
Solving Negotiation Chains in Semi-Cooperative
Multi-Agent Systems

Xiaoqin Zhang
Computer and Information Science Department

University of Massachusetts at Dartmouth

x2zhang@umassd.edu

Victor Lesser
Computer Science Department

University of Massachusetts at Amherst

lesser@cs.umass.edu

ABSTRACT
A negotiation chain is formed when multiple related nego-
tiations are spread over multiple agents. In order to appro-
priately order and structure the negotiations occurring in
the chain so as to optimize the expected utility, we present
an extension to a single-agent concurrent negotiation frame-
work. This work is aimed at semi-cooperative multi-agent
systems, where agents do not cheat or intend to hurt other
agents even as they focus on their own goals. We intro-
duce a pre-negotiation phase that allows agents to transfer
meta-level information. Using this information, the agent
can build a more accurate model of the negotiation in terms
of modeling the relationship of flexibility and success proba-
bility. This more accurate model helps the agent in choosing
a good negotiation solution. The agent can also use this in-
formation to allocate appropriate time for each negotiation,
hence to find a good ordering of all related negotiations. The
experimental data shows that these mechanisms improve the
agents’ and the system’s overall performance significantly.

Keywords: Negotiation Chain, Flexibility, Multi-Linked
Negotiation

1. INTRODUCTION
Sophisticated negotiation for task and resource allocation

is crucial for the next generation of multi-agent systems
(MAS) applications. Agents need to efficiently negotiate
over multiple related issues concurrently in a complex, dis-
tributed setting where there are deadlines by which when
the negotiations must be completed. The need for this type
of negotiation can arise from acquiring either multiple re-
sources for a single goal or resources for multiple goals that
need to be solved concurrently. This is an important re-
search area where there has been very little work done.

This work is aimed at semi-cooperative multi-agent
systems, where agents do not cheat or intend to hurt other
agents even as they focus on their own goals. However, there
is no single global goal in such systems, either because each
agent represents a different organization/user, or because it

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

is difficult/impossible to design one single global goal. This
issue arises due to multiple concurrent tasks, resource con-
strains and uncertainties, and thus no agent has sufficient
knowledge or computational resources to determine what is
best for the whole system [13]. An example of such a system
would be a virtual organization [8, 14] (i.e. a supply chain)
dynamically formed in an electronic marketplace such as the
one developed by the CONOISE project [7]. The virtual or-
ganization composes a number of different semi-dependent
entities in order to respond more efficiently to a set of ex-
ternal requests over time. To accomplish tasks continuously
arriving in the virtual organization, cooperation and sub-
task relocation are needed and preferred. However, no sin-
gle agent has authority over all other agents. Each agent
has limited resources and capacity; it needs to decide what
to do, when to do it and how to do it according to its own
goals and performance measures. Meanwhile, the perfor-
mance of each individual agent is tightly related to other
agents’ cooperation and the virtual organization’s overall
performance. If no task can be accomplished because of
lack of cooperation, no agent can collect any utility. Addi-
tionally, there are multiple encounters among agents since
new tasks are arriving all the time. In such negotiations,
price is important but not the primary factor; other factors
like quality and delivery time are important too. In such
systems, being truthful is in the agent’s best interest. The
negotiation in such systems is different from the purely
self-interested negotiation using game theoretic [15, 9]
approaches where no cooperation is necessary and no long-
term relationship among agents is assumed.

Another major difference between this work and other
work on negotiation is that negotiation, here, is not viewed
as a stand-alone process. Rather it is one part of the agent’s
activity which is tightly interleaved with the planning, schedul-
ing and executing of the agent’s activities, which also may
relate to other negotiations. Based on this recognition, this
work on negotiation is concerned more about the decision-
making process in negotiation rather than the basic proto-
cols or languages. The goal of this research is to develop
a set of macro-strategies that allow the agents to effec-
tively manage multiple related negotiations, including, but
not limited to the following issues:

1. How much time should be spent on each negotiation.

2. How much flexibility should be allocated for each negotia-
tion.

3. In what order should the negotiations be performed.

The above decisions are based on the attributes of each nego-
tiation and the relationships among different negotiations,

Purchase Memory

Producer
CPU

Customer

Negotiation request

Manufacturer
Distribution

Center
PC Store

Memory
Producer

Order Hardware Order PC

Deliver Hardware Deliver PC

Transporter

Order Memory (2) Order Memory (1)Order Chips

Purchase PC

Figure 1: A Complex Supply-Chain Scenario

where the goal is to maximize the likelihood of successful
negotiations by deadlines, minimize the possibility of back-
tracking and the decommitment penalty, so as to optimize
the overall expected utility. These macro-strategies are dif-
ferent from those micro-strategies that direct the individ-
ual negotiation thread, such as whether the agent should
concede and how much the agent should concede, etc.

Our previous work on multi-linked negotiation [12] de-
scribed the situation where one agent needs to negotiate
with multiple agents about different subjects (tasks, con-
flicts, or resource requirements), and the negotiation over
one subject affects the negotiations over other subjects. A
formalized model has been developed for multi-linked nego-
tiation, which allows the agent to reason about the relation-
ships among multiple related issues. Based on this model,
we also developed a decision-making process for the agent
to make decisions on how to order these negotiations and
how to assign value for those attributes (also referred to
as “features”) in negotiation so as to minimize the probabil-
ity of conflicts among concurrent negotiations and maximize
the expected utility. These mechanisms enabled an agent to
manage the multi-linked negotiations from its local perspec-
tive and choose the appropriate negotiation strategy based
on the knowledge about its multiple negotiations and the
interrelationships among them.

