Learning Quantitative Knowledge for Multiagent Coordination

David Jensen, Michael Atighetchi, Régis Vincent, Victor Lesser
Computer Science Department
University of Massachusetts at Amherst
Amherst, MA 01003
{jensen,adi,vincent,lesser } @cs.umass.edu

Abstract

A central challenge of multiagent coordination is rea-
soning about how the actions of one agent affect the
actions of another. Knowledge of these interrelation-
ships can help coordinate agents — preventing con-
flicts and exploiting beneficial relationships among ac-
tions. We explore three interlocking methods that
learn quantitative knowledge of such non-local effects
in TEMS, a well-developed framework for multiagent
coordination. The surprising simplicity and effective-
ness of these methods demonstrates how agents can
learn domain-specific knowledge quickly, extending the
utility of coordination frameworks that explicitly rep-
resent coordination knowledge.

Introduction

A major challenge of designing effective multiagent sys-
tems is managing non-local effects — situations where
the actions of one agent impact the performance of
other agents’ actions. For example, one agent’s ac-
tion can enable, disable, facilitate, or hinder the ac-
tions of other agents. Poor accounting for these non-
local effects (NLEs) can cause multiagent activities to
deadlock or waste resources, so representing and rea-
soning about NLEs is a central feature of frameworks
for multiagent coordination (Decker and Lesser 1995;
Barbuceanu and Fox 1995).

Multiagent coordination frameworks often assume
that agents possess accurate knowledge of the relation-
ships among actions and the basic performance char-
acteristics of those actions (e.g., cost and duration).
Such knowledge allows agents to schedule activities in
ways that exploit beneficial relationships, and avoid
pathological ones. Unfortunately, accurate knowledge
of NLEs is difficult to maintain in heterogeneous and
open systems. Agent designers may not know the fu-
ture operating environment for their agents, the com-
plete set of actions open to other agents, and the ef-
fects those actions have on their own agents. For all of
these reasons, the ability for multiagent systems to au-
tonomously learn coordination knowledge appears crit-

Copyright ©1999, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

ical for next-generation coordination frameworks (Sug-
awara and Lesser 1998).

We investigated and implemented techniques to learn
the statistical knowledge about NLEs represented in
one well-established framework for multiagent coordi-
nation (TAEMS). We found that a combination of three
simple learning techniques can be surprisingly effective.
The learned knowledge can be used to accurately pre-
dict the performance of a particular action, given its
context within a set of actions executed by the same
agent or other agents. The success of these meth-
ods demonstrates how coordination knowledge can be
learned explicitly, as opposed to learning coordination
policies that implicitly represent knowledge of agents,
environments, and their association.

Context

Learning for multiagent coordination has become a pop-
ular topic in the past several years. Much of the ex-
isting work aims to equip agents with effective poli-
cies — functions that map environmental conditions
directly to coordinated actions. For example, Weif3
(Weifl 1998) investigates reinforcement learning (RL)
techniques to improve the coordinated performance of
reactive agents. Similarly, Tan (Tan 1998) investigates
how to extend RL to create coordinated multiagent
policies.

In contrast, we explore learning explicit quantitative
knowledge needed by deliberative agents — agents that
explicitly plan sequences of actions and that can trace
the assumptions embedded in those plans. We assume
that the coordination framework (TZAEMS in this case)
encodes all relevant characteristics of the environment
needed to guide coordination and that agents can use
this knowledge to devise coordinated actions. Sepa-
rating knowledge from coordination mechanisms pro-
vides opportunities (e.g., the coordination strategy can
be changed without altering the knowledge), as well as
costs (e.g., using the knowledge requires explicit rea-
soning).

Another theme of learning for multiagent coordina-
tion has been learning to predict the future actions of
other agents. Such predictions can help produce coor-
dinated actions even without explicit communication

among agents. Hu and Wellman (Hu and Wellman
1998) study this type of learning in the context of a
simulated double auction. Similarly, Zeng and Sycara
(Zeng and Sycara 1997) study learning to predict agent
actions in the context of sequential negotiation. In con-
trast, we focus on learning how agent actions affect each
other. While some of this knowledge could be used to
predict the reasoning of other agents, it does not di-
rectly predict their actions.

