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Abstract

A central challenge of multiagent coordination is rea�
soning about how the actions of one agent a�ect the
actions of another� Knowledge of these interrelation�
ships can help coordinate agents � preventing con�
�icts and exploiting bene�cial relationships among ac�
tions� We explore three interlocking methods that
learn quantitative knowledge of such non�local e�ects
in T�MS	 a well�developed framework for multiagent
coordination� The surprising simplicity and e�ective�
ness of these methods demonstrates how agents can
learn domain�speci�c knowledge quickly	 extending the
utility of coordination frameworks that explicitly rep�
resent coordination knowledge�

Introduction

A major challenge of designing e�ective multiagent sys	
tems is managing non	local e�ects 
 situations where
the actions of one agent impact the performance of
other agents� actions� For example� one agent�s ac	
tion can enable� disable� facilitate� or hinder the ac	
tions of other agents� Poor accounting for these non	
local e�ects �NLEs
 can cause multiagent activities to
deadlock or waste resources� so representing and rea	
soning about NLEs is a central feature of frameworks
for multiagent coordination �Decker and Lesser �����
Barbuceanu and Fox ����
�
Multiagent coordination frameworks often assume

that agents possess accurate knowledge of the relation	
ships among actions and the basic performance char	
acteristics of those actions �e�g�� cost and duration
�
Such knowledge allows agents to schedule activities in
ways that exploit bene�cial relationships� and avoid
pathological ones� Unfortunately� accurate knowledge
of NLEs is di�cult to maintain in heterogeneous and
open systems� Agent designers may not know the fu	
ture operating environment for their agents� the com	
plete set of actions open to other agents� and the ef	
fects those actions have on their own agents� For all of
these reasons� the ability for multiagent systems to au	
tonomously learn coordination knowledge appears crit	
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ical for next	generation coordination frameworks �Sug	
awara and Lesser ����
�
We investigated and implemented techniques to learn

the statistical knowledge about NLEs represented in
one well	established framework for multiagent coordi	
nation �T�MS
� We found that a combination of three
simple learning techniques can be surprisingly e�ective�
The learned knowledge can be used to accurately pre	
dict the performance of a particular action� given its
context within a set of actions executed by the same
agent or other agents� The success of these meth	
ods demonstrates how coordination knowledge can be
learned explicitly� as opposed to learning coordination
policies that implicitly represent knowledge of agents�
environments� and their association�

Context

Learning for multiagent coordination has become a pop	
ular topic in the past several years� Much of the ex	
isting work aims to equip agents with e�ective poli	
cies 
 functions that map environmental conditions
directly to coordinated actions� For example� Wei�
�Wei� ����
 investigates reinforcement learning �RL

techniques to improve the coordinated performance of
reactive agents� Similarly� Tan �Tan ����
 investigates
how to extend RL to create coordinated multiagent
policies�
In contrast� we explore learning explicit quantitative

knowledge needed by deliberative agents 
 agents that
explicitly plan sequences of actions and that can trace
the assumptions embedded in those plans� We assume
that the coordination framework �T�MS in this case

encodes all relevant characteristics of the environment
needed to guide coordination and that agents can use
this knowledge to devise coordinated actions� Sepa	
rating knowledge from coordination mechanisms pro	
vides opportunities �e�g�� the coordination strategy can
be changed without altering the knowledge
� as well as
costs �e�g�� using the knowledge requires explicit rea	
soning
�
Another theme of learning for multiagent coordina	

tion has been learning to predict the future actions of
other agents� Such predictions can help produce coor	
dinated actions even without explicit communication



among agents� Hu and Wellman �Hu and Wellman
����
 study this type of learning in the context of a
simulated double auction� Similarly� Zeng and Sycara
�Zeng and Sycara ����
 study learning to predict agent
actions in the context of sequential negotiation� In con	
trast� we focus on learning how agent actions a�ect each
other� While some of this knowledge could be used to
predict the reasoning of other agents� it does not di	
rectly predict their actions�
Some of the work closest to our own focuses on learn	

ing the e�ects of environmental context on the outcomes
of agent actions� For example� Schmill� Rosenstein� Co	
hen� and Utgo� �Schmill et al� ����
 use decision trees
to learn the environmental states and actions that pro	
duce changes in particular sensor values of a mobile
robot� Similarly� Haigh and Veloso �Haigh and Veloso
����
 learn situation	dependent costs of actions from
execution traces of robot navigation� This work and
other similar work focuses on the relationships among
actions and outcomes� a notion closely allied with our
focus on actions and their non	local e�ects �NLEs
 in
a multiagent context� However� the �environment� in
our work consists almost entirely of the actions of other
agents� and the desired knowledge concerns how to co	
ordinate the actions of multiple agents�

Tasks

We investigated learning techniques for T�MS� an ex	
isting framework for multiagent coordination� T�MS
�Decker and Lesser ����
 represents quantitative in	
formation about agent activities� including candidate
actions and how those actions can combine to achieve
high	level tasks� T�MS represents a task as a tree
whose root is the overall task and whose leaves are prim	
itive actions referred to as methods� Internal nodes rep	
resent subtasks composed of other tasks and methods�
Internal nodes also specify how the constituent meth	
ods and tasks combine for successful execution �e�g�� all
must execute successfully� or only a single alternative
must execute successfully
� In addition to this struc	
tural information about tasks and methods� T�MS rep	
resents two types of statistical information 
 �
 prob	
ability distributions that describe the possible values
of performance parameters of a method �e�g�� the qual	
ity of a method�s result� the cost of the method� and
its duration
� and �
 non	local e�ects �NLEs
 of one
method on another �e�g�� enables� disables� facilitates�
and hinders
�
Reasoners can use the knowledge represented in

T�MS �Wagner et al� ����a
 to evaluate the quality�
cost� and duration of possible courses of action and their
e�ects on other agent�s actions� Using this information�
reasoners can select the one that best� meets the current

�The general action selection problem in T�MS is ex�
ponential and reasoners generally use a real�time	 satis�c�
ing	 goal�directed	 approximation strategy 
Wagner et al�

���
a�� Thus	 �best� in this case does not necessarily de�
note optimal�

constraints and environmental conditions� For example�
in a time	constrained situation� an agent may sacri�ce
solution quality� and pay a larger fee� to produce a result
within the speci�ed deadline� Detailed discussions of
T�MS are provided elsewhere �Decker and Lesser �����
Wagner et al� ����b
�
For example� consider how T�MS could be used to

coordinate the tasks assigned to di�erent departments
in a hospital� The departments need to coordinate the
execution of these tasks to produce maximum medical
bene�t to patients under time and cost constraints� For
a given patient� the radiology department may wish to
schedule an x	ray� the nursing sta� may wish to draw
blood for diagnostic tests� and the cafeteria may wish
to provide breakfast for the patient� The existence of
NLEs among the methods needed to complete these
tasks implies a speci�c order of execution� For ex	
ample� eating breakfast may disable some diagnostic
tests and the radioactive elements ingested for some x	
rays may hinder obtaining accurate results from blood
tests� These constraints imply a schedule with the or	
der� blood tests� x	rays� and breakfast�
To be more speci�c� Figure � shows a partial T�MS

task structure for the hospital agents �Decker and Li
����
 coordinating their services for a single patient�
Radiology has the task of taking an x	ray of the pa	
tient� This task requires execution of three methods�
providing a barium solution for the patient to ingest�
producing an exposure of the patient� and interpreting
the exposure� The barium solution enables the inter	
pretation �without it the interpretation would always
have zero quality
 and the exposure enables the inter	
pretation� Similarly� the nursing sta� wish to conduct
tests on the patient�s blood� The �rst method of this
activity� drawing blood� enables the two tests� One of
the tests is hindered if the patient has ingested a barium
solution� Finally� hospital policy requires that blood be
drawn and barium solutions be administered when the
patient has an empty stomach�
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Figure �� T�MS Task Structure for hospital patient ser�
vices�

This paper focuses on learning the statistical knowl	
edge encoded in T�MS about distributions and NLEs
�distributions were left o� �gure � for simplicity
� In
particular� we focus on learning four of the most com	
mon NLEs � enables� disables� facilitates� and hin	
ders� Each NLE de�nes a relation between one task
or method �A
 and another task or method �B
� For
clarity and brevity� only e�ects on quality are discussed�
e�ects on duration and cost can be inferred from con	



text� Similarly� the term �precede� is used to mean that
a method successfully completes execution prior the the
beginning of execution for another method�

� Enables 
 If A does not precede B� then B fails�
achieving a quality q�B
 � �� If multiple methods or
tasks enable B� then all must precede B in order for
B to be enabled�

� Disables 
 The complement of enables� If A pre	
cedes B� then B fails� achieving a quality q�B
 � ��
If multiple methods or tasks disable B� then B will
fail if any of them precede B�

� Facilitates 
 If A precedes B� then the quality of
B is multiplied by a given power factor �� where
� � �� That is� q�BjA
 � �ABq�BjA
� Facil�
itates can modify one or more performance char	
acteristics of B� Multiple facilitating methods are
multiplicative in their e�ects� That is� if A and B
both facilitate C� and precede C in a schedule� then
q�CjAB
 � �AC�BCq�CjAB
�

� Hinders 
 The complement of facilitates� If A pre	
cedes B� then the quality of B is multiplied by a given
power factor �� where � � ��

Learning Methods

Our work focuses on learning accurate knowledge of
distributions and NLEs� We assume that agents al	
ready know what methods are available to be executed�
and how to use T�MS knowledge to produce e�ective
schedules�
To learn distributions and NLEs� agents monitor the

performance of schedules 
 �nite sets of methods with
at least a partial order� Each learning instance consists
of the performance characteristics of a given method
in the schedule �e�g�� quality� duration� and cost
 and
the set of all methods in the schedule that successfully
completed execution prior to the given method�� We
assume that all methods in a schedule are either exe	
cuted directly by the learning agent� or that the learn	
ing agent is informed of their execution� Agents are
not required to infer the existence of hidden methods�
Further� we assume that each schedule execution is in	
dependent� methods executed in one schedule do not
a�ect methods executed in another schedule� This lim	
its the scope of NLEs to methods in the schedule� con	
sistent with the original assumptions of T�MS�
The goal is to use learning instances to infer distribu	

tions of una�ected performance characteristics �quality�
duration� and cost
 for each method and to infer the ex	
istence of all NLEs and their associated power factors
��
� To acquire this knowledge� we built the T�MS

�From this point forward	 we refer only to methods	 not
the more general term �methods and tasks��

Learning System �TLS
� TLS uses three relatively sim	
ple learning methods� �
 empirical frequency distribu	
tions� �
 deterministic properties of schedules� and �

linear regression� Below� we discuss each method indi	
vidually and discuss the interactions among the meth	
ods that allow them to be e�ective�
Empirical frequency distributions are used to esti	

mate distributions of performance parameters such as
quality� duration� and cost� The frequency distribu	
tion for a given method and performance parameter is
derived from a moving window of k instances of the ex	
ecution of that method� Our goal is to estimate the dis	
tribution when una�ected by NLEs �i�e�� the quality of
method C may be a�ected by methods A and B that fa�
cilitate its execution
� As a result� nearly all values are
assumed to be a�ected by NLEs� and they are divided
by the current estimates of the relevant power factors to
render an estimate of the una�ected quality� For exam	
ple� if A and B were the only methods currently thought
to a�ect C� then q�CjNLE
 � q�C
���AC�BC
�
An alternative approach is to learn from only those

results of method executions that are guaranteed to be
una�ected �e�g�� the results of methods executed at the
start of each schedule
� In empirical tests� this approach
proved far slower than the methods reported here� Fig	
ure � shows the results of one experiment� The top
line shows the error associated with learning from only
quality values guaranteed to be una�ected� The bot	
tom line shows the error associated with learning from
all values� when whose values are corrected based on
estimated power factors�
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Figure �� Error of two di�erent methods for estimating
distributions�

Deterministic properties of schedules are used to
learn �hard� NLEs such as enables and disables� Al	
though we derived a total of six such properties� two
proved particularly useful in the experiments reported
here� The �rst� enables exclusion states that successful
execution of method A at any point in a schedule ex	
cludes all methods that did not precede A as possible
enabling conditions �T�MS requires that all enabling



methods precede a given method for it to execute suc	
cessfully
� The second� disables exclusion states that
successful execution of method A at any point in a
schedule excludes all methods that precede A as possi	
ble disabling conditions �T�MS speci�es that any dis	
abling method preceding a given method will disable
it
�
Linear regression is used to infer the existence of