However, an even more difficult problem occurs when multi-
linked negotiations are spread over multiple agents and form
a negotiation chain (i.e., in Figure 1, Customer - Store -
PC Manufacturer - Distribution Center - Producers - Trans-
porters). The result of one negotiation can affect multiple
other negotiations occurring at different agents. If all these
negotiations are processed sequentially, it would take a very
long time before a mutually agreeable solution is reached.
The negative consequence of this delay could cause the cus-
tomer to choose another vendor to provide the product. For
example, the Store has to wait for the PC Manufacturer to
finish its negotiations with the Transporter and the Distri-
bution Center before it can reply to the customer. To reply
to the request from the PC Manufacturer, the Distribution
Center needs to first get replies from the CPU Producer,
the Memory Producer and the Transporter, which causes
additional waiting time for the customer. If all these negoti-
ations are processed in parallel, the possible conflicts among
the results of different negotiations require some issues to be
renegotiated. This re-negotiation (backtracking) can then
spread to other agents along the chain like a domino effect.

In this paper we extend our multi-linked negotiation model

from a single-agent perspective to a multi-agent perspective,
so that a group of agents involved in a chain of interrelated
negotiations can find a nearly-optimal negotiation solution
for pursuing their negotiations. In order to accomplish this
in a distributed way, we feel it is very important for agents to
have more than a local view in a negotiation chain problem,
so each agent can build its local decision not only on its local
knowledge but also on other agents’ knowledge of the nego-
tiation chain. As part of our approach, we introduced a pre-

negotiation phase that allows agents to exchange meta-level
information so they can adjust their local control parame-
ters. By adjusting the local model based on this transferred
meta-level information, the individual multi-linked negotia-
tion problems are linked together, and each agent is able to
incorporate some global view in their local decision-making
process. In this way, these local decision-making processes
are linked together through the pre-negotiation, so that the
combination of each local solution becomes a good global
solution.

It can be questioned whether this pre-negotiation really
works for self-interested agents who might be lying about
the transferred information. We feel that this mechanism
is realistic in semi-cooperative multi-agent systems for the
following reasons. First, lying is not necessarily beneficial
for the agent when there are competitors. For example,
if the transporter agent pretends to be extremely busy in
order to gain more flexibility from the PC manufacturer, the
manufacture can find other transporters. Neither is it wise
to pretend to be very free, which only ends up with conflicts
and failure in negotiation. Secondly, when there are multiple
encounters repeated among agents, it is possible to develop
mechanisms [1] to verify how reliable the agents are, which
provides another incentive for agents to be truthful.

The remainder of this paper is structured in the following
manner. Section 2 describes the basic negotiation process
and briefly reviews a single agent’s model of multi-linked
negotiation. Section 3 introduces a complex supply-chain
scenario that is used as an example to explain related ideas.
Section 4 details how to solve those problems arising in the
negotiation chain. Section 5 reports on the experimental
work to evaluate the effect of different negotiation policies
on the agent’s performance and the system’s overall per-
formance. Section 6 discusses related work and Section 7
presents conclusions and areas of future work.

2. BACKGROUND AND PREVIOUS WORK
In this work, the negotiation process between any pair

of agents is based on an extended version of the contract
net: the initiator agent announces the proposal including
multiple features; the responding agent evaluates it and re-
sponds with either a yes/no answer or a counter proposal
with some features modified. This process can go back and
forth until an agreement is reached or the agents decide to
stop. If an agreement is reached and one agent cannot fulfill
the commitment, it needs to pay the other party a decom-
mitment penalty as specified in the commitment. Details of
this protocol is described in [12].

A proposal which announces that a task (t) needs to be
performed includes the following attributes:

1. earliest start time (est): the earliest start time of task t;
task t cannot be started before time est.

2. deadline (dl): the latest finish time of the task; the task
needs to be finished before the deadline dl.

3. minimum quality requirement (minq): the task needs to be
finished with a quality achievement no less than minq.

4. regular reward (r): if the task is finished as the contract
requested, the contractor agent will get reward r.

5. early finish reward rate (e): if the contractor agent can
finish the task earlier than dl, it will get the extra early
finish reward proportional to this rate.

6. decommitment penalty rate (p): if the contractor agent can-

not perform the task as it promised in the contract or if

the contractee agent needs to cancel the contract after it

has been confirmed, it also needs to pay a decommitment

penalty (p ∗ r) to the other agent.

The above attributes are also called attributes-in-negotiation
which are the features of the subject to be negotiated, and
they are domain dependent. Another type of attributes are
the attributes-of-negotiation, which describe the negotiation
process itself and are domain independent, such as:

1. negotiation duration (δ(v)): the time needed for negotiation
v to get a result, either success or failure.

2. negotiation start time (α(v)): the start time of negotiation
v. α(v) is an attribute that needs to be decided by the
agent.

3. negotiation deadline (ε(v)): negotiation v needs to be fin-
ished before this deadline ε(v). The negotiation is no longer
valid after time ε(v), which is the same as a failure outcome
of this negotiation.