Some of the work closest to our own focuses on learn-
ing the effects of environmental context on the outcomes
of agent actions. For example, Schmill, Rosenstein, Co-
hen, and Utgoff (Schmill et al. 1998) use decision trees
to learn the environmental states and actions that pro-
duce changes in particular sensor values of a mobile
robot. Similarly, Haigh and Veloso (Haigh and Veloso
1998) learn situation-dependent costs of actions from
execution traces of robot navigation. This work and
other similar work focuses on the relationships among
actions and outcomes, a notion closely allied with our
focus on actions and their non-local effects (NLEs) in
a multiagent context. However, the “environment” in
our work consists almost entirely of the actions of other
agents, and the desired knowledge concerns how to co-
ordinate the actions of multiple agents.

Tasks

We investigated learning techniques for TAEMS, an ex-
isting framework for multiagent coordination. TAMS
(Decker and Lesser 1993) represents quantitative in-
formation about agent activities, including candidate
actions and how those actions can combine to achieve
high-level tasks. TZAMS represents a task as a tree
whose root is the overall task and whose leaves are prim-
itive actions referred to as methods. Internal nodes rep-
resent subtasks composed of other tasks and methods.
Internal nodes also specify how the constituent meth-
ods and tasks combine for successful execution (e.g., all
must execute successfully, or only a single alternative
must execute successfully). In addition to this struc-
tural information about tasks and methods, TAMS rep-
resents two types of statistical information — 1) prob-
ability distributions that describe the possible values
of performance parameters of a method (e.g., the qual-
ity of a method’s result, the cost of the method, and
its duration); and 2) non-local effects (NLEs) of one
method on another (e.g., enables, disables, facilitates,
and hinders).

Reasoners can use the knowledge represented in
TAEMS (Wagner et al. 1998a) to evaluate the quality,
cost, and duration of possible courses of action and their
effects on other agent’s actions. Using this information,
reasoners can select the one that best! meets the current

'The general action selection problem in TEMS is ex-
ponential and reasoners generally use a real-time, satisfic-
ing, goal-directed, approximation strategy (Wagner et al.
1998a). Thus, “best” in this case does not necessarily de-
note optimal.

constraints and environmental conditions. For example,
in a time-constrained situation, an agent may sacrifice
solution quality, and pay a larger fee, to produce a result
within the specified deadline. Detailed discussions of
T/EMS are provided elsewhere (Decker and Lesser 1993;
Wagner et al. 1998b).

For example, consider how TAMS could be used to
coordinate the tasks assigned to different departments
in a hospital. The departments need to coordinate the
execution of these tasks to produce maximum medical
benefit to patients under time and cost constraints. For
a given patient, the radiology department may wish to
schedule an x-ray, the nursing staff may wish to draw
blood for diagnostic tests, and the cafeteria may wish
to provide breakfast for the patient. The existence of
NLEs among the methods needed to complete these
tasks implies a specific order of execution. For ex-
ample, eating breakfast may disable some diagnostic
tests and the radioactive elements ingested for some x-
rays may hinder obtaining accurate results from blood
tests. These constraints imply a schedule with the or-
der: blood tests, x-rays, and breakfast.

To be more specific, Figure 1 shows a partial TAMS
task structure for the hospital agents (Decker and Li
1998) coordinating their services for a single patient.
Radiology has the task of taking an x-ray of the pa-
tient. This task requires execution of three methods:
providing a barium solution for the patient to ingest,
producing an exposure of the patient, and interpreting
the exposure. The barium solution enables the inter-
pretation (without it the interpretation would always
have zero quality) and the exposure enables the inter-
pretation. Similarly, the nursing staff wish to conduct
tests on the patient’s blood. The first method of this
activity, drawing blood, enables the two tests. One of
the tests is hindered if the patient has ingested a barium
solution. Finally, hospital policy requires that blood be
drawn and barium solutions be administered when the
patient has an empty stomach.