�soft� NLEs and to estimate their associated power
factors ��
� Recall the T�MS speci�cation of how
facilitates and hinders a�ect the performance charac	
teristics of methods� For example� the quality of a
given methodm� is determined by its una�ected quality
�q�m�jNLE

 and the power factors of methods that fa	
cilitate or hinder it �e�g�� m�� m�� and m�
� Given these
NLEs� T�MS speci�es that�

q
m�� � ��
x���

x���
x�q
m�jNLE�

where xn � � when mn precedes m� and xn � � other	
wise� Taking the log of both sides�

log
q
m��� � log
���x� � log
���x� �

log
���x� � log
q
m�jNLE��

This equation is in the classic form of a linear re	
gression equation� y � ��x� � ��x� � ��x� � �� � ��
where y corresponds to the log of the a�ected quality
and ��� ��� and �� correspond to the logs of the re	
spective power factors� �� and � combine to correspond
to the una�ected quality distribution� where �� is the
distribution�s mean and � corresponds to the random
deviations of its values from that mean�
To �nd NLEs a�ecting each method� we search for

equations containing power factors � that are signi�	
cantly di�erent than one �represented by regression co	
e�cients � signi�cantly di�erent from zero
� We con	
duct this search using a standard statistical method�
stepwise linear regression �Draper and Smith �����
J� Neter ����
� Stepwise regression conducts a simple
local search over possible regression equations� starting
with an equation containing only �� and ending with
an equation containing at most k terms� where k is the
number of methods available in each schedule� Terms
are added to the equation if their coe�cients are sig	
ni�cantly di�erent than one� and are removed if their
coe�cients are not signi�cantly di�erent than one �co	
e�cients of existing terms in an equation can change
when new terms are added
�
Three assumptions of linear regression create poten	

tial problems for applying the technique to learn power
factors for soft NLEs� Under the �rst assumption� in	
dependence of the variables xn� knowing a value of one
x should tell us nothing about the value of any other x�
Unfortunately� hard NLEs can cause successful execu	
tion of some methods to be dependent on the success	
ful execution of others� introducing dependence among
the variables xn� The NLE A enables B introduces

a positive correlation between xA and xB � A disables
B introduces a negative correlation� Regression is ro	
bust against moderate violations of this assumption�
but strong violations can greatly increase the variance
of estimated coe�cients of the regression equation �in
our case� causing the estimates of power factors to be
extremely in�ated or de�ated
� TLS addresses this
problem in two ways� First� it checks for strong vio	
lations of this assumption �often referred to as perfect
multicollinearity
� and doesn�t alter the current state of
knowledge in such cases� In our experiments� such vi	
olations typically occurred only in very small datasets�
Second� TLS uses stepwise regression which greatly re	
duces the total number of variables in regression equa	
tions� thus reducing the probability that two or more of
them will be dependent�
Under the second assumption� normally	distributed

errors� the distribution of the error term in the regres	
sion equation should be normal� In our case� the error
term represents the log of the una�ected quality dis	
tribution log�q�m�jNLE

 �shifted so its mean is zero
�
To match this assumption� the distribution itself should
be log	normal� While this is one reasonable quality dis	
tribution� it is not the only reasonable one� We exper	
iment with an alternative distribution to indicate how
linear regression is robust to moderate violations of this
assumption�
The third assumption a�ects how we test statistical

signi�cance� Such tests are run to determine which co	
e�cients � di�er signi�cantly from zero� The stringency
of any one test is determined by ��� which indicates the
probability of a Type I error �incorrectly rejecting the
null hypothesis that a single coe�cient is zero
� How	
ever� for a single performance parameter �e�g�� quality

and k methods in a schedule� k�k � �
 possible NLEs
exist� TLS tests whether each of these NLEs exists�
Under these conditions� the probability of TLS making
at least one Type I error is much larger than ��� If the
NLEs are independent� the probability is�

�TLS � �� 
�� ���
k�k���

For example� for the overall probability of error �TLS
to be small �e�g�� ����
 in our base case experiment� the
probability of error on any one test �� must be much
smaller ���������
� This process is called Bonferroni
adjustment� Some such adjustment is important in any
context where many explicit or implicit hypothesis tests
are made �Jensen and Cohen ����
� TLS uses Bonfer	
roni adjustment to set appropriate values of �� so that
�TLS is small�

Experiments

We measure the e�ectiveness of TLS with metrics that
directly measure the quality of the learned knowledge�
rather than indirectly measuring its e�ect on agent co	
ordination� This approach focuses evaluation on TLS
and avoids confounding TLS� performance with the



performance of other system components for schedul	
ing and coordination �Wagner et al� ����
� However�
it could also inappropriately credit or penalize TLS for
learning knowledge that is unimportant or infrequently
used� respectively� To guard against this latter error� we
review the utility of the learned knowledge at the the
next section and show that the most useful knowledge
is generally learned most quickly�
In each experiment� agents create learning data by

generating and executing schedules� In all experiments
reported here� agents operate in an exploration mode�
executing randomly	generated schedules� rather than
attempting to use already learned knowledge to gen	
erate maximally e�ective schedules� In practice� agents
are likely to mix exploration and exploitation of learned
knowledge� and even to use directed exploration� These
options will be explored in later work�
Agents have access to performance parameters of ex	

ecuted schedules 
 values of quality� duration� and cost
for each method in a schedule 
 that are a�ected by an
initially unknown set of NLEs� The actual una�ected
distributions and NLEs are hidden from agents� but
they determine the values of performance parameters
observed by agents�
Consistent with other projects using T�MS� we use

discrete probability distributions� However� our meth	
ods for learning hard and soft NLEs apply equally well
to cases with continuous probability distributions� and
a method such as kernel density estimators �John and
Langley ����
 could be used to estimate continuous
probability distributions from empirical data�
The experiments were conducted in two phases�

First� a base case was run with settings correspond	
ing to the assumptions of the learning techniques� par	
ticularly linear regression� Second� those settings were
systematically altered to test the e�ects of violations
of those assumptions� For the base case� schedules
contain �� unique methods� executed in a random or	
der� Method performance is controlled by a T�MS
task structure containing �� NLEs �three disables� four
enables� four facilitates� and four hinders
� In addition�
the task structure avoids cases where a single method is
a�ected by more than one NLE� Values of � for the soft
NLEs deviate moderately from unity ���� for facilitate
and ��� for hinders
� The discrete probability distri	
butions for performance parameters of methods �e�g��
quality
 are approximately log	normal� To learn empir	
ical frequency distributions� TLS uses a window size of
���� and to learn soft NLEs� it uses �TLS � �	��� In
the next section� we show results for this base case� and
results for dependent NLEs� log	uniform quality distri	
butions� soft NLEs with small deviations from unity�
and a larger number of soft NLEs�
To measure learning in TLS� we use four error met	

rics� each of which applies to one of the three pairs of
learning methods and learned knowledge� TLS� error in
learning distributions with empirical frequencies is mea	
sured by the mean di�erence in areas �D
 between the
cumulative probability plots of the actual and learned

distributions� For example� �gure � shows how D is
calculated for a method in a particularly simple case�
D is normalized by dividing by the total range of the
quality �qmax� qmin
 so that it varies between � and ��
The mean of D� D� measures the average D across all
methods�
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Figure �� Di�erence in cumulative probability between
learned and actual distributions

TLS� error in learning hard NLEs with deterministic
properties is measured by the proportion of misclassi	
�ed hard NLEs �H
� All experiments reported in this
paper begin with the assumption that all possible hard
NLEs exist 
 a total of k�k � �
 possible hard NLEs
among k methods� Deterministic properties are then
used to eliminate hard NLEs until only true ones re	
main� The deterministic properties used by TLS are
guaranteed to preserve actual hard NLEs� thus H al	
ways measures the extra NLEs that the system was un	
able to eliminate from consideration�
TLS� error in learning soft NLEs with stepwise linear

regression is measured by two di�erent metrics� The
�rst measures the errors in TLS� inferences about which
soft NLEs exist� the second measures the errors in TLS�
estimates of the power factors for inferred NLEs� The
�rst metric� S� is the proportion of all true soft NLEs
that are learned correctly �number of soft NLEs learned
� number of true soft NLEs
� In the base case used
in the experiments� there are eight soft NLEs� The
second metric� 
� is the average di�erence between the
actual power factor and the learned power factor� For
a given soft NLE i� 
 � j�iactual ��ilearned j
� The mean
di�erence� 
� measures the average 
 across all possible
soft NLEs�

Results

Figure �a shows the values of the �rst three error met	
rics �excluding 

 for the base conditions �the settings
outlined above
� In fewer than ��� schedules� the dis	
tributions and hard NLEs are learned with low error�
TLS continues to reduce the number of spurious hard
NLEs� reaching one by the time ��� schedules are ex	
ecuted� The existence of all soft NLEs is not correctly
inferred until more than � � schedules have been exe	



cuted� although all but one is inferred in less than ���
schedules�
To explore the robustness of TLS� we tested four al	

ternatives to the base conditions� �
 dependent NLEs
rather than independent NLEs� �
 log	uniform quality
distributions rather than log	normal� �
 �facilitates �
�	� and �hinders � �	�� rather than �facilitates � �	�
and �hinders � �	�� and  
 �� soft NLEs rather than �
soft and � hard�
Figure �b shows the sum of the errors in the power

factors� 
� for the base conditions and all four alterna	
tive conditions� All tend toward zero as the number of
schedule executions increases� but the base conditions
cause the fastest convergence� Decreasing the devia	
tions of the power factors from one causes a long plateau
before su�cient data accumulate to begin learning these
small deviations� Similarly� dependence among the
NLEs also causes a plateau� because the hard NLEs
prevent some methods from executing� depriving the
regression of the data needed to infer soft NLEs� A
log	uniform distribution causes larger errors in power
factors�
One result that �gures �a and b do not convey clearly

is the degree to which distributions are learned cor	
rectly� Figure  shows a cumulative probability plot
comparing an actual distribution and a learned distri	
bution for a method a�ected by a single hinders under
the base conditions� The plot shows the distribution
after ��� schedules� The learned distribution closely
approximates the actual distribution�
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Figure  � Cumulative probability plot of actual and learned
distributions of quality

Figures �c	f show the same content as �gure �a�
but for the four alternative conditions outlined above�
In these alternative conditions� distributions and hard
NLEs are still learned very rapidly� but the speed with
which soft NLEs can be inferred is generally reduced�
The experiments revealed some unexpected di�cul	

ties in learning� For example� the overall low error rate
for NLEs masks some subtle limitations that prevents
TLS from accurately learning all NLEs when such re	
lationships are dependent �e�g�� Figure �c
� The situa	
tion shown in �gure ! demonstrates three cases of such
limitations� The disables between M� and M� is spu	

rious� but cannot be eliminated� For any schedule in
which M� precedes M�� M� will be disabled because
of the valid hard NLEs connecting M�� M�� and M��
thus simulating a disables between M� and M�� For
the same reason� the hinders between M� and M� can	
not be learned� Finally� the spurious disables between
M� and M� cannot be eliminated because the valid en�
ables NLE between the two methods prevents M� from
every preceding M�� Fortunately� much of the knowl	
edge made inaccessible by these limitations concerns
�impossible schedules� 
 schedules that could never
be executed in practice� However� future versions of
TLS will account for this minor pathology�
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Figure !� Dependent NLEs that prevent learning

The error graphs in �gure � also indicate how the
most important coordination knowledge is often learned
most quickly� For example� TLS learns large power fac	
tors more quickly than small factors� and it learns hard
NLEs �e�g�� enables and disables
 much more quickly
than soft NLEs� Though not shown in experiments�
empirical probability distributions learn the probabili	
ties of the most frequent values of distributions most
rapidly�

Conclusions

Our results indicate that TLS is relatively robust and
can learn hard NLEs and method distributions from a
small number of schedule executions� often less than ��
schedules� TLS can infer the existence of soft NLEs and
their associated power factors� although this requires a
moderately larger number of schedules�
These learned NLEs may act among the local meth	

ods of one agent� or methods in several di�erent agents
�as indicated in the hospital scheduling example
� Al	
though we experiment with a single agent learning
quantitative coordination knowledge� TLS is fully able
to learn NLEs across multiple agents if each agent has
access to the schedule and execution characteristics
of methods� We have already designed a distributed
version of TLS� where each agent exchanges executed
schedules for learning� In this design� we can have sev	
eral agents using TLS to learn only those NLEs that af	
fect their own methods or one dedicated learning agent
that learns for the whole community�
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