4. success probability (ps(v)): the probability that v is suc-

cessful. It depends on a set of attributes, including both

attributes-in-negotiation (i.e. reward, flexibility, etc.) and

attributes-of-negotiation (i.e. negotiation start time, nego-

tiation deadline, etc.).

These attributes described above are similar to those used
in project management; however, the multi-linked ne-
gotiation problem cannot be reduced to a project
management problem or a scheduling problem. The
multi-linked negotiation problem has two dimensions: the
negotiations, and the subjects in negotiations. The negotia-
tions are interrelated and the subjects are interrelated; the
attributes of negotiations and the attributes of the subjects
are interrelated as well. This two-dimensional complexity
of interrelationships distinguishes it from the classic project
management problem or scheduling problem. For a more
detailed explanation on this issue see [12], it also explains
why concurrent negotiations is not always a good idea, and
the order of negotiation is important.

An agent involved in multiple related negotiation pro-
cesses needs to reason on how to manage these negotiations
in terms of ordering them and choosing the appropriate val-
ues for features. This is the multi-linked negotiation
problem. To solve a multi-linked negotiation problem is to
find a negotiation solution (φ, ϕ) with optimized expected
utility EU(φ, ϕ), which is defined as:

EU(φ, ϕ) =
P2n

i=1 P (χi, ϕ) ∗ (R(χi, ϕ) − C(χi, φ, ϕ))
A negotiation ordering φ defines a partial order of all
negotiation issues. A feature assignment ϕ is a mapping
function that assigns a value to each attribute that needs to
be decided in the negotiation. A negotiation outcome χ for
a set of negotiations {vj}, (j = 1, ..., n) specifies the result
for each negotiation, either success or failure. There are a
total of 2n different outcomes for n negotiations. P (χi, ϕ)
denotes the probability of the outcome χi given the fea-
ture assignment ϕ. R(χi, ϕ) denotes the agent’s utility in-
crease given the outcome χi and the feature assignment ϕ,

Deliver_HardwareGet_Parts Produce_Computer

Get_Software
Install_Software

Deliver_Computer

Memory ProducerHardware Producer Transporter

Consumer Agent

Order_Computer

Order_Memory

Order_Hardware

Order_Chips

Order_Hardware

process−time: 3

and

Distribution Center PC Manufacturer

enables
process−time: 4

process−time: 3

and and

enables
process−time: 4

and

enables

process−time: 3

process−time: 2

process−time: 11

enables

Figure 2: Task Structures of PC Manufacturer and
Distribution Center

Deliver_Computer

[34, 40]

process time: 4

process time: 3

[11, 28]

[11, 28]

process time: 11

Get_Software

Install_Software

[28, 34]

process time: 2

Order_Computer starts at time 11 and finishes by 40

Order_Hardware

Figure 3: A Sample Local Schedule of the PC Man-
ufacturer

and C(χi, φ, ϕ) is the sum of the decommitment penalties
of those negotiations, which are successful, but need to be
abandoned because the failure of other directly related ne-
gotiations; these directly related negotiations are performed
concurrently with this negotiation or after this negotiation
according to the negotiation ordering φ.

3. A COMPLEX SCENARIO
Figure 1 described a complex negotiation-chain scenario.

The Store, the PC manufacturer, the Memory Producer and
the Distribution Center are all involved in multi-linked ne-
gotiation problems.These agents not only need to deal with
complex negotiation problems, they also need to handle their
own local scheduling and planning process that are inter-
leaved with the negotiation process. Figure 2 shows the local
task structures of the PC Manufacturer and the Distribu-
tion Center. Some of these tasks can be performed locally
by the PC manufacturer, such as Get Software and Install

Software, while other tasks (non-local tasks) such as Order

Hardware and Deliver Computer need to be performed by
other agents.The PC Manufacturer needs to negotiate with
the Distribution Center and the Transporter about whether
they can perform these tasks, and if so, when and how they
will perform them.

When the PC Manufacturer negotiates with other agents
about the non-local task, it needs to have the other agents’
arrangement fit into its local schedule. Since the PC Man-
ufacturer is dealing with multiple non-local tasks simulta-
neously, it also needs to ensure the arrangements on these
non-local tasks are consistent with each other. For example,
the deadline of task Order Hardware cannot be later than
the start time of task Deliver Computer. Figure 3 shows a
sample local schedule of the PC Manufacturer. According to
this schedule, as long as task Order Hardware is performed
during time [11, 28] and task Deliver Computer is performed
during time [34, 40], there exists a feasible schedule for all
tasks and task Order Computer can be finished by time 40,

which is the deadline promised to the Customer. These time
ranges allocated for task Order Hardware and task Deliver

Computer are called consistent ranges; the negotiations on
these tasks can be performed independently within these
ranges without worrying about conflict. Notice that each
task should be allocated with a time range that is large
enough to accommodate the estimated task process time.
The larger the range is, the more likely the negotiation will
succeed, because it is easier for the other agent to find a
local schedule for this task. Then the question is, how big
should this time range be? We defined a quantitative mea-
sure called flexibility:

Given a task t, suppose the allocated time range for t is
[est, dl], est is the earliest start time and dl stands for the
deadline,

flexibility(t) = dl−est−process time(t)
process time(t)

