Raja, Thomas Wagner, and Shelley XQ. Zhang. BIG:an
agent for resource-bounded information gathering and
decision making. In Artificial Intelligence Journal, Spe-
cial Issue on INternet Applications, 1999.

[3] David J. Musliner. Plan Execution in Mission-Critical
Domains. In Working Notes of the AAAI Fall Symposium
on Plan Execution - Problems and Issues, 1996.

[4] Anita Raja, Victor Lesser, and Thomas Wagner. Toward
Robust Agent Control in Open Environments. In Pro-
ceedings of the Fourth International Conference on Au-
tonomous Agents, pages 84–91, Barcelona, Catalonia,
Spain, July,. ACM Press.

[5] H. Simon. From substantive to procedural rationality,
1976.

[6] Thomas Wagner, Alan Garvey, and Victor Lesser.
Criteria-Directed Heuristic Task Scheduling. Interna-
tional Journal of Approximate Reasoning, Special Issue
on Scheduling, 19(1-2):91–118, 1998. A version also
available as UMASS CS TR-97-59.

[7] XiaoQin Zhang, Rodion Podorozhny, and Victor
Lesser. Cooperative, multistep negotiation over a
multi-dimensional utility function. In IASTED Inter-
national Conference, Artificial Intelligence and Soft
Computing (ASC 2000), Banff,Canada, pages 136–142.
IASTED/ACTA Press, July 2000.