Radiology Agent

Blood test

[lmerpre\] [Expose] [Barium] [Break'ast] [Drawaloou] [Test 1] Test 2
N~ Sew — . ——

z . =
~<_ " Enables __-~ S =277 Enables __--
~-._____--""Enables

Cafeteria Agent Nursing Agent

Sl N Enables .-~
~ Disables Disables -

MEs T

Figure 1: TAMS Task Structure for hospital patient ser-
vices.

This paper focuses on learning the statistical knowl-
edge encoded in TAEMS about distributions and NLEs
(distributions were left off figure 1 for simplicity). In
particular, we focus on learning four of the most com-
mon NLEs — enables, disables, facilitates, and hin-
ders. Each NLE defines a relation between one task
or method (A) and another task or method (B). For
clarity and brevity, only effects on quality are discussed;
effects on duration and cost can be inferred from con-

text. Similarly, the term “precede” is used to mean that
a method successfully completes execution prior the the
beginning of execution for another method.

e FEnables — If A does not precede B, then B fails,
achieving a quality ¢(B) = 0. If multiple methods or
tasks enable B, then all must precede B in order for
B to be enabled.

e Disables — The complement of enables. If A pre-
cedes B, then B fails, achieving a quality ¢(B) = 0.
If multiple methods or tasks disable B, then B will
fail if any of them precede B.

e Fucilitates — If A precedes B, then the quality of
B is multiplied by a given power factor ¢, where
¢ > 1. That is, ¢(B|A) = ¢apq(B|A). Facil-
itates can modify one or more performance char-
acteristics of B. Multiple facilitating methods are
multiplicative in their effects. That is, if A and B
both facilitate C', and precede C' in a schedule, then
q(C|AB) = ¢pacdpcq(C|AB).

e Hinders — The complement of facilitates. If A pre-
cedes B, then the quality of B is multiplied by a given
power factor ¢, where ¢ < 1.

Learning Methods

Our work focuses on learning accurate knowledge of
distributions and NLEs. We assume that agents al-
ready know what methods are available to be executed,
and how to use TAEMS knowledge to produce effective
schedules.

To learn distributions and NLEs, agents monitor the
performance of schedules — finite sets of methods with
at least a partial order. Each learning instance consists
of the performance characteristics of a given method
in the schedule (e.g., quality, duration, and cost) and
the set of all methods in the schedule that successfully
completed execution prior to the given method.2 We
assume that all methods in a schedule are either exe-
cuted directly by the learning agent, or that the learn-
ing agent is informed of their execution. Agents are
not required to infer the existence of hidden methods.
Further, we assume that each schedule execution is in-
dependent; methods executed in one schedule do not
affect methods executed in another schedule. This lim-
its the scope of NLEs to methods in the schedule, con-
sistent with the original assumptions of TAMS.

The goal is to use learning instances to infer distribu-
tions of unaffected performance characteristics (quality,
duration, and cost) for each method and to infer the ex-
istence of all NLEs and their associated power factors
(¢). To acquire this knowledge, we built the TAEMS

2From this point forward, we refer only to methods, not
the more general term “methods and tasks.”

Learning System (TLS). TLS uses three relatively sim-
ple learning methods: 1) empirical frequency distribu-
tions; 2) deterministic properties of schedules; and 3)
linear regression. Below, we discuss each method indi-
vidually and discuss the interactions among the meth-
ods that allow them to be effective.

Empirical frequency distributions are used to esti-
mate distributions of performance parameters such as
quality, duration, and cost. The frequency distribu-
tion for a given method and performance parameter is
derived from a moving window of k instances of the ex-
ecution of that method. Our goal is to estimate the dis-
tribution when unaffected by NLEs (i.e., the quality of
method C' may be affected by methods A and B that fa-
cilitate its execution). As a result, nearly all values are
assumed to be affected by NLEs, and they are divided
by the current estimates of the relevant power factors to
render an estimate of the unaffected quality. For exam-
ple, if A and B were the only methods currently thought
to affect C, then ¢(C|NLE) = q(C)/(¢pacoBc).