How should the agent manage flexibility on different tasks
that require negotiation? More flexibility on one task means
less flexibility on another task. Also, the flexibility on sub-
tasks affect the finish time of the whole task. In our work
on single-agent multi-linked negotiation [12], this decision is
made as part of the negotiation solution found by a search
procedure. Flexibility is an important attribute because it
directly affects the possible outcome of the negotiation. The
success probability of a negotiation can be described as a
function of the flexibility. We use a function to describe the
success probability of negotiation v: ps(v) = ζ(a1, a2, ..., ak).
aj (j = 1, ..., k) represent the attributes that affect the suc-
cess probability of the negotiation v. Flexibility is one of
these attributes; there are other attributes, such as reward
and negotiation start time, that could also affect the negoti-
ation outcome. In this work we only focus on the flexibility.
This function is domain dependent. We assume the agent
has such a function available as part of its knowledge. How
the agent should construct such a function, especially in a
negotiation chain problem, is one of the key focuses of this
work.

4. NEW MECHANISMS
We will be concerned with two features that have strong

implications for the performance of a negotiation chain. The
first is the amount of flexibility specified in the negotiation
parameter. For example, if Order Hardware is expected to
take 11 time units, the earliest start time is specified as
time 40, and the deadline is specified as time 51, there is no
flexibility in the outcome of the negotiation process. Either
it is done starting at time 40 or it cannot be done. A more
flexible negotiation structure would be one that specifies the
deadline as 60; thus, the agent working on Order Hardware

(the Distribution Center) has more freedom to find a way to
accomplish this task given it may have already committed
to other tasks.

The second feature we will explore is the time allocated
for the negotiation process to complete. For instance, in the
previous example, the negotiation on Order Hardware defi-
nitely should be completed by time 39, which is a hard dead-
line for the negotiation on Order Hardware. The question is,
when should the negotiation on Order Hardware be started?
It could be started once the PC manufacturer knows it needs
the negotiation on Order Hardware (suppose at time 20), or
it can be started after the PC manufacturer completes an-
other negotiation on Order Computer (could be time 30).

Another possible approach is to complete the negotiation
on Order Hardware before starting the negotiation on Order

Computer. In this case, the negotiation on Order Hardware

needs to be completed before time 30 so there is time left
for negotiation on Order Computer. The time allocated for
each negotiation affects the possible ordering of those nego-
tiations, and it also affects the negotiation outcome. Details
are discussed in the following sections.

4.1 Flexibility and Success Probability
In order for an agent to take into account a more ex-

ogenous view on the negotiation characteristics, we intro-
duce a pre-negotiation phase into the local negotiation pro-
cess. During the pre-negotiation phase, agents communicate
meta-level information before they decide on how and when
to do the negotiations. Each agent tells other agents what
types of tasks it will ask them to perform, and the prob-
ability distributions of some parameters of those tasks, i.e.
the earliest start time and the deadlines, etc. When these
probability distributions are not available directly, agents
can learn such information from their past experience. In
our experiment described later, such distributed information
is learned rather than being directly told by other agents.
Specifically, each agent provides the following information
to other related agents:

• Whether additional negotiation is needed in order to make
a decision on the contracting task; if so, how many more ne-
gotiations are needed. A variable negCount is used to rep-
resent the number of additional negotiations needed. In a
negotiation chain situation, this information is being prop-
agated and updated through the chain until every agent has
the accurate information. For example, when the PC man-
ufacturer receives a message from the Distribution Center
that contains:
negCount(Order Hardware) = 3
it updates its local information:
negCount(Order PC) = negCount(Order Hardware)+2
and sends the updated information to the Store.

• Whether there are other tasks competing with this task
and what is the likelihood of conflict. The likelihood of
conflict Pcij between a task of type i and another task
of type j is calculated based on the statistical model of
each task’s parameters, including earliest start time (est),
deadline (dl), task duration (dur) and slack time (sl), using
the following formula [10]:

Pcij = P (sli − durj ≤ estj − esti ≤ duri − slj)

=

+∞
X

z=−∞

+∞
X

y=z

(1 −

y
Y

x=z

(1 − Pestj−esti
(x)))

·Pduri−slj (y)Psli−durj
(z) (1)

When there are more than two types of tasks, the likelihood

of no conflict between task i and the rest of the tasks, is

calculated using the following formula: PnoConflict(i) =
Qn

j=1,j 6=i(1 − Pcij)

For example, the Memory Producer tells the Distribution
Center about the task Order Memory. Its local decision
does not involve additional negotiation with other agents
(negCount = 0), however, there is another task from the
Store Agent that competes with this task, thus the likeli-
hood of no conflict is 0.5 (PnoConflict = 0.5). On the other
hand, the CPU Producer tells the Distribution Center about
the task Order Chips: its local decision does not involve
additional negotiation with other agents, and there are no
other tasks competing with this task (PnoConflict = 1.0).

Based on the above information, the Distribution Center
knows that task Order Memory needs more flexibility than
task Order Chips in order to be successful in negotiation.
Meanwhile, the Distribution Center would tell the PC Man-
ufacturer that task Order Hardware involves further negoti-
ation with other agents (negCount = 3), and that its local
decision depends on other agents’ decisions. This piece of
information helps the PC Manufacturer allocate appropriate
flexibility for task Order Hardware in negotiation.