An alternative approach is to learn from only those
results of method executions that are guaranteed to be
unaffected (e.g., the results of methods executed at the
start of each schedule). In empirical tests, this approach
proved far slower than the methods reported here. Fig-
ure 2 shows the results of one experiment. The top
line shows the error associated with learning from only
quality values guaranteed to be unaffected. The bot-
tom line shows the error associated with learning from
all values, when whose values are corrected based on
estimated power factors.

1 T T
\ D: estimated unaffected ——

\ D: guaranteed unaffected -----
09 |]

08| B
o7l B
o6 | B

05t |]

Error

04 R
03
02

0.1

0

150
Schedules executed

Figure 2: Error of two different methods for estimating
distributions.

Deterministic properties of schedules are used to
learn “hard” NLEs such as enables and disables. Al-
though we derived a total of six such properties, two
proved particularly useful in the experiments reported
here. The first, enables exclusion states that successful
execution of method A at any point in a schedule ex-
cludes all methods that did not precede A as possible
enabling conditions (T/EMS requires that all enabling

methods precede a given method for it to execute suc-
cessfully). The second, disables exclusion states that
successful execution of method A at any point in a
schedule excludes all methods that precede A as possi-
ble disabling conditions (T/AEMS specifies that any dis-
abling method preceding a given method will disable
it).

Linear regression is used to infer the existence of
“soft” NLEs and to estimate their associated power
factors (¢). Recall the TEMS specification of how
facilitates and hinders affect the performance charac-
teristics of methods. For example, the quality of a
given method my is determined by its unaffected quality
(¢(mo|NLE)) and the power factors of methods that fa-
cilitate or hinder it (e.g., m1, ma, and m3). Given these
NLEs, TAEMS specifies that:

q(mo) = 17" 92" ¢3"2q(mo| NLE)

where z,, = 1 when m,, precedes mg and z,, = 0 other-
wise. Taking the log of both sides:

log(qg(mo)) = log(é1)z1 + log(p2)z> +
log(¢s)xs + log(q(mo|NLE))

This equation is in the classic form of a linear re-
gression equation: y = fi1x1 + Pex2 + Psxs + By + €,
where y corresponds to the log of the affected quality
and (1, B2, and (B3 correspond to the logs of the re-
spective power factors. 3y and € combine to correspond
to the unaffected quality distribution, where 8y is the
distribution’s mean and € corresponds to the random
deviations of its values from that mean.

To find NLEs affecting each method, we search for
equations containing power factors ¢ that are signifi-
cantly different than one (represented by regression co-
efficients [significantly different from zero). We con-
duct this search using a standard statistical method,
stepwise linear regression (Draper and Smith 1981;
J. Neter 1990). Stepwise regression conducts a simple
local search over possible regression equations, starting
with an equation containing only £y and ending with
an equation containing at most k terms, where k is the
number of methods available in each schedule. Terms
are added to the equation if their coefficients are sig-
nificantly different than one, and are removed if their
coefficients are not significantly different than one (co-
efficients of existing terms in an equation can change
when new terms are added).

Three assumptions of linear regression create poten-
tial problems for applying the technique to learn power
factors for soft NLEs. Under the first assumption, in-
dependence of the variables z,, knowing a value of one
z should tell us nothing about the value of any other z.
Unfortunately, hard NLEs can cause successful execu-
tion of some methods to be dependent on the success-
ful execution of others, introducing dependence among
the variables z,,. The NLE A enables B introduces

a positive correlation between x4 and zg; A disables
B introduces a negative correlation. Regression is ro-
bust against moderate violations of this assumption,
but strong violations can greatly increase the variance
of estimated coefficients of the regression equation (in
our case, causing the estimates of power factors to be
extremely inflated or deflated). TLS addresses this
problem in two ways. First, it checks for strong vio-
lations of this assumption (often referred to as perfect
multicollinearity), and doesn’t alter the current state of
knowledge in such cases. In our experiments, such vi-
olations typically occurred only in very small datasets.
Second, TLS uses stepwise regression which greatly re-
duces the total number of variables in regression equa-
tions, thus reducing the probability that two or more of
them will be dependent.