In this work, we adopt the following formula for the suc-
cess probability function based on the flexibility of the ne-
gotiation issue:

ps(v) = pbs(v) ∗ (2/π) ∗ (arctan(f(v) + c))) (2)

This function describes a phenomenon where initially the
likelihood of a successful negotiation increases significantly
as the flexibility grows, and then levels off afterward, which
mirrors our experience from previous experiments. pbs is the
basic success probability of this negotiation v when the flex-
ibility f(v) is very large. c is a constant parameter used to
adjust the relationship. The agent adjusts these two values
according to the meta-level information transferred during
pre-negotiation phase. The values of c depends on whether
there is further negotiation involved and whether there are
other tasks competing with this task for common resources.
If so, more flexibility is needed for this issue and hence c
should be assigned a smaller value. In our implementation,
the following procedure is used to calculate c based on the
meta-level information negCount and PnoConflict:

if(PnoConflict > 0.99)
// no other competing task

c = Clarge − negCount
else // competing task exists

c = Csmall

This procedure works as follows: when there is no other
competing task, c depends on the number of additional ne-
gotiations needed. The more additional negotiations that
are needed, the smaller value c has, hence more flexibility
will be assigned to this issue to ensure the negotiation suc-
cess. If no more negotiation is needed, c is assigned to a
large number Clarge, meaning that less flexibility is needed
for this issue. When there are other competing tasks, c is
assigned to a small number Csmall, meaning that more flex-
ibility is needed for this issue. In our experimental work, we
have Clarge as 5 and Csmall as 1. These values are selected
according to our experience; however, a more practical ap-
proach is to have agents learn and dynamically adjust these
values. This is also part of our future work.

pbs is calculated based on PnoConflict, f(v) (the flexibility
of v in previous negotiation), and c.
pbs(v) = max(1.0, PnoConflict(v) ∗ (π/2)/(arctan(f(v)+ c)))

For example, based on the scenario described above, the
agents have the following values for c and pbs based on the
meta-level information transferred:

• PC Manufacturer, Order Hardware: pbs = 1.0, c = 2;

• Distribution Center, Order Chips: pbs = 1.0, c = 5;

• Store Agent, Order Memory: pbs = 0.79, c = 1;

Figure 4 shows the different patterns of the success prob-
ability function given different parameter values. Based on
such patterns, the Store Agent would allocate more flexi-
bility to task Order Memory to increase the likelihood of

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5

su
cc

es
s

pr
ob

ab
ili

ty

flexibility

comparison of different success probability functions

Pbs=1.0, c=2
Pbs=1.0, c=5

Pbs=0.79, c=1

Figure 4: Different Success Probability Functions

Table 1: Examples of negotiations (δ(v): negotiation
duration, s.p.: success probability)

index task-name δ(v) reward s.p. penalty
1 Order Hardware 4 6 0.99 3
2 Order Chips 4 1 0.99 0.5
3 Order Memory 4 1 0.80 0.5
4 Deliver Hardware 4 1 0.70 0.5

success in negotiation. In the agent’s further negotiation
process, formula 2 with different parameter values is used in
reasoning on how much flexibility should be allocated to a
certain issue.

The pre-negotiation communication occurs before negoti-
ation, but not before every negotiation session. Agents only
need to communicate when the environment changes, for ex-
ample, new types of tasks are generated, the characteristics
of tasks changes, the negotiation partner changes, etc. If no
major change happens, the agent can just use the current
knowledge from previous communications. We will discuss
the effect of this mechanism in Section 5.

4.2 Negotiation Duration and Deadline
Another issue that arises when extending the multi-linked

negotiation model to a negotiation chain scenario is the need
to make a decision about the duration and deadline for each
negotiation v. Negotiation duration δ(v) and negotiation
deadline ε(v) are two important attributes that affect the
negotiation solution. Part of the negotiation solution is a
negotiation ordering φ which specifies in what order the mul-
tiple negotiations should be performed. In order to control
the negotiation process, every negotiation should be finished
before its negotiation deadline, and the negotiation duration
is the time allocated for this negotiation. If a negotiation
cannot be finished during the allocated time, the agent has
to stop this negotiation and consider it as a failure. The
decision about the negotiation order depends on the success
probability, reward, and decommitment penalty of each ne-
gotiation. A good negotiation order should deal with the
negotiation which has more uncertainty (low success proba-
bility) first (if possible), so as to reduce the risk of decom-
mitment and hence reduce the decommitment penalty.

For example, Table 1 shows some of the negotiations for
the Distribution Center and their related attributes. Given
enough time (negotiation deadline is greater than 16), the
best negotiation order is: 4 → 3 → 2 → 1. The most un-
certain negotiation (4: Deliver Hardware) is performed first.
The negotiation with highest penalty (1: Order hardware)
is performed after all related negotiations (2, 3, and 4) have
been completed so as to reduce the risk of decommitment.
If the negotiation deadline is less than 12 and greater than

8, the following negotiation order is preferred: (4, 3, 2) → 1,
which means negotiation 4, 3, 2 can be performed in parallel,
and 1 needs to be performed after them. If the negotiation
deadline is less than 8, then all negotiations have to be per-
formed in parallel.

In the original model for single agent [12], the negotia-
tion deadline ε(v) is assumed to be given by the agent who
initiates the contract. The negotiation duration δ(v) is an
estimation of how long the negotiation takes based on ex-
perience. However, the situation is not that simple in a
negotiation chain problem. Considering the following sce-
nario. When the customer posts a contract for task Pur-

chase Computer, it could require the Store to reply by time
20. Time 20 can be considered as the negotiation deadline
for Purchase Computer. When the Store negotiates with the
PC Manufacturer about Order Computer, what negotiation
deadline should it specify? How long the negotiation on Or-

der Computer takes depends on how the PC Manufacturer
handles its local multiple negotiations: whether it replies to
the Store first or waits until all other related negotiations
have been settled. However, the ordering of negotiations
depends on the negotiation deadline on Order Computer,
which should be provided by the Store. The negotiation
deadline of Order Computer for the PC Manufacturer is ac-
tually decided based on the negotiation duration of Order

Computer for the Store. How much time the Store would
like to spend on the negotiation Order Computer is its du-
ration, and also determines the negotiation deadline for the
PC Manufacturer.

Now the question arises: how should an agent decide how
much time it should spend on each negotiation, which actu-
ally affects the other agents’ negotiation decisions. The orig-
inal model does not handle this question since it assumes the
negotiation duration δ(v) is known. Here we propose three
different approaches to handle this issue.

1. same-deadline policy. Use the same negotiation deadline
for all related negotiations, which means allocate all avail-
able time to all negotiations:
δ(v) = total available time
For example if the negotiation deadline for Purchase Com-
puter is 20, the Store will tell the PC Manufacturer to re-
ply by 20 for Order Computer (ignoring the communica-
tion delay). This strategy allows every negotiation to have
the largest possible duration, however it also eliminates the
possibility of performing negotiations in sequence - all nego-
tiations need to be performed in parallel because the total
available time is the same as the duration of each negotia-
tion.

2. meta-info-deadline policy. Allocate time for each negoti-
ation according to the meta-level information transferred
in the pre-negotiation phase. A more complicated negoti-
ation, which involves further negotiations, should be allo-
cated additional time. For example, the PC Manufacturer
allocates a duration of 12 for the negotiation Order Hard-
ware, and a duration of 4 for Deliver Computer. The reason
is that the negotiation with the Distribution Center about
Order Hardware is more complicated because it involves
further negotiations between the Distribution Center and
other agents. In our implementation, we use the following
procedure to decide the negotiation duration δ(v):

if(negCount(v) >= 3)
// more additional negotiation needed

δ(v) = (negCount(v) − 1) ∗ basic neg cycle
else if(negCount(v) > 0)
// one or two additional negotiations needed

δ(v) = 2 ∗ basic neg cycle

Table 2: Parameter Values Without/With Meta-
level Information

fixed-flex meta-info-flex
negotiation pbs pbs c
Order PC 0.95 1.0 0

Order Memory (1) 0.95 0.79 1
Order Hardware 0.95 1.0 2

Deliver PC 0.95 1.0 1
Deliver Hardware 0.95 1.0 5

Order Chips 0.95 1.0 1
Order Memory (2) 0.95 0.76 1

else //no additional negotiation
δ(v) = basic neg cycle + 1

basic neg cycle represents the minimum time needed for a
negotiation cycle (proposal-think-reply), which is 3 in our
system setting including communication delay. One addi-
tional time unit is allocated for the simplest negotiation
because it allows the agent to perform a more complicated
reasoning process in thinking. Again, the structure of this
procedure is selected according to experience, and it can be
learned and adjusted by agents dynamically.

3. evenly-divided-deadline policy. Evenly divide the available
time among the n related negotiations:
δ(v) = total available time/n
For example, if the current time is 0, and the negotiation
deadline for Order Computer is 21, given two other related
negotiations, Order Hardware and Deliver Computer, each
negotiation is allocated with a duration of 7.

Intuitively we feel the strategy 1 may not be a good one,
because performing all negotiations in parallel would in-
crease the risk of decommitment and hence also the decom-
mitment penalty. However, it is not very clear how strategy
2 and 3 perform, and we will discuss some experimental re-
sults related to this question in Section 5.

5. EXPERIMENTS
To verify and evaluate the mechanisms presented for the

negotiation chain problem, we implemented the scenario de-
scribed in Figure 1 using the MASS simulator environment
[4]. We performed two sets of experiments to study how
the success probability functions and negotiation deadlines
affect the negotiation outcome, the agents’ utilities and the
system’s overall utility.

In the pre-negotiation phase, agents exchange meta-level
information about different negotiation issues, such as whether
there is further negotiation related to this negotiation (negCount),
and if there are other tasks that are potentially competing
with this task and what the likelihood of conflict (PnoConflict)
is. According to this information, the local agent adjusts the
parameters (Pbs, c) in the success probability function ps(v)
to reflect how the probability of success is related to the
flexibility of the task. The time needed for pre-negotiation
depends on the length of the negotiation chain. Every agent
updates its local information and send updated information
to related agents when it receives a piece of new information
from another agent.

We tried two different flexibility policies.

1. fixed-flexibility policy: the agent uses a fixed value as the
success probability (ps(v) = pbs(v)), according to its local
knowledge and estimation.

2. meta-info-flexibility policy: the agent uses the function ps(v) =
pbs(v) ∗ (2/π) ∗ (arctan(f(v) + c))) to model the success
probability. It also adjusts those parameters (pbs(v) and

Figure 5: Different Flexibility Policies

c) according to the meta-level information obtained in pre-
negotiation phase as described in Section 4. Table 2 shows
the values of those parameters for some negotiations.