Under the second assumption, normally-distributed
errors, the distribution of the error term in the regres-
sion equation should be normal. In our case, the error
term represents the log of the unaffected quality dis-
tribution log(q(mo|N LE)) (shifted so its mean is zero).
To match this assumption, the distribution itself should
be log-normal. While this is one reasonable quality dis-
tribution, it is not the only reasonable one. We exper-
iment with an alternative distribution to indicate how
linear regression is robust to moderate violations of this
assumption.

The third assumption affects how we test statistical
significance. Such tests are run to determine which co-
efficients g differ significantly from zero. The stringency
of any one test is determined by ay, which indicates the
probability of a Type I error (incorrectly rejecting the
null hypothesis that a single coefficient is zero). How-
ever, for a single performance parameter (e.g., quality)
and k methods in a schedule, k(k — 1) possible NLEs
exist. TLS tests whether each of these NLEs exists.
Under these conditions, the probability of TLS making
at least one Type I error is much larger than ay. If the
NLEs are independent, the probability is:

arrs =1 — (1 —)Y

For example, for the overall probability of error arps
to be small (e.g., 0.10) in our base case experiment, the
probability of error on any one test a; must be much
smaller (0.000012). This process is called Bonferroni
adjustment. Some such adjustment is important in any
context where many explicit or implicit hypothesis tests
are made (Jensen and Cohen 1999). TLS uses Bonfer-
roni adjustment to set appropriate values of o so that
ATLS is small.

Experiments

We measure the effectiveness of TLS with metrics that
directly measure the quality of the learned knowledge,
rather than indirectly measuring its effect on agent co-
ordination. This approach focuses evaluation on TLS
and avoids confounding TLS’ performance with the

performance of other system components for schedul-
ing and coordination (Wagner et al. 1997). However,
it could also inappropriately credit or penalize TLS for
learning knowledge that is unimportant or infrequently
used, respectively. To guard against this latter error, we
review the utility of the learned knowledge at the the
next section and show that the most useful knowledge
is generally learned most quickly.

In each experiment, agents create learning data by
generating and executing schedules. In all experiments
reported here, agents operate in an exploration mode,
executing randomly-generated schedules, rather than
attempting to use already learned knowledge to gen-
erate maximally effective schedules. In practice, agents
are likely to mix exploration and exploitation of learned
knowledge, and even to use directed exploration. These
options will be explored in later work.

Agents have access to performance parameters of ex-
ecuted schedules — values of quality, duration, and cost
for each method in a schedule — that are affected by an
initially unknown set of NLEs. The actual unaffected
distributions and NLEs are hidden from agents, but
they determine the values of performance parameters
observed by agents.

Consistent with other projects using TAEMS, we use
discrete probability distributions. However, our meth-
ods for learning hard and soft NLEs apply equally well
to cases with continuous probability distributions, and
a method such as kernel density estimators (John and
Langley 1995) could be used to estimate continuous
probability distributions from empirical data.

The experiments were conducted in two phases.
First, a base case was run with settings correspond-
ing to the assumptions of the learning techniques, par-
ticularly linear regression. Second, those settings were
systematically altered to test the effects of violations
of those assumptions. For the base case, schedules
contain 30 unique methods, executed in a random or-
der. Method performance is controlled by a TAMS
task structure containing 15 NLEs (three disables, four
enables, four facilitates, and four hinders). In addition,
the task structure avoids cases where a single method is
affected by more than one NLE. Values of ¢ for the soft
NLEs deviate moderately from unity (3.0 for facilitate
and 0.5 for hinders). The discrete probability distri-
butions for performance parameters of methods (e.g.,
quality) are approximately log-normal. To learn empir-
ical frequency distributions, TLS uses a window size of
100, and to learn soft NLEs, it uses arrs = 0.10. In
the next section, we show results for this base case, and
results for dependent NLEs, log-uniform quality distri-
butions, soft NLEs with small deviations from unity,
and a larger number of soft NLEs.

To measure learning in TLS, we use four error met-
rics, each of which applies to one of the three pairs of
learning methods and learned knowledge. TLS’ error in
learning distributions with empirical frequencies is mea-
sured by the mean difference in areas (D) between the
cumulative probability plots of the actual and learned

distributions. For example, figure 3 shows how D is
calculated for a method in a particularly simple case.
D is normalized by dividing by the total range of the
quality (¢maz — Gmin) SO that it varies between 0 and 1.
The mean of D, D, measures the average D across all
methods.

1 —
4
Actual
3
0.5 Learned
2
D=(A1+A2+A3+As) /150
1
0
0 50 100 150

Figure 3: Difference in cumulative probability between
learned and actual distributions

TLS’ error in learning hard NLEs with deterministic
properties is measured by the proportion of misclassi-
fied hard NLEs (H). All experiments reported in this
paper begin with the assumption that all possible hard
NLEs exist — a total of k(k — 1) possible hard NLEs
among k methods. Deterministic properties are then
used to eliminate hard NLEs until only true ones re-
main. The deterministic properties used by TLS are
guaranteed to preserve actual hard NLEs, thus H al-
ways measures the extra NLEs that the system was un-
able to eliminate from consideration.

TLS’ error in learning soft NLEs with stepwise linear
regression is measured by two different metrics. The
first measures the errors in TLS’ inferences about which
soft NLEs exist; the second measures the errors in TLS’
estimates of the power factors for inferred NLEs. The
first metric, S, is the proportion of all true soft NLEs
that are learned correctly (number of soft NLEs learned
/ number of true soft NLEs). In the base case used
in the experiments, there are eight soft NLEs. The
second metric, §, is the average difference between the
actual power factor and the learned power factor. For
a given soft NLE i, 0 = |¢i,.,... — Pirearneal). The mean
difference, §, measures the average & across all possible
soft NLEs.

Results

Figure 5a shows the values of the first three error met-
rics (excluding) for the base conditions (the settings
outlined above). In fewer than 100 schedules, the dis-
tributions and hard NLEs are learned with low error.
TLS continues to reduce the number of spurious hard
NLEs, reaching one by the time 300 schedules are ex-
ecuted. The existence of all soft NLEs is not correctly
inferred until more than 240 schedules have been exe-

cuted, although all but one is inferred in less than 150
schedules.

To explore the robustness of TLS, we tested four al-
ternatives to the base conditions: 1) dependent NLEs
rather than independent NLEs; 2) log-uniform quality
distributions rather than log-normal; 3) @racititates =
1.5 and Ppinders = 0.75 rather than ¢raciitates = 3.0
and @pinders = 0.5; and 4) 15 soft NLEs rather than 8
soft and 7 hard.

Figure 5b shows the sum of the errors in the power
factors, 9, for the base conditions and all four alterna-
tive conditions. All tend toward zero as the number of
schedule executions increases, but the base conditions
cause the fastest convergence. Decreasing the devia-
tions of the power factors from one causes a long plateau
before sufficient data accumulate to begin learning these
small deviations. Similarly, dependence among the
NLEs also causes a plateau, because the hard NLEs
prevent some methods from executing, depriving the
regression of the data needed to infer soft NLEs. A
log-uniform distribution causes larger errors in power
factors.

One result that figures 5a and b do not convey clearly
is the degree to which distributions are learned cor-
rectly. Figure 4 shows a cumulative probability plot
comparing an actual distribution and a learned distri-
bution for a method affected by a single hinders under
the base conditions. The plot shows the distribution
after 300 schedules. The learned distribution closely
approximates the actual distribution.

Q(Ms)
17 1
learned
0.5
0 1
0 50 100 150

Figure 4: Cumulative probability plot of actual and learned
distributions of quality

Figures 5c-f show the same content as figure bHa,
but for the four alternative conditions outlined above.
In these alternative conditions, distributions and hard
NLEs are still learned very rapidly, but the speed with
which soft NLEs can be inferred is generally reduced.