Figure 5 shows the results of this experiment. This set
of experiments includes 10 system runs, and each run is
for 1000 simulating time units. In the first 200 time units,
agents are learning about the task characteristics, which will
be used to calculate the conflict probabilities Pcij . At time
200, agents perform meta-level information communication,
and in the next 800 time units, agents use the meta-level
information in their local reasoning process. The data was
collected over the 800 time units after the pre-negotiation
phase. One Purchase PC task is generated every 20 time
units, and two Purchase Memory tasks are generated ev-
ery 20 time units. The deadline for task Purchase PC is
randomly generated in the range of [30, 60], the deadline
for task Purchase Memory is in the range of [10, 30]. The
decommitment penalty rate is randomly generated in the
range of [0, 1]. This setting creates multiple concurrent
negotiation chain situations; there is one long chain:
Customer - Store - PC Manufacturer - Distribution Center

- Producers - Transporter

and two short chains:
Customer - Store - Memory Producer

This demonstrates that this mechanism is capable of han-
dling multiple concurrent negotiation chains.

All agents perform better in this example (gain more util-
ity) when they are using the meta-level information to ad-
just their local control through the parameters in the suc-
cess probability function (meta-info-flex policy). Especially
for those agents in the middle of the negotiation chain,
such as the PC Manufacturer and the Distribution Center,
the flexibility policy makes a significant difference. When
the agent has a better understanding of the global nego-
tiation scenario, it is able to allocate more flexibility for
those tasks that involve complicated negotiations and re-
source contentions. Therefore, the success probability in-
creases and fewer tasks are rejected or canceled (90% of
the tasks have been successfully negotiated over when us-
ing meta-level information, compared to 39% when no pre-
negotiation is used), resulting in both the agent and the
system achieving better performance.

The second set of experiments studies how different nego-
tiation deadline policies affect the performance in the negoti-
ation chain. We compare three negotiation deadline policies
described in Section 4.2 when using the meta-info flexibility
policy described above. The initial result shows that the

Figure 6: Different Negotiation Deadline Policies

same-deadline policy and the meta-info-deadline policy per-
form almost the same when the amount of system workload
level is moderate, tasks can be accommodated given suffi-
cient flexibility. In this situation, with either of the policies,
most negotiations are successful, and there are few decom-
mitment occurrences, so the ordering of negotiations does
not make too much difference.

Therefore, in this second set of experiments, we use a dif-
ferent setup than the first one. We increase the number of
new tasks generated to raise the average workload in the sys-
tem. One Purchase PC task is generated every 15 time units,
three Purchase Memory tasks are generated every 15 time
units, and one task Deliver Gift (directly from the customer
to the Transporter) is generated every 10 time units. This
setup generates a higher level of system workload, which
results in some tasks not being completed no matter what
negotiation ordering is used. In this situation, we found the
meta-info-deadline policy performs much better than same-
deadline policy (See Figure 6). When an agent uses the
same-deadline policy, all negotiations have to be performed
in parallel. In the case that one negotiation fails, all re-
lated tasks have to be canceled, and the agent needs to pay
decommitment penalties. When the agent uses the meta-
info-deadline policy, complicated negotiations are allocated
more time and, correspondingly, simpler negotiations are al-
located less time. This also has the effect of allowing some
negotiations to be performed in sequence. The consequence
of sequencing negotiation is that, if there is failure, an agent
can simply cancel the other related negotiations that have
not been started. In this way, the agent does not have to pay
a decommitment penalty. The evenly-divided-deadline pol-
icy performs much worse than the meta-info-deadline policy.
In the evenly-divided-deadline policy, the agent allocates ne-
gotiation time evenly among the related negotiations, hence
the complicated negotiation does not get enough time to
complete. For example, when the PC Manufacturer evenly
divides the 6 time units among the two negotiations (Pro-

duce Computer and Deliver Computer), each get 3 time
units. Thus, the Distribution Center must reply within 2
time units about task Produce Computer (1 time unit has
already been spent on the communication). In our current
system setting, this is an urgent request that necessitates
the agent bypassing the local negotiation control process
(which arranges the appropriate flexibility for each negoti-
ation) and instead adopt a quick reply process, where no
detailed reasoning on flexibility is involved. Therefore, even

if the meta-info-flexibility policy is adopted in this experi-
ment, it may not affect the negotiation strategy since there
is insufficient time for negotiation. This explains the bad
performance of the evenly-divided-deadline policy in Figure
6.

6. RELATED WORK
Fatima, Wooldridge and Jennings [3] studied the multi-

ple issues in negotiation in terms of the agenda and nego-
tiation procedure. However, this work is limited since it
only involves a single agent’s perspective without any un-
derstanding that the agent may be part of a negotiation
chain. Mailler and Lesser [6] have presented an approach
to a distributed resource allocation problem where the ne-
gotiation chain scenario occurs. It models the negotiation
problem as a distributed constraint optimization problem
(DCOP) and a cooperative mediation mechanism is used
to centralize relevant portions of the DCOP. In our work,
the negotiation involves more complicated issues such as
reward, penalty and utility; also, we adopt a distribution
approach where no centralized control is needed. A combi-
natorial auction [5, 11] could be another approach to solving
the negotiation chain problem. However, in a combinatorial
auction, the agent does not reason about the ordering of ne-
gotiations, since all items are announced at the same time,
meaning all issues are negotiated concurrently. This would
lead to a problem similar to those we discussed when the
same-deadline policy is used. Also, a combinatorial auction
is unrealistic for this problem because the range of possible
bids each agent can make with respect to how it can sched-
ule its local tasks/resources is enormous. Even though bid
elicitation [2] is a possible approach to reducing the number
of bids that need to be generated it does not seem feasible
for this type of problem because of the complex nature of
the temporal constraints in each agent.