The experiments revealed some unexpected difficul-
ties in learning. For example, the overall low error rate
for NLEs masks some subtle limitations that prevents
TLS from accurately learning all NLEs when such re-
lationships are dependent (e.g., Figure 5c¢). The situa-
tion shown in figure 6 demonstrates three cases of such
limitations. The disables between M; and M3 is spu-

rious, but cannot be eliminated. For any schedule in
which M; precedes Mz, M3 will be disabled because
of the valid hard NLEs connecting M;, M,, and Ms,
thus simulating a disables between M; and Mjs. For
the same reason, the hinders between M; and M3z can-
not be learned. Finally, the spurious disables between
M, and M> cannot be eliminated because the valid en-
ables NLE between the two methods prevents M7 from
every preceding M,. Fortunately, much of the knowl-
edge made inaccessible by these limitations concerns
“impossible schedules” — schedules that could never
be executed in practice. However, future versions of
TLS will account for this minor pathology.

Disables
_»7 Hinders ¢=05 "«
7 \\
/ \
4 \
/) Disables '

oY) O

Disables

Enables
—> Relations learned correctly

****** > Relations learned incorrectly

Relations missed
Figure 6: Dependent NLEs that prevent learning

The error graphs in figure 5 also indicate how the
most important coordination knowledge is often learned
most quickly. For example, TLS learns large power fac-
tors more quickly than small factors, and it learns hard
NLEs (e.g., enables and disables) much more quickly
than soft NLEs. Though not shown in experiments,
empirical probability distributions learn the probabili-
ties of the most frequent values of distributions most
rapidly.

Conclusions

Our results indicate that TLS is relatively robust and
can learn hard NLEs and method distributions from a
small number of schedule executions, often less than 50
schedules. TLS can infer the existence of soft NLEs and
their associated power factors, although this requires a
moderately larger number of schedules.

These learned NLEs may act among the local meth-
ods of one agent, or methods in several different agents
(as indicated in the hospital scheduling example). Al-
though we experiment with a single agent learning
quantitative coordination knowledge, TLS is fully able
to learn NLEs across multiple agents if each agent has
access to the schedule and execution characteristics
of methods. We have already designed a distributed
version of TLS, where each agent exchanges executed
schedules for learning. In this design, we can have sev-
eral agents using TLS to learn only those NLEs that af-
fect their own methods or one dedicated learning agent
that learns for the whole community.

Error

Error

1.2 . .
D: distributions —
S: Soft NLEs -—---
H: Hard NLEs -----
1 femmeem \ 4
08 i]
g os}
fir
0 50 1 150 200 250 300
Schedules executed
a) Base case results
Dependent
12 T T T T T g
D: distributions
ra S: Soft NLEs
/ H: Hard NLEs -----
1f
0.8
06 |
0.4 |
0.2
o . ——— ; :]
0 50 100 150 250 300
Schedules executed
c¢) Dependent NLEs
Low power factors
12 — . .
P D: distributions
H i S: Soft NLEs
I H: Hard NLEs
1 g . 4
08 R
06 | q
0.4 4
0.2 | q
0 50 100 200 250 300

Base case

150
Schedules executed

e) Small deviations in power factors

Error

Delta

12

35

25

Comparison of the delta learning over all cases
T T T T
Dependent —
i Uniform distributions
i Power factors low -+
i Only soft NLEs -
I Base case —--

Schedul;gzxeculed
b) Average error in power factor (J)
for all 5 cases.

Uniform distribution

D: distributions
S: Soft NLEs
H: Hard NLEs -----

150 200 250
Schedules executed

d) Log-uniform distributions

Only soft NLEs
T

T
D: distributions
S: Soft NLEs

H: Hard NLEs

50 100

200 250 300

150
Schedules executed

f) Only soft NLEs

Figure 5: Errors for learning hard NLEs, soft NLEs, and method distributions under different conditions

Acknowledgment

Effort partially sponsored by the Defense Advanced
Research Projects Agency (DARPA) and Air Force
Research Laboratory Air Force Materiel Command,
USAF, under agreement number F30602-97-1-0249.
The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon.This ma-
terial is based upon work supported by the National
Science Foundation under Grant No.IIS-9812755. Dis-
claimer: The views and conclusions contained herein
are those of the authors and should not be interpreted
as necessarily representing the official policies or en-
dorsements, either expressed or implied, of the De-
fense Advanced Research Projects Agency (DARPA),
Air Force Research Laboratory, National Science Foun-
dation, or the U.S. Government.