7. CONCLUSION AND FUTURE WORK
In this paper, we have solved negotiation chain prob-

lems by extending our multi-linked negotiation model from
the perspective of a single agent to multiple agents. In-
stead of solving the negotiation chain problem in a central-
ized approach, we adopt a distributed approach where each
agent has an extended local model and decision-making pro-
cess. We have introduced a pre-negotiation phase that al-
lows agents to transfer meta-level information on related
negotiation issues. Using this information, the agent can
build a more accurate model of the negotiation in terms of
modeling the relationship of flexibility and success probabil-
ity. This more accurate model helps the agent in choosing
the appropriate negotiation solution. The agent can also use
this information to allocate appropriate time for each nego-
tiation, so as to find a good ordering of all related negotia-
tions. The experimental data shows that these mechanisms
improve the agent’s and the system’s overall performance
significantly.

In future extension of this work, we would like to develop
mechanisms to verify how reliable the agents are. Addition-
ally, we would like to develop a learning mechanism that
enables the agent to learn how to adjust these values from
previous experience. Also we would like to introduce some
coordinators (agents who are responsible for part of the ne-
gotiation chain) and examine whether it would further facili-

tate the process. To further verify this distributed approach,
we would like to develop a centralized approach as a base
of comparison, so we can evaluate how good the solution
from this distribution approach is compared to the optimal
solution found by the centralized approach.

8. REFERENCES
[1] R. Ashri, S. D. Ramchurn, J. Sabater, M. Luck, and N. R.

Jennings. Trust evaluation through relationship analysis. In
Proc. 4th Int Joint Conf on Autonomous Agents and
Multi-Agent Systems, Utrecht, Netherlands, 2005.

[2] W. Conen and T. Sandholm. Preference elicitation in
combinatorial auctions: Extended abstract. In ACM
Conference on Electronic Commerce (ACM-EC), Tampa,
FL, October 14-17 2001.

[3] S. S. Fatima, M. Wooldridge, and N. R. Jennings. Optimal
negotiation strategies for agents with incomplete
information. In Revised Papers from the 8th International
Workshop on Intelligent Agents VIII, pages 377–392.
Springer-Verlag, 2002.

[4] B. Horling, R. Vincent, and V. Lesser. Multi-agent system
simulation framework. In 16th IMACS World Congress
2000 on Scientific Computation, Applied Mathematics and
Simulation. EPFL, August 2000.

[5] L. Hunsberger and B. J. Grosz. A combinatorial auction for
collaborative planning. In Proceedings of the Fourth
International Conference on Multi-Agent Systems
(ICMAS-2000), 2000.

[6] R. Mailler and V. Lesser. A Cooperative Mediation-Based
Protocol for Dynamic, Distributed Resource Allocation.
IEEE Transaction on Systems, Man, and Cybernetics,
Part C, Special Issue on Game-theoretic Analysis and
Stochastic Simulation of Negotiation Agents, 2004.

[7] T. J. Norman, A. Preece, S. Chalmers, N. R. Jennings,
M. Luck, V. D. Dang, T. D. Nguyen, V. Deora, J. Shao,
A. Gray, and N. Fiddian. Agent-based formation of virtual
organisations. Int. J. Knowledge Based Systems,
17(2-4):103–111, 2004.

[8] E. Oliveira and A. P. Rocha. Agents advanced features for
negotiation in electronic commerce and virtual
organisations formation processes. In AgentLink 2001,
pages 78–97. AgentLink, 2001.

[9] G. Z. Sarit Kraus, Jonathan Wilkenfeld. Multiagent
negotiation under time constraints. Artificial Intelligence,
1995.

[10] J. Shen, X. Zhang, and V. Lesser. Degree of Local
Cooperation and its Implication on Global Utility.
Proceedings of Third International Joint Conference on
Autonomous Agents and MultiAgent Systems (AAMAS
2004), July 2004.

[11] W. Walsh, M. Wellman, and F. Ygge. Combinatorial
auctions for supply chain formation. In Second ACM
Conference on Electronic Commerce, 2000.

[12] X. Zhang, V. Lesser, and S. Abdallah. Efficient
management of multi-linked negotiation based on a
formalized model. Autonomous Agents and MultiAgent
Systems, 10(2):165–205, 2005.

[13] X. Zhang, V. Lesser, and T. Wagner. Integrative
negotiation among agents situated in organizations. IEEE
Transactions on System, Man, and Cybernetics: Part C,
Special Issue on Game-theoretic Analysis and Stochastic
Simulation of Negotiation Agents, Accepted, to appear.

[14] Q. Zheng and X. Zhang. Automatic formation and analysis
of multi-agent virtual organization. Journal of the
Brazilian Computer Society: Special Issue on Agents
Organizations, 11(1):74–89, July 2005.

[15] G. Zlotkin and J. S. Rosenschein. Mechanism design for
automated negotiation, and its application to task oriented
domains. Artificial Intelligence, 1996.