References

Mihai Barbuceanu and Mark S. Fox. COOL: A lan-
guage for describing coordination in multi agent sys-
tems. In Proceedings of the First International Confer-
ence on Multi-Agent Systems (ICMAS95), pages 17—
25, 1995.

Keith S. Decker and Victor R. Lesser. Quantita-
tive modeling of complex environments. International
Journal of Intelligent Systems in Accounting, Finance,
and Management, 2(4):215-234, December 1993. Spe-
cial issue on “Mathematical and Computational Mod-
els of Organizations: Models and Characteristics of
Agent Behavior”.

Keith S. Decker and Victor R. Lesser. Designing a fam-
ily of coordination algorithms. In Proceedings of the
First International Conference on Multi-Agent Sys-
tems, pages 73—-80, San Francisco, June 1995. AAAI
Press. Longer version available as UMass CS-TR 94—
14.

Keith Decker and Jinjiang Li. Coordinated hospital
patient scheduling. In Proceedings of the Third In-
ternational Conference on Multi-Agent Systems (IC-
MAS98), pages 104-111, 1998.

N.R. Draper and H. Smith. Applied Regression Anal-
ysis, 2nd edition. Whiley Series in Probability and
Mathematical Statistics. ”John Wiley & Sons”, 1981.

K.Z. Haigh and M.M. Veloso. Learning situation-
dependent costs: Improving planning from probabilis-
tic robot execution. In Proceedings of the Second In-
ternational Conference on Autonomous Agents, pages
231-238, 1998.

J. Hu and M. Wellman. Online learning about other
agents in a dynamic multiagent system. In Proceed-
ings of the Second International Conference on Au-
tonomous Agents, pages 239-246, 1998.

M. Kutner J. Neter, W Wasserman. Applied Linear
Statistical Models. Irwin, 1990.

David Jensen and Paul R. Cohen. Multiple com-
parisons in induction algorithms. Machine Learning,
1999. Forthcoming.

George John and Pat Langley. Estimating continuous
distributions in bayesian classifiers. In Proceedings of
the Eleventh Conference on Uncertainty in Artificial
Intelligence, pages 338-345, 1995.

M.D. Schmill, M.T. Rosenstein, P.R. Cohen, and
P. Utgoff. Learning what is relevant to the effects of
actions for a mobile robot. In Proceedings of the Sec-
ond International Conference on Autonomous Agents,
pages 247-253, 1998.

Toshi Sugawara and Victor R. Lesser. Learning to
improve coordinated actions in cooperative distributed
problem-solving environments. Machine Learning, 33,
Nov./Dec. 1998.

M. Tan. Multi-agent reinforcement learning: In-
dependent vs. cooperative agents. In M.P. Singh
M.N. Huhns, editor, Readings in Agents, chapter 4.5
Adaptive Agency, pages 487-494. Morgan Kaufmann,
1998.

Thomas Wagner, Alan Garvey, and Victor Lesser.
Complex Goal Criteria and Its Application in Design-
to-Criteria Scheduling. In Proceedings of the Four-
teenth National Conference on Artificial Intelligence,
pages 294-301, July 1997. Also available as UMASS
CS TR-1997-10.

Thomas Wagner, Alan Garvey, and Victor Lesser.
Criteria-Directed Heuristic Task Scheduling. Inter-
national Journal of Approximate Reasoning, Special
Issue on Scheduling, 19:91-118, 1998. A version also
available as UMASS CS TR-97-59.

Thomas Wagner, Victor Lesser, Brett Benyo, Anita
Raja, Ping Xuan, and Shelly XQ Zhang. GPGP?:
Supporting Situation Specific Protocols in Multi-
Agent Coordination. Computer Science Technical
Report TR-98-05, University of Massachusetts at
Ambherst, October 1998.

G. Weif}. Learning to coordinate actions in multi-agent
systems. In M.P. Singh M.N. Huhns, editor, Readings
in Agents, chapter 4.5 Adaptive Agency, pages 481—
486. Morgan Kaufmann, 1998.

D. Zeng and K. Sycara. Benefits of learning in negoti-
ation. In Proceedings of the Fourteenth National Con-
ference on Artificial Intelligence, pages 36—41, 1997.

